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FedBCGD: Communication-Efficient Accelerated Block
Coordinate Gradient Descent for Federated Learning
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ABSTRACT
Although federated learning has been widely studied in recent

years, there are still high overhead expenses in each communica-

tion round for large-scale models such as Vision Transformer. To

lower the communication complexity, we propose a novel Feder-

ated Block Coordinate Gradient Descent (FedBCGD) method for

communication efficiency. The proposed method splits model pa-

rameters into several blocks including a shared block and enables

uploading a specific parameter block by each client during training,

which can significantly reduce communication overhead. Moreover,

we also develop an accelerated FedBCGD algorithm (called Fed-

BCGD+) with client drift control and stochastic variance reduction.

To the best of our knowledge, this paper is the first parameter block

communication work for training large-scale deep models. We also

provide the convergence analysis for the proposed algorithms. Our

theoretical results show that the communication complexities of our

algorithms are a factor 1/𝑁 lower than those of existing methods,

where 𝑁 is the number of parameter blocks, and they enjoy much

faster convergence results than their counterparts. Empirical results

indicate the superiority of the proposed algorithms compared to

state-of-the-art algorithms.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms.

KEYWORDS
Federated Learning, Efficient Communication, Block Coordinate

Gradient Descent

1 INTRODUCTION
Federated Learning (FL) is an emerging machine learning paradigm,

which aims at achieving collaborative model training among mul-

tiple parties to preserve data privacy. Federated learning achieves

model training by training models locally on client devices and

then uploading them to a central server for model aggregation [28].

Compared to centralized learning in a data center [11], the parallel

computing clients of federated learning have private data stored in

them and communicate remotely with a central server. The clients

are responsible for local training, while the central server in charge

of aggregating the models uploaded by each client. Currently, fed-

erated learning has been widely applied in different fields such
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Figure 1: The diagram of the proposed FedBCGD framework,
where 𝑆 ≥ 𝑁 , 𝑆 and 𝑁 are the numbers of clients and param-
eter blocks, respectively.

as mobile intelligence devices, medical health, and financial risk

control [3, 5, 35].

In mainstream federated learning frameworks, the communica-

tion between clients and their server is slow, costly, and unreliable

[19]. In recent years, large models such as BERT and ChatGPT [4, 7]

have emerged, leading to an exponential increase in the model size

and data volume on FL clients. The upload of these large models

further escalates the cost of communication in FL. To significantly

lower the communication complexity, this paper proposes a novel

method for federated learning, called Federated Block Coordinate

Gradient Descent (FedBCGD), which is based on block coordinate

descent (BCD) methods [38].

In FL, the upload speed of the client model is more than a hundred

times slower than the download speed, so this paper mainly resolves

the issue of upload communication cost. As shown in Figure 1,

we divide the model parameter 𝒙 into 𝑁 blocks and 𝒙𝑠 , i.e., 𝒙 =[
𝒙⊤(1) , . . . , 𝒙

⊤
(𝑁 ) , 𝒙

⊤
𝑠

]⊤
, where 𝒙𝑠 denotes the shared parameters

in each client (usually the parameters of the last layer classifier,

and their number is small but important, [26] suggests that the

deeper the model, the greater the variance of the parameters. In

federated learning, it is often the parameters in the last layer of the

classifier that are most important and have a very small number

of covariates (0.01% of the overall number in ResNet-18)). Each

client is responsible for optimizing one selected block 𝒙 ( 𝑗 ) and 𝒙𝑠 .
After local training for all model parameters, the updated parameter

block 𝒙 ( 𝑗 ) and 𝒙𝑠 are sent to the central server, which takes the

average aggregation of parameters for different parameter blocks

to get the complete model.

The initial idea is to require each client to perform local updates

only on the specified parameter block 𝒙 ( 𝑗 ) and 𝒙𝑠 while freezing

1
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Table 1: Comparison of the communication complexities and communication overheads of different algorithms in the 𝜇-strongly
convex setting, where 𝜎 is the variance of stochastic gradients,𝐺 is heterogeneity due to client data distribution, 𝑆 is the number
of participating clients, 𝐾 =𝑆/𝑁 , 𝐾 is the number of clients involved in each parameter block, 𝑁 is the number of parameter
blocks, and 𝑇 is the number of local training iterations. The number of floats sent per round by FedAvg is 𝑑 , and O describes
the worst-case complexity of different algorithms, where 𝛼 = 1

1−𝜆 . In non-convex settings, 𝜏 is the second-order heterogeneity
(see [16]), 𝐺 is the first-order heterogeneity, 𝐹 := 𝑓

(
𝒙0

)
− 𝑓 ★, and 𝑓 ★ is a minimum value of Problem (1) below.

Algorithm

Strongly convex

Communication complexity

Non-convex

Communication complexity

Client

sample

Stochastic

Gradient

Floats sent

per round

FedAvg [28] O
(
𝜎2+𝐺2

𝜇𝑆𝑇𝜖
+ 𝜎+𝐺
𝜇
√
𝜖
+ 𝛽
𝜇 log

1

𝜖

)
O
(
𝛽𝜎2

𝑇𝑆𝜖2
+
√
𝛽𝐺+

√︃
𝛽

𝑇
𝜎

𝜖
3

2

+ 𝐹𝛽
𝜖

)
Yes Yes 𝑑

FedBCGD (ours) O
(
𝜎2+𝐺2

𝜇𝑆𝑇𝜖
+ 𝜎+𝐺
𝛼𝜇𝑁

√
𝜖
+ 𝛽

𝜇𝑁
log

1

𝜖

)
O
(
𝛽𝜎2

𝑇𝑆𝜖2
+
√
𝛽𝐺+

√︃
𝛽

𝑇
𝜎

𝑁𝜖
3

2

+ 𝐹𝛽

𝑁𝜖

)
Yes Yes 𝑑/𝑁

SCAFFOLD [17] O
(
𝜎2

𝜇𝑆𝑇𝜖
+ 𝜎

𝜇
√
𝜖
+
(
𝑀
𝑆
+ 𝛽𝜇

)
log

1

𝜖

)
O
(
𝛽𝜎2

𝑇𝑆𝜖2
+

√︃
𝛽

𝑇
𝜎

𝜖
3

2

+ 𝛽𝐹
𝜖

(
𝑀
𝑆

) 2

3

)
Yes Yes 2𝑑

FedLin [29] O
(
𝛽
𝜇 log

1

𝜖

)
—— No No 2𝑑

S-Local-GD [10] O
(
𝛽
𝜇 log

1

𝜖

)
—— No No 2𝑑

CE-LSGD [31] —— O
(
𝐺𝐹𝜏

𝑀𝜖
3

2

)
Yes Yes 3𝑑

BVR-L-SGD [30] —— O
(
𝐹𝜏
𝜖 + 𝐹𝛽√

𝑇𝜖
+ 𝜎2

𝑀𝑇𝜖
+
(
𝜎𝐹𝛽

𝑀𝑇𝜖

) 3

2

)
Yes Yes 3𝑑

FedBCGD+ (ours) O
((
𝑀
𝑆
+
√︃
𝛽
𝜇

)
log

1

𝜖

)
O
( 𝛽𝐹
𝜖

(
𝑀
𝑆

) 2
3
1

𝑁

1

3

)
Yes Yes 2𝑑/𝑁

the remaining parameter blocks (called FedBCGD_freezing). After

local training, the specified parameter blocks would be uploaded

for model aggregation. However, due to a large drift between pa-

rameter blocks, such scheme often results in bad convergence in

our experiments (see Figure 5 for details). More specifically, only

updating certain parameter blocks locally results in a large gap be-

tween the updated parameter blocks and other freezing parameter

blocks, and it is not possible to establish good connections between

parameter blocks during the server-side aggregation process.

Therefore, we propose a novel FedBCGDmethod to address these

issues. In the proposed algorithm, we employ stochastic gradient

descent to update all parameters instead of parameter freezing dur-

ing local training, but only transmit two specified parameter blocks

(𝒙 ( 𝑗 ) and 𝒙𝑠 ) during the upload process. In addition, to compensate

for some missing parameters in block parameter transmission, we

add parameter block momentum on the server side. This algorithm

design maintains the advantages of low communication costs and

has demonstrated a significantly improved convergence speed in

our experiments (see Figure 5 for details). Moreover, adding one

shared parameter block in each client can significantly improve

accuracy performance. However, due to the impact of data het-

erogeneity, it still leads to inconsistent update directions between

parameter blocks, called parameter block drift, resulting in poor

performance of the aggregated model. Thus, we also propose an ac-

celerated version (called FedBCGD+) to address data heterogeneity.

The main difference between FedBCGD and BCD is that FedBCGD

incorporates shared one small parameter block and updates all

model parameters in each client (i.e., no parameter freezing), while

BCD only updates one parameter block in each iteration.

Our motivations and contributions: To address these issues

such as communication effectiveness, acceleration, theoretical guar-

antees and parameter block drift, we design a novel federated block

coordinate descent framework FedBCGD and its acceleration vari-

ant FedBCGD+ for training large-scale deep models such as Vision

Transformer. The main contributions of this work are listed as

follows:

• Novel Federated Learning Paradigm:We propose the first

block coordinate descent algorithm FedBCGD for horizontal FL.

FedBCGD demonstrates remarkable communication efficiency in

distributed learning scenarios. That is, this paper presents the first

block coordinate descent algorithm for horizontal federated learn-

ing. Moreover, we also introduce an accelerated version, FedBCGD+,

which exhibits an even faster convergence rate while maintaining

high communication efficiency.

• Convergence Analysis:We provide a thorough analysis of

the convergence properties of the proposed FedBCGD algorithm

and its accelerated version, FedBCGD+. By investigating the im-

pact of partitioned parameter blocks, the number of clients, and

the local training rounds, we provide valuable insights into their

convergence behavior. From a practical perspective, FedBCGD+

achieves faster convergence than FedBCGD, and it is proved faster

from a theoretical perspective. Moreover, FedBCGD+ has a much

lower communication complexity than existing algorithms in strong

convexity settings (e.g., O
( (
𝑀
𝑆

+
√︃
𝛽
𝜇

)
log

1

𝜖

)
for FedBCGD+ vs.

O
(
𝜎2

𝜇𝑆𝑇𝜖
+ 𝜎

𝜇
√
𝜖
+
(
𝑀
𝑆
+ 𝛽𝜇

)
log

1

𝜖

)
for SCAFFOLD [17]. Furthermore,

we can achieve a significant lower communication complexity of

O
( 𝛽𝐹
𝜖

(
𝑀
𝑆

)
2/3 1

𝑁

1/3)
in the non-convex setting, compared to that

2
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of SCAFFOLD, O
( 𝛽𝜎2

𝑇𝑆𝜖2
+

√︃
𝛽

𝑇
𝜎

𝜖3/2
+ 𝛽𝐹

𝜖

(
𝑀
𝑆

)
2/3)

. In other words, the

communication complexities of our algorithms are a factor 1/𝑁
lower than those of existing methods, where 𝑁 is the number of

parameter blocks.

• Overcoming Data Heterogeneity : The convergence of fed-
erated learning algorithms is hindered by two sources of high vari-

ance: (i) heterogeneous clients, and (ii) the noise from local stochas-

tic gradients. We propose two sets of control variance variables

to reduce client heterogeneity and the noise variance of the local

gradients in FedBCGD+. And we demonstrate the validity of the

two sets of control variables through theory and experiment.

2 RELATEDWORK
In this section, we mainly review existing federated learning and

block coordinate descent methods.

• Local Training: Local Training (LT) is a communication-

acceleration technique for FL [28]. One key challenge in LT is client

drift, where the local model of each client gradually approaches the

minimum of its own local cost function 𝑓𝑖 after multiple local GD

steps. To address this issue, SCAFFOLD [17] is proposed, which was

to incorporate control variates to correct for client drift and ensure

linear convergence to the exact solution. Subsequent algorithms

such as S-Local-GD [10] and FedLin [29] also aimed to provide

similar convergence properties.

The analysis of algorithms for non-convex federated learning

can be classified into several approaches. SCAFFOLD [17] is the first

federated algorithm capable of eliminating client data heterogene-

ity. However, its convergence speed is still affected by stochastic

gradients, achieving only a convergence rate of O(1/𝜖2). MIME

[16] is essentially a combination of local SGD and variance reduc-

tion techniques as in SVRG [15], with a derived communication

complexity of O(1/𝜖3/2). BVR-L-SGD [30] assumed second-order

data heterogeneity and achieved a communication complexity of

O(1/𝜖) with full client participation. The two-sided momentum

(STEM) algorithm [18] can also attain a communication complexity

of O(1/𝜖) with full client participation. Inspired by the Storm algo-

rithm [6], CE-LSGD [31] can achieve a communication complexity

of O(1/𝜖3/2) with partial client participation and O(1/𝜖) when all

clients participate.

• Block Coordinate Descent Methods: The block coordinate

descent method is one of the most successful algorithms in the field

of big data optimization. BCD is based on the strategy of updating

a single coordinate or a single block of coordinate of a vector of

variables at each iteration, which usually significantly reduces the

memory requirements as well as the arithmetic complexity of a

single iteration. The effectiveness of the BCD method for training

deep neural networks (DNNs) has been demonstrated in recent

years [40]. However, due to the highly non-convex nature of deep

neural networks, its convergence is difficult to maintain. In addition,

BCD can be easily implemented in a distributed and parallel manner

[27, 34]. Liu et al. [25] proposed a vertical federated learning [24]

framework (FedBCD) for distributed features, in which parties share

only the internal product of model parameters and raw data for

each sample during each communication. Unlike the above works,

this paper proposes the first block coordinate descent algorithm

for horizontal federated learning. Horizontal federated learning

is applied to scenarios where the client’s datasets have the same

feature space and different sample spaces [39].

• Communication-efficient Federated Learning: Commu-

nication efficient Federated Learning algorithms can be divided

into two categories, quantization and sparsification compression

methods. The classical Federated Learning quantization method

is proposed by Reisizadeh [33], which is a cycle averaging and

quantization processing method named FedPAQ, and the quantiza-

tion compression generally belongs to the unbiased compressions.

While sparsification methods include 𝑡𝑜𝑝-𝑘 and 𝑟𝑎𝑛𝑑-𝑘 methods

[36], 𝑡𝑜𝑝-𝑘 method is a biased compression method that uploads the

gradient at the first 𝑘 large positions in the gradient to the server,

while 𝑟𝑎𝑛𝑑-𝑘 method is an unbiased compression method that up-

loads the gradient at random 𝑘 positions to the server. FedBCGD is

different from all of the above methods and utilizes the idea of block

gradient descent to address federated efficient communication, in

addition to the above mentioned compression method that allows

for secondary compression of our transferred block gradient to

achieve more efficient communication, which is demonstrated in

the following experiment.

3 COMMUNICATION-EFFICIENT BLOCK
COORDINATE GRADIENT DESCENT
FEDERATED LEARNING

In this section, we propose a new communication-efficient block co-

ordinate gradient descent federated learning algorithm FedBCGD,

and its pseudocode is given in Algorithm 1. We formalize the feder-

ated learning problem as the minimization of a sum of stochastic

functions:

min

𝒙∈R𝑑

{
𝑓 (𝒙) := 1

𝑀

𝑀∑︁
𝑖=1

(
𝑓𝑖 (𝒙) :=

1

𝑛𝑖

𝑛𝑖∑︁
𝜈=1

𝑓𝑖
(
𝒙 ; 𝜁𝑖,𝜈

) )}
, (1)

where the function 𝑓𝑖 denotes the loss function on client 𝑖 ,𝑀 is the

number of clients, 𝑛𝑖 is the number of data points in client 𝑖 , and{
𝜁𝑖,1, . . . , 𝜁𝑖,𝑛𝑖

}
denote the local data of the 𝑖-th client. In this paper,

we assume that 𝑓𝑖 is a 𝛽-smooth function.

3.1 The proposed FedBCGD Algorithm
We firstly divide the global model 𝒙 into 𝑁 blocks of parameters

and one shared block, each of which can have a different number

of parameters,

𝒙 =
[
𝒙⊤(1) , . . . , 𝒙

⊤
(𝑁 ) , 𝒙

⊤
𝑠

]⊤
. (2)

We divide the sampled 𝑆 = 𝑁 · 𝐾 clients into 𝑁 client blocks with

𝐾 clients in each client block (see Figure 2). These 𝑁 parameter

blocks are distributed to the selected 𝑁 client blocks, where each

parameter block will be optimized by 𝐾 clients. Due to significant

differences in communication capabilities among different clients,

parameter blocks with smaller parameter values can be assigned to

clients with poorer communication capabilities, while parameter

blocks with larger parameter values can be assigned to clients with

better communication capabilities. This prevents clients with the

smallest resources from becoming bottlenecks in federated learning.

We define 𝒙𝑘,𝑗 as the local parameters of 𝑘-th client in 𝑗-th client

block (as client𝑘,𝑗 ). Each client performs𝑇 local stochastic gradient

steps on its respective client block, by using a minibatch in each

iteration as follows:

𝒙𝑟,𝑡+1
𝑘,𝑗

= 𝒙𝑟,𝑡
𝑘,𝑗

− 𝜂∇𝑓𝑘,𝑗
(
𝒙𝑟,𝑡
𝑘,𝑗

; 𝜁
)
, (3)

3
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Algorithm 1 FedBCGD

1: Initialize 𝒙0,0
𝑖

= 𝒙𝑖𝑛𝑖𝑡 , ∀𝑖 ∈ [𝑀].
2: Divide the model parameters 𝒙 into 𝑁 +1 blocks.
3: for 𝑟 = 0, ..., 𝑅 do
4: Client:
5: Sample clients S ⊆ {1, . . . , 𝑀}, |S| = 𝑁 · 𝐾 ;
6: Divide the sampled clients into 𝑁 client blocks;

7: Communicate (𝒙𝑟 ) to all clients 𝑖 ∈ S;
8: for 𝑗 = 1, . . . , 𝑁 client blocks in parallel do
9: for 𝑘 = 1, . . . , 𝐾 clients in parallel do
10: for 𝑡 = 1, . . . ,𝑇 local update do
11: Compute batch gradient ∇𝑓𝑘,𝑗

(
𝒙𝑟,𝑡
𝑘,𝑗

; 𝜁
)
,

12: 𝒙𝑟,𝑡+1
𝑘,𝑗

= 𝒙𝑟,𝑡
𝑘,𝑗

− 𝜂∇𝑓𝑘,𝑗
(
𝒙𝑟,𝑡
𝑘,𝑗

; 𝜁
)
;

13: end for
14: Send 𝒙𝑟,𝑇

𝑘,𝑗,( 𝑗 ) , 𝒙
𝑟,𝑇

𝑘,𝑗,𝑠
to server;

15: end for
16: end for
17: Server:
18: for 𝑗 = 1, . . . , 𝑁 Blocks in parallel do
19: Block 𝑗 computes,

20: 𝒙𝑟( 𝑗 ) =
1

𝐾

∑𝐾
𝑘=1

𝒙𝑟,𝑇
𝑘,𝑗,( 𝑗 ) ; 𝑣

𝑟
( 𝑗 ) = 𝜆𝑣

𝑟−1
( 𝑗 ) + 𝒙𝑟( 𝑗 ) − 𝒙𝑟−1( 𝑗 ) ;

21: 𝒙𝑟( 𝑗 ) = 𝒙𝑟( 𝑗 ) + 𝑣
𝑟
( 𝑗 ) ,

22: end for
23: 𝒙𝑟𝑠 =

1

𝑁𝐾

∑𝑁
𝑗=1

∑𝐾
𝑘=1

𝒙𝑟,𝑇
𝑘,𝑗,𝑠

; 𝑣𝑟𝑠 = 𝜆𝑣𝑟𝑠 + 𝒙𝑟−1𝑠 − 𝒙𝑟−1𝑠 ;

24: 𝒙𝑟𝑠 = 𝒙𝑟𝑠 + 𝑣𝑟𝑠 ; 𝒙𝑟 =
[
𝒙𝑟⊤(1) , . . . , 𝒙

𝑟⊤
(𝑁 ) , 𝒙

𝑟⊤
𝑠

]⊤
;

25: 𝒗𝑟 =
[
𝒗𝑟⊤(1) , . . . , 𝒗

𝑟⊤
(𝑁 ) , 𝒗

𝑟⊤
𝑠

]⊤
;

26: end for

Figure 2: The client parameter block allocation in FedBCGD.
For the sake of convenience, we suppose 𝑆 = 𝑁 · 𝐾 clients
are sampled and divided into 𝑁 client blocks, i.e., 𝐾 clients
for each client block. The clients in the 𝑖-th client block are
responsible for optimizing the upload parameter block 𝑖.

where 𝒙𝑡+1
𝑘,𝑗

is the 𝑡+1-th local update whole parameter of client𝑘,𝑗 ,

and 𝒙𝑡+1
𝑘,𝑗,( 𝑗 ) is the 𝑗-th parameter block of client𝑘,𝑗 . ∇𝑓𝑘,𝑗,( 𝑗 ) is the

𝑗-th gradient block in client𝑘,𝑗 (see Figure 2). The local client of

FedBCGD is used to update all model parameters 𝒙 and send the

selected parameter block 𝒙 ( 𝑗 ) and 𝒙𝑠 to the server.

Below, we will describe the proposed server-side aggregation

operation. For the 𝑘-th client of the 𝑗-th parameter block, it sends

the parameter block 𝒙𝑟,𝑇
𝑘,𝑗,( 𝑗 ) and 𝒙𝑟,𝑇

𝑘,𝑗,𝑠
after 𝑇 times local update

to server. The central server performs separate aggregation opera-

tions on 𝒙 ( 𝑗 ) and 𝒗 ( 𝑗 ) for the 𝑗-th parameter block in Lines 20-22

of Algorithm 1. Next, we update the shared parameter block in

Lines 24-26 of Algorithm 1. Finally, all the parameter blocks are

combined into a complete model, 𝒙𝑟 =
[
𝒙𝑟⊤(1) , . . . , 𝒙

𝑟⊤
(𝑁 ) , 𝒙

𝑟⊤
𝑠

]⊤
, and

the momentum term is 𝒗𝑟 =
[
𝒗𝑟⊤(1) , . . . , 𝒗

𝑟⊤
(𝑁 ) , 𝒗

𝑟⊤
𝑠

]⊤
. Before the next

iteration starts, the client transfers all model parameters 𝒙𝑟 to the

selected client and tells the client which model parameter block

needs to be uploaded.

𝑣𝑟( 𝑗 ) is the 𝑗-th block of the momentum term 𝑣𝑟 , and 𝜆 is the

momentum parameter. The momentum term 𝑣𝑟( 𝑗 ) considers the
model’s continuous updates over time, making the updating pro-

cess smoother. More specifically, it remembers and utilizes the

direction and speed of previous model parameter updates, thereby

accelerating the convergence speed of the model.

3.2 Our FedBCGD+ Algorithm
The FedBCGD+ algorithm is an extension of our FedBCGD algo-

rithm based on the principles of variance reduction in SVRG [15].

And its details are presented in the Appendix. Note that the server-

side updates in FedBCGD+ are consistent with FedBCGD, while

the new proposed client-side update of our FedBCGD+ algorithm

is formulated as follows:

𝒙𝑟,𝑡+1
𝑘,𝑗

= 𝒙𝑟,𝑡
𝑘,𝑗

− 𝜂∇𝑓𝑘,𝑗
(
𝒙𝑟,𝑡
𝑘,𝑗

; 𝜁
)︸                      ︷︷                      ︸

Stochastic Gradient Descent

+ 𝜂c − 𝜂c𝑘,𝑗︸      ︷︷      ︸
Client Drift Control Variate

+ 𝜂∇𝑓𝑘,𝑗
(
𝒙𝑟

)
− 𝜂∇𝑓𝑘,𝑗

(
𝒙𝑟 ; 𝜁

)
.︸                              ︷︷                              ︸

Stochastic Variance Reduction

(4)

That is, each client-side update consists of a stochastic gradient

descent (SGD) term, one client drift control variate term and a

variance reduction term, which is different from all existing works

such as [17].

FedBCGD+ maintains a state for each client (the client control

variate 𝒄𝑖 ) and the server (the server control variate 𝑐). Here, 𝒄+
𝑘,𝑗

=

∇𝑓𝑘,𝑗 (𝒙𝑟 ), and we need to send 𝒙𝑟,𝑇𝑘,𝑗,( 𝑗 ) ,Δ𝒄𝑘,𝑗,( 𝑗 ) =𝒄
+
𝑘,𝑗,( 𝑗 )−𝒄𝑘,𝑗,( 𝑗 ) ,

Δ𝒄𝑘,𝑗,𝑠 = 𝒄+
𝑘,𝑗,𝑠

− 𝒄𝑘,𝑗,𝑠 to the server, 𝒄𝑖 = 𝒄+
𝑖
. We update 𝒄 on the

server-side as follows:

𝒄 ( 𝑗 ) = 𝒄 ( 𝑗 ) +
1

𝑀

𝐾∑︁
𝑘=1

Δ𝒄𝑘,𝑗,( 𝑗 ) , (5)

𝒄𝑠 = 𝒄𝑠 +
1

𝑀𝑁

𝑁∑︁
𝑗=1

𝐾∑︁
𝑘=1

Δ𝒄𝑘,𝑗,𝑠 , (6)

𝒄 =
[
𝒄⊤(1) , . . . , 𝒄

⊤
(𝑁 ) , 𝒄

⊤
𝑠

]⊤
. (7)

The key of our FedBCGD+ algorithm for improving the conver-

gence speed is based on the following observation. The convergence

of federated learning algorithms is hindered by two sources of high

variance: (i) the global server aggregation step and multiple local
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updates, which are exacerbated by client heterogeneity, and (ii) the

noise from local client-level stochastic gradients.

In the local update in Eq. (4), the first term involves stochastic

gradient descent, the second term incorporates client heterogeneity

control inspired by SCAFFOLD [17], and the third term adopts one

stochastic variance reduction technique as in SVRG [15] to reduce

the variance of stochastic gradients. By integrating these three

components, our algorithm effectively addresses the challenges

posed by heterogeneous clients and noisy local gradients, leading

to a significant improvement in the convergence speed during the

federated learning process. Compared with existing algorithms

such as SCAFFOLD, and our FedBCGD, FedBCGD+ has a faster

convergence rate, as shown in the following theoretical results.

4 THEORETICAL GUARANTEES
In this section, we provide rigorous theoretical analysis for all the

proposed algorithms, and the detailed proofs are included in the

Appendix. The theoretical analysis of our FedBCGD algorithm is

not a simple parallelization extension of the traditional BCD algo-

rithm but an innovative theoretical analysis framework. Compared

with related work, the two proposed algorithms have some theo-

retical advantages, including faster convergence rates and lower

communication complexities. For the convenience of theoretical

analysis, we ignore the shared block in the algorithms.

4.1 Theoretical Results of FedBCGD
Theorem 1 (FedBCGD). For 𝛽-smooth functions {𝑓𝑖 }, which sat-

isfy Assumptions 1-5 (see the Appendix for details), the output of
FedBCGD has expected error smaller than 𝜖 for some values of 𝜂, 𝑅,
where 𝑅 denotes the number of communication rounds, 𝐶𝑜𝑚 is the
communication complexity (i.e., the product of the number of com-
munication rounds and the floats sent per round) satisfying:
Strongly convex: 𝜂 =

𝛼𝜂𝑇
4

, 𝜂 ≤ 1

8𝛽
, and

𝑅 = O
(𝜎2 +𝐺2

𝜇𝐾𝑇𝜖
+ 𝜎 +𝐺
𝛼𝜇

√
𝜖
+ 𝛽

𝜇
log

1

𝜖

)
,

𝐶𝑜𝑚 = O
(𝜎2 +𝐺2

𝜇𝑆𝑇𝜖
𝑑 + 𝜎 +𝐺

𝛼𝜇𝑁
√
𝜖
𝑑 + 𝛽

𝜇𝑁
log

1

𝜖
𝑑
)
,

Non-convex: 𝜂 = 1

4
𝛼𝜂𝑇 , 𝜂 ≤ 1

16𝛽
, 𝐹 := 𝑓

(
𝒙0

)
− 𝑓 ★,

𝑅 = O
( 𝛽𝜎2
𝑇𝐾𝜖2

+

√︁
𝛽𝐺 +

√︃
𝛽

𝑇
𝜎

𝜖
3

2

+ 𝐹𝛽
𝜖

)
,

𝐶𝑜𝑚 = O
( 𝛽𝜎2
𝑇𝑆𝜖2

𝑑 +

√︁
𝛽𝐺 +

√︃
𝛽

𝑇
𝜎

𝑁𝜖
3

2

𝑑 + 𝐹𝛽

𝑁𝜖
𝑑
)
.

From Table 1, comparing the second term of communication

complexity of FedAvg (i.e., O
(
𝜎+𝐺
𝜇
√
𝜖
𝑑
)
), the term of FedBCGD is

O
(
𝜎+𝐺
𝛼𝜇𝑁

√
𝜖
𝑑
)
, which is 𝑁 times significantly lower. As the number

of blocks 𝑁 increases, FedBCGD can achieve a significantly lower

communication complexity, and we will verify this in the experi-

mental section (see Figure 4). The momentum parameter 𝛼 here is

equivalent to the server step size, and a larger server step size can

accelerate convergence, as pointed out in [17].

4.2 Theoretical Results of FedBCGD+
Theorem 2 (FedBCGD+). For 𝛽-smooth functions {𝑓𝑖 }, which

satisfy Assumptions 1-5, the output of FedBCGD+ has expected error
smaller than 𝜖 for some values of 𝜂, 𝑅, where 𝑅 and 𝐶𝑜𝑚 satisfy:
Strongly convex: 𝜂 =

𝛼𝜂𝑇
4

, 𝜂 ≤ 1

8𝛽
, and

𝑅 = O
( (𝑀
𝐾
+ 𝛽
𝜇

)
log

1

𝜖

)
,𝐶𝑜𝑚 = O

( (𝑀
𝑆
+ 𝛽

𝜇𝑁

)
𝑑 log

1

𝜖

)
,

Non-convex: 𝜂 = 1

4
𝛼𝜂𝑇 , 𝜂 ≤ 1

16𝛽
, 𝐹 := 𝑓

(
𝒙0

)
− 𝑓 ★,

𝑅 = O
( 𝛽𝐹
𝜖

(𝑀
𝐾

) 2
3

)
, 𝐶𝑜𝑚 = O

( 𝛽𝐹
𝜖

(𝑀
𝑆

) 2
3

1

𝑁

1

3

𝑑
)
.

The communication complexity of FedBCGD is O
(
𝜎2+𝐺2

𝜇𝑆𝑇𝜖
𝑑 +

𝜎+𝐺
𝛼𝜇𝑁

√
𝜖
𝑑 + 𝛽

𝜇𝑁
log

1

𝜖𝑑
)
in the strongly convex setting. The main

influence on the communication complexity is determined by the

two parameters, 𝐺 (client heterogeneity) and 𝜎 (noise of stochas-

tic gradients). FedBCGD+ resolves these issues, and can achieve

the communication complexity of O
( (
𝑀
𝑆
+ 𝛽

𝜇𝑁

)
𝑑 log 1

𝜖

)
. When 𝑁 =√︁

𝛽/𝜇, and its communication complexity isO
((
𝑀
𝑆
+
√︃
𝛽
𝜇

)
𝑑 log 1

𝜖

)
,

which significantly improves the best-known result (see Table 1 for

details). When 𝜎 = 0, the communication complexity of FedBCGD

is also better than that of SCAFFOLD, O
( (
𝑀
𝑆
+ 𝛽
𝜇

)
𝑑 log 1

𝜖

)
. Without

client sampling (𝑆 = 𝑀), the communication complexity of Fed-

BCGD+ is O
(√︃ 𝛽

𝜇 𝑑 log
1

𝜖

)
, which is much better than that of FedLin

[29], O
( 𝛽
𝜇 𝑑 log

1

𝜖

)
. In the non-convex setting, the communication

complexity of FedBCGD+ is O
( 𝛽𝐹
𝜖

(
𝑀
𝑆

)
2/3
𝑁 −1/3𝑑

)
, which also is

the best-known result (see Table 1). Without client sampling, the

communication complexity of FedBCGD+ is O
( 𝛽𝐹
𝜖 𝑁

−1/3𝑑
)
, which

is much better than that of CE-LSGD [31], O
( 𝛽𝐹
𝜖 𝑑

)
. As the number

of blocks 𝑁 increases, FedBCGD+ can also achieve a significantly

lower communication complexity.

5 EXPERIMENTS
In this section, we conduct various experiments for convex and non-

convex problems, and more results are reported in the Appendix.

5.1 Experimental Settings and Baselines
Datasets: We evaluate our algorithms on the CIFAR10 [20], CI-

FAR100 [20], Tiny ImageNet [21] and EMNIST datasets. We set up

a total of 100 clients in the FL experiment with a participation rate

of 10%. For the non-IID data setup, we model data heterogeneity

by sampling label ratios 𝜌 from a Dirichlet distribution.

Models: To test the robustness of our algorithms, we use stan-

dard classifiers (including LeNet-5 [22], VGG-11, VGG-19 [37], and

ResNet-18 [13]), Vision Transformer (ViT-Base) [8]. We divided the

parameters of the model into 5 blocks or more blocks and provide

the detailed parameter block division of the model in the Appendix.

Methods:We compare FedBCGD and FedBCGD+with many SOTA

FL baselines, including FedAvg [28], SCAFFOLD [17], FedAvgM

[14], FedDC [9] , FedAdam [32], and TOP-k [1], FedPAQ [33].

Hyper-parameter Settings: The initial learning rate is searched
in {0.01, 0.03, 0.05, 0.1, 0.2, 0.3}, with a decay of 0.998 and a weight

decay of 0.001 for each round.
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Table 2: Comparison of the average testing accuracy (%) over the last 10% rounds of each algorithm on CIFAR100, where the
heterogeneity parameter is 𝜌 = 0.6, total communication floats are 1000𝑑 , and the number of blacks is 𝑁 = 5. The number in
brackets indicates the number of communication floats to reach the target accuracy. Note that centralised SGD refers to using
SGD to train models on a single machine.

CIFAR100 LeNet-5 (40%) VGG-11 (48%) ResNet-18 (54%) VGG-19 (45%)

Centralised SGD 53.7 ± 0.2 56.3 ± 0.3 62.2 ± 0.1 58.9 ± 0.1

FedAvg [28] 41.2 ± 0.2 (558𝑑) 48.7 ± 0.4 (720𝑑) 54.2 ± 0.2 (927𝑑) 47.6 ± 0.1 (735𝑑)
FedAvgM [14] 48.2 ± 0.5 (277𝑑) 51.7 ± 0.6 (299𝑑) 61.8 ± 0.8 (398𝑑) 56.0 ± 0.3 (403𝑑)
FedAdam [32] 46.2 ± 0.8 (391𝑑) 50.9 ± 0.5 (597𝑑) 53.9 ± 0.4 (∞) 58.7 ± 0.2 (367𝑑)
SCAFFOLD [17] 50.3 ± 0.2 (214𝑑) 47.9 ± 0.2 (∞) 52.3 ± 0.2 (∞) 58.3 ± 0.5 (556𝑑)
FedDC [9] 53.2 ± 0.3 (302𝑑) 48.2 ± 0.2 (956𝑑) 46.6 ± 0.1 (∞) 56.8 ± 0.4 (321𝑑)
FedBCGD (ours) 55.7 ± 0.4 (77𝑑) 62.2 ± 0.4 (107𝑑) 68.1 ± 0.5 (277𝑑) 61.1 ± 0.3 (206𝑑)
FedBCGD+ (ours) 55.6 ± 0.3 (75d) 58.7 ± 0.3 (105d) 65.1 ± 1.8 (154d) 63.6 ± 0.4 (176d)

Table 3: Comparison of the average testing accuracy (%) over the last 10% rounds of each algorithm on CIFAR10, where the
heterogeneity parameter is 𝜌 = 0.6, total communication floats are 1000𝑑 , the number of blacks is set to 𝑁 = 5.

CIFAR10 LeNet-5 (78%) VGG-11 (83%) ResNet-18 (88%) VGG-19 (84%)

Centralised SGD 83.1 ± 0.2 87.4 ± 0.3 90.1 ± 0.1 88.6 ± 0.1

FedAvg [28] 79.6 ± 0.3 (498𝑑) 83.3 ± 0.7 (630𝑑) 89.0 ± 0.5 (698𝑑) 84.9 ± 0.7 (499𝑑)
FedAvgM [14] 81.1 ± 0.6 (360𝑑) 83.7 ± 0.4 (830𝑑) 89.1 ± 0.7 (882𝑑) 87.4 ± 0.5 (252𝑑)
FedAdam [32] 78.3 ± 1.2 (860𝑑) 85.4 ± 1.1 (478𝑑) 81.1 ± 1.3 (∞) 87.5 ± 0.9 (298𝑑)
SCAFFOLD [17] 82.8 ± 0.7 (540𝑑) 86.9 ± 0.6 (278) 89.0 ± 0.4 (747𝑑) 85.5 ± 0.5 (358𝑑)
FedDC [9] 83.0 ± 0.2 (280𝑑) 83.1 ± 0.6 (866) 88.0 ± 0.6 (1985𝑑) 78.0 ± 0.9 (∞)
FedBCGD (ours) 84.7 ± 0.7 (249𝑑) 88.4 ± 0.7 (292𝑑) 92.1 ± 0.3 (398𝑑) 87.8 ± 0.4 (117d)
FedBCGD+ (ours) 83.5 ± 0.3 (182d) 88.3 ± 0.4 (209d) 90.3 ± 0.5 (266d) 87.1 ± 0.4 (207𝑑)

(a) LeNet-5, CIFAR10 (b) LeNet-5, CIFAR100 (c) VGG-11,CIFAR10 (d) VGG-11, CIFAR100

(e) ResNet-18, CIFAR10 (f) ResNet-18,CIFAR100 (g) VGG-19, CIFAR10 (h) VGG-19, CIFAR100

Figure 3: The convergence comparison of our FedBCGD and FedBCGD+, and other baselines on the CIFAR10 and CIFAR100
datasets with different neural network architectures, where, in 100 clients, partial (10%) clients are used, and the heterogeneity
parameter is set to 𝜌 =0.6.

5.2 Results on Non-Convex Problems
Results on Convolutional Neural Network: From Tables 2 and

3, and Figure 3, we have the following observations: (i) Compared

to FedAvg and its accelerated algorithms, FedBCGD significantly

reduces the communication floats per round, converges faster, and

achieves more robust final model performance. In the experiment

of LeNet-5 on CIFAR100, FedBCGD (77𝑑) achieve 7.3× speedup to

reach 40% accuracy, compared to FedAvg (558𝑑). (ii) FedBCGD+
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Figure 4: The acceleration comparison of FedBCGD with
different numbers of blocks.

(a) FedBCGD, CIFAR10 (b) FedBCGD, CIFAR100

Figure 5: Accuracy comparison of FedBCGD with LeNet-5
on CIFAR10 (a) and CIFAR100 (b), where heterogeneity is
𝜌 =0.6. FedBCGD_freezing_nonshare is updated by using the
local freezing parameter algorithm without the shared block.
FedBCGD_freezing_share refers to the FedBCGD_freezing
algorithmwith shared parameters. FedBCGD_nonshare is an
algorithm that trains all parameters locally and only trans-
mits parameter blocks during the upload process without
shared parameters. FedBCGD_share refers to the algorithm
that has shared parameters. FedBCGD_share_momentum
(i.e., FedBCGD) refers to the algorithm that has momentum
acceleration.

further improves the convergence speed by client drift control and

variance reduction, accelerating FedBCGD training process in ex-

periments. In the experiment of ResNet-18 on CIFAR100, FedBCGD+

(154𝑑) achieves 1.8× speedup to reach 54% accuracy, compared to

FedBCGD (277𝑑). However, in terms of the final testing accuracy, it

does not outperform FedBCGD. This means that FedBCGD+ has a

faster convergence speed, requiring less communication floats at

the specified accuracy, while the higher accuracy of our FedBCGD

algorithm ultimately means that it has better generalization abil-

ity. And the generalization ability of our FedBCGD framework is

better than those of other algorithms, e.g., FedAvg. (iii) The final

accuracy of FedBCGD is much higher than that of Centralised SGD,

which means that our FedBCGD has better generalization perfor-

mance. That is, FedBCGD and FedBCGD+ can jump from a poor

local minimum and converge to sharp local minima.

Figure 4 compares the effects of different block numbers under

the same settings. When the number of blocks is 1, it degenerates

into the FedAvgM algorithm. At the specified testing accuracy 53%,

when the number of blocks is 20, our FedBCGD algorithm requires

the least communication floats. The FedBCGD algorithm with 20

blocks achieves the highest accuracy with the same communication

floats 200𝑑 . As the number of blocks increases, the acceleration

effect of the FedBCGD algorithm becomes more obvious.

From Figure 5, we can observe that freezing parameters in local

training will cause client parameters to drift (purple line), resulting

in poor performance. In addition, uploading parameters with shared

parameters can improve convergence speed and final performance

of the model (red line). Adding momentum compensation to client

aggregation does accelerate convergence significantly (blue line).

Table 4: Comparison of each algorithm on CIFAR100 and
CIFAR10. Heterogeneity is 𝜌 =0.1, total communication floats
are 1000𝑑 , and the number of blocks in ResNet-18 is 𝑁 = 5.

𝜌 = 0.1 CIFAR100 (45%) CIFAR10 (78%)

FedAvg [28] 45.8 ± 0.3 (741𝑑) 78.1 ± 0.4 (952𝑑)
FedAvgM [14] 48.3 ± 0.6 (769𝑑) 78.6 ± 0.8 (997𝑑)
FedAdam [32] 49.9 ± 0.5 (610𝑑) 71.4 ± 1.1 (∞)
SCAFFOLD [17] 44.3 ± 0.3 (∞) 76.3 ± 1.4 (∞)
FedDC [9] 46.6 ± 0.8 (278𝑑) 79.1 ± 0.8 (948𝑑)
FedBCGD (ours) 59.5 ± 0.3 (147d) 86.2 ± 0.9 (212d)
FedBCGD+ (ours) 59.9 ± 0.4 (200𝑑) 80.2 ± 1.3 (768𝑑)

Table 5: The test accuracy comparison of each algorithmwith
ViT-Base on CIFAR100 and Tiny ImageNet. Heterogeneity is
𝜌 =0.6, total communication floats are 100𝑑 , 𝑁 = 6.

𝜌 = 0.6 CIFAR100 (88%) Tiny Imagenet (70%)

Centralised SGD 81.5 ± 0.3 76.7 ± 0.2

FedAvg [28] 90.4 ± 0.1 (24𝑑) 71.2 ± 0.1 (67𝑑)
FedAvgM [28] 88.7 ± 0.3 (32𝑑) 76.7 ± 0.4 (10𝑑)
FedAdam [32] 87.6 ± 0.2 (∞) 65.5 ± 0.6 (∞)
SCAFFOLD [17] 88.2 ± 0.3 (88𝑑) 56.8 ± 1.1 (∞)
FedDC [9] 85.8 ± 0.4 (25𝑑) 55.0 ± 1.2 (∞)
FedBCGD (ours) 92.0 ± 0.2 (7d) 83.5 ± 0.2 (5.8𝑑)
FedBCGD+ (ours) 90.6 ± 0.3 (14𝑑) 81.3 ± 0.2 (4.6d)

(a) ViT-Base, CIFAR100 (b) ViT-Base, Tiny ImageNet

Figure 6: The test accuracy varies with the communication
floats with ViT-Base on the CIFAR100 and Tiny ImageNet
datasets, where 𝐸=1 and 𝜌 =0.6 (best viewed in color).

From results in Table 4, we compare the convergence speed of

our algorithms and baseline algorithms under high levels of data

heterogeneity. It can be observed that when data heterogeneity

is high (e.g., 𝜌 = 0.1), FedAvg converges slowly and struggles to

reach the optimal point. In contrast, our algorithms consistently
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converge and achieve better model generalization. Moreover, under

high data heterogeneity, FedBCGD+ slightly outperforms FedBCGD,

demonstrating the effectiveness of the variance control strategy in

our FedBCGD+ algorithm.

In our experiments we get a phenomenon that our algorithm,

FedBCGD and FedBCGD+, may generalizes better than Central-

ized SGD when the client data is not highly heterogeneous. The

same phenomenon was also found in the literature [12, 23]. For

highly non-convex problems, gradient decent and SGD methods

are usually prone to fall into local minima, whereas the distributed

methods local SGD are more prone to jump out of the local and

sharp minimum and usually have better generalization ability [12].

Results on Communication-efficient FL: In Table 6, the Fed-

BCGD algorithm outperforms the traditional efficient federated

learning algorithms TOP-k and FedPAQ in terms of convergence

speed and final generalization accuracy. The convergence can be

further accelerated when the quantization strategy of QSGD is

added to the chunks of FedBCGD.

Table 6: The test accuracy comparison of each algorithmwith
LeNet-5 on CIFAR100 and CIFAR10. Here, the heterogeneity
is 𝜌 =0.6, total communication floats are 200𝑑 , 𝑁 = 5.

𝜌 = 0.6 CIFAR100 (40%) CIFAR10 (70%)

FedAvg [28] 35.4 ± 0.1 (∞) 73.2 ± 0.1 (133𝑑)
TOP-k [1] 42.2 ± 0.5 (112𝑑) 74.5 ± 0.4 (92𝑑)
FedPAQ [33] 43.3 ± 0.2 (110𝑑) 75.2 ± 0.4 (121𝑑)
FedBCGD (ours) 48.7 ± 0.2 (91𝑑) 77.2 ± 0.2 (65𝑑)
FedBCGD+ (ours) 49.6 ± 0.3 (89𝑑) 80.6 ± 0.2 (57𝑑)
QSGD[2]+FedBCGD (ours) 52.2 ± 0.4 (61𝑑) 82.6 ± 0.1 (32𝑑)
QSGD[2]+FedBCGD+ (ours) 53.1 ± 0.2 (56d) 83.2 ± 0.3 (29d)

Results on Vision Transformer: To verify the effectiveness of

our algorithm on large models, we adopt the most classic ViT-Base

model on the Tiny ImageNet and CIFAR100 datasets. For the ini-

tialization of the model, we used the pretrained model downloaded

from the official website. We divide the ViT-Base model into six

parameter blocks. From the experimental results in Table 5 and

Figure 6, we can observe that our FedBCGD algorithm can achieve

the best results on the CIFAR100 dataset, and has more than 3×
faster convergence speed, compared to FedAvg. The FedBCGD al-

gorithm can achieve the best results on the Tiny ImageNet dataset,

and attains more than 11.5× faster convergence speed. This can

verify that FedBCGD can achieve excellent convergence speed on

both Vision Transformer models and big datasets.

Effectiveness of 𝜆: We tested FedBCGD using ResNet-18 on

CIFAR100 dataset with momentum parameter 𝜆 taking the values

of {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and 𝜌 = 0.6 . The convergence plots are

shown in Figure 7. We note that setting 𝜆 too small or too large

impairs the convergence and generalization ability of FedBCGD.

As shown in Figure 7, when 𝜆 is relatively small, with 𝜆 = 0.4, the

FedBCGD algorithm converges quickly, but the final generalization

is not good.Whenwe enlarge the value of 𝜆, 𝜆 = 0.8, the convergence

is slower but the final generalization is good. Empirically, we find

the best performance is achieved when the 𝜆 is set to around 0.8.

(a) Test accuracy (b) Train loss

Figure 7: Test accuracy (a) and training loss (b) with ResNet-
18 on CIFAR100, where 𝐸 = 5 and 𝜌 = 0.6. The number of
parameter blocks is set to 𝑁 = 5.

5.3 Results on Convex Problems
We conducted the classification tests on the EMNIST (byclass)

dataset on classical logistic regression problems:

𝑓 (𝑥) = 1

𝑁

𝑁∑︁
𝑖=1

log

(
1 + exp

(
−𝑏𝑖𝑎⊤𝑖 𝑥

) )
+ 𝜆
2

∥𝑥 ∥2, (8)

where 𝑎𝑖 ∈ R𝑑 and 𝑏𝑖 ∈ {−1, +1} are the data samples, and 𝑁 is

their total number. We set the regularization parameter 𝜆 = 10
−4𝐿,

where 𝐿 is the smoothness constant.

From Figure 8 (a,b), we observe that our FedBCGD and Fed-

BCGD+ algorithms demonstrate faster convergence speed. Particu-

larly, under the strong convexity, our FedBCGD+ algorithm exhibits

even faster convergence compared to our FedBCGD, which aligns

with our theoretical analysis.

(a) Train loss (b) Test loss

Figure 8: Logistic regressionwith 𝐸=1 and 𝜌 =0.1. The number
of blocks is set to 𝑁 = 5.

6 CONCLUSION
This paper proposed the first federated block coordinate gradient

descent method for horizontal federated learning. Moreover, we pre-

sented an accelerated version by using variance reduction and client

parameter block drift control. In particular, we analyzed the conver-

gence properties of the proposed algorithms, which show that our

algorithms have significantly lower communication complexities

than existing methods, and they also attain the best-known con-

vergence rates for both convex and non-convex problems. Various

experimental results verified our theoretical results and effective-

ness of all the proposed algorithms. In the future, it is worthwhile

to pay attention to how to more rationally divide model into blocks

and how to choose the optimal parameter block to upload for clients.
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