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Abstract

Federated learning (FL) is a powerful technology that en-
ables collaborative training of machine learning models
without sharing private data among clients. The fundamen-
tal challenge in FL lies in learning over extremely hetero-
geneous data distributions, device capacities, and device
state availabilities, all of which adversely impact perfor-
mance and communication efficiency. While data hetero-
geneity has been well-studied in the literature, this paper
introduces FLHetBench, the first FL benchmark targeted
toward understanding device and state heterogeneity. FL-
HetBench comprises two new sampling methods to gener-
ate real-world device and state databases with varying het-
erogeneity and new metrics for quantifying the success of
FL methods under these real-world constraints. Using FL-
HetBench, we conduct a comprehensive evaluation of exist-
ing methods and find that they struggle under these settings,
which inspires us to propose BiasPrompt+, a new method
employing staleness-aware aggregation and fast weights to
tackle these new heterogeneity challenges. Experiments on
various FL tasks and datasets validate the effectiveness of
our BiasPrompt+ method and highlight the value of FLHet-
Bench in fostering the development of more efficient and ro-
bust FL solutions under real-world device and state con-
straints.

1. Introduction
Federated learning (FL) is a cutting-edge technology that
enables collaborative training of deep learning models
across multiple clients without sharing their local data,
thereby protecting users’ sensitive information and mitigat-
ing the risk of data leaks [26, 27, 61]. Despite its poten-
tial, the large-scale adoption of FL is challenged by var-
ious dimensions of heterogeneity, which can impede fed-
erated computation and lead to decreased performance and
increased communication costs [3, 6, 29, 30, 60].
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There are three main types of heterogeneity in FL: (1)
data heterogeneity, referring to varying data distribution
across clients, (2) device heterogeneity, characterized by di-
verse device capacities among clients [6, 30, 52], and (3)
state heterogeneity, involving inconsistent client availabil-
ity [49, 60]. Considerable research has been conducted to
understand and address data heterogeneity in FL, including
a range of simulated and real-world FL datasets [10, 29, 60],
efficient assessment metrics for quantifying data hetero-
geneity [29, 39], and various efficient data heterogeneity
optimization methods [5, 34, 37, 38, 50, 64, 65, 67, 68]. In
contrast, efforts to investigate device and state heterogene-
ity are limited due to the lack of benchmarks and evalua-
tion metrics reflecting these dimensions of heterogeneity in
the real world. Prior studies either use simulated environ-
ments [8, 18, 26, 62] or are limited to a small set of real
datasets [10, 29, 60]. This leads to a critical, yet unan-
swered question: What happens to different FL algorithms
when they are employed in real-world FL environments with
varying degrees of device and state heterogeneity?

FLHetBench: Device and state evaluation benchmark.
To answer this key question, we introduce FLHetBench,
the first real-world device and state heterogeneity evaluation
benchmark in FL. As shown in Fig. 1, our FLHetBench con-
sists of: (1) Two innovative Dirichlet process-based sam-
pling methods - Dirichlet Process Gaussian Mixture Model
(DPGMM) for continuous device data and Dirichlet Process
Construction-Based Sampling Method (DPCSM) for dis-
crete state data. DPGMM and DPCSM are capable of gen-
erating real-world device and state databases with diverse
heterogeneity, as validated by our theoretical and empirical
results. (2) Several isolated and interplay metrics, based on
Monte Carlo (MC) simulations and clients’ successful par-
ticipating ratio, to assess device/state heterogeneity in FL.
Our sampling methods and metrics enable FL practitioners
to evaluate existing FL methods and inspire future work un-
der real-world device and state constraints.

Benchmarking existing FL methods with FLHetBench.
We then conduct the first comprehensive evaluation of ex-
isting FL methods using our FLHetBench and identify two
key findings: (1) Most methods perform well under mild
device/state heterogeneity, but struggle with increased het-
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Figure 1. Overview: FLHetBench consists of 1) two sam-
pling methods, DPGMM for continuous device database and
DPCSM for discrete state database, to sample real-world device
and state datasets with varying heterogeneity; and 2) new iso-
lated (DevMC-R, DevMC-T, StateMC-R, StateMC-T) and inter-
play metrics (InterMC-R and InterMC-T) to evaluate FL methods
under device and state heterogeneity. ↑= higher is better (less het-
erogeneous) and ↓= lower is better (more heterogeneous).

erogeneity. Moderate/High device/state heterogeneity poses
a significant challenge to the efficiency of current FL meth-
ods. (2) The increased wall-clock time of clients and the
low resource utilization of participating clients, caused by
device/state heterogeneity, are the primary factors contribut-
ing to the performance degradation of current FL methods
in heterogeneous real-world device/state scenarios.

Solution: Addressing heterogeneity with BiasPrompt+.
Motivated by the above investigation, we introduce
BiasPrompt+, a novel method employing gradient
surgery-based staleness-aware aggregation (maximizing
resource utility) and fast weights (minimizing commu-
nication/computation costs) to address device and state
heterogeneity in FL. In contrast to existing FL methods
that often impose extra computational burdens on local
clients [55] or incur resource wastage [5], BiasPrompt+
concurrently reduces communication and computational
burdens, maximizes the utilization of available clients,
and maintains FL performance. Extensive experiments
on a diverse range of FL tasks validate the superiority
of BiasPrompt+ over competing methods. Nevertheless,
BiasPrompt+ still encounters performance drops in highly
heterogeneous situations, underscoring the need for future
research with FLHetBench.

Contributions. We summarize our main contributions:

• We introduce FLHetBench, a pioneering benchmark for
evaluating device and state heterogeneity in FL. Our real-
world databases, sampling methods, and metrics are re-
leased at: https://carkham.github.io/FL_
Het_Bench/, facilitating future exploration of this piv-
otal field.

• We conduct the first comprehensive evaluation of FL on

varying degrees of device and state heterogeneity using
FLHetBench, revealing that long wall-clock time and low
resource utilization of participating clients contribute to
the performance degradation of current FL methods in
heterogeneous real-world device/state scenarios.

• We propose a simple and efficient method, BiasPrompt+,
to mitigate device/state heterogeneity challenges. Exten-
sive experimental results validate the superiority of our
BiasPrompt+ over competing methods.

2. Background and Related Work
In this work, we aim to address the device and state hetero-
geneity challenge in cross-device FL [25].

Device heterogeneity in FL arises from varying capac-
ities, hardware, and network speeds, leading to diverse
communication costs and wall-clock time. To address
this, synchronous FL and asynchronous FL have been pro-
posed. Synchronous FL employs communication-efficient
techniques like gradient compression [40, 53], local mod-
els [12, 33], knowledge distillation [41, 55], and model
pruning [13, 23]. On the other hand, asynchronous FL ad-
dresses device heterogeneity by allowing clients to indepen-
dently update their models, enhancing resource utilization
for slower clients [16, 21, 36]. However, the use of stale
models in asynchronous FL can lead to decreased conver-
gence rate and model accuracy [57]. It is worth noting
that both synchronous and asynchronous FL methods of-
ten evaluate the effectiveness of their approaches using ho-
mogeneous device simulation environments or by manually
designating clients as stragglers [5, 25, 31, 32, 43], which
may not accurately represent real-world device statuses. As-
sessing a device optimization method’s ability to adapt to
varying degrees of device heterogeneity remains challeng-
ing owing to the lack of datasets and metrics.

State heterogeneity in FL. State heterogeneity in FL refers
to the varying and dynamic running environments of par-
ticipating clients. This can lead to unselected or frequently
disconnected clients, causing missed round deadlines and
decreased FL performance. FLASH [60] was the first to
demonstrate the significant impact of state heterogeneity on
FL training and introduced a large-scale real-world state
dataset. Later research [43] suggested setting a threshold for
straggler devices and examining state heterogeneity effects
with naive stragglers. However, measuring client state qual-
ity remains unclear, and generating diverse state databases
has not been extensively explored.

Benchmarks in FL. Various efforts have been made to
benchmark FL from different aspects, including real-world
heterogeneous FL dataset [7, 29, 44], personalized FL [9,
56], heterogeneous device and state FL dataset [3, 4, 10, 29,
49, 54, 60]. Among these, research on benchmark hetero-
geneous devices and state FL is most closely related to our
work. However, certain limitations exist in current work,
as shown in Tab. 1. For example, FedScale’s device data

12099

https://carkham.github.io/FL_Het_Bench/
https://carkham.github.io/FL_Het_Bench/


Table 1. Comparison of FLHetBench with other FL benchmarks.
#Heter.dev.dist. and #Heter.sta.dist. indicate the number of device
and state distributions, respectively. ✘ implies no support, and ✔

indicates extensive support.

FLASH FedScale FS-Real FLHetBench

Device Limited Limited Large-scale Large-scale
State ✔ ✔ ✔ ✔

#Heter.dev.dist. ✘ ✘ 3 ✔
#Heter.sta.dist. ✘ ✘ ✘ ✔

Metrics ✘ ✘ ✘ ✔

format is single-point, which may not capture network fluc-
tuations effectively. Although FS-Real [10] offers large-
scale real-world device and state datasets, it only offers three
types of device distributions. Extraction of device and state
datasets with diverse distributions, which is essential for
conducting comprehensive real-world FL experiments, re-
mains unexplored. Moreover, there is a lack of metrics to
evaluate the device/state heterogeneity FL. In this paper, we
aim to fill these gaps with the proposed FLHetBench.

3. FLHetBench
Our FLHetBench (see Fig. 1) consists of 1) two sam-
pling methods, DPGMM for continuous device database
and DPCSM for discrete state database, to sample real-
world device and state datasets with varying heterogeneity;
and 2) various metrics to assess the device/ state heterogene-
ity in FL. We will now delve into the details of each compo-
nent.

3.1. Metrics for Assessing Device/State Heterogeneity

Determining how challenging real-world device/state
databases pose for FL is nontrivial due to a lack of con-
sensus on how to measure it. Intuitively, one may consider
using the statistical divergence metrics, which are com-
monly used to quantify the data heterogeneity in FL (e.g.,
JS distance [29] or pairwise KS statistics [39]), to assess
the device/state heterogeneity. However, the FL perfor-
mance is not directly related to this statistical divergence
(see Sec. 5.2.1 for experimental results). In fact, the impact
of a real-world device/state database on FL is shaped by var-
ious confounding factors, such as device capacities, device
divergence, state status, and server aggregation strategies,
see Fig. 2.

Two common server aggregation strategies in FL training
are: (1) Deadline-based strategy where clients must com-
plete tasks within a specified deadline (denoted as ddl),
or the server proceeds without them. (2) Readiness-based
strategy where the server waits for a specified proportion of
clients to complete their tasks without imposing a ddl. Ap-
parently, a single metric cannot accurately capture the influ-
ence of device/state heterogeneity under these two aggrega-
tion strategies. The same set of device/state databases can
exhibit different levels of heterogeneity for FL under dif-
ferent aggregation strategies. For example, deadline-based

Figure 2. Our metrics overview: Existing metrics such as STD,
KS, and JS primarily focus on statistical divergence, neglecting
other confounding FL factors, thus failing to capture device/state
heterogeneity. Our metrics use Monte Carlo simulations to mimic
a realistic FL environment, taking into account various confound-
ing factors (e.g., device capacities, state status, FL training strat-
egy) to effectively capture device/state heterogeneity in FL.

FL performance may be impacted by successful participa-
tion rates, while readiness-based FL could be affected by
the communication cost of straggler clients. In this paper,
we introduce a comprehensive set of metrics that account
for these confounding FL factors, enabling accurate assess-
ment of device/state heterogeneity in FL.

3.1.1 Metrics for Deadline-based Strategy

As discussed above, device heterogeneity impacts FL per-
formance by influencing the successful participation rate
and participation bias. For example, mild heterogeneity re-
sults in a diverse set of clients successfully participating in
FL training within a given ddl, whereas high heterogeneity
may lead to fewer successful clients, causing slower conver-
gence and poorer performance. However, estimating par-
ticipation rate and participation bias through real-world FL
training is impractical and time-consuming. Therefore, we
propose using Monte Carlo (MC) simulations to mimic the
real FL training process, enabling metric estimation while
reducing computational costs and time. Specifically, we
propose metrics DevMC-R, StatMC-R, and InterMC-R to
measure the device, state, and interplay (refers to both de-
vice and state) heterogeneity in FL, respectively, by captur-
ing the successful participation rate and participation bias.

Given N clients with their associated N device/state
databases, let ticost denote the actual cost for client i to
complete one round of FL task, Si denote the number of
successful participation times of client i obtained via MC
simulation. Sideal denotes the ideal number of success-
ful participation times, assuming all clients have the same
device capacity and states are always available. Then the
successful participation rate with these associated N clients

can be defined as

N∑
i=1

Si

Sideal∗N . However, this rate ignores
the impact of participation bias on FL performance, where
certain clients dominate the FL process may lead to de-
creased performance. We thus introduce decay functions
F (x) = log(x + 1) and Clip (Si, 0,Sideal) (a clip func-
tion) to account for the participation bias. Consequently, our

12100



DevMC-R, InterMC-R metrics are calculated as follows:

DevMC-R, InterMC-R =

F (
N∑
i=1

Clip(Si, 0,Sideal))

F (Sideal ∗N)
.

(1)
DevMC-R and InterMC-R effectively assess device and in-
terplay heterogeneity in FL by accurately capturing the suc-
cessful participation rate and participation bias. For detailed
MC simulation of Si for DevMC-R and InterMC-R, refer
to Algorithm S3 and Algorithm S4 in Appendix, respec-
tively.

StatMC-R for state heterogeneity. Eq. (1) is not suitable
for StatMC-R, since ticost is not specified when we only
consider the state heterogeneity. For easier calculation, we
assume ticost follow a prior uniform distribution p

(
ticost

)
of (0, ddl), ensuring our state metric is applicable under
varying device capacities. Our StatMC-R is then updated
from Eq. (1) with integration to ticost as follows:

StatMC-R =

∫ ddl

0


F

(
N∑
i=1

Clip(Si, 0,Sideal)

)
F (Sideal ∗N)

 p
(
ticost

)
dticost.

(2)

We use Algorithm S4 to derive Si for StatMC-R, con-
sidering sole state databases. DevMC-R, StatMC-R, and
InterMC-R accurately measure participation rate and bias
through MC mimic FL processes, providing valuable in-
sights into the impact of device, state, and interplay hetero-
geneity on FL. A lower participation rate with higher par-
ticipation bias results in smaller DevMC-R, StatMC-R, and
InterMC-R, indicating higher levels of device, state, and in-
terplay heterogeneity, respectively.

3.1.2 Metrics for Readiness-based Strategy

In FL training with a readiness-based strategy, the impact of
device/state heterogeneity is represented by the total com-
munication cost required for clients to achieve their target
performance. However, the specific FL task and dataset are
unknown during metric calculation. To this end, we use MC
simulation to emulate an actual FL training process, allow-
ing simulated clients to train until a pre-defined number of
training trips (trips) are completed, rather than having sim-
ulated clients reach a target performance goal. We track the
total communication cost T as our evaluation metrics and
introduce DevMC-T, StatMC-T, and InterMC-T to mea-
sure device, state, and interplay heterogeneity in FL, respec-
tively. Please refer to Algorithm S1 and Algorithm S2 for
the detailed simulation of T for our metrics.

These metrics enable us to assess the efficiency of a
readiness-based FL aggregation strategy by directly esti-
mating the communication cost with their associated de-
vices/states, thereby quantifying the device/state hetero-
geneity in the FL process. A longer simulated training time
T corresponds to larger DevMC-T, StatMC-T, and InterMC-
T values, indicating a higher level of heterogeneity.

3.2. Simulating Device and State Heterogeneity

Simulating large device/state databases with varying de-
grees of heterogeneity is crucial for evaluating the impact
of device/state heterogeneity on FL. [20] effectively used
the Dirichlet distribution to simulate data distributions with
varying label heterogeneity. However, the Dirichlet dis-
tribution is inadequate for simulating more complex de-
vice/state heterogeneity, as its concentration parameter can
only control the shape and concentration of the distribution.
For example, device heterogeneity includes factors like de-
vice speed variations. Comparing speeds between 100 and
1000 shows higher heterogeneity than between 100 and
110. The Dirichlet distribution, however, cannot account for
these differences. Similarly, a client’s state is a collection
of discrete data (e.g., available, unavailable, available), and
capturing these nuances is a complex task that the Dirichlet
distribution cannot directly handle. Here we propose two
advanced Dirichlet process-based methods to simulate de-
vice and state heterogeneity in FL.

3.2.1 Dirichlet Process Gaussian Mixture Model

Baseline real-world device database construction. We
build a comprehensive real-world device database, i.e., FL-
Device, by collecting data from around 10,000 popular mo-
bile devices. Specifically, for each device, we will charac-
terize 1) its computational latency using [22] and our cus-
tom app, and 2) its communication latency using [1]. Please
refer to Appendix Sec. II for more details about our APP.

Sampling varying degrees of device heterogeneity. As
depicted in Appendix Fig. S1a, we propose using a Dirich-
let Process Gaussian Mixture Model (DPGMM) to generate
device databases with varying heterogeneity degrees from
a baseline dataset D, while maintaining consistent average
speed across the sampled databases. We control heterogene-
ity using the total number of distinct devices Kn allocated
to M clients (Kn <= M ) and the variations σ of the as-
signed device capacities (speeds). Firstly, we specify the
Gaussian distribution for each of the Kn devices by setting
the kth as device N

(
µk, σ

2
k

)
, which can be drawn from

a modified prior base distribution G0′ , with µk | G0′ ∼
N

(
µ0, (σ · σ0)

2
)

. Here µ0 and σ0 are the mean and stan-
dard speeds of the baseline device database D and σ is used
to control the variation of the selected Kn devices. σk is
obtained from the base device database D by identifying a
device with the closest mean to µk and assigning its stan-
dard deviation to σk. In real applications, µ0 can be set to
any reasonable value, e.g., set to a high value to generate
a device database with high capacities. Secondly, we as-
sign each device of Kn to M clients via Dirichlet distribu-
tion [17]. Denote ci as the device assigned to the ith client,
then ci | π1, · · · , πKn

∼ Discrete (π1, · · · , πKn
), where

the mixing proportionsπ are generated from a Dirichlet
distribution π1, · · · , πKn

| α ∼ Dir
(

α
Kn

, · · · , α
Kn

)
. We

set α as a constant 1000 and use Kn to control the diver-
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gence of the device database, where large values indicate
more distinct samples.

Validation of DPGMM. Lemma 3.1, Theorem 3.1 (see Ap-
pendix Sec. I.2 for proof) and sampled varying device het-
erogeneous databases in Fig. S4 prove that our DPGMM can
effectively generate samples with varying degrees of device
heterogeneity, ranging from lower to higher heterogeneity,
by manipulating Kn and σ.

Lemma 3.1. For each specified set of Kn and σ, the vari-
ance of the sampled database is α

Kn

∑Kn

k=1 σ
2
k + (α −

Kn)µ
2
0 +Kn(σ · σ0)

2.

Theorem 3.1. With different specified sets of Kn and σ,
the variance of the sampled database can cover a range of(
minKn

( α
Kn

∑Kn

k=1 σ
2
k + (α−Kn)µ

2
0),+∞

)
.

3.2.2 Dirichlet Process Construction-based Sampling

Baseline real-world state database. We use an existing
large-scale state database [60] with 136k states as our base-
line real-world state database.

Sampling varying degrees of state heterogeneity. A
client’s state is discrete and cannot be characterized by
Gaussian distributions like device. Additionally, a client’s
state is a collection of discrete data and is thus unsuitable
for Dirichlet process. We employ the idea of StatMC-R
and use a single state metric (adapted from StatMC-R, see
Appendix Sec. V) to transform the discrete state into one
single data point, making them compatible with the Dirich-
let process [48]. We then introduce a Dirichlet process
construction-based sampling method (DPCSM) to generate
state databases with varying heterogeneity levels (see Ap-
pendix Fig. S1b). Our DPCSM considers state heterogene-
ity influenced by two factors: startRank and α and se-
lects a new state database with Kn states from a baseline
dataset of N states (Kn < N ) as follows: (1) Sort states in
the baseline set by single state metric, denoted as D(1) >
· · · > D(N). (2) Introduce startRank to represent the
rank of the optimal state from the baseline dataset, i.e., se-
lecting states from D(i), i = startRank, · · · , N . A lower
startRank indicates a higher quality optimal state. (3) Use
the stick-breaking process to determine the probability of
state D(k) being selected as πk = bk(1−

∑k−1
j=startRank πj),

k = startRank + 1, · · · , N ; πstartRank = b1, and
bk

i.i.d∼ beta(1, α). A smaller α leads to a lower probability
of selecting subsequent states, concentrating on states with
higher single state metrics.

Validation of DPCSM. As evidenced by Lemma 3.2 and
Theorem 3.2 (see Appendix Sec. I.2 for proof), DPCSM en-
ables the generation of samples with varying degrees of state
heterogeneity, by manipulating startRank and α.

Lemma 3.2. For each specific set of startRank and
α, the variance of the sampled database is given by∑N

i=startRank πi(Xi−
∑N

i=startRank πiXi)
2, where πi = bi(1−

Figure 3. BiasPrompt+ consists of 1) a gradient surgery-based
staleness-aware aggregation strategy for maximizing resource util-
ity, and 2) a BiasPromt module based on fast weights for minimiz-
ing communication/computation cost.

∑i−1
j=startRank πj), i > 1; b1, i = 1 with bi

i.i.d∼ beta(1, α),
and Xi denotes the single state metric of state D(i).

Theorem 3.2. With different specified sets of startRank
and α, the variance of the single state metric of the sampled
database can cover a range of

(
0, (X1 −XN )2

)
, where Xi

denotes the single state of state D(i).

4. BiasPrompt+ to Tackle Heterogeneity
In this section, we introduce BiasPrompt+, a novel method
designed to address device and state heterogeneity chal-
lenges in FL. As depicted in Fig. 3, BiasPrompt+ comprises
two modules: a gradient surgery-based staleness-aware ag-
gregation strategy for maximizing resource utility, and a
communication-efficient module BiasPrompt based on fast
weights. We will discuss each component in detail below.

Staleness-aware aggregation. When facing device and
state heterogeneity, FL methods tend to favor clients with
high capability, leading to poor resource utilization of low-
end clients and subpar performance. We develop a gradient
surgery-based staleness-aware strategy, allowing low-end
clients to submit stale gradients beyond the deadline while
preventing delayed clients from deviating significantly from
fresh clients. This strategy is motivated by the opposing
gradient directions between stale gradients and fresh gra-
dients observed in [63]. Specifically, let ∆̄∗

t represent the
averaged gradients of delayed clients in t round, and ∆̄t

denote the averaged fresh gradients in t round. The gradi-
ent surgery-based staleness-aware aggregation is calculated
as: ∆̄∗′

t = ∆̄∗
t −

∆̄∗
t ·∆̄t

∥∆̄t∥
∆̄t. Our gradient surgery strategy

projects stale gradients onto the normal plane of fresh gra-
dients and adds only the non-conflicting component, reduc-
ing the impact of stale clients and emphasizing those with
greater similarity to the average fresh clients.

Communication efficient weight adaptation. In addition
to the above strategy, we also introduce communication-
efficient BiasPrompt based on fast weights. Inspired by
prompt tuning [24], we introduce several extra prompts as
fast weights [46], enabling our model to quickly acquire
new information. However, while the fast weights can learn
rapidly, they also decay rapidly. To address this issue, we
also update a set of “stable weights”, the bias term of the
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Figure 4. Empirical relationship between device heterogeneity
metrics and FedAVG test accuracy on COVID-FL (first row) and
OpenImage (second row) using three deadline-based strategies
(ddl=120, 136, 98). Each point in the scatter-plot corresponds to
an experiment with different device sets or ddl, along with met-
rics DevMC-R, Standard deviation (STD), Kolmogorov-Smirnov
test (KS) and Jensen–Shannon divergence (JS). DevMC-R metric
is the most effective metric in capturing device heterogeneity, as
indicated by the highest correlation coefficient r.

networks, in order to stabilize the training process without
extra communication/computational burdens. Specifically,
for a plain Vision Transformer (ViT) with N layers, let
Ai, i = 1, 2, · · · , N denotes the intermediate image patch
embeddings of d dimension as (i − 1)th layer output, and
xi is the [class token] at (i)th layer’s input space. We intro-
duce a set of p continuous embeddings Pi ∈ Rp×d which is
prepended to the input of ith layer as (xi,Pi,Ai). Only the
extra prompts and the bias terms are trainable, while all the
others are kept frozen during the entire training procedure.
We also incorporate server momentum [20] into BiasPrompt
to deal with heterogeneous datasets. BiasPrompt signifi-
cantly reduces communication and computational cost with-
out compromising performance.

5. Experiments
5.1. Experimental Setup

Dataset. We validate our metrics, sampling methods, mod-
els using COVID-FL [59] and OpenImage [2]. For COVID-
FL, we sample 1,000 images, randomly assign 10 images to
each client’s local training set, and use the original test set
as our global test set. For OpenImage, we randomly choose
100 real-world clients [29], using their respective validation
and test sets to form global sets.

Training recipe. We use ViT-B [15] pre-trained on
ImageNet-1k [14] as the baseline network [39]. For
deadline-based strategy, we set a target total communication
round and use its final prediction accuracy as true FL perfor-
mance. For readiness-based strategy, we allow FL training
to continue until a target accuracy is reached and use the
total training time as true FL performance. Please refer to
Appendix Sec. III for other experimental details.
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Figure 5. Empirical relationship between metrics and FedAVG
training time on COVID-FL (first row) and OpenImage (second
row) using two readiness-based strategies: waiting for all clients
(proportion ratio=1.0) and 80% of clients (proportion ratio=0.8).
Points represent varying device sets or proportion rates. Please
note that all readiness-based strategy graphs in this paper use log-
arithmic scales for clear comparison. DevMC-T exhibits a higher
correlation (r > 0.95) with actual training time than other metrics
(STD, KS, JS), emphasizing its efficiency.

5.2. Validating Heterogeneity Metrics

In this section, we validate the effectiveness of our hetero-
geneity assessment metrics by correlating them with actual
FL performance (e.g., prediction accuracy and total training
time) on COVID-FL and OpenImage datasets. We utilize
the popular FedAVG [35] algorithm in our analysis. The
Pearson correlation coefficient r [11] is employed as a quan-
titative measure of the relationship.

5.2.1 Validating Device Heterogeneity Metrics

We apply our DPGMM approach to sample 21 sets of de-
vice databases from our base device dataset, with each set
consists of 100 devices. We set the state of all clients to be
available to eliminate the influence of state heterogeneity.
More details could refer to Appendix Sec. III.

FL prediction accuracy under deadline-based strategy
and DevMC-R metric. Fig. 4 displays the correlation be-
tween our DevMC-R and three common heterogeneity mea-
suring metrics (STD, JS, and KS) with the actual prediction
accuracy of FedAVG on COVID-FL and OpenImage using
our sampled 21 device sets. As depicted in Fig. 4, STD,
JS, and KS metrics focus on the divergence between device
speeds but neglect confounding factors in FL training, re-
sulting in a low correlation with test accuracy. Conversely,
our DevMC-R metric consistently exhibits a high correla-
tion with FL performance across all settings, highlighting
the superiority of our DevMC-R metric in accurately rep-
resenting the impact of device heterogeneity on federated
learning performance.

FL training time under readiness-based strategy and
DevMC-T metric. The total training time under the
readiness-based strategy is typically determined by the
slowest client, known as the straggler. Notably, our
DevMC-T metric effectively captures the influence of strag-
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Figure 6. Left two images: State assessment metrics (StatMC-
R, STD) vs. FedAVG test accuracy using deadline-based strategy.
Right two images: StatMC-T and STD vs. FL training time for
FedAVG with readiness-based strategy. StatMC-R shows a strong
correlation (r > 0.84) with FL performance, emphasizing its ef-
fectiveness in capturing state heterogeneity in FL.

glers within a device set, leading to a strong correlation with
the true training time in all settings. This is evidenced by a
Pearson correlation coefficient r near 1 in Fig. 5. In contrast,
the comparison metrics (STD, KS, and JS) only measure
the statistical divergence between devices, without provid-
ing insights into the impact of specific stragglers, thus ex-
hibiting a weaker correlation with the actual training time.

5.2.2 Validating State Heterogeneity Metrics

We vary the StartRank and α of DPCSM to generate 21
sets of heterogeneous state datasets, with each set contain-
ing 100 states. We use device-homogeneous setting, thereby
eliminating the influence of device heterogeneity. More de-
tails could refer to Appendix Sec. III.

FL prediction accuracy under deadline-based strategy
and StatMC-R metric. As illustrated in the left two images
of Fig. 6, the commonly used statistical divergence metric,
STD, is unable to capture confounding FL training strate-
gies with its associated state database, resulting in a low
correlation with FL performance. In contrast, our StatMC-
R consistently demonstrates a high correlation with the true
FL performance across all settings, with correlation coeffi-
cients r of 0.916 and 0.906, respectively, emphasizing the
effectiveness of our proposed metric.

FL training time under readiness-based strategy and
StatMC-T metric. Evaluating state heterogeneity in
readiness-based FL strategy necessitates accounting for
both wall-clock time and stragglers, which is challenging
to model using statistical metrics but can be effectively re-
vealed through our MC methods. As shown in the right
two images of Fig. 6, our StatMC-T consistently demon-
strates high correlation across all settings, emphasizing the
efficiency of our proposed metric. See Appendix Sec. VI.1
for more results showcasing our metric’s effectiveness.

5.2.3 Validation of Interplay Metrics

The interplay heterogeneity incorporates both device and
state heterogeneity, making characterization challenging.
We independently extract four sets of device and state
databases with our DPGMM and DPCSM, ranging from
mild to severe heterogeneity. Each set consists of 100 de-
vices and 100 states. By creating all potential pairwise com-
binations, we generate 16 distinct interplay device and state
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Figure 7. Left two images: InterMC-R vs. FedAVG test accuracy
using deadline-based strategy. Right two images: InterMC-T vs.
FL training time using readiness-based strategy. The same color
indicates the same device sets. The same marker denotes the same
state sets. InterMC-R and InterMC-T exhibit strong correlation
(r > 0.84) with actual FL performance, highlighting their effec-
tiveness in capturing interplay heterogeneity in FL.

sets, representing diverse real-world FL scenarios with vary-
ing device and state heterogeneity. See Appendix Sec. III
for more details.

In the deadline-based strategy (depicted in the first row
of Fig. 7), it becomes apparent that state heterogeneity has
a greater impact on final accuracy, as seen in the larger
variations among same-colored points. Conversely, in the
readiness-based strategy (second row of Fig. 7), slow de-
vices from device heterogeneity dominate, as evidenced
by longer training times for pink points. This highlights
the complexity of characterizing device and state hetero-
geneity interplay in FL. Nevertheless, both InterMC-R and
InterMC-T metrics show strong correlations (r > 0.84)
with FL performance, indicating their ability to capture this
intricate interaction and provide accurate estimations.

5.3. Benchmarking FL Methods with FLHetBench

I. Stragglers fail to capture real-world device/state het-
erogeneity. Current methods often attempt to mimic real-
world heterogeneity by artificially setting some clients as
stragglers and varying the ratio of stragglers to normal
clients [5, 25, 31, 32, 51, 58]. We conduct experiments
to highlight the limitations of these approaches in evalu-
ating FL optimization methods. As shown in the first row
of Fig. 8, when training FL with a readiness-based strategy,
the training time for FedAVG [35] and FetchSGD [40] re-
mains nearly unchanged (under random selection strategy)
or decreases (under identifying slower clients as straggler
strategy) for different straggler ratios (from 0.3 to 0.9). This
contradicts real-world situations where the training time
should increase as more clients fail to successfully partic-
ipate in FL training. These observations demonstrate that
existing straggler-mimic strategies do not accurately rep-
resent real-world FL scenarios, underlining the need for a
more comprehensive benchmark to better evaluate and un-
derstand the performance of FL optimization methods.

II. Benchmarking FL methods with FLHetBench. In
this section, we benchmark current FL methods by con-
ducting extensive experiments with our FLHetBench, as-
sessing the effectiveness of different FL algorithms across
a wide range of real-world heterogeneous scenarios. We in-
volve several representative FL heterogeneity optimization
algorithms including (1) Regularization based optimization
methods for fast convergence, such as FedProx [31], Fed-
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Table 2. Test accuracy(%) vs. InterMC-R for various FL algo-
rithms under mild, moderate, severe interplay (device and state)
heterogeneity on OpenImage. BiasPrompt+ consistently outper-
forms competitors.

InterMC-R FedAVG FedProx FedKD FedDyn FetchSGD FedBuff BiasPrompt+

0.56 (severe) 14.84 14.78 13.94 19.22 20.78 15.87 35.75
0.73 (moderate) 17.36 19.97 16.24 17.67 25.62 17.11 33.79
0.86 (mild) 23.48 23.98 18.94 22.70 33.60 16.77 35.24

Dyn [5], (2) Communication efficient algorithms for reduc-
ing the shared model parameters, including FedKD [55] and
FetchSGD [40]. (3) Asynchronous FL FedBuff [36]. More
experimental details are shown in Appendix Sec. III.

Observation 1: Most methods perform well under mild
device/state heterogeneity. As per Fig. 9, the majority
of current FL algorithms maintain test accuracy close to
the heterogeneous-unaware setting (InterMC-R=1, no de-
vice/state heterogeneity) when handling mild heterogene-
ity (InterMC-R values around 0.9). It is noteworthy that
FedDyn and FedKD, which incorporate additional local
trainable parameters, may experience a substantial accuracy
degradation of up to 10% even at InterMC-R=0.9. This may
be attributed to the fact that even mild heterogeneity can
lead to the staleness of less active clients’ local parameters,
which greatly affects final test accuracy.

Observation 2: Increased device and state heterogene-
ity is a big challenge. Current heterogeneity-aware algo-
rithms are effective in FL with mild device/state heterogene-
ity but struggle with increased heterogeneity. We identify
two primary factors that cause the performance degrada-
tion of current FL methods in device and state heteroge-
neous scenarios. (1) Increased wall-clock time: Increased
device and state heterogeneity lead to longer wall-clock
time, causing missed report deadlines and decreased per-
formance for algorithms that neglect the wall-clock time,
such as FedProx, FedDyn and FedBuff. In contrast, al-
gorithms minimizing wall-clock time, such as FetchSGD,
show better performance. (2) Low resource utilization
of participating clients: Despite reduced wall-clock time,
FetchSGD still suffers performance drops in moderate-to-
high heterogeneity, e.g., 19.5% accuracy drop on InterMC-
R=0.6 compared to InterMC=0.9 on OpenImage. This is be-
cause FetchSGD always prioritizes active clients with high
capacity and availability but disregards updates from stale
clients, thus leading to wasted participant clients and subpar
performance in highly heterogeneity settings.

In summary, only addressing either increased wall-clock
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Figure 9. First row: InterMC-R vs. test accuracy for FL algo-
rithms on COVID-FL/OpenImage with deadline-based strategy.
Second row: InterMC-T vs. FL training time using readiness-
based strategy. InterMC-R=1 denotes no device/state heterogene-
ity. BiasPrompt+ consistently surpasses competing methods.

time or low resource utilization individually is insufficient
for ensuring robustness and effectiveness in diverse real-
world applications. We recommend a comprehensive ap-
proach to heterogeneity when studying FL algorithms and
encourage the use of our FLHetBench to validate their scal-
ability and stability in real-world settings.

III. The superiority of BiasPrompt+. As shown in Fig. 9
and Tab. 2, BiasPrompt+ reduces wall-clock time with less
communication cost, increases resource utility, and achieves
the best performance across all settings. Nevertheless, Bi-
asPrompt+ still experiences performance declines in highly
heterogeneous conditions, emphasizing the need for further
research with FLHetBench to develop strategies addressing
device/state heterogeneity in various real-world scenarios.

6. Conclusion
In this paper, we study and improve how FL methods per-
form under real-world device computational constraints and
state availabilities. Through a new FLHetBench benchmark
that simulates real-world device and state heterogeneity and
newly proposed metrics to measure FL performance under
these constraints, we identify long wall-clock times and low
resource utilization of participating clients as the primary
factors contributing to performance degradation. Motivated
by these key findings, we propose BiasPrompt+, a novel
method that employs staleness-aware aggregation for max-
imizing resource utility and fast weights to minimize com-
munication costs. While BiasPrompt+ shows better results,
we believe this is only a small step towards efficient and ro-
bust FL for the real world, and emphasize the importance of
FLHetBench in advancing future machine learning methods
tackling real-world heterogeneity.
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Peter Richtárik. Federated optimization: Distributed ma-
chine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527, 2016. 1
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Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang
Song, Ananda Theertha Suresh, Sebastian U. Stich, Ameet
Talwalkar, Hongyi Wang, Blake E. Woodworth, Shanshan
Wu, Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang,
Tong Zhang, Chunxiang Zheng, Chen Zhu, and Wennan
Zhu. A field guide to federated optimization. CoRR,
abs/2107.06917, 2021. 1

[53] Yujia Wang, Lu Lin, and Jinghui Chen. Communication-
efficient adaptive federated learning. In ICML, pages 22802–
22838. PMLR, 2022. 2
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