
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

FedBCGD: Communication-Efficient Accelerated Block
Coordinate Gradient Descent for Federated Learning

Anonymous Author(s)

ABSTRACT
Although federated learning has been widely studied in recent

years, there are still high overhead expenses in each communica-

tion round for large-scale models such as Vision Transformer. To

lower the communication complexity, we propose a novel Feder-

ated Block Coordinate Gradient Descent (FedBCGD) method for

communication efficiency. The proposed method splits model pa-

rameters into several blocks including a shared block and enables

uploading a specific parameter block by each client during training,

which can significantly reduce communication overhead. Moreover,

we also develop an accelerated FedBCGD algorithm (called Fed-

BCGD+) with client drift control and stochastic variance reduction.

To the best of our knowledge, this paper is the first parameter block

communication work for training large-scale deep models. We also

provide the convergence analysis for the proposed algorithms. Our

theoretical results show that the communication complexities of our

algorithms are a factor 1/𝑁 lower than those of existing methods,

where 𝑁 is the number of parameter blocks, and they enjoy much

faster convergence results than their counterparts. Empirical results

indicate the superiority of the proposed algorithms compared to

state-of-the-art algorithms.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms.

KEYWORDS
Federated Learning, Efficient Communication, Block Coordinate

Gradient Descent

1 INTRODUCTION
Federated Learning (FL) is an emerging machine learning paradigm,

which aims at achieving collaborative model training among mul-

tiple parties to preserve data privacy. Federated learning achieves

model training by training models locally on client devices and

then uploading them to a central server for model aggregation [28].

Compared to centralized learning in a data center [11], the parallel

computing clients of federated learning have private data stored in

them and communicate remotely with a central server. The clients

are responsible for local training, while the central server in charge

of aggregating the models uploaded by each client. Currently, fed-

erated learning has been widely applied in different fields such

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: The diagram of the proposed FedBCGD framework,
where 𝑆 ≥ 𝑁 , 𝑆 and 𝑁 are the numbers of clients and param-
eter blocks, respectively.

as mobile intelligence devices, medical health, and financial risk

control [3, 5, 35].

In mainstream federated learning frameworks, the communica-

tion between clients and their server is slow, costly, and unreliable

[19]. In recent years, large models such as BERT and ChatGPT [4, 7]

have emerged, leading to an exponential increase in the model size

and data volume on FL clients. The upload of these large models

further escalates the cost of communication in FL. To significantly

lower the communication complexity, this paper proposes a novel

method for federated learning, called Federated Block Coordinate

Gradient Descent (FedBCGD), which is based on block coordinate

descent (BCD) methods [38].

In FL, the upload speed of the client model is more than a hundred

times slower than the download speed, so this paper mainly resolves

the issue of upload communication cost. As shown in Figure 1,

we divide the model parameter 𝒙 into 𝑁 blocks and 𝒙𝑠 , i.e., 𝒙 =[
𝒙⊤(1) , . . . , 𝒙

⊤
(𝑁) , 𝒙

⊤
𝑠

]⊤
, where 𝒙𝑠 denotes the shared parameters

in each client (usually the parameters of the last layer classifier,

and their number is small but important, [26] suggests that the

deeper the model, the greater the variance of the parameters. In

federated learning, it is often the parameters in the last layer of the

classifier that are most important and have a very small number

of covariates (0.01% of the overall number in ResNet-18)). Each

client is responsible for optimizing one selected block 𝒙 (𝑗) and 𝒙𝑠 .
After local training for all model parameters, the updated parameter

block 𝒙 (𝑗) and 𝒙𝑠 are sent to the central server, which takes the

average aggregation of parameters for different parameter blocks

to get the complete model.

The initial idea is to require each client to perform local updates

only on the specified parameter block 𝒙 (𝑗) and 𝒙𝑠 while freezing

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Comparison of the communication complexities and communication overheads of different algorithms in the 𝜇-strongly
convex setting, where 𝜎 is the variance of stochastic gradients,𝐺 is heterogeneity due to client data distribution, 𝑆 is the number
of participating clients, 𝐾 =𝑆/𝑁 , 𝐾 is the number of clients involved in each parameter block, 𝑁 is the number of parameter
blocks, and 𝑇 is the number of local training iterations. The number of floats sent per round by FedAvg is 𝑑 , and O describes
the worst-case complexity of different algorithms, where 𝛼 = 1

1−𝜆 . In non-convex settings, 𝜏 is the second-order heterogeneity
(see [16]), 𝐺 is the first-order heterogeneity, 𝐹 := 𝑓

(
𝒙0

)
− 𝑓 ★, and 𝑓 ★ is a minimum value of Problem (1) below.

Algorithm

Strongly convex

Communication complexity

Non-convex

Communication complexity

Client

sample

Stochastic

Gradient

Floats sent

per round

FedAvg [28] O
(
𝜎2+𝐺2

𝜇𝑆𝑇𝜖
+ 𝜎+𝐺
𝜇
√
𝜖
+ 𝛽
𝜇 log

1

𝜖

)
O
(
𝛽𝜎2

𝑇𝑆𝜖2
+
√
𝛽𝐺+

√︃
𝛽

𝑇
𝜎

𝜖
3

2

+ 𝐹𝛽
𝜖

)
Yes Yes 𝑑

FedBCGD (ours) O
(
𝜎2+𝐺2

𝜇𝑆𝑇𝜖
+ 𝜎+𝐺
𝛼𝜇𝑁

√
𝜖
+ 𝛽

𝜇𝑁
log

1

𝜖

)
O
(
𝛽𝜎2

𝑇𝑆𝜖2
+
√
𝛽𝐺+

√︃
𝛽

𝑇
𝜎

𝑁𝜖
3

2

+ 𝐹𝛽

𝑁𝜖

)
Yes Yes 𝑑/𝑁

SCAFFOLD [17] O
(
𝜎2

𝜇𝑆𝑇𝜖
+ 𝜎

𝜇
√
𝜖
+
(
𝑀
𝑆
+ 𝛽𝜇

)
log

1

𝜖

)
O
(
𝛽𝜎2

𝑇𝑆𝜖2
+

√︃
𝛽

𝑇
𝜎

𝜖
3

2

+ 𝛽𝐹
𝜖

(
𝑀
𝑆

) 2

3

)
Yes Yes 2𝑑

FedLin [29] O
(
𝛽
𝜇 log

1

𝜖

)
—— No No 2𝑑

S-Local-GD [10] O
(
𝛽
𝜇 log

1

𝜖

)
—— No No 2𝑑

CE-LSGD [31] —— O
(
𝐺𝐹𝜏

𝑀𝜖
3

2

)
Yes Yes 3𝑑

BVR-L-SGD [30] —— O
(
𝐹𝜏
𝜖 + 𝐹𝛽√

𝑇𝜖
+ 𝜎2

𝑀𝑇𝜖
+
(
𝜎𝐹𝛽

𝑀𝑇𝜖

) 3

2

)
Yes Yes 3𝑑

FedBCGD+ (ours) O
((
𝑀
𝑆
+
√︃
𝛽
𝜇

)
log

1

𝜖

)
O
(𝛽𝐹
𝜖

(
𝑀
𝑆

) 2
3
1

𝑁

1

3

)
Yes Yes 2𝑑/𝑁

the remaining parameter blocks (called FedBCGD_freezing). After

local training, the specified parameter blocks would be uploaded

for model aggregation. However, due to a large drift between pa-

rameter blocks, such scheme often results in bad convergence in

our experiments (see Figure 5 for details). More specifically, only

updating certain parameter blocks locally results in a large gap be-

tween the updated parameter blocks and other freezing parameter

blocks, and it is not possible to establish good connections between

parameter blocks during the server-side aggregation process.

Therefore, we propose a novel FedBCGDmethod to address these

issues. In the proposed algorithm, we employ stochastic gradient

descent to update all parameters instead of parameter freezing dur-

ing local training, but only transmit two specified parameter blocks

(𝒙 (𝑗) and 𝒙𝑠) during the upload process. In addition, to compensate

for some missing parameters in block parameter transmission, we

add parameter block momentum on the server side. This algorithm

design maintains the advantages of low communication costs and

has demonstrated a significantly improved convergence speed in

our experiments (see Figure 5 for details). Moreover, adding one

shared parameter block in each client can significantly improve

accuracy performance. However, due to the impact of data het-

erogeneity, it still leads to inconsistent update directions between

parameter blocks, called parameter block drift, resulting in poor

performance of the aggregated model. Thus, we also propose an ac-

celerated version (called FedBCGD+) to address data heterogeneity.

The main difference between FedBCGD and BCD is that FedBCGD

incorporates shared one small parameter block and updates all

model parameters in each client (i.e., no parameter freezing), while

BCD only updates one parameter block in each iteration.

Our motivations and contributions: To address these issues

such as communication effectiveness, acceleration, theoretical guar-

antees and parameter block drift, we design a novel federated block

coordinate descent framework FedBCGD and its acceleration vari-

ant FedBCGD+ for training large-scale deep models such as Vision

Transformer. The main contributions of this work are listed as

follows:

• Novel Federated Learning Paradigm:We propose the first

block coordinate descent algorithm FedBCGD for horizontal FL.

FedBCGD demonstrates remarkable communication efficiency in

distributed learning scenarios. That is, this paper presents the first

block coordinate descent algorithm for horizontal federated learn-

ing. Moreover, we also introduce an accelerated version, FedBCGD+,

which exhibits an even faster convergence rate while maintaining

high communication efficiency.

• Convergence Analysis:We provide a thorough analysis of

the convergence properties of the proposed FedBCGD algorithm

and its accelerated version, FedBCGD+. By investigating the im-

pact of partitioned parameter blocks, the number of clients, and

the local training rounds, we provide valuable insights into their

convergence behavior. From a practical perspective, FedBCGD+

achieves faster convergence than FedBCGD, and it is proved faster

from a theoretical perspective. Moreover, FedBCGD+ has a much

lower communication complexity than existing algorithms in strong

convexity settings (e.g., O
((
𝑀
𝑆

+
√︃
𝛽
𝜇

)
log

1

𝜖

)
for FedBCGD+ vs.

O
(
𝜎2

𝜇𝑆𝑇𝜖
+ 𝜎

𝜇
√
𝜖
+
(
𝑀
𝑆
+ 𝛽𝜇

)
log

1

𝜖

)
for SCAFFOLD [17]. Furthermore,

we can achieve a significant lower communication complexity of

O
(𝛽𝐹
𝜖

(
𝑀
𝑆

)
2/3 1

𝑁

1/3)
in the non-convex setting, compared to that

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

FedBCGD: Communication-Efficient Accelerated Block Coordinate Gradient Descent for Federated Learning ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

of SCAFFOLD, O
(𝛽𝜎2

𝑇𝑆𝜖2
+

√︃
𝛽

𝑇
𝜎

𝜖3/2
+ 𝛽𝐹

𝜖

(
𝑀
𝑆

)
2/3)

. In other words, the

communication complexities of our algorithms are a factor 1/𝑁
lower than those of existing methods, where 𝑁 is the number of

parameter blocks.

• Overcoming Data Heterogeneity : The convergence of fed-
erated learning algorithms is hindered by two sources of high vari-

ance: (i) heterogeneous clients, and (ii) the noise from local stochas-

tic gradients. We propose two sets of control variance variables

to reduce client heterogeneity and the noise variance of the local

gradients in FedBCGD+. And we demonstrate the validity of the

two sets of control variables through theory and experiment.

2 RELATEDWORK
In this section, we mainly review existing federated learning and

block coordinate descent methods.

• Local Training: Local Training (LT) is a communication-

acceleration technique for FL [28]. One key challenge in LT is client

drift, where the local model of each client gradually approaches the

minimum of its own local cost function 𝑓𝑖 after multiple local GD

steps. To address this issue, SCAFFOLD [17] is proposed, which was

to incorporate control variates to correct for client drift and ensure

linear convergence to the exact solution. Subsequent algorithms

such as S-Local-GD [10] and FedLin [29] also aimed to provide

similar convergence properties.

The analysis of algorithms for non-convex federated learning

can be classified into several approaches. SCAFFOLD [17] is the first

federated algorithm capable of eliminating client data heterogene-

ity. However, its convergence speed is still affected by stochastic

gradients, achieving only a convergence rate of O(1/𝜖2). MIME

[16] is essentially a combination of local SGD and variance reduc-

tion techniques as in SVRG [15], with a derived communication

complexity of O(1/𝜖3/2). BVR-L-SGD [30] assumed second-order

data heterogeneity and achieved a communication complexity of

O(1/𝜖) with full client participation. The two-sided momentum

(STEM) algorithm [18] can also attain a communication complexity

of O(1/𝜖) with full client participation. Inspired by the Storm algo-

rithm [6], CE-LSGD [31] can achieve a communication complexity

of O(1/𝜖3/2) with partial client participation and O(1/𝜖) when all

clients participate.

• Block Coordinate Descent Methods: The block coordinate

descent method is one of the most successful algorithms in the field

of big data optimization. BCD is based on the strategy of updating

a single coordinate or a single block of coordinate of a vector of

variables at each iteration, which usually significantly reduces the

memory requirements as well as the arithmetic complexity of a

single iteration. The effectiveness of the BCD method for training

deep neural networks (DNNs) has been demonstrated in recent

years [40]. However, due to the highly non-convex nature of deep

neural networks, its convergence is difficult to maintain. In addition,

BCD can be easily implemented in a distributed and parallel manner

[27, 34]. Liu et al. [25] proposed a vertical federated learning [24]

framework (FedBCD) for distributed features, in which parties share

only the internal product of model parameters and raw data for

each sample during each communication. Unlike the above works,

this paper proposes the first block coordinate descent algorithm

for horizontal federated learning. Horizontal federated learning

is applied to scenarios where the client’s datasets have the same

feature space and different sample spaces [39].

• Communication-efficient Federated Learning: Commu-

nication efficient Federated Learning algorithms can be divided

into two categories, quantization and sparsification compression

methods. The classical Federated Learning quantization method

is proposed by Reisizadeh [33], which is a cycle averaging and

quantization processing method named FedPAQ, and the quantiza-

tion compression generally belongs to the unbiased compressions.

While sparsification methods include 𝑡𝑜𝑝-𝑘 and 𝑟𝑎𝑛𝑑-𝑘 methods

[36], 𝑡𝑜𝑝-𝑘 method is a biased compression method that uploads the

gradient at the first 𝑘 large positions in the gradient to the server,

while 𝑟𝑎𝑛𝑑-𝑘 method is an unbiased compression method that up-

loads the gradient at random 𝑘 positions to the server. FedBCGD is

different from all of the above methods and utilizes the idea of block

gradient descent to address federated efficient communication, in

addition to the above mentioned compression method that allows

for secondary compression of our transferred block gradient to

achieve more efficient communication, which is demonstrated in

the following experiment.

3 COMMUNICATION-EFFICIENT BLOCK
COORDINATE GRADIENT DESCENT
FEDERATED LEARNING

In this section, we propose a new communication-efficient block co-

ordinate gradient descent federated learning algorithm FedBCGD,

and its pseudocode is given in Algorithm 1. We formalize the feder-

ated learning problem as the minimization of a sum of stochastic

functions:

min

𝒙∈R𝑑

{
𝑓 (𝒙) := 1

𝑀

𝑀∑︁
𝑖=1

(
𝑓𝑖 (𝒙) :=

1

𝑛𝑖

𝑛𝑖∑︁
𝜈=1

𝑓𝑖
(
𝒙 ; 𝜁𝑖,𝜈

))}
, (1)

where the function 𝑓𝑖 denotes the loss function on client 𝑖 ,𝑀 is the

number of clients, 𝑛𝑖 is the number of data points in client 𝑖 , and{
𝜁𝑖,1, . . . , 𝜁𝑖,𝑛𝑖

}
denote the local data of the 𝑖-th client. In this paper,

we assume that 𝑓𝑖 is a 𝛽-smooth function.

3.1 The proposed FedBCGD Algorithm
We firstly divide the global model 𝒙 into 𝑁 blocks of parameters

and one shared block, each of which can have a different number

of parameters,

𝒙 =
[
𝒙⊤(1) , . . . , 𝒙

⊤
(𝑁) , 𝒙

⊤
𝑠

]⊤
. (2)

We divide the sampled 𝑆 = 𝑁 · 𝐾 clients into 𝑁 client blocks with

𝐾 clients in each client block (see Figure 2). These 𝑁 parameter

blocks are distributed to the selected 𝑁 client blocks, where each

parameter block will be optimized by 𝐾 clients. Due to significant

differences in communication capabilities among different clients,

parameter blocks with smaller parameter values can be assigned to

clients with poorer communication capabilities, while parameter

blocks with larger parameter values can be assigned to clients with

better communication capabilities. This prevents clients with the

smallest resources from becoming bottlenecks in federated learning.

We define 𝒙𝑘,𝑗 as the local parameters of 𝑘-th client in 𝑗-th client

block (as client𝑘,𝑗). Each client performs𝑇 local stochastic gradient

steps on its respective client block, by using a minibatch in each

iteration as follows:

𝒙𝑟,𝑡+1
𝑘,𝑗

= 𝒙𝑟,𝑡
𝑘,𝑗

− 𝜂∇𝑓𝑘,𝑗
(
𝒙𝑟,𝑡
𝑘,𝑗

; 𝜁
)
, (3)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1 FedBCGD

1: Initialize 𝒙0,0
𝑖

= 𝒙𝑖𝑛𝑖𝑡 , ∀𝑖 ∈ [𝑀].
2: Divide the model parameters 𝒙 into 𝑁 +1 blocks.
3: for 𝑟 = 0, ..., 𝑅 do
4: Client:
5: Sample clients S ⊆ {1, . . . , 𝑀}, |S| = 𝑁 · 𝐾 ;
6: Divide the sampled clients into 𝑁 client blocks;

7: Communicate (𝒙𝑟) to all clients 𝑖 ∈ S;
8: for 𝑗 = 1, . . . , 𝑁 client blocks in parallel do
9: for 𝑘 = 1, . . . , 𝐾 clients in parallel do
10: for 𝑡 = 1, . . . ,𝑇 local update do
11: Compute batch gradient ∇𝑓𝑘,𝑗

(
𝒙𝑟,𝑡
𝑘,𝑗

; 𝜁
)
,

12: 𝒙𝑟,𝑡+1
𝑘,𝑗

= 𝒙𝑟,𝑡
𝑘,𝑗

− 𝜂∇𝑓𝑘,𝑗
(
𝒙𝑟,𝑡
𝑘,𝑗

; 𝜁
)
;

13: end for
14: Send 𝒙𝑟,𝑇

𝑘,𝑗,(𝑗) , 𝒙
𝑟,𝑇

𝑘,𝑗,𝑠
to server;

15: end for
16: end for
17: Server:
18: for 𝑗 = 1, . . . , 𝑁 Blocks in parallel do
19: Block 𝑗 computes,

20: 𝒙𝑟(𝑗) =
1

𝐾

∑𝐾
𝑘=1

𝒙𝑟,𝑇
𝑘,𝑗,(𝑗) ; 𝑣

𝑟
(𝑗) = 𝜆𝑣

𝑟−1
(𝑗) + 𝒙𝑟(𝑗) − 𝒙𝑟−1(𝑗) ;

21: 𝒙𝑟(𝑗) = 𝒙𝑟(𝑗) + 𝑣
𝑟
(𝑗) ,

22: end for
23: 𝒙𝑟𝑠 =

1

𝑁𝐾

∑𝑁
𝑗=1

∑𝐾
𝑘=1

𝒙𝑟,𝑇
𝑘,𝑗,𝑠

; 𝑣𝑟𝑠 = 𝜆𝑣𝑟𝑠 + 𝒙𝑟−1𝑠 − 𝒙𝑟−1𝑠 ;

24: 𝒙𝑟𝑠 = 𝒙𝑟𝑠 + 𝑣𝑟𝑠 ; 𝒙𝑟 =
[
𝒙𝑟⊤(1) , . . . , 𝒙

𝑟⊤
(𝑁) , 𝒙

𝑟⊤
𝑠

]⊤
;

25: 𝒗𝑟 =
[
𝒗𝑟⊤(1) , . . . , 𝒗

𝑟⊤
(𝑁) , 𝒗

𝑟⊤
𝑠

]⊤
;

26: end for

Figure 2: The client parameter block allocation in FedBCGD.
For the sake of convenience, we suppose 𝑆 = 𝑁 · 𝐾 clients
are sampled and divided into 𝑁 client blocks, i.e., 𝐾 clients
for each client block. The clients in the 𝑖-th client block are
responsible for optimizing the upload parameter block 𝑖.

where 𝒙𝑡+1
𝑘,𝑗

is the 𝑡+1-th local update whole parameter of client𝑘,𝑗 ,

and 𝒙𝑡+1
𝑘,𝑗,(𝑗) is the 𝑗-th parameter block of client𝑘,𝑗 . ∇𝑓𝑘,𝑗,(𝑗) is the

𝑗-th gradient block in client𝑘,𝑗 (see Figure 2). The local client of

FedBCGD is used to update all model parameters 𝒙 and send the

selected parameter block 𝒙 (𝑗) and 𝒙𝑠 to the server.

Below, we will describe the proposed server-side aggregation

operation. For the 𝑘-th client of the 𝑗-th parameter block, it sends

the parameter block 𝒙𝑟,𝑇
𝑘,𝑗,(𝑗) and 𝒙𝑟,𝑇

𝑘,𝑗,𝑠
after 𝑇 times local update

to server. The central server performs separate aggregation opera-

tions on 𝒙 (𝑗) and 𝒗 (𝑗) for the 𝑗-th parameter block in Lines 20-22

of Algorithm 1. Next, we update the shared parameter block in

Lines 24-26 of Algorithm 1. Finally, all the parameter blocks are

combined into a complete model, 𝒙𝑟 =
[
𝒙𝑟⊤(1) , . . . , 𝒙

𝑟⊤
(𝑁) , 𝒙

𝑟⊤
𝑠

]⊤
, and

the momentum term is 𝒗𝑟 =
[
𝒗𝑟⊤(1) , . . . , 𝒗

𝑟⊤
(𝑁) , 𝒗

𝑟⊤
𝑠

]⊤
. Before the next

iteration starts, the client transfers all model parameters 𝒙𝑟 to the

selected client and tells the client which model parameter block

needs to be uploaded.

𝑣𝑟(𝑗) is the 𝑗-th block of the momentum term 𝑣𝑟 , and 𝜆 is the

momentum parameter. The momentum term 𝑣𝑟(𝑗) considers the
model’s continuous updates over time, making the updating pro-

cess smoother. More specifically, it remembers and utilizes the

direction and speed of previous model parameter updates, thereby

accelerating the convergence speed of the model.

3.2 Our FedBCGD+ Algorithm
The FedBCGD+ algorithm is an extension of our FedBCGD algo-

rithm based on the principles of variance reduction in SVRG [15].

And its details are presented in the Appendix. Note that the server-

side updates in FedBCGD+ are consistent with FedBCGD, while

the new proposed client-side update of our FedBCGD+ algorithm

is formulated as follows:

𝒙𝑟,𝑡+1
𝑘,𝑗

= 𝒙𝑟,𝑡
𝑘,𝑗

− 𝜂∇𝑓𝑘,𝑗
(
𝒙𝑟,𝑡
𝑘,𝑗

; 𝜁
)︸ ︷︷ ︸

Stochastic Gradient Descent

+ 𝜂c − 𝜂c𝑘,𝑗︸ ︷︷ ︸
Client Drift Control Variate

+ 𝜂∇𝑓𝑘,𝑗
(
𝒙𝑟

)
− 𝜂∇𝑓𝑘,𝑗

(
𝒙𝑟 ; 𝜁

)
.︸ ︷︷ ︸

Stochastic Variance Reduction

(4)

That is, each client-side update consists of a stochastic gradient

descent (SGD) term, one client drift control variate term and a

variance reduction term, which is different from all existing works

such as [17].

FedBCGD+ maintains a state for each client (the client control

variate 𝒄𝑖) and the server (the server control variate 𝑐). Here, 𝒄+
𝑘,𝑗

=

∇𝑓𝑘,𝑗 (𝒙𝑟), and we need to send 𝒙𝑟,𝑇𝑘,𝑗,(𝑗) ,Δ𝒄𝑘,𝑗,(𝑗) =𝒄
+
𝑘,𝑗,(𝑗)−𝒄𝑘,𝑗,(𝑗) ,

Δ𝒄𝑘,𝑗,𝑠 = 𝒄+
𝑘,𝑗,𝑠

− 𝒄𝑘,𝑗,𝑠 to the server, 𝒄𝑖 = 𝒄+
𝑖
. We update 𝒄 on the

server-side as follows:

𝒄 (𝑗) = 𝒄 (𝑗) +
1

𝑀

𝐾∑︁
𝑘=1

Δ𝒄𝑘,𝑗,(𝑗) , (5)

𝒄𝑠 = 𝒄𝑠 +
1

𝑀𝑁

𝑁∑︁
𝑗=1

𝐾∑︁
𝑘=1

Δ𝒄𝑘,𝑗,𝑠 , (6)

𝒄 =
[
𝒄⊤(1) , . . . , 𝒄

⊤
(𝑁) , 𝒄

⊤
𝑠

]⊤
. (7)

The key of our FedBCGD+ algorithm for improving the conver-

gence speed is based on the following observation. The convergence

of federated learning algorithms is hindered by two sources of high

variance: (i) the global server aggregation step and multiple local

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FedBCGD: Communication-Efficient Accelerated Block Coordinate Gradient Descent for Federated Learning ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

updates, which are exacerbated by client heterogeneity, and (ii) the

noise from local client-level stochastic gradients.

In the local update in Eq. (4), the first term involves stochastic

gradient descent, the second term incorporates client heterogeneity

control inspired by SCAFFOLD [17], and the third term adopts one

stochastic variance reduction technique as in SVRG [15] to reduce

the variance of stochastic gradients. By integrating these three

components, our algorithm effectively addresses the challenges

posed by heterogeneous clients and noisy local gradients, leading

to a significant improvement in the convergence speed during the

federated learning process. Compared with existing algorithms

such as SCAFFOLD, and our FedBCGD, FedBCGD+ has a faster

convergence rate, as shown in the following theoretical results.

4 THEORETICAL GUARANTEES
In this section, we provide rigorous theoretical analysis for all the

proposed algorithms, and the detailed proofs are included in the

Appendix. The theoretical analysis of our FedBCGD algorithm is

not a simple parallelization extension of the traditional BCD algo-

rithm but an innovative theoretical analysis framework. Compared

with related work, the two proposed algorithms have some theo-

retical advantages, including faster convergence rates and lower

communication complexities. For the convenience of theoretical

analysis, we ignore the shared block in the algorithms.

4.1 Theoretical Results of FedBCGD
Theorem 1 (FedBCGD). For 𝛽-smooth functions {𝑓𝑖 }, which sat-

isfy Assumptions 1-5 (see the Appendix for details), the output of
FedBCGD has expected error smaller than 𝜖 for some values of 𝜂, 𝑅,
where 𝑅 denotes the number of communication rounds, 𝐶𝑜𝑚 is the
communication complexity (i.e., the product of the number of com-
munication rounds and the floats sent per round) satisfying:
Strongly convex: 𝜂 =

𝛼𝜂𝑇
4

, 𝜂 ≤ 1

8𝛽
, and

𝑅 = O
(𝜎2 +𝐺2

𝜇𝐾𝑇𝜖
+ 𝜎 +𝐺
𝛼𝜇

√
𝜖
+ 𝛽

𝜇
log

1

𝜖

)
,

𝐶𝑜𝑚 = O
(𝜎2 +𝐺2

𝜇𝑆𝑇𝜖
𝑑 + 𝜎 +𝐺

𝛼𝜇𝑁
√
𝜖
𝑑 + 𝛽

𝜇𝑁
log

1

𝜖
𝑑
)
,

Non-convex: 𝜂 = 1

4
𝛼𝜂𝑇 , 𝜂 ≤ 1

16𝛽
, 𝐹 := 𝑓

(
𝒙0

)
− 𝑓 ★,

𝑅 = O
(𝛽𝜎2
𝑇𝐾𝜖2

+

√︁
𝛽𝐺 +

√︃
𝛽

𝑇
𝜎

𝜖
3

2

+ 𝐹𝛽
𝜖

)
,

𝐶𝑜𝑚 = O
(𝛽𝜎2
𝑇𝑆𝜖2

𝑑 +

√︁
𝛽𝐺 +

√︃
𝛽

𝑇
𝜎

𝑁𝜖
3

2

𝑑 + 𝐹𝛽

𝑁𝜖
𝑑
)
.

From Table 1, comparing the second term of communication

complexity of FedAvg (i.e., O
(
𝜎+𝐺
𝜇
√
𝜖
𝑑
)
), the term of FedBCGD is

O
(
𝜎+𝐺
𝛼𝜇𝑁

√
𝜖
𝑑
)
, which is 𝑁 times significantly lower. As the number

of blocks 𝑁 increases, FedBCGD can achieve a significantly lower

communication complexity, and we will verify this in the experi-

mental section (see Figure 4). The momentum parameter 𝛼 here is

equivalent to the server step size, and a larger server step size can

accelerate convergence, as pointed out in [17].

4.2 Theoretical Results of FedBCGD+
Theorem 2 (FedBCGD+). For 𝛽-smooth functions {𝑓𝑖 }, which

satisfy Assumptions 1-5, the output of FedBCGD+ has expected error
smaller than 𝜖 for some values of 𝜂, 𝑅, where 𝑅 and 𝐶𝑜𝑚 satisfy:
Strongly convex: 𝜂 =

𝛼𝜂𝑇
4

, 𝜂 ≤ 1

8𝛽
, and

𝑅 = O
((𝑀
𝐾
+ 𝛽
𝜇

)
log

1

𝜖

)
,𝐶𝑜𝑚 = O

((𝑀
𝑆
+ 𝛽

𝜇𝑁

)
𝑑 log

1

𝜖

)
,

Non-convex: 𝜂 = 1

4
𝛼𝜂𝑇 , 𝜂 ≤ 1

16𝛽
, 𝐹 := 𝑓

(
𝒙0

)
− 𝑓 ★,

𝑅 = O
(𝛽𝐹
𝜖

(𝑀
𝐾

) 2
3

)
, 𝐶𝑜𝑚 = O

(𝛽𝐹
𝜖

(𝑀
𝑆

) 2
3

1

𝑁

1

3

𝑑
)
.

The communication complexity of FedBCGD is O
(
𝜎2+𝐺2

𝜇𝑆𝑇𝜖
𝑑 +

𝜎+𝐺
𝛼𝜇𝑁

√
𝜖
𝑑 + 𝛽

𝜇𝑁
log

1

𝜖𝑑
)
in the strongly convex setting. The main

influence on the communication complexity is determined by the

two parameters, 𝐺 (client heterogeneity) and 𝜎 (noise of stochas-

tic gradients). FedBCGD+ resolves these issues, and can achieve

the communication complexity of O
((
𝑀
𝑆
+ 𝛽

𝜇𝑁

)
𝑑 log 1

𝜖

)
. When 𝑁 =√︁

𝛽/𝜇, and its communication complexity isO
((
𝑀
𝑆
+
√︃
𝛽
𝜇

)
𝑑 log 1

𝜖

)
,

which significantly improves the best-known result (see Table 1 for

details). When 𝜎 = 0, the communication complexity of FedBCGD

is also better than that of SCAFFOLD, O
((
𝑀
𝑆
+ 𝛽
𝜇

)
𝑑 log 1

𝜖

)
. Without

client sampling (𝑆 = 𝑀), the communication complexity of Fed-

BCGD+ is O
(√︃ 𝛽

𝜇 𝑑 log
1

𝜖

)
, which is much better than that of FedLin

[29], O
(𝛽
𝜇 𝑑 log

1

𝜖

)
. In the non-convex setting, the communication

complexity of FedBCGD+ is O
(𝛽𝐹
𝜖

(
𝑀
𝑆

)
2/3
𝑁 −1/3𝑑

)
, which also is

the best-known result (see Table 1). Without client sampling, the

communication complexity of FedBCGD+ is O
(𝛽𝐹
𝜖 𝑁

−1/3𝑑
)
, which

is much better than that of CE-LSGD [31], O
(𝛽𝐹
𝜖 𝑑

)
. As the number

of blocks 𝑁 increases, FedBCGD+ can also achieve a significantly

lower communication complexity.

5 EXPERIMENTS
In this section, we conduct various experiments for convex and non-

convex problems, and more results are reported in the Appendix.

5.1 Experimental Settings and Baselines
Datasets: We evaluate our algorithms on the CIFAR10 [20], CI-

FAR100 [20], Tiny ImageNet [21] and EMNIST datasets. We set up

a total of 100 clients in the FL experiment with a participation rate

of 10%. For the non-IID data setup, we model data heterogeneity

by sampling label ratios 𝜌 from a Dirichlet distribution.

Models: To test the robustness of our algorithms, we use stan-

dard classifiers (including LeNet-5 [22], VGG-11, VGG-19 [37], and

ResNet-18 [13]), Vision Transformer (ViT-Base) [8]. We divided the

parameters of the model into 5 blocks or more blocks and provide

the detailed parameter block division of the model in the Appendix.

Methods:We compare FedBCGD and FedBCGD+with many SOTA

FL baselines, including FedAvg [28], SCAFFOLD [17], FedAvgM

[14], FedDC [9] , FedAdam [32], and TOP-k [1], FedPAQ [33].

Hyper-parameter Settings: The initial learning rate is searched
in {0.01, 0.03, 0.05, 0.1, 0.2, 0.3}, with a decay of 0.998 and a weight

decay of 0.001 for each round.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Comparison of the average testing accuracy (%) over the last 10% rounds of each algorithm on CIFAR100, where the
heterogeneity parameter is 𝜌 = 0.6, total communication floats are 1000𝑑 , and the number of blacks is 𝑁 = 5. The number in
brackets indicates the number of communication floats to reach the target accuracy. Note that centralised SGD refers to using
SGD to train models on a single machine.

CIFAR100 LeNet-5 (40%) VGG-11 (48%) ResNet-18 (54%) VGG-19 (45%)

Centralised SGD 53.7 ± 0.2 56.3 ± 0.3 62.2 ± 0.1 58.9 ± 0.1

FedAvg [28] 41.2 ± 0.2 (558𝑑) 48.7 ± 0.4 (720𝑑) 54.2 ± 0.2 (927𝑑) 47.6 ± 0.1 (735𝑑)
FedAvgM [14] 48.2 ± 0.5 (277𝑑) 51.7 ± 0.6 (299𝑑) 61.8 ± 0.8 (398𝑑) 56.0 ± 0.3 (403𝑑)
FedAdam [32] 46.2 ± 0.8 (391𝑑) 50.9 ± 0.5 (597𝑑) 53.9 ± 0.4 (∞) 58.7 ± 0.2 (367𝑑)
SCAFFOLD [17] 50.3 ± 0.2 (214𝑑) 47.9 ± 0.2 (∞) 52.3 ± 0.2 (∞) 58.3 ± 0.5 (556𝑑)
FedDC [9] 53.2 ± 0.3 (302𝑑) 48.2 ± 0.2 (956𝑑) 46.6 ± 0.1 (∞) 56.8 ± 0.4 (321𝑑)
FedBCGD (ours) 55.7 ± 0.4 (77𝑑) 62.2 ± 0.4 (107𝑑) 68.1 ± 0.5 (277𝑑) 61.1 ± 0.3 (206𝑑)
FedBCGD+ (ours) 55.6 ± 0.3 (75d) 58.7 ± 0.3 (105d) 65.1 ± 1.8 (154d) 63.6 ± 0.4 (176d)

Table 3: Comparison of the average testing accuracy (%) over the last 10% rounds of each algorithm on CIFAR10, where the
heterogeneity parameter is 𝜌 = 0.6, total communication floats are 1000𝑑 , the number of blacks is set to 𝑁 = 5.

CIFAR10 LeNet-5 (78%) VGG-11 (83%) ResNet-18 (88%) VGG-19 (84%)

Centralised SGD 83.1 ± 0.2 87.4 ± 0.3 90.1 ± 0.1 88.6 ± 0.1

FedAvg [28] 79.6 ± 0.3 (498𝑑) 83.3 ± 0.7 (630𝑑) 89.0 ± 0.5 (698𝑑) 84.9 ± 0.7 (499𝑑)
FedAvgM [14] 81.1 ± 0.6 (360𝑑) 83.7 ± 0.4 (830𝑑) 89.1 ± 0.7 (882𝑑) 87.4 ± 0.5 (252𝑑)
FedAdam [32] 78.3 ± 1.2 (860𝑑) 85.4 ± 1.1 (478𝑑) 81.1 ± 1.3 (∞) 87.5 ± 0.9 (298𝑑)
SCAFFOLD [17] 82.8 ± 0.7 (540𝑑) 86.9 ± 0.6 (278) 89.0 ± 0.4 (747𝑑) 85.5 ± 0.5 (358𝑑)
FedDC [9] 83.0 ± 0.2 (280𝑑) 83.1 ± 0.6 (866) 88.0 ± 0.6 (1985𝑑) 78.0 ± 0.9 (∞)
FedBCGD (ours) 84.7 ± 0.7 (249𝑑) 88.4 ± 0.7 (292𝑑) 92.1 ± 0.3 (398𝑑) 87.8 ± 0.4 (117d)
FedBCGD+ (ours) 83.5 ± 0.3 (182d) 88.3 ± 0.4 (209d) 90.3 ± 0.5 (266d) 87.1 ± 0.4 (207𝑑)

(a) LeNet-5, CIFAR10 (b) LeNet-5, CIFAR100 (c) VGG-11,CIFAR10 (d) VGG-11, CIFAR100

(e) ResNet-18, CIFAR10 (f) ResNet-18,CIFAR100 (g) VGG-19, CIFAR10 (h) VGG-19, CIFAR100

Figure 3: The convergence comparison of our FedBCGD and FedBCGD+, and other baselines on the CIFAR10 and CIFAR100
datasets with different neural network architectures, where, in 100 clients, partial (10%) clients are used, and the heterogeneity
parameter is set to 𝜌 =0.6.

5.2 Results on Non-Convex Problems
Results on Convolutional Neural Network: From Tables 2 and

3, and Figure 3, we have the following observations: (i) Compared

to FedAvg and its accelerated algorithms, FedBCGD significantly

reduces the communication floats per round, converges faster, and

achieves more robust final model performance. In the experiment

of LeNet-5 on CIFAR100, FedBCGD (77𝑑) achieve 7.3× speedup to

reach 40% accuracy, compared to FedAvg (558𝑑). (ii) FedBCGD+

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

FedBCGD: Communication-Efficient Accelerated Block Coordinate Gradient Descent for Federated Learning ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 4: The acceleration comparison of FedBCGD with
different numbers of blocks.

(a) FedBCGD, CIFAR10 (b) FedBCGD, CIFAR100

Figure 5: Accuracy comparison of FedBCGD with LeNet-5
on CIFAR10 (a) and CIFAR100 (b), where heterogeneity is
𝜌 =0.6. FedBCGD_freezing_nonshare is updated by using the
local freezing parameter algorithm without the shared block.
FedBCGD_freezing_share refers to the FedBCGD_freezing
algorithmwith shared parameters. FedBCGD_nonshare is an
algorithm that trains all parameters locally and only trans-
mits parameter blocks during the upload process without
shared parameters. FedBCGD_share refers to the algorithm
that has shared parameters. FedBCGD_share_momentum
(i.e., FedBCGD) refers to the algorithm that has momentum
acceleration.

further improves the convergence speed by client drift control and

variance reduction, accelerating FedBCGD training process in ex-

periments. In the experiment of ResNet-18 on CIFAR100, FedBCGD+

(154𝑑) achieves 1.8× speedup to reach 54% accuracy, compared to

FedBCGD (277𝑑). However, in terms of the final testing accuracy, it

does not outperform FedBCGD. This means that FedBCGD+ has a

faster convergence speed, requiring less communication floats at

the specified accuracy, while the higher accuracy of our FedBCGD

algorithm ultimately means that it has better generalization abil-

ity. And the generalization ability of our FedBCGD framework is

better than those of other algorithms, e.g., FedAvg. (iii) The final

accuracy of FedBCGD is much higher than that of Centralised SGD,

which means that our FedBCGD has better generalization perfor-

mance. That is, FedBCGD and FedBCGD+ can jump from a poor

local minimum and converge to sharp local minima.

Figure 4 compares the effects of different block numbers under

the same settings. When the number of blocks is 1, it degenerates

into the FedAvgM algorithm. At the specified testing accuracy 53%,

when the number of blocks is 20, our FedBCGD algorithm requires

the least communication floats. The FedBCGD algorithm with 20

blocks achieves the highest accuracy with the same communication

floats 200𝑑 . As the number of blocks increases, the acceleration

effect of the FedBCGD algorithm becomes more obvious.

From Figure 5, we can observe that freezing parameters in local

training will cause client parameters to drift (purple line), resulting

in poor performance. In addition, uploading parameters with shared

parameters can improve convergence speed and final performance

of the model (red line). Adding momentum compensation to client

aggregation does accelerate convergence significantly (blue line).

Table 4: Comparison of each algorithm on CIFAR100 and
CIFAR10. Heterogeneity is 𝜌 =0.1, total communication floats
are 1000𝑑 , and the number of blocks in ResNet-18 is 𝑁 = 5.

𝜌 = 0.1 CIFAR100 (45%) CIFAR10 (78%)

FedAvg [28] 45.8 ± 0.3 (741𝑑) 78.1 ± 0.4 (952𝑑)
FedAvgM [14] 48.3 ± 0.6 (769𝑑) 78.6 ± 0.8 (997𝑑)
FedAdam [32] 49.9 ± 0.5 (610𝑑) 71.4 ± 1.1 (∞)
SCAFFOLD [17] 44.3 ± 0.3 (∞) 76.3 ± 1.4 (∞)
FedDC [9] 46.6 ± 0.8 (278𝑑) 79.1 ± 0.8 (948𝑑)
FedBCGD (ours) 59.5 ± 0.3 (147d) 86.2 ± 0.9 (212d)
FedBCGD+ (ours) 59.9 ± 0.4 (200𝑑) 80.2 ± 1.3 (768𝑑)

Table 5: The test accuracy comparison of each algorithmwith
ViT-Base on CIFAR100 and Tiny ImageNet. Heterogeneity is
𝜌 =0.6, total communication floats are 100𝑑 , 𝑁 = 6.

𝜌 = 0.6 CIFAR100 (88%) Tiny Imagenet (70%)

Centralised SGD 81.5 ± 0.3 76.7 ± 0.2

FedAvg [28] 90.4 ± 0.1 (24𝑑) 71.2 ± 0.1 (67𝑑)
FedAvgM [28] 88.7 ± 0.3 (32𝑑) 76.7 ± 0.4 (10𝑑)
FedAdam [32] 87.6 ± 0.2 (∞) 65.5 ± 0.6 (∞)
SCAFFOLD [17] 88.2 ± 0.3 (88𝑑) 56.8 ± 1.1 (∞)
FedDC [9] 85.8 ± 0.4 (25𝑑) 55.0 ± 1.2 (∞)
FedBCGD (ours) 92.0 ± 0.2 (7d) 83.5 ± 0.2 (5.8𝑑)
FedBCGD+ (ours) 90.6 ± 0.3 (14𝑑) 81.3 ± 0.2 (4.6d)

(a) ViT-Base, CIFAR100 (b) ViT-Base, Tiny ImageNet

Figure 6: The test accuracy varies with the communication
floats with ViT-Base on the CIFAR100 and Tiny ImageNet
datasets, where 𝐸=1 and 𝜌 =0.6 (best viewed in color).

From results in Table 4, we compare the convergence speed of

our algorithms and baseline algorithms under high levels of data

heterogeneity. It can be observed that when data heterogeneity

is high (e.g., 𝜌 = 0.1), FedAvg converges slowly and struggles to

reach the optimal point. In contrast, our algorithms consistently

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

converge and achieve better model generalization. Moreover, under

high data heterogeneity, FedBCGD+ slightly outperforms FedBCGD,

demonstrating the effectiveness of the variance control strategy in

our FedBCGD+ algorithm.

In our experiments we get a phenomenon that our algorithm,

FedBCGD and FedBCGD+, may generalizes better than Central-

ized SGD when the client data is not highly heterogeneous. The

same phenomenon was also found in the literature [12, 23]. For

highly non-convex problems, gradient decent and SGD methods

are usually prone to fall into local minima, whereas the distributed

methods local SGD are more prone to jump out of the local and

sharp minimum and usually have better generalization ability [12].

Results on Communication-efficient FL: In Table 6, the Fed-

BCGD algorithm outperforms the traditional efficient federated

learning algorithms TOP-k and FedPAQ in terms of convergence

speed and final generalization accuracy. The convergence can be

further accelerated when the quantization strategy of QSGD is

added to the chunks of FedBCGD.

Table 6: The test accuracy comparison of each algorithmwith
LeNet-5 on CIFAR100 and CIFAR10. Here, the heterogeneity
is 𝜌 =0.6, total communication floats are 200𝑑 , 𝑁 = 5.

𝜌 = 0.6 CIFAR100 (40%) CIFAR10 (70%)

FedAvg [28] 35.4 ± 0.1 (∞) 73.2 ± 0.1 (133𝑑)
TOP-k [1] 42.2 ± 0.5 (112𝑑) 74.5 ± 0.4 (92𝑑)
FedPAQ [33] 43.3 ± 0.2 (110𝑑) 75.2 ± 0.4 (121𝑑)
FedBCGD (ours) 48.7 ± 0.2 (91𝑑) 77.2 ± 0.2 (65𝑑)
FedBCGD+ (ours) 49.6 ± 0.3 (89𝑑) 80.6 ± 0.2 (57𝑑)
QSGD[2]+FedBCGD (ours) 52.2 ± 0.4 (61𝑑) 82.6 ± 0.1 (32𝑑)
QSGD[2]+FedBCGD+ (ours) 53.1 ± 0.2 (56d) 83.2 ± 0.3 (29d)

Results on Vision Transformer: To verify the effectiveness of

our algorithm on large models, we adopt the most classic ViT-Base

model on the Tiny ImageNet and CIFAR100 datasets. For the ini-

tialization of the model, we used the pretrained model downloaded

from the official website. We divide the ViT-Base model into six

parameter blocks. From the experimental results in Table 5 and

Figure 6, we can observe that our FedBCGD algorithm can achieve

the best results on the CIFAR100 dataset, and has more than 3×
faster convergence speed, compared to FedAvg. The FedBCGD al-

gorithm can achieve the best results on the Tiny ImageNet dataset,

and attains more than 11.5× faster convergence speed. This can

verify that FedBCGD can achieve excellent convergence speed on

both Vision Transformer models and big datasets.

Effectiveness of 𝜆: We tested FedBCGD using ResNet-18 on

CIFAR100 dataset with momentum parameter 𝜆 taking the values

of {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and 𝜌 = 0.6 . The convergence plots are

shown in Figure 7. We note that setting 𝜆 too small or too large

impairs the convergence and generalization ability of FedBCGD.

As shown in Figure 7, when 𝜆 is relatively small, with 𝜆 = 0.4, the

FedBCGD algorithm converges quickly, but the final generalization

is not good.Whenwe enlarge the value of 𝜆, 𝜆 = 0.8, the convergence

is slower but the final generalization is good. Empirically, we find

the best performance is achieved when the 𝜆 is set to around 0.8.

(a) Test accuracy (b) Train loss

Figure 7: Test accuracy (a) and training loss (b) with ResNet-
18 on CIFAR100, where 𝐸 = 5 and 𝜌 = 0.6. The number of
parameter blocks is set to 𝑁 = 5.

5.3 Results on Convex Problems
We conducted the classification tests on the EMNIST (byclass)

dataset on classical logistic regression problems:

𝑓 (𝑥) = 1

𝑁

𝑁∑︁
𝑖=1

log

(
1 + exp

(
−𝑏𝑖𝑎⊤𝑖 𝑥

))
+ 𝜆
2

∥𝑥 ∥2, (8)

where 𝑎𝑖 ∈ R𝑑 and 𝑏𝑖 ∈ {−1, +1} are the data samples, and 𝑁 is

their total number. We set the regularization parameter 𝜆 = 10
−4𝐿,

where 𝐿 is the smoothness constant.

From Figure 8 (a,b), we observe that our FedBCGD and Fed-

BCGD+ algorithms demonstrate faster convergence speed. Particu-

larly, under the strong convexity, our FedBCGD+ algorithm exhibits

even faster convergence compared to our FedBCGD, which aligns

with our theoretical analysis.

(a) Train loss (b) Test loss

Figure 8: Logistic regressionwith 𝐸=1 and 𝜌 =0.1. The number
of blocks is set to 𝑁 = 5.

6 CONCLUSION
This paper proposed the first federated block coordinate gradient

descent method for horizontal federated learning. Moreover, we pre-

sented an accelerated version by using variance reduction and client

parameter block drift control. In particular, we analyzed the conver-

gence properties of the proposed algorithms, which show that our

algorithms have significantly lower communication complexities

than existing methods, and they also attain the best-known con-

vergence rates for both convex and non-convex problems. Various

experimental results verified our theoretical results and effective-

ness of all the proposed algorithms. In the future, it is worthwhile

to pay attention to how to more rationally divide model into blocks

and how to choose the optimal parameter block to upload for clients.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

FedBCGD: Communication-Efficient Accelerated Block Coordinate Gradient Descent for Federated Learning ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse Communication for Dis-

tributed Gradient Descent. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguis-

tics. https://doi.org/10.18653/v1/d17-1045

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.

QSGD: Communication-efficient SGD via gradient quantization and encoding.

Advances in neural information processing systems 30 (2017).
[3] Rodolfo Stoffel Antunes, Cristiano André da Costa, Arne Küderle, Imrana Abdul-

lahi Yari, and Björn Eskofier. 2022. Federated learning for healthcare: Systematic

review and architecture proposal. ACM Transactions on Intelligent Systems and
Technology (TIST) 13, 4 (2022), 1–23.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] David Byrd and Antigoni Polychroniadou. 2020. Differentially private secure

multi-party computation for federated learning in financial applications. In

Proceedings of the First ACM International Conference on AI in Finance. 1–9.
[6] Ashok Cutkosky and Francesco Orabona. 2019. Momentum-Based Variance

Reduction in Non-Convex SGD. In Advances in Neural Information Processing
Systems 32 (NeurIPS). 15210–15219.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805 (2018).
[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers

for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
[9] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu.

2022. Feddc: Federated learning with non-iid data via local drift decoupling

and correction. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 10112–10121.

[10] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. 2021. Local SGD: Uni-

fied theory and new efficient methods. In International Conference on Artificial
Intelligence and Statistics. PMLR, 3556–3564.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,

large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

[12] Xinran Gu, Kaifeng Lyu, Longbo Huang, and Sanjeev Arora. 2023. Why

(and When) does Local SGD Generalize Better than SGD? arXiv preprint
arXiv:2303.01215 (2023).

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the

effects of non-identical data distribution for federated visual classification. arXiv
preprint arXiv:1909.06335 (2019).

[15] Rie Johnson and Tong Zhang. 2013. Accelerating stochastic gradient descent

using predictive variance reduction. Advances in neural information processing
systems 26 (2013).

[16] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J

Reddi, Sebastian U Stich, and Ananda Theertha Suresh. 2020. Mime: Mim-

icking centralized stochastic algorithms in federated learning. arXiv preprint
arXiv:2008.03606 (2020).

[17] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-

tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled

averaging for federated learning. In International Conference on Machine Learning.
PMLR, 5132–5143.

[18] Prashant Khanduri, Pranay Sharma, Haibo Yang, Mingyi Hong, Jia Liu, Ketan

Rajawat, and Pramod Varshney. 2021. Stem: A stochastic two-sided momentum

algorithm achieving near-optimal sample and communication complexities for

federated learning. Advances in Neural Information Processing Systems 34 (2021),
6050–6061.

[19] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016.

Federated optimization: Distributed machine learning for on-device intelligence.

arXiv preprint arXiv:1610.02527 (2016).

[20] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features

from tiny images. (2009).

[21] Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS
231N 7, 7 (2015), 3.

[22] Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet 20, 5 (2015), 14.

[23] B Li and et al. [n. d.]. On the effectiveness of partial variance reduction in

federated learning with heterogeneous data. CVPR ([n. d.]).

[24] Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye

Ouyang, Ya-Qin Zhang, and Qiang Yang. 2022. Vertical federated learning. arXiv
preprint arXiv:2211.12814 (2022).

[25] Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian Chen, Mingyi Hong, and

Qiang Yang. 2022. FedBCD: A communication-efficient collaborative learning

framework for distributed features. IEEE Transactions on Signal Processing 70

(2022), 4277–4290.

[26] Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. 2021. No

fear of heterogeneity: Classifier calibration for federated learning with non-iid

data. Advances in Neural Information Processing Systems 34 (2021), 5972–5984.
[27] Dhruv Mahajan, S Sathiya Keerthi, and S Sundararajan. 2017. A distributed

block coordinate descent method for training l1regularized linear classifiers. The
Journal of Machine Learning Research 18, 1 (2017), 3167–3201.

[28] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Artificial intelligence and statistics. PMLR,

1273–1282.

[29] Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. 2021. Linear

convergence in federated learning: Tackling client heterogeneity and sparse

gradients. Advances in Neural Information Processing Systems 34 (2021), 14606–
14619.

[30] Tomoya Murata and Taiji Suzuki. 2021. Bias-variance reduced local sgd for less

heterogeneous federated learning. arXiv preprint arXiv:2102.03198 (2021).
[31] Kumar Kshitij Patel, Lingxiao Wang, Blake E Woodworth, Brian Bullins, and

Nati Srebro. 2022. Towards optimal communication complexity in distributed

non-convex optimization. Advances in Neural Information Processing Systems 35
(2022), 13316–13328.

[32] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,

Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. 2020. Adaptive feder-

ated optimization. arXiv preprint arXiv:2003.00295 (2020).
[33] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and

Ramtin Pedarsani. 2020. Fedpaq: A communication-efficient federated learning

method with periodic averaging and quantization. In International Conference on
Artificial Intelligence and Statistics. PMLR, 2021–2031.

[34] Peter Richtárik and Martin Takáč. 2016. Distributed coordinate descent method

for learning with big data. The Journal of Machine Learning Research 17, 1 (2016),

2657–2681.

[35] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi

Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus

Maier-Hein, et al. 2020. The future of digital health with federated learning. NPJ
digital medicine 3, 1 (2020), 119.

[36] Felix Sattler, SimonWiedemann, Klaus-Robert Müller, andWojciech Samek. 2019.

Robust and communication-efficient federated learning from non-iid data. IEEE
transactions on neural networks and learning systems 31, 9 (2019), 3400–3413.

[37] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[38] Stephen J Wright. 2015. Coordinate descent algorithms. Mathematical program-

ming 151, 1 (2015), 3–34.

[39] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine

learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

[40] Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, and Yuan Yao. 2019. Global conver-

gence of block coordinate descent in deep learning. In International conference
on machine learning. PMLR, 7313–7323.

9

https://doi.org/10.18653/v1/d17-1045

	Abstract
	1 Introduction
	2 Related Work
	3 Communication-Efficient Block Coordinate Gradient Descent Federated Learning
	3.1 The proposed FedBCGD Algorithm
	3.2 Our FedBCGD+ Algorithm

	4 Theoretical Guarantees
	4.1 Theoretical Results of FedBCGD
	4.2 Theoretical Results of FedBCGD+

	5 Experiments
	5.1 Experimental Settings and Baselines
	5.2 Results on Non-Convex Problems
	5.3 Results on Convex Problems

	6 Conclusion
	References

