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Abstract

We consider the problem of estimating probability density functions based on sample data,
using a finite mixture of densities from some component class. To this end, we introduce the
h-lifted Kullback–Leibler (KL) divergence as a generalization of the standard KL divergence
and a criterion for conducting risk minimization. Under a compact support assumption, we
prove an O(1/

√
n) bound on the expected estimation error when using the h-lifted KL

divergence, which extends the results of Rakhlin et al. (2005, ESAIM: Probability and
Statistics, Vol. 9) and Li & Barron (1999, Advances in Neural Information Processing
Systems, Vol. 12) to permit the risk bounding of density functions that are not strictly
positive. We develop a procedure for the computation of the corresponding maximum h-
lifted likelihood estimators (h-MLLEs) using the Majorization-Maximization framework and
provide experimental results in support of our theoretical bounds.

1 Introduction

Let (Ω,A,P) be an abstract probability space and let X : Ω → X be a random variable taking values
in the measurable space (X ,F), where X is a compact metric space equipped with its Borel σ-algebra F.
Suppose that we observe an independent and identically distributed (i.i.d.) sample of random variables
Xn = (Xi)i∈[n], where [n] = {1, . . . , n}, and that each Xi arises from the same data generating process as
X, characterized by the probability measure F ≪ µ on (X ,F), with density function f = dF/dµ, for some
σ-finite µ. In this work, we are concerned with the estimating f via a data dependent double-index sequence
of estimators (fk,n)k,n∈N, where

fk,n ∈ Ck = cok (P) =

fk (·;ψk) =
k∑
j=1

πjφ (·; θj) | φ (·; θj) ∈ P, πj ≥ 0, j ∈ [k] ,
k∑
j=1

πj = 1

 ,
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for each k, n ∈ N, and where
P =

{
φ (·; θ) : X → R≥0 | θ ∈ Θ ⊂ Rd

}
, (1)

ψk = (π1, . . . , πk, θ1, . . . , θk), and d ∈ N. To ensure the measurability and existence of various optima, we
shall assume that φ is Carathéodory in the sense that φ (·; θ) is (X ,F)-measurable for each θ ∈ Θ, and φ (X; ·)
is continuous for each X ∈ X .

In the definition above, we can identify the set Ck = cok (P) as the set of density functions that can be
written as a convex combination of k elements of P, where P is often called the space of component density
functions. We then interpret Ck as the class of k-component finite mixtures of densities of class P, as studied,
for example, by McLachlan & Peel (2004); Nguyen et al. (2020; 2022b).

1.1 Risk bounds for mixture density estimation

We are particularly interested in oracle bounds of the form

E {ℓ (f, fk,n)} − ℓ (f, C) ≤ ρ (k, n) , (2)

where (p, q) 7→ ℓ (p, q) ∈ R≥0 is a loss function on pairs of density functions. We define the density-to-class
loss

ℓ (f, C) = inf
q∈C

ℓ (f, q) , C = cl
(⋃
k∈N

cok (P)
)
,

where cl(·) is the closure. Here, we identify (k, n) 7→ ρ (k, n) as a characterization of the rate at which
the left-hand side of (2) converges to zero as k and n increase. Our present work follows the research of
Li & Barron (1999), Rakhlin et al. (2005) and Klemelä (2007) (see also Klemelä 2009, Ch. 19). In Li &
Barron (1999) and Rakhlin et al. (2005), the authors consider the case where ℓ (p, q) is taken to be the
Kullback–Leibler (KL) divergence

KL (p || q) =
∫
p log p

q
dµ

and fk,n = fk (·;ψk,n) is a maximum likelihood estimator (MLE), where

ψk,n ∈ arg max
ψk∈Sk×Θk

1
n

n∑
i=1

log fk (Xi;ψk) ,

is a function of Xn, with Sk denoting the probability simplex in Rk.

Under the assumption that f, fk ≥ a, for some a > 0 and each k ∈ [n] (i.e., strict positivity), Li & Barron
(1999) obtained the bound

E {KL (f || fk,n)} − KL (f || C) ≤ c1
1
k

+ c2
k log (c3n)

n
,

for constants c1, c2, c3 > 0, which was then improved by Rakhlin et al. (2005) who obtained the bound

E {KL (f || fk,n)} − KL (f || C) ≤ c1
1
k

+ c2
1√
n
,

for constants c1, c2 > 0 (constants (cj)j∈N are typically different between expressions).

Alternatively, Klemelä (2007) takes ℓ (p, q) to be the squared L2 (µ) norm distance (i.e., the least-squares
loss):

ℓ (p, q) = ∥p− q∥2
2,µ,

where ∥p∥2
2,µ =

∫
X |p|2dµ, for each p ∈ L2 (µ), and choose fk,n as minimizers of the L2 (µ) empirical risk,

i.e., fk,n = fk (·;ψk,n), where

ψk,n ∈ arg min
ψk∈Sk×Θk

− 2
n

n∑
i=1

fk (·;ψk) + ∥fk (·;ψk)∥2
2,µ . (3)
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Here, Klemelä (2007) establish the bound

E ∥f − fk,n∥2
2,µ − inf

q∈C
∥f − q∥2

2,µ ≤ c1
1
k

+ c2
1√
n
,

c1, c2 > 0, without the lower bound assumption on f, fk above, even permitting X to be unbounded. Via
the main results of Naito & Eguchi (2013), the bound above can be generalized to the U -divergences, which
includes the special L2(µ) norm distance as a special case.

On the one hand, the sequence of MLEs required for the results of Li & Barron (1999) and Rakhlin et al.
(2005) are typically computable, for example, via the usual expectation–maximization approach (cf. McLach-
lan & Peel 2004, Ch. 2). This contrasts with the computation of least-squares density estimators of form
(3), which requires evaluations of the typically intractable integral expressions ∥fk (·;ψk)∥2

2. However, the
least-squares approach of Klemelä (2007) permits the analysis using families P of usual interest, such as
normal distributions and beta distributions, the latter of which being compactly supported but having den-
sities that cannot be bounded away from zero without restrictions, and thus do not satisfy the regularity
conditions of Li & Barron (1999) and Rakhlin et al. (2005).

1.2 Main contributions

We propose the following h-lifted KL divergence, as a generalization of the standard KL divergence to address
the computationally tractable estimation of density functions which do not satisfy the regularity conditions
of Li & Barron (1999) and Rakhlin et al. (2005). The use of the h-lifted KL divergence has the possibility
to advance theories based on the standard KL divergence in statistical machine learning. To this end, let
h : X → R≥0 be a function in L1(µ), and define the h-lifted KL divergence by:

KLh (p || q) =
∫

X
{p+ h} log p+ h

q + h
dµ. (4)

In the sequel, we shall show that KLh is a Bregman divergence on the space of probability density functions,
as per Csiszár (1995).

Assume that h is a probability density function, and let Yn = (Yi)i∈[n] be a an i.i.d. sample, independent of
Xn, where each Yi : Ω → X is a random variable with probability measure on (X ,F), characterized by the
density h with respect to µ. Then, for each k and n, let fk,n be defined via the maximum h-lifted likelihood
estimator (h-MLLE; see Appendix B for further discussion) fk,n = fk (·;ψk,n), where

ψk,n ∈ arg max
ψk∈Sk×Θk

1
n

n∑
i=1

(log {fk (Xi;ψk) + h (Xi)} + log {fk (Yi;ψk) + h (Yi)}) . (5)

The primary aim of this work is to show that

E {KLh (f || fk,n)} − KLh (f || C) ≤ c1
1
k

+ c2
1√
n

(6)

for some constants c1, c2 > 0, without requiring the strict positivity assumption that f, fk ≥ a > 0.

This result is a compromise between the works of Li & Barron (1999) and Rakhlin et al. (2005), and Klemelä
(2007), as it applies to a broader space of component densities P, and because the required h-MLLEs (5) can
be efficiently computed via minorization–maximization (MM) algorithms (see e.g., Lange 2016). We shall
discuss this assertion in Section 4.

1.3 Relevant literature

Our work largely follows the approach of Li & Barron (1999), which was extended upon by Rakhlin et al.
(2005) and Klemelä (2007). All three texts use approaches based on the availability of greedy algorithms
for maximizing convex functions with convex functional domains. In this work, we shall make use of the
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proof techniques of Zhang (2003). Related results in this direction can be found in DeVore & Temlyakov
(2016) and Temlyakov (2016). Making the same boundedness assumption as Rakhlin et al. (2005), Dalalyan
& Sebbar (2018) obtain refined oracle inequalities under the additional assumption that the class P is finite.
Numerical implementations of greedy algorithms for estimating finite mixtures of Gaussian densities were
studied by Vlassis & Likas (2002) and Verbeek et al. (2003).

The h-MLLE as an optimization objective can be compared to other similar modified likelihood estimators,
such as the Lq likelihood of Ferrari & Yang (2010) and Qin & Priebe (2013), the β-likelihood of Basu
et al. (1998) and Fujisawa & Eguchi (2006), penalized likelihood estimators, such as maximum a posteriori
estimators of Bayesian models, or f -separable Bregman distortion measures of Kobayashi & Watanabe (2024;
2021).

The practical computation of the h-MLLEs, (5), is made possible via the MM algorithm framework of Lange
(2016), see also Hunter & Lange (2004), Wu & Lange (2010), and Nguyen (2017) for further details. Such
algorithms have well-studied global convergence properties and can be modified for mini-batch and stochastic
settings (see, e.g., Razaviyayn et al., 2013 and Nguyen et al., 2022a).

A related and popular setting of investigations is that of model selection, where the objects of interest are
single-index sequences (fkn,n)n∈N, and where the aim is to obtain finite-sample bounds for losses of the form
ℓ (fkn,n, f), where each kn ∈ N is a data dependent function, often obtained by optimizing some penalized
loss criterion, as described in Massart (2007), Koltchinskii (2011, Ch. 6), and Giraud (2021, Ch. 2). In the
context of finite mixtures, examples of such analyses can be found in the works of Maugis & Michel (2011)
and Maugis-Rabusseau & Michel (2013). A comprehensive bibliography of model selection results for finite
mixtures and related statistical models can be found in Nguyen et al. (2022c).

1.4 Organization of paper

The manuscript is organized as follows. In Section 2, we formally define the h-lifted KL divergence as a
Bregman divergence and establish several of its properties. In Section 3, we present new risk bounds for the
h-lifted KL divergence of the form (2). In Section 4, we discuss the computation of the h-lifted likelihood
estimator in the form of (5), followed by empirical results illustrating the convergence of (2) with respect
to both k and n. Additional insights and technical results are provided in the Appendices at the end of the
manuscript.

2 The h-lifted KL divergence and its properties

In this section we formally define the h-lifted KL divergence on the space of density functions and establish
some of its properties.
Definition 1 (h-lifted KL divergence). Let f, g, and h be probability density functions on the space X , where
h > 0. The h-lifted KL divergence from g to f is defined as follows:

KLh (f || g) =
∫

X
{f + h} log f + h

g + h
dµ = Ef

{
log f + h

g + h

}
+ Eh

{
log f + h

g + h

}
.

2.1 KLh as a Bregman divergence

Let ϕ : I → R, I = (0,∞) be a strictly convex function that is continuously differentiable. The Bregman
divergence between scalars dϕ : I × I → R≥0 generated by the function ϕ is given by:

dϕ(p, q) = ϕ(p) − ϕ(q) − ϕ′(q)(p− q),

where ϕ′(q) denotes the derivative of ϕ at q.

Bregman divergences possess several useful properties, including the following list:

1. Non-negativity: dϕ(p, q) ≥ 0 for all p, q ∈ I with equality if and only if p = q;
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2. Asymmetry: dϕ(p, q) ̸= dϕ(q, p) in general;

3. Convexity: dϕ(p, q) is convex in p for every fixed q ∈ I.

4. Linearity: dc1ϕ1+c2ϕ2(p, q) = c1dϕ1(p, q) + c2dϕ2(p, q) for c1, c2 ≥ 0.

The properties for Bregman divergences between scalars can be extended to density functions and other
functional spaces, as established in Frigyik et al. (2008) and Stummer & Vajda (2012), for example. We also
direct the interested reader to the works of Pardo (2006), Basu et al. (2011), and Amari (2016).

The class of h-lifted KL divergences constitute a generalization of the usual KL divergence and are a subset of
the Bregman divergences over the space of density functions that are considered by Csiszár (1995). Namely,
let P be a convex set of probability densities with respect to the measure µ on X . The Bregman divergence
Dϕ : P × P → [0,∞) between densities p, q ∈ P can be constructed as follows:

Dϕ(p || q) =
∫

X
dϕ (p(x), q(x)) dµ(x).

The h-lifted KL divergence KLh as a Bregman divergence is generated by the function ϕ(u) = (u+h) log(u+
h) − (u+ h) + 1. This assertion is demonstrated in Appendix C.1.

2.2 Advantages of the h-lifted KL divergence

When the standard KL divergence is employed in the density estimation problem, it is common to restrict
consideration of density functions to those bounded away from zero by some positive constant. That is, one
typically considers the smaller class of so-called admissible target densities Pα ⊂ P (cf. Meir & Zeevi, 1997),
where

Pα = {φ(·; θ) ∈ P | φ(·; θ) ≥ α > 0} .

Without this restriction, the standard KL divergence can be unbounded, even for functions with bounded
L1 norms. For example, let p and q be densities of beta distributions on the support X = [0, 1]. That is,
suppose that p, q ∈ Pbeta, respectively characterized by parameters θp = (ap, bp) and θq = (aq, bq), where

Pbeta =
{
x 7→ β (x; θ) = Γ (a+ b)

Γ (a) Γ (b)x
a−1 (1 − x)b−1

, θ = (a, b) ∈ R2
>0

}
. (7)

Then, from Gil et al. (2013), the KL divergence between p and q is given by:

KL (p || q) = log
{

Γ (aq) Γ (bq)
Γ (aq + bq)

}
− log

{
Γ (ap) Γ (bp)
Γ (ap + bp)

}
+ (ap − aq) {ψ (ap) − ψ (ap + bp)} + (bp − bq) {ψ (bp) − ψ (ap + bp)} ,

where ψ : R>0 → R is the digamma function. Next, suppose that ap = bq and aq = bp = 1, which leads to
the simplification

KL (p || q) = (ap − 1) {ψ (ap) − ψ(1)} .

Since ψ is strictly increasing, we observe that the right-hand side diverges as ap → ∞. Thus, the KL
divergence between beta distributions is unbounded. The h-lifted KL divergence in contrast does not suffer
from this problem, and does not require the restriction to Pα. This allows us to consider cases where p, q ∈ P
are not bounded away from 0, as per the following result.
Proposition 2. Let P be defined as in (1). KLh (f || g) is bounded for all continuous densities f, g ∈ P.

Proof. See Appendix C.2.

Let Lp(f, g) denote the standard Lp-norm, Lp(f, g) =
{∫

X |f(x) − g(x)|p dµ(x)
}1/p. As remarked previously,

Klemelä (2007) established empirical risk bounds in terms of the L2-norm distance. Following results from
Meir & Zeevi (1997) characterizing the relationship between the KL divergence in terms of the L2-norm
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distance, in Proposition 3 we establish the corresponding relationship between the h-lifted KL divergence
and the L2-norm distance, along with a relationship between the h-lifted KL divergence and the L1-norm
distance.
Proposition 3. For probability density functions f, g, and h, where h is such that h(x) ≥ γ > 0 for all
x ∈ X , the following inequalities hold:

1
4L

2
1 (f, g) ≤ KLh (f || g) ≤ γ−1L2

2 (f, g) .

Proof. See Appendix C.3.

Remark 4. Proposition 2 highlights the benefit of the h-lifted KL divergence being bounded for all continuous
densities, unlike the standard KL divergence, while satisfying a relationship similar to that between the
KL divergence and the L2 norm distance. Moreover, the first inequality of Proposition 3 is a Pinsker-like
relationship between the h-lifted KL divergence and the total variation distance TV(f, g) = 1

2L1(f, g).

3 Main results

Here we provide explicit statements regarding the convergence rates claimed in (6) via Theorem 5 and
Corollary 6, which are proved in Appendix A.2. We assume that f is bounded above by some constant c
and that the lifting function h is bounded above and below by constants a and b, respectively.
Theorem 5. Let h be a positive density satisfying 0 < a ≤ h(x) ≤ b, for all x ∈ X . For any target density
f satisfying 0 ≤ f(x) ≤ c, for all x ∈ X and where fk,n is the minimizer of KLh over k-component mixtures,
the following inequality holds:

E {KLh (f || fk,n)} − KLh (f || C) ≤ u1

k + 2 + u2√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ u3√

n
,

where u1, u2, and u3 are positive constants that depend on some or all of a, b, and c.
Corollary 6. Let X and Θ be compact and assume the following Lipschitz condition holds: for each x ∈ X ,
and for each θ, τ ∈ Θ,

|φ (x; θ) − φ (x; τ)| ≤ Φ (x) ∥θ − τ∥1 , (8)

for some function Φ : X → R≥0, where ∥Φ∥∞ = supx∈X |Φ(x)| < ∞. Then the bound in Theorem 5 becomes

E {KLh (f || fk,n)} − KLh (f || C) ≤ c1

k + 2 + c2√
n
,

where c1 and c2 are positive constants.
Remark 7. Our results are applicable to any compact metric space X , with [0, 1] used in the experimental
setup in Section 4.2 as a simple and tractable example to illustrate key aspects of our theory. There is
no issue in generalizing to X = [−m,m]d for m > 0 and d ∈ N, or more abstractly, to any compact subset
X ⊂ Rd. Additionally, X could even be taken as a functional compact space, though establishing compactness
and constructing appropriate component classes P over such spaces to achieve small approximation errors
KLh (f || C) is an approximation theoretic task that falls outside the scope of our work.

From the proof of Theorem 5 in Appendix A.2, it is clear that the dimensionality of X only influences our
bound through the complexity of the class P, specifically, the constant

∫ c
0 log1/2 N(P, ε/2, ∥ · ∥∞)dε, which

remains independent of both n and k. Here, N(P, ε, ∥ · ∥) is the ε-covering number of P. In fact, the
constant with respect to k (u1 in Theorem 5) is entirely unaffected by the dimensionality of X . Thus, the
rates of our bound on the expected h-lifted KL divergence are dimension-independent and hold even when X
is infinite-dimensional, as long as there exists a class P such that

∫ c
0 log1/2 N(P, ε/2, ∥ · ∥∞)dε is finite.

Corollary 6 provides a method for obtaining such a bound when the elements of P satisfy a Lipschitz condition.
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4 Numerical experiments

Here we discuss the computability and computation of KLh estimation problems and provide empirical
evidence towards the rates obtained in Theorem 5. Specifically, we seek to develop a methodology for
computing h-MLLEs, and to use numerical experiments to demonstrate that the sequence of expected h-
lifted KL divergences between some density f and a sequence of k-component mixture densities from a
suitable class P, estimated using n observations does indeed decrease at rates proportional to 1/k and 1/

√
n,

as k and n increase.

The code for all simulations and analyses in Experiments 1 and 2 is available in both the R and
Python programming languages. The code repository is available here: https://github.com/hiendn/
LiftedLikelihood.

4.1 Minorization–Maximization algorithm

One solution for computing (5) is to employ an MM algorithm. To do so, we first write the objective of (5)
as

Lh,n (ψk) = 1
n

n∑
i=1

log


k∑
j=1

πjφ (Xi; θj) + h (Xi)

+ log


k∑
j=1

πjφ (Yi; θj) + h (Yi)


 ,

where ψk ∈ Ψk = Sk ×Θk. We then require the definition of a minorizer Qn for Lh,n on the space Ψk, where
Qn : Ψk × Ψk → R is a function with the properties:

(i) Qn (ψk, ψk) = Lh,n (ψk), and

(ii) Qn (ψk, χk) ≤ Lh,n (ψk),

for each ψk, χk ∈ Ψk. In this context, given a fixed χk, the minorizer Qn (·, χk) should possess properties
that simplify it compared to the original objective Lh,n. These properties should make the minorizer more
tractable and might include features such as parametric separability, differentiability, convexity, among
others.

In order to build an appropriate minorizer for Lh,n, we make use of the so-called Jensen’s inequality minorizer,
as detailed in Lange (2016, Sec. 4.3), applied to the logarithm function. This construction results in a
minorizer of the form

Qn (ψk, χk) = 1
n

n∑
i=1

k∑
j=1

{τj (Xi;χk) log πj + τj (Xi;χk) logφ (Xi; θj)}

+ 1
n

n∑
i=1

k∑
j=1

{τj (Yi;χk) log πj + τj (Yi;χk) logφ (Yi; θj)}

+ 1
n

n∑
i=1

{γ (Xi;χk) log h (Xi) + γ (Yi;χk) log h (Yi)}

− 1
n

n∑
i=1

k∑
j=1

{τj (Xi;χk) log τj (Xi;χk) + τj (Yi;χk) log τj (Yi;χk)}

− 1
n

n∑
i=1

{γ (Xi;χk) log γ (Xi;χk) + γ (Yi;χk) log γ (Yi;χk)}

where

γ (Xi;ψk) = h (Xi) /


k∑
j=1

πjφ (Xi; θj) + h (Xi)
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and

τj (Xi;ψk) = πjφ (Xi; θj) /


k∑
j=1

πjφ (Xi; θj) + h (Xi)

 .

Observe that Qn (·, χk) now takes the form of a sum-of-logarithms, as opposed to the more challenging
log-of-sum form of Lh,n. This change produces a functional separation of the elements of ψk.

Using Qn, we then define the MM algorithm via the parameter sequence
(
ψ

(s)
k

)
s∈N

, where

ψ
(s)
k = arg max

ψk∈Ψk

Qn

(
ψk, ψ

(s−1)
k

)
, (9)

for each s > 0, and where ψ
(0)
k is user chosen and is typically referred to as the initialization of the

algorithm. Notice that for each s, (9) is a simpler optimization problem than (5). Writing ψ
(s)
k =(

π
(s)
1 , . . . , π

(s)
k , θ

(s)
1 , . . . , θ

(s)
k

)
, we observe that (9) simplifies to the separated expressions:

π
(s)
j =

∑n
i=1

{
τj

(
Xi;ψ(s−1)

k

)
+ τj

(
Yi;ψ(s−1)

k

)}
∑n
i=1
∑k
l=1

{
τl

(
Xi;ψ(s−1)

k

)
+ τl

(
Yi;ψ(s−1)

k

)}
and

θ
(s)
j = arg max

θj∈Θ

1
n

n∑
i=1

{
τj

(
Xi;ψ(s−1)

k

)
logφ (Xi; θj) + τj

(
Yi;ψ(s−1)

k

)
logφ (Yi; θj)

}
,

for each j ∈ [k].

A noteworthy property of the MM sequence
(
ψ

(s)
k

)
s∈N

is that it generates an increasing sequence of objective
values, due to the chain of inequalities

Lh,n

(
ψ

(s−1)
k

)
= Qn

(
ψ

(s−1)
k , ψ

(s−1)
k

)
≤ Qn

(
ψ

(s)
k , ψ

(s−1)
k

)
≤ Lh,n

(
ψ

(s)
k

)
,

where the equality is due to property (i) of Qn, the first in equality is due to the definition of ψ(s)
k , and

the second inequality is due to property (ii) of Qn. This provides a kind of stability and regularity to the
sequence

(
Lh,n

(
ψ

(s)
k

))
s∈N

.

Of course, we can provide stronger guarantees under additional assumptions. Namely, assume that (iii)
Ψk ⊂ Ψk, where Ψk is an open set in a finite dimensional Euclidean space on which Lh,n and Qn (·, χk) is
differentiable, for each χk ∈ Ψk. Then, under assumptions (i)–(iii) regarding Lh,n and Qn, and due to the
compactness of Ψk and the continuity of Qn on Ψk × Ψk, Razaviyayn et al. (2013, Cor. 1) implies that(
ψ

(s)
k

)
s∈N

converges to the set of stationary points of Lh,n in the sense that

lim
s→∞

inf
ψ∗

k
∈Ψ∗

k

∥∥∥ψ(s)
k − ψ∗

k

∥∥∥
2

= 0, where Ψ∗
k =

{
ψ∗
k ∈ Ψk : ∂Lh,n

∂ψk

∣∣∣∣
ψk=ψ∗

k

= 0
}
.

More concisely, we say that the sequence
(
ψ

(s)
k

)
s∈N

globally converges to the set of stationary points Ψ∗
k.

4.2 Experimental setup

Towards the task of demonstrating empirical evidence of the rates in Theorem 5, we consider the family of
beta distributions on the unit interval X = [0, 1] as our base class (i.e., (7)) to estimate a pair of target
densities

f1 (x) = 1
2χ[0,2/5] (x) + 1

2χ[3/5,1] (x) ,

8



Published in Transactions on Machine Learning Research (11/2024)

and

f2 (x) = χ[0,1] (x)
{

2 − 4x if x ≤ 1/2,
−2 + 4x if x > 1/2,

where χA is the characteristic function that takes value 1 if x ∈ A and 0, otherwise. Note that neither f1
nor f2 are in C. In particular, f1 (x) = 0 when x ∈

( 2
5 ,

3
5
)
, and f2(x) = 0 when x = 1/2, and hence neither

densities are bounded away from 0, on X . Thus, the theory of Rakhlin et al. (2005) cannot be applied to
provide bounds for the expected KL divergence between MLEs of beta mixtures and the pair of targets. We
visualize f1 and f2 in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

de
ns

ity

Figure 1: Simulation target densities f1 (solid line) and f2 (dashed line).

To observe the rate of decrease of the h-lifted KL divergence between the targets and respective sequences
of h-MLLEs, we conduct two experiments E1 and E2. In E1, our target density is set to f1 and h1 =
β (·; 1/2, 1/2). For each n ∈

{
210, . . . , 215} and k ∈ {2, . . . , 8}, we independently simulate Xn and Yn with

each Xi and Yi (i ∈ [n]), i.i.d., from the distributions characterized by f1 and h1, respectively. In E2, we
target f2 with h-MLLEs over the same ranges of k and n, but with h2 = β (·; 1, 1)–the density of the uniform
distribution. For each k and n, we simulate Xn and Yn, respectively, from distributions characterized by f2
and h2.

In both experiments, we simulate r = 50 replicates of each (k, n)-scenario and compute the corresponding
h-MLLEs, (fk,n,l)l∈[r], using the previously described MM algorithm. For each l ∈ [r], we compute the
corresponding negative log h-lifted likelihood between the target f and fk,n,l:

Kk,n,l = −
∫

X
(f + h) log (fk,n,l + h) dµ

to assess the rates, and note that

KLh (f || fk,n,l) =
∫

X
(f + h) log (f + h) dµ+Kk,n,l,

where the prior term is a constant with respect to k and n.

9



Published in Transactions on Machine Learning Research (11/2024)

To analyze the sample of 7 × 6 × 50 = 2100 observations of relationship between the values (Kk,n,l)l∈[r] and
the corresponding values of k and n, we use non-linear least squares (Amemiya, 1985, Sec. 4.3) to fit the
regression relationship

E [Kk,n,l] = a0 + a1

(k + 2)b1
+ a2

nb2
. (10)

We obtain 95% asymptotic confidence intervals for the estimates of the regression parameters a0, a1, a2, b1,
b2 ∈ R, under the assumption of potential mis-specification of (10), by using the sandwich estimator for the
asymptotic covariance matrix (cf. White 1982).

4.3 Results

We report the estimates along with 95% asymptotic confidence intervals for the parameters of (10) for E1
and E2 in Table 1. Plots of the average negative log h-lifted likelihood values by sample sizes n and numbers
of components k are provided in Figure 2.

Table 1: Estimates of parameters for fitted relationships (with 95% confidence intervals) between negative
log h-lifted likelihood values, sample size and number of mixture components for experiments E1 and E2.

E1 a0 a1 a2 b1 b2
Est. −1.68 0.73 6.80 1.87 0.99

95% CI (−1.68,−1.67) (0.68, 0.78) (1.24, 12.36) (1.81, 1.93) (0.87, 1.11)
E2 a0 a1 a2 b1 b2
Est. −1.47 1.49 6.75 4.36 1.07

95% CI (−1.48,−1.47) (0.58, 2.41) (2.17, 11.32) (3.91, 4.81) (0.97, 1.16)

From Table 1, we observe that E [Kk,n,l] decreases with both n and k in both simulations, and that the rates
at which the averages decrease are faster than anticipated by Theorem 5, with respect to both n and k. We
can visually confirm the decreases in the estimate of E [Kk,n,l] via Figure 2. In both E1 and E2, the rate
of decrease over the assessed range of n is approximately proportional to 1/n, as opposed to the anticipated
rate of 1/

√
n, whereas the rate of decrease in k is far larger, at approximately 1/k1.87 for E1 and 1/k4.36 for

E2.

These observations provide empirical evidence towards the fact that the rate of decrease of E [Kk,n,l] is at
least 1/k and 1/

√
n, respectively, for k and n, at least over the simulation scenarios. These fast rates of fit

over small values of n and k may be indicative of a diminishing returns of fit phenomenon, as discussed in
Cadez & Smyth (2000) or the so-called elbow phenomenon (see, e.g., Ritter 2014, Sec. 4.2), whereupon the
rate of decrease in average loss for small values of k is fast and becomes slower as k increases, converging
to some asymptotic rate. This is also the reason why we do not include the outcomes when k = 1, as the
drop in E [Kk,n,l] between k = 1 and k = 2 is so dramatic that it makes our simulated data ill-fitted by any
model of form (10). As such, we do not view Theorem 5 as being pessimistic in light of these phenomena,
as it applies uniformly over all values of k and n.

10
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Figure 2: Average negative log h-lifted likelihood values by sample sizes n and numbers of components k for
experiments E1 and E2.
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5 Conclusion

The estimation of probability densities using finite mixtures from some base class P appears often in machine
learning and statistical inference as a natural method for modelling underlying data generating processes.
In this work, we pursue novel generalization bounds for such mixture estimators. To this end, we introduce
the family of h-lifted KL divergences for densities on compact supports, within the family of Bregman
divergences, which correspond to risk functions that can be bounded, even when densities in the class P are
not bounded away from zero, unlike the standard KL divergence.

Unlike the least-squares loss, the corresponding maximum h-likelihood estimation problem can be computed
via an MM algorithm, mirroring the availability of EM algorithms for the maximum likelihood problem
corresponding to the KL divergence. Along with our derivations of generalization bounds that achieve the
same rates as the best-known bounds for the KL divergence and least square loss, we also provide numerical
evidence towards the correctness of these bounds in the case when P corresponds to beta densities.

Aside from beta distributions, mixture densities on compact supports that can be analysed under our frame-
work appear frequently in the literature. For supports on compact Euclidean subset, examples include
mixtures of Dirichlet distributions (Fan et al., 2012) and bivariate binomial distributions (Papageorgiou &
David, 1994). Alternatively, one can consider distributions on compact Euclidean manifolds, such as mix-
tures of Kent (Peel et al., 2001) distributions and von Mises–Fisher distributions (Banerjee et al., 2005,
Ng & Kwong, 2022). We defer investigating the practical performance of the maximum h-lifted likelihood
estimators and accompanying theory for such models to future work.
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A Proofs of main results

The following section is devoted to establishing some technical definitions and instrumental results which
are used to prove Theorem 5 and Corollary 6, and also includes the proofs of these results themselves.

A.1 Preliminaries

Recall that we are interested in bounds of the form (2). Note that P is a subset of the linear space

V = cl

⋃
k∈N


k∑
j=1

ϖjφ (·; θj) | φ (·; θj) ∈ P, ϖj ∈ R, j ∈ [k]


 ,

and hence we can apply the following result, paraphrased from Zhang (2003, Thm. II.1).
Lemma 8. Let κ be a differentiable and convex function on V, and let

(
f̄k
)
k∈N be a sequence of functions

obtained by Algorithm 1. If

sup
p,q∈C,π∈(0,1)

d2

dπ2κ ((1 − π) p+ πq) ≤ M < ∞,

then, for each k ∈ N,
κ
(
f̄k
)

− inf
p∈C

κ (p) ≤ 2M
k + 2 .

Algorithm 1 Algorithm for computing a greedy approximation sequence.
Require: f̄0 ∈ P

1: for k ∈ N do
2: Compute

(
π̄k, θ̄k

)
= arg min

(π,θ)∈[0,1]×Θ
κ
(
(1 − π) f̄k−1 + πφ (·; θ)

)
3: Define f̄k = (1 − π̄k) f̄k−1 + π̄kφ

(
·; θ̄k

)
4: end for

We are interested in two choices for κ:
κ (p) = KLh (f || p) (11)

and its sample counterpart,

κn (p) = 1
n

n∑
i=1

log f (Xi) + h (Xi)
p (Xi) + h (Xi)

+ 1
n

n∑
i=1

log f (Yi) + h (Yi)
p (Yi) + h (Yi)

, (12)

where (Xi)i∈[n] and (Yi)i∈[n] are realisations of X and Y , respectively. We obtain the following important
results.
Proposition 9. Let κ denote either κ, the KLh divergence (11), or κn, the sample KLh divergence (12),
and assume that h ≥ a and φ (·; θ) ≤ c, for each θ ∈ Θ. Then,

κ
(
f̄k
)

− inf
p∈C

κ (p) ≤ 4a−2c2

k + 2 ,

for each k ∈ N, where
(
f̄k
)
k∈N is obtained as per Algorithm 1.

Proof. See Appendix C.4.

Notice that sequences
(
f̄k
)
k∈N obtained via Algorithm 1 are greedy approximation sequences, and that

f̄k ∈ Ck, for each k ∈ N. Let (fk)k∈N be the sequence of minimizers defined by

fk = arg min
ψk∈Sk×Θk

KLh (f || fk (·;ψk)) , (13)
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and let (fk,n)k∈N be the sequence of h-MLLEs, as per (5). Then, by definition, we have the fact that
κ (fk) ≤ κ

(
f̄k
)

and κ (fk,n) ≤ κ
(
f̄k
)
, for κ set as (11) or (12), respectively. Thus, we have the following

result.
Proposition 10. For the KLh divergence (11), under the assumption that h ≥ a and φ (·; θ) ≤ c, for each
θ ∈ Θ, we have

κ (fk) − inf
p∈C

κ (p) ≤ 4a−2c2

k + 2 (14)

for each k ∈ N, where (fk)k∈N is the sequence of minimizers defined via (13). Furthermore, for the sample
KLh divergence (12), under the same assumptions as above, we have

κn (fk,n) − inf
p∈C

κn (p) ≤ 4a−2c2

k + 2 , (15)

for each k ∈ N, where (fk,n)k∈N are h-MLLEs defined via (5).

As is common in many statistical learning/uniform convergence results (e.g., Bartlett & Mendelson, 2002,
Koltchinskii & Panchenko, 2004), we employ the use of Rademacher processes and associated bounds. Let
(εi)i∈[n] be i.i.d. Rademacher random variables, that is P(εi = −1) = P(εi = 1) = 1/2, that are independent
of (Xi)i∈[n]. The Rademacher process, indexed by a class of real measurable functions S, is defined as the
quantity

Rn(s) = 1
n

n∑
i=1

s(Xi)εi,

for s ∈ S. The Rademacher complexity of the class S is given by Rn(S) = E sups∈S |Rn(s)|.

In the subsequent section, we make use of the following result regarding the supremum of convex functions:
Lemma 11 (Rockafellar, 1997, Thm. 32.2). Let η be a convex function on a linear space T , and let S ⊂ T
be an arbitrary subset. Then,

sup
p∈S

η (p) = sup
p∈co(S)

η (p) .

In particular, we use the fact that since a linear functional of convex combinations achieves its maximum
value at vertices, the Rademacher complexity of S is equal to the Rademacher complexity of co(S) (see
Lemma 21). We consequently obtain the following result.
Lemma 12. Let (εi)i∈[n] be i.i.d. Rademacher random variables, independent of (Xi)i∈[n] and P be defined as
above. The sets C and P will have equal complexity, Rn(C) = Rn(P), and the supremum of the Rademacher
process indexed by C is equal to the supremum on the basis functions of P:

Eε sup
g∈C

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)εi

∣∣∣∣∣ = Eε sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

φ(Xi; θ)εi

∣∣∣∣∣ .
Proof. Follows immediately from Lemma 11.

A.2 Proofs

We first present a result establishing a uniform concentration bound for the h-lifted log-likelihood ratios,
which is instrumental in the proof of Theorem 5. Our proofs broadly follow the structure of Rakhlin et al.
(2005), modified as needed for the use of KLh.

Assume that 0 ≤ φ(·; θ) < c for some c ∈ R>0. For brevity, we adopt the notation: ∥T (g)∥C = supg∈C |T (g)|.
Theorem 13. Let X1, . . . , Xn be an i.i.d. sample of size n drawn from a fixed density f such that 0 ≤
f(x) ≤ c for all x ∈ X , and let h be a positive density with 0 < a ≤ h(x) ≤ b for all x ∈ X . Then, for each
t > 0, with probability at least 1 − e−t,∥∥∥∥∥ 1

n

n∑
i=1

log g(Xi) + h(Xi)
f(Xi) + h(Xi)

− Ef log g + h

f + h

∥∥∥∥∥
C

≤ w1√
n

E
∫ c

0
log1/2 N(P, ε, dn,x)dε+ w2√

n
+ w3

√
t

n
,
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where w1, w2, and w3 are constants that each depend on some or all of a, b, and c, and N(P, ε, dn,x) is the
ε-covering number of P with respect to the following empirical L2 metric

d2
n,x(φ1, φ2) = 1

n

n∑
i=1

(φ1(Xi) − φ2(Xi))2.

Remark 14. The bound on the term∥∥∥∥∥ 1
n

n∑
i=1

log g(Yi) + h(Yi)
f(Yi) + h(Yi)

− Eh log g + h

f + h

∥∥∥∥∥
C

is the same as the above, except where the empirical distance dn,x is replaced by dn,y, defined in the same
way as dn,x but with Yi replacing Xi.

Proof of Theorem 13. Fix h and define the following quantities: g̃ = g + h, f̃ = f + h, C̃ = C + h,

mi = log g̃(Xi)
f̃(Xi)

, m′
i = log g̃(X ′

i)
f̃(X ′

i)
, Z(x1, . . . , xn) =

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− E log g̃
f̃

∥∥∥∥∥
C̃

.

We first apply McDiarmid’s inequality (Lemma 23) to the random variable Z. The bound on the martingale
difference is given by

|Z(X1, . . . , Xi, . . . , Xn) − Z(X1, . . . , X
′
i, . . . , Xn)| =

∣∣∣∣∥∥∥∥E log g̃
f̃

− 1
n

(m1 +...+mi +...+mn)
∥∥∥∥

C̃

−
∥∥∥∥E log g̃

f̃
− 1
n

(m1 +...+m′
i +...+mn)

∥∥∥∥
C̃

∣∣∣∣
≤ 1
n

∥∥∥∥log g̃(X ′
i)

f̃(X ′
i)

− log g̃(Xi)
f̃(Xi)

∥∥∥∥
C̃

≤ 1
n

(
log c+ b

a
− log a

c+ b

)
= 1
n

2 log c+ b

a
= ci.

The chain of inequalities holds because of the triangle inequality and the properties of the supremum. By
Lemma 23, we have

P(Z − EZ > ε) ≤ exp
{

− nε2

(
√

2 log c+b
a )2

}
,

so

P(Z ≤ ε+ EZ) ≥ 1 − exp
{

− nε2

(
√

2 log c+b
a )2

}
,

where it follows from t = nε2/(
√

2 log c+b
a )2 that ε =

√
2 log

(
c+b
a

)√
t
n . Therefore with probability at least

1 − e−t, ∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥
C̃

≤ E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥
C̃

+
√

2 log
(
c+ b

a

)√
t

n
.

Let (εi)i∈[n] be i.i.d. Rademacher random variables, independent of (Xi)i∈[n]. By Lemma 24,

E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥
C̃

≤ 2 E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

.

By combining the results above, the following inequality holds with probability at least 1 − e−t∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥
C̃

≤ 2 E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

+
√

2 log
(
c+ b

a

)√
t

n
.
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Now let pi = g̃(Xi)
f̃(Xi) − 1, such that a

c+b ≤ pi + 1 ≤ c+b
a holds for all i ∈ [n]. Additionally, let η(p) = log(p+ 1)

so that η(0) = 0 and note that for p ∈
[
a
c+b − 1, c+ba − 1

]
, the derivative of η(p) is maximal at p∗ = a

c+b − 1,
and equal to η′(p∗) = (c+ b)/a. Therefore, a

b+c log(p+ 1) is 1-Lipschitz. By Lemma 22 applied to η(p),

2 E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

= 2 E

∥∥∥∥∥ 1
n

n∑
i=1

η(pi)εi

∥∥∥∥∥
C̃

≤ 4(c+ b)
a

E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)
f̃(Xi)

εi − 1
n

n∑
i=1

εi

∥∥∥∥∥
C̃

≤ 4(c+ b)
a

E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

+ 4(c+ b)
a

Eε

∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
≤ 4(c+ b)

a
E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

+ 4(c+ b)
a

1√
n
,

where the final inequality follows from the following result, proved in Haagerup (1981):

Eε

∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣ ≤

Eε

{
1
n

n∑
i=1

εi

}2
1/2

= 1√
n
.

Now, let ξi(g̃i) = a · g̃(Xi)/f̃(Xi), and note that

|ξi(ui) − ξi(vi)| = a

|f̃(Xi)|
|u(Xi) − v(Xi)| ≤ |u(Xi) − v(Xi)|.

By again applying Lemma 22, we have

4(c+ b)
a

E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

≤ 8(c+ b)
a2 E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)εi

∥∥∥∥∥
C̃

≤ 8(c+ b)
a2 E

∥∥∥∥∥ 1
n

n∑
i=1

g(Xi)εi

∥∥∥∥∥
C

+ 8(c+ b)
a2 E

∣∣∣∣∣ 1n
n∑
i=1

h(Xi)εi

∣∣∣∣∣
≤ 8(c+ b)

a2 E

∥∥∥∥∥ 1
n

n∑
i=1

g(Xi)εi

∥∥∥∥∥
C

+ 8(c+ b)
a2

b√
n
.

Applying Lemmas 12 and 25, the following inequality holds for some constant K > 0:

Eε sup
g∈C

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)εi

∣∣∣∣∣ = Eε sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

φ(Xi; θ)εi

∣∣∣∣∣ ≤ K√
n

E
∫ c

0
log1/2 N(P, ε, dn,x)dε, (16)

and combining the results together, the following inequality holds with probability at least 1 − e−t:∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥ ≤ 8(c+ b)K
a2√

n
E
∫ c

0
log1/2 N(P, ε, dn,x)dε+ (8b+ 4a)(c+ b)

a2√
n

+
√

2 log
(
c+ b

a

)√
t

n

= w1√
n

E
∫ c

0
log1/2 N(P, ε, dn,x)dε+ w2√

n
+ w3

√
t

n
, (17)

where w1, w2, and w3 are constants that each depend on some or all of a, b, and c.

Remark 15. From Lemma 25 we have that σ2
n := supf∈F Pnf

2. To make explicit why 2σn =(
supg∈C Png

2)1/2 = 2c, let F = C and observe

σ2
n = sup

g∈C
Png

2 = sup
g∈C

1
n

n∑
i=1

g(Xi)2 ≤ 1
n

n∑
i=1

c2 = c2.
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Since our basis functions φ(·, θ) are bounded by c, everything greater than c will have value 0 and hence the
change from 2c to c is inconsequential. However, it can also be motivated by the fact that φ(·, θ) are positive
functions.

As highlighted in Remark 14, the full result of Theorem 13 relies on the empirical L2 distances dn,x and
dn,y. In the result of Theorem 5, we make use of the following result to bound dn,x and dn,y.
Proposition 16. By combining Lemmas 18 and 19, the following inequalities holds:

logN(P, ε, ∥ · ∥) ≤ logN[](P, ε, ∥ · ∥) ≤ logN(P, ε/2, ∥ · ∥∞),

where N[](P, ε, ∥ · ∥) is the ε-bracketing number of P. Therefore, we have that

logN(P, ε, dn,x) ≤ logN(P, ε/2, ∥ · ∥∞), and logN(P, ε, dn,y) ≤ logN(P, ε/2, ∥ · ∥∞).

With this result, we can now prove Theorem 5.

Proof (of Theorem 5). The notation is the same as in the proof of Theorem 13. The values of the constants
may change from line to line.

KLh (f || fk,n) − KLh (f || fk) = Ef log f̃

f̃k,n
+ Eh log f̃

f̃k,n
− Ef log f̃

f̃k
− Eh log f̃

f̃k

= Ef log f̃

f̃k,n
− 1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

+ 1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

+ Eh log f̃

f̃k,n
− 1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

+ 1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

− Ef log f̃

f̃k
+ 1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

− 1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

− Eh log f̃

f̃k
+ 1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

− 1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

=
(

Ef log f̃

f̃k,n
− 1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

)
+
(

Eh log f̃

f̃k,n
− 1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

)

+
(

1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

− Ef log f̃

f̃k

)
+
(

1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

− Eh log f̃

f̃k

)

+
(

1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

− 1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

)
+
(

1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

− 1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

)

≤ 2 sup
g̃∈C̃

∣∣∣∣∣ 1n
n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∣∣∣∣∣+ 2 sup
g̃∈C̃

∣∣∣∣∣ 1n
n∑
i=1

log g̃(Yi)
f̃(Yi)

− Eh log g̃
f̃

∣∣∣∣∣
+
(

1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

− 1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

)
+
(

1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

− 1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

)

≤ 2 E
{
wx1√
n

∫ c

0
log1/2 N(P, ε, dn,x)dε

}
+ wx2√

n
+ wx3

√
t

n
+ 1
n

n∑
i=1

log f̃k(Xi)
f̃k,n(Xi)

+ 2 E
{
wy1√
n

∫ c

0
log1/2 N(P, ε, dn,y)dε

}
+ wy2√

n
+ wy3

√
t

n
+ 1
n

n∑
i=1

log f̃k(Yi)
f̃k,n(Yi)

≤ w1√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ w2√

n
+ w3

√
t

n
+ 1
n

n∑
i=1

log f̃k(Xi)
f̃k,n(Xi)

+ 1
n

n∑
i=1

log f̃k(Yi)
f̃k,n(Yi)

,

with probability at least 1 − e−t, by Theorem 13. Now, we can use (15) from Proposition 10 applied to the
target density fk, obtaining the following:

KLh (fk || fk,n) = 1
n

n∑
i=1

log f̃k(Xi)
f̃k,n(Xi)

+ 1
n

n∑
i=1

log f̃k(Yi)
f̃k,n(Yi)

≤ 4a−2c2

k + 2 + inf
p∈C

KLh (fk || p) .
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Since by definition we have that fk ∈ C, infp∈C KLh (fk || p) = 0, and so with probability at least 1 − e−t we
have:

KLh (f || fk,n) − KLh (f || fk) ≤ w1√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ w2√

n
+ w3

√
t

n
+ w4

k + 2 . (18)

We can write the overall error as the sum of the approximation and estimation errors as follows. The former
is bounded by (14), and the latter is bounded as above in (18). Therefore, with probability at least 1 − e−t,

KLh (f || fk,n) − KLh (f || C) = [KLh (f || fk) − KLh (f || C)] + [KLh (f || fk,n) − KLh (f || fk)]

≤ w4

k + 2 + w1√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ w2√

n
+ w3

√
t

n
. (19)

As in Rakhlin et al. (2005), we rewrite the above probabilistic statement as a statement in terms of expec-
tations. To this end, let

A := w4

k + 2 + w1√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ w2√

n
,

and Z := KLh (f || fk,n) − KLh (f || C). We have shown P
(

Z ≥ A + w3

√
t
n

)
≤ e−t. Since Z ≥ 0,

E{Z} =
∫ A

0
P(Z > s)ds+

∫ ∞

A
P(Z > s)ds ≤ A +

∫ ∞

0
P(Z > A + s)ds.

Setting s = w3

√
t
n , we have t = w5ns

2 and E{Z} ≤ A +
∫∞

0 e−w5ns
2ds ≤ A + w√

n
. Hence,

E {KLh (f || fk,n)} − KLh (f || C) ≤ c1

k + 2 + c2√
n

∫ c

0
log1/2 N (P, ε/2, ∥ · ∥∞) dε+ c3√

n
,

where c1, c2, and c3 are constants that depend on some or all of a, b, and c.

Remark 17. The approximation error characterises the suitability of the class C, i.e., how well functions
in C are able to estimate a target f which does not necessarily lie in C. The estimation error characterises
the error arising from the estimation of the target f on the basis of the finite sample of size n.

Proof of Corollary 6. Let X and Θ be compact and assume the Lipshitz condition given in (8). If φ(x; ·) is
continuously differentiable, then

|φ (x; θ) − φ (x; τ)| ≤
d∑
k=1

∣∣∣∣∂φ (x; ·)
∂θk

(θ∗
k)
∣∣∣∣ |θk − τk| ≤ sup

θ∗∈Θ

∥∥∥∥∂φ (x; ·)
∂θ

(θ∗)
∥∥∥∥

1
∥θ − τ∥1 .

Setting

Φ (x) = sup
θ∗∈Θ

∥∥∥∥∂φ (x; ·)
∂θ

(θ∗)
∥∥∥∥

1
,

we have ∥Φ∥∞ < ∞. From Lemma 20, we obtain the fact that

logN[] (P, 2ε∥Φ∥∞, ∥ · ∥∞) ≤ logN (Θ, ε, ∥ · ∥∞) ,

which by the change of variable δ = 2ε∥Φ∥∞ =⇒ ε = δ/2∥Φ∥∞ implies

logN[] (P, ε/2, ∥ · ∥∞) ≤ logN
(

Θ, ε

4∥Φ∥∞
, ∥ · ∥1

)
.

Since Θ ⊂ Rd, using the fact that a Euclidean set of radius r has covering number N (r, ε) ≤
( 3r
ε

)d
, we have

logN
(

Θ, ε

4∥Φ∥∞
, ∥ · ∥1

)
≤ d log

[
12∥Φ∥∞diam (Θ)

ε

]
.
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So ∫ c

0

√
logN

(
Θ, ε

4∥Φ∥∞
, ∥ · ∥1

)
dε ≤

∫ c

0

√
d log

[
12∥Φ∥∞diam (Θ)

ε

]
dε,

and since c < ∞, the integral is finite, as required.

B Discussions and remarks regarding h-MLLEs

In this section, we share some commentary on the derivation of the h-lifted KL divergence, its advantages
and drawbacks, and some thoughts on the selection of the lifting function h. We also discuss the suitability
of the MM algorithms in contrast to other approaches (e.g., EM algorithms).

B.1 Elementary derivation

From Equation 4, we observe that if X arises from a measure with density f , and if we aim to approximate
f with a density g ∈ cok(P) that minimizes the h-lifted KL divergence KLh with respect to f , then we can
define an approximator (referred to as the minimum h-lifted KL approximator) as

fk = arg min
g∈cok(P)

[∫
X

{f + h} log{f + h}dµ−
∫

X
{f + h} log{g + h}dµ

]
= arg min

g∈cok(P)
−
∫

X
{f + h} log{g + h}dµ = arg max

g∈cok(P)

∫
X

{f + h} log{g + h}dµ,

noting that
∫

X {f + h} log{f + h}dµ is a constant that does not depend on the argument g. Now, observe
that ∫

X
f log{g + h}dµ = Ef log{g + h} and

∫
X
f log{g + h}dµ = Ef log{g + h},

since both f and h are densities on X with respect to the dominating measure µ. If a sample Xn = (Xi)i∈[n]
is available, we can estimate the expectation Ef log{g + h} by the sample average functional

1
n

n∑
i=1

log{g(Xi) + h(Xi)},

resulting in the sample estimator for fk:

f ′
k,n = arg max

g∈cok(P)

[
1
n

n∑
i=1

log{g(Xi) + h(Xi)} + Eh log{g + h}

]
,

which serves as an alternative to Equation 5. However, the expectation Eh log{g+h} is intractable, making
the optimization problem computationally infeasible, especially when X is multivariate (i.e., X ⊂ Rd for d >
1), as integral evaluations may be challenging to compute accurately. Thus, we approximate the intractable
integral Eh log{g + h} using the sample average approximation (SAA) from stochastic programming (cf.
Shapiro et al., 2021, Chapter 5), yielding the Monte Carlo approximation

1
n1

n1∑
i=1

log{g(Yi) + h(Yi)}

for a sufficiently large n1 ∈ N, where each Yi is an independent and identically distributed random variable
from the measure on X with density h. This approach provides an estimator for fk of the form

fk,n,n1 = arg max
g∈cok(P)

[
1
n

n∑
i=1

log{g(Xi) + h(Xi)} + 1
n1

n1∑
i=1

log{g(Yi) + h(Yi)}
]
,
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which is exactly the h-MLLE defined by Equation (5) when we take n1 = n. Notably, the additional
samples Yn = (Yi)i∈[n] provide no information regarding Ef log{g + h}, which is the component of the
objective function coupling the estimator g with the target f . However, it offers a feasible mechanism for
approximating the otherwise intractable integral Eh log{g + h}.

By setting n1 = n for the SAA approximation of Eh log{g + h}, the convergence rate in Theorem 5 remains
unaffected. Specifically, for any t > 0,∥∥∥∥∥ 1

n

n∑
i=1

log g(Xi) + h(Xi)
f(Xi) + h(Xi)

− Ef log g + h

f + h

∥∥∥∥∥
C

≤ w1√
n

E log1/2 N(P, ε, dn,x)dε+ w2√
n

+ w3

√
t

n

and ∥∥∥∥∥ 1
n

n∑
i=1

log g(Yi) + h(Yi)
f(Yi) + h(Yi)

− Eh log g + h

f + h

∥∥∥∥∥
C

≤ w1√
n

E log1/2 N(P, ε, dn,y)dε+ w2√
n

+ w3

√
t

n
,

with probability at least 1 − e−t, as noted in Remark 14. Given that both upper bounds are of order
O(1/

√
n) + O(

√
t/n), the combined bound in the proof of Theorem 5 in Appendix A.2 is also of this order,

as required.

Finally, to obtain the additional samples Yn = (Yi)i∈[n], we simply simulate Yn from the data-generating
process defined by h. Since we can choose h freely, selecting an h that facilitates easy simulation (e.g., h
uniform over X , which remains bounded away from zero on a compact set) is advisable for satisfying the
requirements of our theorems.

B.2 Advantages and limitations

As discussed extensively in Sections 1 and 2, our two primary benchmarks are the MLE and the least L2
estimator. Indeed, the MLE is simpler than the h-MLLE estimator, as it takes the reduced form

f̂k,n = arg max
g∈cok(P)

1
n

n∑
i=1

log g(Xi),

and does not require a sample average approximation for intractable integrals. It is well established that the
MLE estimates the minimum KL divergence approximation to the target f

fk = arg min
g∈cok(P)

∫
X
f log f

g
dµ = KLh (f || g) .

However, as highlighted in the foundational works of Li & Barron (1999) and Rakhlin et al. (2005), controlling
the expected risk

E
{

KL
(
f || f̂k,n

)}
− KL (f || C) .

requires that f ≥ γ for some strictly positive constant γ > 0. This requirement excludes many interesting
density functions as targets, including those that vanish at the boundaries of X , such as the β(·; 1/2, 1/2)
distribution, or those that vanish in the interior of X , such as examples f1 and f2 in Section 4.2. Consequently,
the condition f ≥ γ is restrictive and often impractical in many data analysis settings.

Alternatively, one could consider targeting the minimum L2 estimator:

fk = arg min
g∈cok(P)

∫
X

(f − g)2dµ = arg min
g∈cok(P)

∫
X
f2 − 2fg + g2dµ = arg min

g∈cok(P)

[
−2
∫

X
fgdµ+

∫
X
g2dµ

]
.

Using a sample Xn generated from the distribution given by f , the first term of the objective can be
approximated by − 1

n

∑n
i=1 g(Xi), which is relatively simple. However, the second term involves an intractable

integral that cannot be approximated by Monte Carlo sampling from a fixed generative distribution, as it
depends on the optimization argument g. Thus, unlike the h-MLLE, it is not feasible to reduce this intractable
integral to a sample average, which implies the need for a numerical approximation in practice. This can be
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computationally complex, particularly when g is intricate and X is high-dimensional. Hence, the minimum
L2-norm estimator of the form

f̂k,n = arg min
g∈cok(P)

[
− 2
n

n∑
i=1

g(Xi) +
∫

X
g2dµ

]

is often computationally infeasible, though its risk

E∥f − f̂k,n∥2 − inf
g∈C

∥f − g∥2

can be bounded, as shown in the works of Klemelä (2007) and Klemelä (2009), even when minX f = 0. In
comparison with the minimum L2 estimator and the MLE, we observe that the h-MLLE allows risk bounding
for targets f not bounded from below (i.e., minX f = 0), without requiring intractable integral expressions.
The h-MLLE achieves the beneficial properties of both the MLE and minimum L2 estimators, which is the
focus of our work.

Other divergences and risk minimization schemes for estimating f , such as β-likelihoods and Lq likelihood,
could also be considered. The Lq likelihood, for instance, provides a maximizing estimator with a simple
sample average expression, similar to the MLE and h-MLLE. However, it lacks a characterization in terms of
a proper divergence function, such as the KL divergence, h-lifted KL divergence, or L2 norm. Consequently,
this estimator is often inconsistent, as observed in Ferrari & Yang (2010) and Qin & Priebe (2013). These
studies show that the Lq likelihood estimator may not converge meaningfully to f , even when f ∈ cok(P),
for any fixed q ∈ R>0 \ {1}, unless a sequence of maximum Lq likelihood estimators is constructed with q
depending on n and approaching 1 to approximate the MLE. Thus, the maximum Lq likelihood estimator
does not yield the type of risk bound we require.

Similarly, with the β-likelihood (or density power divergence), the situation is comparable to that of the
minimum L2 norm estimator, where the sample-based estimator involves an intractable integral that cannot
be approximated through SAA. Specifically, the minimum β-likelihood estimator is defined as (cf. Basu
et al., 1998):

f̂k,n = arg min
g∈cok(P)

[
− 1
n

(
1 + 1

β

) n∑
i=1

gβ(Xi) +
∫

X
g1+βdµ

]
for β > 0, which closely resembles the form of the minimum L2 estimator. Hence, the limitations of the
minimum L2 estimator apply here as well, although a risk bound with respect to the β-likelihood divergence
could theoretically be obtained if the computational challenges are disregarded. In Section 1.3, we cite
additional estimators based on various divergences and modified likelihoods. Nevertheless, in each case, one
of the limitations discussed here will apply.

B.3 Selection of the lifting density function h

The choice of h is entirely independent of the data. In fact, h can be any density with respect to µ, satisfying
0 < a ≤ h(x) ≤ b < ∞ for every x ∈ X . Beyond this requirement, our theoretical framework remains
unaffected by the specific choice of h. In Section 4, we explore cases where h is uniform and non-uniform,
demonstrating convergence in both k and n that aligns with the predictions of Theorem 5. For practical
implementation, as discussed in Appendix B.1, h serves as the sampling distribution for the sample average
approximation (SAA) of the intractable integral Eh log{g + h}. Given its role as a sampling distribution, it
is advantageous to select a form for h that is easy to sample from. In many applications, we find that the
uniform distribution over X is an optimal choice for h, as it meets the bounding conditions.

We observe that although calibrating h does not improve the rate, it does influence the constants in the
upper bound of the final equation of Equation 19. Specifically, for each t > 0, with probability at least
1 − e−t,

KLh (f || fk,n) − KLh (f || C) ≤ w1√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ w2√

n
+ w3

√
t

n
+ w4

k + 2 ,
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which contributes to the constants in Theorem 5. Letting c denote the upper bound of the target f (i.e.,
f(x) ≤ c < ∞ for every x ∈ X ), we make the following observations regarding the constants:

w1 ∝ c+ b

a2 , w2 ∝ (8b+ 4a)(c+ b)
a2 , w3 ∝ log

(
c+ b

a

)
, w4 ∝ c2

a2 .

Here, w1, w2, and w3 are per the final bound in Equation 17 in the proof of Theorem 13, while w4 arises
from the bound in Equation 15.

When h is uniform, it takes the form h(x) = z, where z = 1/
∫

X dµ, making a = z = b. If h is non-uniform,
then necessarily a < z < b, as there would exist a region Z of positive measure where h(x) > z, which
implies that h(x) < z for some x ∈ X \ Z; otherwise,∫

X
hdµ =

∫
Z
hdµ+

∫
X \Z

hdµ > µ(Z)
µ(X ) + µ(X \ Z)

µ(X ) = 1,

contradicting h being a density function. Although we cannot control c, we can choose h to control a and b.
Setting h = z minimizes the numerators in w1, as deviations from uniformity increase the numerators of w1
and w4 while decreasing the denominators. The same reasoning applies to w2:

w2 ∝ (8b+ 4a)(c+ b)
a2 =

{
8bc
a2 + 4c

a
+ 8b2

a2 + 4b
a

}
.

Since c > 0, any deviation from uniformity in h either increases or maintains the numerators while decreasing
the denominators, minimizing w2 when h is uniform. The same logic applies to w3, as the logarithmic function
is increasing, so w3 is minimized when h is uniform.

Consequently, we conclude that the smallest constants in Theorem 5 are achieved when h is chosen as the
uniform distribution on X . This suggests that a uniform h is optimal from both practical and theoretical
perspectives.

B.4 Discussions regarding the sharpness of the obtained risk bound

Similar to the role of Gaussian mixtures as the archetypal class of mixture models for Euclidean spaces, beta
mixtures represent the archetypal class of mixture models on the compact interval [0, 1], as established in
the studies by Ghosal (2001); Petrone (1999). Just as Gaussian mixtures can approximate any continuous
density on X = Rd to an arbitrary level of accuracy in the Lp-norm (Nguyen et al., 2020; 2021; 2022b),
mixtures of beta distributions can similarly approximate any continuous density on X = [0, 1] with respect
to the supremum norm (Ghosal, 2001; Petrone, 1999; Petrone & Wasserman, 2002). We will leverage this
property in the following discussion.

Assuming the target f is within the closure of our mixture class C (i.e., KLh (f || C) = 0), setting kn = O(
√
n)

achieves a convergence rate in expected KLh of O(1/
√
n) for the mixture maximum h-lifted likelihood

estimator (h-MLLE) fkn,n. An interesting question is whether this rate is tight and not overly conservative,
given the observed rates in Table 1. We aim to investigate this question by discussing a lower bound for the
estimation problem.

To approach this, we use Proposition 3 to observe that KLh satisfies a Pinsker-like inequality:√
KLh (f || g) ≥ TV(f, g),

where TV(f, g) = 1
2
∫

X |f − g|dµ. Using this inequality along with Corollary 6 and the convexity of f 7→ f2,
we find that the h-MLLE satisfies the following total variation bound:

E {TV(f, fkn,n)} ≤
√
w1,f

kn
+ w2,f√

n
≤ w1,f

k
1/2
n

+ w2,f

n1/4 ≤ wf
n1/4 ,

for some positive constants w1,f , w2,f , wf depending on f , by taking kn =
√
n. Now, consider the specific

case when X = [0, 1], and the component class P consists of beta distributions. In this case, we have (cf.
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Petrone & Wasserman, 2002, Eq. 5), for any continuous density function f : [0, 1] → R≥0:

inf
g∈C

sup
x∈[0,1]

|f(x) − g(x)| = 0, which implies that inf
g∈C

KLh (f || g) = 0,

since
sup
x∈[0,1]

|f(x) − g(x)| ≥ L2(f, g) ≥ √
γKLh (f || g) ,

for any 0 < γ ≤ h, with the second inequality due to Proposition 3. Thus, for a compact parameter space
Θ defining P, we assume KLh (f || C) = 0. Consequently, the rate of O(n−1/4) for expected total variation
distance is achievable in the beta mixture model setting. This convergence is uniform in the sense that

E {TV(f, fkn,n)} ≤ w

n1/4 ,

where w depends only on the maximum c ≥ f , the diameter of Θ, and the condition KLh (f || C) = 0, with
component distributions in P restricted to parameter values in Θ.

In the context of minimum total variation density estimation on [0, 1], Exercise 15.14 of Devroye & Lugosi
(2001) states that for every estimator f̂ and every Lipschitz continuous density f (with a sufficiently large
Lipschitz constant),

sup
f∈Lip

Ef

{
TV(f̂ , f)

}
≥ W

n1/3 ,

for some universal constant W depending only on the Lipschitz constant. This lower bound is faster than
our achieved rate of O(n−1/4), but it applies only to the smaller class of Lipschitz targets, a subset of the
continuous targets satisfying KLh (f || C) = 0.

The target f2 from our simulations in Section 4 belongs to the class of Lipschitz targets, and thus the
improved lower bound rate of O(n−1/3) from Devroye & Lugosi (2001) applies. We can compare this with√
n−b2 for Experiment 2 in Table 1, yielding an empirical rate in n of O(n−1.03), with an exponent between

−1.07 and −0.98 (95% confidence), over the range n ∈ {210, . . . , 215}. Clearly, this observed rate is faster
than the lower bound rate of O(n−1/3), indicating that the faster rates observed in Table 1 are due to small
values of n and k. As n increases, the rate must eventually decelerate to at least O(n−1/3) when the target
f is Lipschitz on X , which is only marginally faster than our guaranteed rate of O(n−1/4). Demonstrating
that O(n−1/4) is minimax optimal for certain target classes f is a complex task, left for future exploration.

Lastly, we note that our discussions in this section implies that the h-MLLE provides an effective and genetic
method for obtaining estimators with total variation guarantees, which complements the comprehensive
studies on the topic presented in Devroye & Györfi (1985) and Devroye & Lugosi (2001).

B.5 The KL divergence and the MLE

For any probability densities f and g with respect to a dominant measure µ on X , the h-lifted KL divergence
is defined as

KLh (f || g) =
∫

X
{f + h} log

(
f + h

g + h

)
dµ,

which we establish as a Bregman divergence on the space of probability densities dominated by µ on X in
Appendix C.1.

We previously demonstrated a relationship between KLh and the L2 distance (Proposition 3), showing that
if h(x) ≥ γ > 0 for all x ∈ X , then

KLh (f || g) ≤ 1
γ
L2

2(f, g), where L2
2(f, g) = ∥f − g∥2

2 =
∫

X
(f − g)2dµ

is the square of the L2 distance between the densities. Given that we can always select h(x) ≥ γ, this bound
is always enforceable. This relationship is stronger than that between the standard KL divergence and the
L2 distance, which similarly satisfies

KL (f || g) ≤ 1
γ
L2

2(f, g),
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but with the more restrictive requirement that f(x) ≥ γ > 0 for every x ∈ X , limiting its applicability to
densities that do not vanish. In the proof of Proposition 3 in Appendix C.2, we show that one can write

KLh (f || g) = 2KL
(
f + h

2 ,
g + h

2

)
,

which allows the application of the theory from Rakhlin et al. (2005) by considering the mixture density
(f + h)/2 as the target and using g + h as the approximand, where g ∈ cok (P). Under this framework, the
maximum likelihood estimator can be formulated as

fk,n ∈ arg min
g∈cok(P)

− 1
n

n∑
i=1

log
(
g(Zi) + h(Zi)

2

)
,

where (Zi)i∈[n] are independent and identically distributed samples from a distribution with density (f+h)/2.
This sampling can be performed by choosing Xi with probability 1/2 or Yi with probability 1/2 for each
i ∈ [n], where Xi is an observation from the generative model f and Yi is an independent sample from
the auxiliary density h. Although the modified estimator, based on the bound from Rakhlin et al. (2005),
attains equivalent convergence rates, it inefficiently utilizes observed data, as 50% of the data is replaced
by simulated samples Yi. In contrast, our h-MLLE estimator maximally utilizes all available data while
achieving the same bound.

B.6 Comparison of the MM algorithm and the EM algorithm

Since the risk functional is not a log-likelihood, a straightforward EM approach cannot be used to compute
the h-MLLE. However, by interpreting KLh as a loss between the target mixture (f+h)/2 and the estimator
(fk,n + h)/2, an EM algorithm can be constructed using the standard admixture framework (see Lange,
2013, Section 9.5). Remarkably, the EM algorithm for estimating (fk,n + h)/2, has the same form as our
MM algorithm, which leverages Jensen’s inequality (cf. Lange, 2013, Section 8.3). In fact, the majorizer in
any EM algorithm results directly from Jensen’s inequality (see Lange, 2013, Section 9.2), making our MM
algorithm in Section 4.1 no more complex than an EM approach for mixture models.

Beyond the EM and MM methods, no other standard algorithms typically address the generic estimation of
a k-component mixture model in cok(P) for a given parametric class P. Since our MM algorithm follows
a structure nearly identical to the EM algorithm for the MLE of this problem, it has comparable iterative
complexity. Notably, per iteration, the MM approach requires additional evaluations for both Xn and Yn,
and for g(Xi) and h(Xi), so it requires a constant multiple of evaluations compared to EM, depending on
whether h is a uniform distribution or otherwise (typically by a factor of 2 or 4).

B.7 Non-convex optimization

We note that the h-MLLE problem (and the corresponding MLE) are non-convex optimization problems.
This implies that, aside from global optimization methods, no iterative algorithm–whether gradient-based
methods like gradient descent, coordinate descent, mirror descent, or momentum-based variants–can be
guaranteed to find a global optimum. Likewise, second-order techniques such as Newton and quasi-Newton
methods also cannot be expected to locate the global solution. In non-convex scenarios, the primary assurance
that can be offered is convergence to a critical point of the objective function. In our case, this assurance is
achieved by applying Corollary 1 from Razaviyayn et al. (2013), as discussed in Section 4.1. Notably, this
convergence guarantee is consistent with that provided by other iterative approaches, such as EM, gradient
descent, or Newton’s method.

Additionally, it may be valuable to examine whether specific convergence rates can be ensured when the
algorithm’s iterates approach a neighborhood around a critical value. In the context of the MM algorithm, we
can affirmatively answer this question: since the h-MLLE objective is twice continuously differentiable with
respect to the parameter ψk, it satisfies the local convergence conditions outlined in Lange (2016, Proposition
7.2.2). This result implies that if ψ(s)

k lies within a sufficiently close neighborhood of a local minimizer ψ∗
k,

the MM algorithm converges linearly to ψ∗
k. This behavior aligns with the convergence guarantees offered
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by other iterative methods, such as gradient descent or line-search based quasi-Newton methods. Quadratic
convergence rates near ψ∗

k can be achieved with a Newton method, though this forfeits the monotonicity
(or stability) of the MM algorithm, as it is well-known that even in convex settings, Newton’s method can
diverge if the initialization is not properly handled.

An additional advantage of the MM algorithm over Newton’s method is its capacity to decompose the
original objective into a sum of functions where each component of ψk = (π1, . . . , πk, θ1, . . . , θk) is separable
within the summation. In other words, we can independently optimize functions that depend only on
subsets of parameters, either (π1, . . . , πk) or each θj for j = 1, . . . , k, thereby simplifying the iterative
computation. This characteristic is noted after Equation 9 in the main text. Such decomposition can lead
to computational efficiency by avoiding the need to compute the Hessian matrix for Newton’s method or
approximations required by quasi-Newton methods. Specifically, in cases involving mixtures of exponential
family distributions such as the beta distributions discussed in Section 4.2, each parameter-separated problem
becomes a strictly concave maximization problem, which can be efficiently solved (see Proposition 3.10 in
Sundberg, 2019).

C Auxiliary proofs

In this section, we include other proofs of claims made in the main text that are not included in Appendix A.

C.1 The h-lifted KL divergence as a Bregman divergence

Let ũ = u+ h, so that ϕ(u) = ũ log(ũ) − ũ+ 1. Then ϕ′(u) = log(ũ), and

Dϕ(f || g) =
∫
X

{f̃ log(f̃) − f̃ − 1} − {g̃ log(g̃) − g̃ − 1} − log(g̃)(f − g)dµ

=
∫

X
f̃ log(f̃) − g̃ log(g̃) − f log(g̃) + g log(g̃)dµ

=
∫

X
{f + h} log(f̃) − {g + h} log(g̃) − f log(g̃) + g log(g̃)dµ

=
∫

X
{f + h} log f + h

g + h
dµ = KLh (f || g) .

C.2 Proof of Proposition 2

Let f̃ = f+h and g̃ = g+h. Since h is positive, there exists some g̃∗ such that g̃∗ = infx∈X {g(x) + h(x)} > 0.
Similarly, since X is compact, there exists some positive f̃∗ such that 0 < f̃∗ = supx∈X {f(x) + h(x)} < ∞.
Define M = supx∈X log{f̃(x)/g̃(x)}. Then M < ∞, and

KLh (f || g) =
∫

X
f̃ log f̃

g̃
dµ ≤ sup

x∈X
log f̃

g̃

∫
X
f̃dµ = 2M < ∞.

C.3 Proof of Proposition 3

Defining f̃ and g̃ as above, we have

KLh (f || g) =
∫

X
f̃ log f̃

g̃
dµ ≤

∫
X
f̃

(
f̃

g̃
− 1
)

dµ =
∫

X

(f − g)2

g̃
dµ ≤ γ−1L2

2(f, g),

The first inequality comes from the fundamental inequalities on logarithm log(x) ≤ x − 1 for all x ≥ 0.
Indeed, let f(x) = log(x) − x+ 1. We obtain f ′(x) = 1

x − 1 = 1−x
x . Then f ′(x) < 0 if x > 1 and f ′(x) ≥ 0

if x ≤ 1. Therefore, f is strictly decreasing on (1,∞) and f is strictly increasing on (0, 1]. This leads to the
desired inequality f(x) ≤ f(1) = 0 for all x ≥ 0.
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The next equality comes from the following identities:∫
X
f̃( f̃
g̃

− 1)dµ =
∫

X

f̃2 − f̃ g̃

g̃
dµ =

∫
X

f̃2 − f̃ g̃ − f̃ g̃ + g̃g̃

g̃
dµ =

∫
X

(f̃ − g̃)2

g̃
dµ =

∫
X

(f − g)2

g̃
dµ.

The last equality is followed from∫
X

−f̃ g̃ + g̃g̃

g̃
dµ = −

∫
X
f̃dµ+

∫
X
g̃dµ = −

∫
X

(f + h)dµ+
∫

X
(g + h)dµ = −

∫
X
hdµ+

∫
X
hdµ = 0.

In fact, the proof of Proposition 3 follows the standard technique in the derivation of the estimation error,
see for example Meir & Zeevi (1997).

Additionally, we can show that the h-lifted KL divergence satisfies a Pinsker-like inequality, in the sense that√
KLh (f || g) ≥ TV(f, g),

where TV represents the total variation distance between the densities f and g. Indeed, this is easy to
observe since

KLh (f || g) =
∫

X
{f + h} log f + h

g + h
dµ = 2

∫
f + h

2 log

{
f+h

2

}
{
g+h

2

}dµ = 2KL
(
f + h

2 ,
g + h

2

)

≥ 4
{

1
2

∫
X

∣∣∣∣f + h

2 − g + h

2

∣∣∣∣dµ}2
=
{∫

X

∣∣∣∣f + h

2 − g + h

2

∣∣∣∣ dµ}2
=
{

1
2

∫
X

|f − g| dµ
}2

= TV2(f, g),

where the inequality is due to Pinsker’s inequality:√
1
2KL (f || g) ≥ TV (f, g) .

C.4 Proof of Proposition 9

For choice (11), by the dominated convergence theorem, we observe that

d2

dπ2κ ((1 − π) p+ πq) = Ef

{
d2

dπ2 log f + h

(1 − π) p+ πq + h

}
+ Eh

{
d2

dπ2 log f + h

(1 − π) p+ πq + h

}
= Ef

{
(p− q)2

[(1 − π) p+ πq + h]2

}
+ Eh

{
(p− q)2

[(1 − π) p+ πq + h]2

}
.

Suppose that each φ (·; θ) ∈ P is bounded from above by c < ∞. Then, since p, q ∈ C are non-
negative functions, we have the fact that (p− q)2 ≤ c2. If we further have a ≤ h for some a > 0, then
[(1 − π) p+ πq + h]2 ≥ a2, which implies that

d2

dπ2κ ((1 − π) p+ πq) ≤ 2 × c2

a2

for every p, q ∈ C and π ∈ (0, 1), and thus

sup
p,q∈C,π∈(0,1)

d2

dπ2κ ((1 − π) p+ πq) ≤ 2c2

a2 < ∞.

Similarly, for case (12), we have

d2

dπ2κn((1 − π)p+ πq) = 1
n

n∑
i=1

d2

dπ2 log f(xi) + h(xi)
(1 − π) p (xi) + πq (xi) + h (xi)
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+ 1
n

n∑
i=1

d2

dπ2 log f (yi) + h (yi)
(1 − π) p (yi) + πq (yi) + h (yi)

= 1
n

n∑
i=1

(p (xi) − q (xi))2

[(1 − π) p (xi) + πq (xi) + h (xi)]2
+ 1
n

n∑
i=1

(p (yi) − q (yi))2

[(1 − π) p (yi) + πq (yi) + h (yi)]2
.

By the same argument, as for κ, we have the fact that (p (x) − q (x))2 ≤ c2, for every p, q ∈ C and every
x ∈ X , and furthermore [(1 − π) p (x) + πq (x) + h (x)]2 ≥ a2, for any π ∈ (0, 1). Thus,

sup
p,q∈C,π∈(0,1)

d2

dπ2κ ((1 − π) p+ πq) ≤ 2c2

a2 < ∞, as required.

D Technical results

Here we collect some technical results that are required in our proofs but appear elsewhere in the literature.
In some places, notation may be modified from the original text to keep with the established conventions
herein.
Lemma 18 (Kosorok, 2007. Lem 9.18). Let N(F , ε, ∥ · ∥) denote the ε-covering number of F , N[](F , ε, ∥ · ∥)
the ε-bracketing number of F , and ∥ · ∥ be any norm on F . Then, for all ε > 0

N(F , ε, ∥ · ∥) ≤ N[](F , ε, ∥ · ∥)

Lemma 19 (Kosorok, 2007. Lem 9.22). For any norm ∥ · ∥ dominated by ∥ · ∥∞ and any class of functions
F ,

logN[](F , 2ε, ∥ · ∥) ≤ logN(F , ε, ∥ · ∥∞), for all ε > 0.
Lemma 20 (Kosorok, 2007. Thm 9.23). For some metric d on T , let F = {ft : t ∈ T} be a function class:

|fs(x) − ft(x)| ≤ d(s, t)F (x),

some fixed function F on X , and for all x ∈ X and s, t ∈ T . Then, for any norm ∥ · ∥,

N[](F , 2ε∥F∥, ∥ · ∥) ≤ N(T, ε, d).

Lemma 21 (Shalev-Shwartz & Ben-David (2014), Lem 26.7). Let A be a subset of Rm and let

A′ =


n∑
j=1

αjaj | n ∈ N,aj ∈ A,αj ≥ 0, ∥α∥1 = 1

 .

Then, Rn(A′) = Rn(A), i.e., both A and A′ have the same Rademacher complexity.
Lemma 22 (van de Geer, 2016, Thm. 16.2). Let (Xi)i∈[n] be non-random elements of X and let F be a
class of real-valued functions on X . If φi : R → R, i ∈ [n], are functions vanishing at zero that satisfy for
all u, v ∈ R, |φi(u) − φi(v)| ≤ |u− v|, then we have

E
{∥∥∥∥∥

n∑
i=1

φi(f(Xi))εi

∥∥∥∥∥
F

}
≤ 2E

{∥∥∥∥∥
n∑
i=1

f(Xi)εi

∥∥∥∥∥
F

}
.

Lemma 23 (McDiarmid, 1998, Thm. 3.1 or McDiarmid, 1989). Suppose (Xi)i∈[n] are independent random
variables and let Z = g(X1, . . . , Xn), for some function g. If g satisfies the bounded difference condition,
that is there exists constant cj such that for all j ∈ [n] and all x1, . . . , xj , x

′
j , . . . , xn,

|g(x1, . . . , xj−1, xj , xj+1, . . . , xn) − g(x1, . . . , xj−1, x
′
j , xj+1, . . . , xn)| ≤ cj ,

then

P(Z − EZ ≥ t) ≤ exp
{

−2t2∑n
j=1 c

2
j

}
.
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Lemma 24 (van der Vaart & Wellner, 1996, Lem. 2.3.1). Let R(f) = Ef and Rn(f) = n−1∑n
i=1 f(Xi). If

Φ : R>0 → R>0 is a convex function, then the following inequality holds for any class of measurable functions
F :

EΦ (∥R(f) − Rn(f)∥F ) ≤ EΦ (2 ∥Rn(f)∥F ) ,

where Rn(f) is the Rademacher process indexed by F . In particular, since the identity map is convex,

E {∥R(f) − Rn(f)∥F } ≤ 2E {∥Rn(f)∥F } .

Lemma 25 (Koltchinskii, 2011, Thm. 3.11). Let dn be the empirical distance

d2
n(f1, f2) = 1

n

n∑
i=1

(f1(Xi) − f2(Xi))2

and denote by N(F , ε, dn) the ε-covering number of F . Let σ2
n := supf∈F Pnf

2. Then the following
inequality holds

E {∥Rn(f)∥F } ≤ K√
n

E
∫ 2σn

0
log1/2 N(F , ε, dn)dε

for some constant K > 0.
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