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Abstract

Unpaired image-to-image translation is a challenging task due to the absence of paired
examples, which complicates learning the complex mappings between the distinct distri-
butions of the source and target domains. One of the most commonly used approaches for
this task is cycle-consistent models which require the training of a new pair of generator-
discriminator networks for each translation. In this paper, we propose a new image-
to-image translation framework named Image-to-Image-Generative-Adversarial-CLIP (I2I-
Galip) where we utilize pre-trained multi-modal foundation models to mitigate the need of
separate generator-discriminator pairs for each source-target mapping while achieving bet-
ter and more efficient multi-domain translation. By utilizing the massive knowledge gath-
ered during pre-training a foundation model, our approach makes use of a single lightweight
generator network with ≈13M parameters for the multi-domain image translation task.
Comprehensive experiments on translation performance in public MRI and CT datasets
show the superior performance of the proposed framework over the existing approaches.

1. Introduction

Medical image translation is a crucial task due to the availability of diverse information
across various modalities. However, it is challenging because of significantly different do-
main distributions, necessitating the learning of very complex mappings between different
imaging modalities (Roy et al., 2013). Many supervised deep learning-based image trans-
lation methods have been proposed to address this problem (Dar et al., 2019; Jiang et al.,
2023; Armanious et al., 2020). However, these methods are limited due to the requirement
of paired training data which might be challenging to acquire in real case scenarios. To
overcome this constraint, various unsupervised image translation methods have been in-
troduced for both general computer vision and medical imaging tasks (Dai et al., 2020;
Liu et al., 2017; Huang et al., 2018; Özbey et al., 2023; Han et al., 2021; Yi et al., 2017;
Torbunov et al., 2023). CycleGAN (Zhu et al., 2017) is one of the first approaches that
proposed unpaired image translation which loosened the requirement for paired datasets
by enforcing cycle-consistency among inverse translations. However, in the case of mul-
tiple modalities, cycle-consistent models introduce significant computational requirements
as separate generator-discriminator pairs are required for each new modality. To mitigate
the need of separate network pairs several multi-domain translation frameworks have been
proposed (Choi et al., 2018, 2020; Huang et al., 2018; Lee et al., 2018). Nonetheless, these
methods generally lag in performance compared to uni-modal approaches.
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More recently, a couple of text-driven diffusion based image-to-image translation frame-
works have been proposed that integrate large vision-language pre-trained models as guid-
ance (Tumanyan et al., 2023; Rombach et al., 2022; Hertz et al., 2022; Kwon and Ye, 2022),
enabling robust translation across multiple domains. While these models provide zero-shot
editing capabilities for various text conditions, they are limited in delivering fidelity nec-
essary for the medical tasks. Moreover, these methods impose a significant computational
burden due to the requirement for large denoiser backbones and extended inference times
in their backward diffusion processes.

In this paper, we propose a cycle-consistent generative adversarial model to address
the aforementioned limitations. Our model integrates BiomedCLIP (see Section 2.2), a
pre-trained multi-modal vision-language model specifically trained in the medical domain,
within a cycle-consistent feed-forward framework. By leveraging contrastive information
from this large pre-trained network, we eliminate the need to train a new generator network
for each translation task and reduce the requirement for large discriminator backbones
in feature extraction. Furthermore, our model enhances overall translation performance
compared to existing unsupervised approaches in both single and multi-domain translation
tasks.

Our main contributions can be summarized as follows:

• We introduce a novel adversarial framework for language-driven multi-domain medical
image translation.

• Our framework outperforms existing unsupervised baselines with a relatively lightweight
backbone. Extensive experiments demonstrate its superior performance across various
publicly available datasets from different modalities.

2. Background

2.1. Cycle-Consistent Generative Adversarial Networks (CycleGAN)

CycleGAN (Zhu et al., 2017) models the unpaired image translation problem between do-
main A and B using two translators. First, two translators (G : A → B) and (F : B → A)
are defined. Then G and F are forced to be inverses of each other, thus making both map-
pings to be approximately bijections. CycleGAN achieves remarkable performance using
this cycle-consistency combined with the adversarial loss which encourages F (G(XA)) ≈ XA

and G(F (XB)) ≈ XB.

2.2. BiomedCLIP

In this paper, we utilize BiomedCLIP (Zhang et al., 2023) as our pre-trained vision-language
model. BiomedCLIP is trained on PMC-15M dataset using pairs of figures and captions
from biomedical research articles in PubMed Central and outperforms other medical vision-
language models in various tasks (Zhang et al., 2023). BiomedCLIP utilizes a ViT-B (Doso-
vitskiy et al., 2020) based image encoder to generate image embeddings while utilizing
PubMedBERT (Gu et al., 2021) for the text embeddings.
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3. Methodology

3.1. I2I-Galip

We design a lightweight generator network which is a very thin variant of the latent diffusion
U-Net (Rombach et al., 2022) (with only ≈ 13M parameters). Our discriminator network
uses the projections of intermediate Vision Transformer (ViT) features as input, adapted
from text-to-image model Stylegan-T (Sauer et al., 2023). This discriminator design allow
us to utilize the output of different layers in BiomedCLIP’s ViT, capturing different level
of details. We modify this design by dividing the discriminator heads into distinct sets,
tailored specifically for a target translation domain. We also utilize BiomedCLIP’s text
encoder to generate target text embeddings using captions for each modality, which controls
the generated image features via cross-attention transformers while serving as a regularizer
in the training (see Figure 1a). Overall training objective for the generator can be expressed
as follows

Ltotal =λcycle · Lcycle + λadv · LadvG + λclip · Lclip

+ λcls · Lcls + λidentity · Lidentity,
(1)

where λcycle, λadv, λclip, λcls, λidentity are coefficients to control the contribution from each
loss. We denote the loss associated with the discriminator as LadvD . In what follows, we
describe each of these loss terms in detail.

1. Adversarial Loss: By leveraging intermediate features from the ViT, direct feature
extraction from images becomes unnecessary, enabling the use of lightweight discrim-
inator heads for each feature level. We utilize the least squares GAN loss (Mao et al.,
2017) to enhance the stability of training instead of Hinge loss used in StyleGAN-T,
which can be defined as follows
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where HeadA and HeadB correspond to the discriminator heads allocated for the
specific target domain, ETA

and ETB
are corresponding text encodings (i.e., text

encodings of captions for each domain), Einput
XA

, Einput
XB

, Eout
XA

and Eout
XB

are feature
maps from ViT for input and generated images from domain A and B, respectively.

2. Cycle Loss: We enforce cycle-consistency loss (Zhu et al., 2017), shown in Figure 1b,
to enforce faithful translation between source and target domains for each pair:
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Figure 1: Training scheme and overall model architecture of I2I-Galip is illustrated for the
T1- to T2-weighted MRI translation task. Part (a) illustrates the definition of Lclip, Lcls

and Ladv losses. XA
Input, XB

Input and XB
Out denotes the input T1-weighted, input T2-

weighted and output T2-weighted images respectively. Part (b) and (c) stand for Lcycle and
Lidentity losses respectively. BiomedCLIP’s ViT and Text Encoder parameters are frozen
during training. ”This MRI Image is T2-weighted” corresponds to a sample prompt used
for T1 to T2 translation.

3. CLIP Loss: We minimize the cosine distance between the text encoding corresponds
to the caption of target domain (e.g., “This MRI image is T1-Weighted”) and the
encoding from ViT for the generated images to enable the utilization of CLIP’s joint
embedding space similarly with (Patashnik et al., 2021), which can be defined as
follows

Lclip = −
⟨ETA

, Eoutlast

XA
⟩

∥ETA
∥ · ∥Eoutlast

XA
∥
−

⟨ETB
, Eoutlast

XB
⟩

∥ETB
∥ · ∥Eoutlast

XB
∥
, (5)

where Eoutlast

XA
, Eoutlast

XB
are the image encodings from the last layer of ViT for the

generated images from domain A and B, respectively. Generally, Lclip is dominated
by cycle and adversarial losses giving comparingly small benefits (see Section 4.1 for
details).

4. CLS Loss: The CLS tokens in the final layers of the vision transformers are recognized
for containing semantically rich information, as highlighted by (Tumanyan et al.,
2022), which is typically leveraged for downstream classification tasks and shown to
be beneficial in image translation (Kwon and Ye, 2022). Therefore, we enforce the
cosine similarity between the CLS tokens in the ViT for the generated and target
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Figure 2: Multi-domain translation illustrations from PD to T1-weighted image in IXI
dataset. Accompanying this are error maps and magnified sections, positioned below and
above each translation, respectively.

domain’s images to enforce semantic similarity among these images, which can be
written as follows

Lcls = −
⟨clsinputXA

, clsoutXA
⟩

∥clsinputXA
∥ · ∥clsoutXA

∥
−

⟨clsinputXB
, clsoutXB

⟩
∥clsinputXB

∥ · ∥clsoutXB
∥
, (6)

where clsinputXA
and clsinputXB

are the CLS tokens in the last layers of ViT for input images

from domain A and B respectively. clsoutXA
and clsoutXB

are corresponding CLS tokens
for the generated images.

5. Identity Loss: The identity loss is found to be beneficial to maintain source image
structure in translation by enforcing the pixel-level equality when target and source
domains match (Zhu et al., 2017). We enforce it via using same labels and text
embeddings corresponding to the input image domain (see Figure 1c).

3.2. Datasets

We conduct experiments on single-coil brain MRI dataset (IXI) and CT-MRI dataset (Ny-
holm et al., 2018) to demonstrate the performance of our approach. Dataset details are
presented in the Section B.1. We consider the IXI dataset in both multi-domain and single-
domain translation contexts. In the multi-domain scenario, we use a single network for all
translation tasks, whereas in the single-domain scenario, we utilize distinct networks for each
individual task. On the other hand, CT-MRI dataset only allows us to use single-domain
translation context.
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Figure 3: Single-domain translation from T1-weighted Pelvic MRI to CT images. Ac-
companying this are error maps and magnified sections, positioned below and above each
translation, respectively.

Table 1: Multi-domain image translation results in IXI dataset. T1-, T2- and PD-weighted
images are considered. Best and second best results are indicated with red and blue respec-
tively.

One-to-one task T1->T2 T2->T1 T2->PD PD->T2 T1->PD PD->T1

IXI PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM PSNR | SSIM
I2I-Galip-M 27.22 | 90.18 27.30 | 90.86 32.34 | 95.74 33.12 | 95.39 26.76 | 90.75 27.70 | 91.20
I2I-Galip-S 27.47 | 90.54 27.33 | 91.06 32.11 | 95.65 32.87 | 95.62 26.99 | 90.80 27.75 | 91.07
CycleGAN 26.10 | 87.36 26.31 | 88.51 27.43 | 93.68 31.07 | 93.81 24.56 | 88.26 25.91 | 89.47
U-GAT-IT 24.44 | 86.19 24.51 | 86.85 26.81 | 91.39 29.03 | 92.11 22.98 | 85.16 24.83 | 87.44
SynDiff 26.34 | 91.87 27.60 | 92.14 33.15 | 96.87 29.81 | 96.99 27.29 | 92.49 25.54 | 92.41
UNIT 23.59 | 84.40 24.76 | 86.63 25.22 | 91.42 29.10 | 93.30 23.20 | 86.00 23.50 | 80.05
EGSDE 16.93 | 53.32 17.44 | 57.54 17.98 | 75.93 16.40 | 57.55 19.70 | 71.21 19.71 | 59.73

3.3. Implementation Details

We illustrate the model complexities using the number of parameters in each competing
method in the Table 3. A single NVIDIA RTX A5000 GPU with PyTorch framework is uti-
lized in all experiments. Our model is trained with Adam optimizer with an initial learning
rate set at 0.0002, which is linearly decreased to 0 after the 50th epoch. Number of dis-
criminator head sets are determined according to the number of domains in the translation
problem, where for IXI it is 3, and 2 for CT-MRI. We utilize hyperparameters 10, 1, 1, 1,
1 for λcycle, λadv, λcls, λclip, and λidentity respectively.

4. Results

We utilize well known unsupervised image translation baselines CycleGAN (Zhu et al.,
2017), U-GAT-IT (Kim et al., 2019), SynDiff (Özbey et al., 2023), UNIT (Liu et al., 2017)
and EGSDE (Zhao et al., 2022) as competing methods (see Section B.2 for details). We use
Peak-Signal-to-Noise-Ratio (PSNR, dB) and Structural Similarity Index Measure (SSIM,
%) to compare the translation performances of competing methods. Results are presented
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Figure 4: Multi-domain translation illustrations from T2-weighted to PD image in IXI
dataset. Accompanying this are error maps and magnified sections, positioned below and
above each translation, respectively.

for both single- and multi-domain case in IXI for I2I-Galip to show the effectiveness of
the proposed approach for both cases. CT-MRI results are presented as the single-domain
translation. I2I-Galip-S (Single), CycleGAN, U-GAT-IT, UNIT and SynDiff are separately
trained for all possible domain pairs while I2I-Galip-M (Multi) is trained once per dataset.
EGSDE is an unsupervised image translation method that is agnostic to translation direc-
tion. However, it relies on separately pre-trained diffusion models for each target domain.
Table 1 and Table 2 show the translation performance in IXI and CT-MRI datasets, re-
spectively. We show the corresponding translated images for each competing methods for
distinct translation tasks in Figure 2, Figure 3, and Figure 4. Best and second best perfor-
mances are highlighted as red and blue, respectively, in each table for each metric.

Overall, I2I-Galip-M, a single network for multi-domain translation in IXI—unlike Cy-
cleGAN, which requires separately trained models for each image pair—achieves 2.17dB
higher PSNR and over 2% better SSIM compared to CycleGAN, the foundational ap-
proach. Additionally, I2I-Galip-S outperforms the second-best method with a 0.10 dB
improvement in PSNR and a 1.52% increase in SSIM for the T1 to CT translation, also
delivers a 1.38% gain in SSIM for the T2 to CT task. Compared to SynDiff—a state-of-
the-art diffusion-based, cycle-consistent translation model—I2I-Galip achieves comparable
performance while significantly reducing computational demands. For example, in the T1 to
T2 task, I2I-Galip-M attains 27.22 dB PSNR (compared to SynDiff’s 26.34 dB), and in the
PD to T2 task, it reaches 33.12 dB PSNR versus SynDiff’s 29.81 dB. Similar performance
trends are observed across other tasks, demonstrating that I2I-Galip matches SynDiff’s ef-
fectiveness while preserving finer structural details, avoiding the oversmoothing effect seen
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in SynDiff, as illustrated in the qualitative figures. Additionally, I2I-Galip requires far
fewer network parameters (see Table 3) and offers faster inference by circumventing the
iterative diffusion process inherent to SynDiff (see Table 4 for details). Unlike other com-
peting methods such as CycleGAN, U-GAT-IT, and UNIT, which suffer from noise artifacts
that degrade output quality, I2I-Galip also effectively avoids these issues while maintaining
sharp, accurate translations.

Table 2: Single-domain image translation results in CT-MRI dataset for T1- and T2-
weighted images.

T1->CT T2->CT

PSNR SSIM PSNR SSIM

I2I-Galip 26.13 90.86 27.08 91.30

CycleGAN 24.55 78.63 27.39 89.92

U-GAT-IT 25.79 89.34 26.01 87.48

SynDiff 23.81 75.16 21.73 75.07

UNIT 26.02 79.22 25.15 75.30

EGSDE 19.03 74.63 14.74 66.67

Table 3: Model complexities are illustrated using total number of parameters for each
competing method. The third row indicates the number of required generator and discrim-
inator networks, given the specified number of domain. T and P(.) represents the number
of domains for a multi-modal translation problem and permutation operator respectively.
Total parameters are calculated for a representative case where T = 4.

Network/Model I2I-Galip CycleGAN U-GAT-IT SynDiff UNIT EGSDE

Generator (G) 13.2M 11.3M 278.9M 39.7M + 7.8M 5.4M + 5.4M 164M

Discriminator (D) 23.9M 2.7M 56.4M 27.7M + 2.7M 2.8M 0

Times (G, D) 1, T P(T,2), P(T,2) P(T,2), P(T,2) P(T,2), P(T,2) P(T,2), P(T,2) T, 0

Total 108.8M 169.5M 4023.6M 936.6M 162.2M 657.2M

Table 4: Memory usage, training time, and inference time for the most lightweight and
the most computationally intensive methods for a single-domain translation with a NVIDIA
RTX A5000 gpu.

CycleGAN I2I-Galip SynDiff

Memory 3,128 MiB 7,074 MiB 9,638 MiB

Training Time ≈4.5h ≈27h ≈35h

Inference Time 0.00353s 0.04883s 0.1792s

4.1. Ablation Studies

As shown in Table 5, we assess the contribution of each loss component and compare I2I-
Galip with BiomedCLIP against its variant equipped with OpenCLIP (Ilharco et al., 2021)
trained on Liaon (Schuhmann et al., 2022) in both single- and multi-domain settings. The
majority of the performance gains stem from adversarial and cycle losses, although CLIP,
identity, and CLS losses add notable benefits in the multi-domain scenario. In contrast, the
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adversarial loss tends to dominate in the single-domain case, reducing the impact of the
other loss terms. We discuss the underlying reasons for these findings in Section 5.

Table 5: Single- and multi-domain ablation results in IXI dataset. PSNR and SSIM values
are averaged across the whole test set.

I2I-Galip-S I2I-Galip-M

IXI IXI

PSNR SSIM PSNR SSIM

Proposed 29.09 92.48 29.07 92.35

λadv = 0 19.80 60.80 18.62 49.05

λcls = 0 29.00 92.26 28.88 91.99

λcycle = 0 27.91 90.93 28.08 90.88

λclip = 0 28.90 92.23 28.99 92.18

λidentity = 0 28.74 91.12 28.76 92.01

CLIP-Laion-2B 19.06 66.67 27.54 91.21

5. Discussion and Limitations

We observe only marginal gains by incorporating identity, CLS, and CLIP losses in our ex-
periments—even after trying different metrics such as Cosine, L2, and Contrastive. These
losses seem overshadowed by the adversarial loss, given that our discriminator (powered by
BiomedCLIP’s ViT and MSE loss) can detect fake images early on, effectively function-
ing as a strong regularizer. In single-domain settings, the broad, generalized embeddings
(e.g., from OpenCLIP) can further destabilize this adversarial training, misaligning with
the narrower data distribution and producing noise-like outputs. As a result, CLIP guid-
ance—prone to providing inaccurate translation directions (Sauer et al., 2023; Kwon and
Ye, 2022)—loses additional effectiveness.

Moreover, because BiomedCLIP serves as our multi-modal foundation model, our ap-
proach inherits its contrastive pre-training strategy, which emphasizes semantically mean-
ingful features at the expense of finer image details. We also found our method to be
sensitive to caption choices for the target domain, but experimenting with diverse caption-
ing styles did not yield improvements. Consequently, we adopt BiomedCLIP’s simplest
templates (e.g., “This MRI is XX-weighted,” “This is pelvic MRI,” or “This is pelvic CT”).
We leave further exploration of this aspect to future work.

6. Conclusion

We propose an unsupervised multi-modal image translation framework employing a gen-
erative adversarial network which is empowered with a pre-trained vision-language model.
Our framework improves upon the cycle-consistent translation models while enhancing the
multi-domain translation performance with a reduced computational budget.
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Appendix A. Related Works

Cycle-consistent image translation. Zhu et al. revolutionized the field of unsupervised
image translation with their proposal of CycleGAN (Zhu et al., 2017). Yi et al. proposed
DualGAN (Yi et al., 2017) which is a concurrent work with CycleGAN offering the same
cycle-consistency loss. Various studies followed the cycle-consistency constraint for more
faithful translation in the unsupervised setting. Liu et al. proposed UNIT (Liu et al., 2017)
for uni-modal translation where a shared latent space is assumed between source and target
modalities. Huang et al. proposed MUNIT (Huang et al., 2018) where UNIT’s assumption
of shared latent space is divided into content and style for multi-domain translation. Lee et
al. (Lee et al., 2018) introduced DRIT, which shares a similar approach to MUNIT by using
disentangled content and attribute latents for multi-domain translation. Choi et al. pro-
posed StarGANv1 (Choi et al., 2018) and StarGANv2 (Choi et al., 2020) where they utilized
a separate style encoder network to generate distinct style codes to be used in generator
for multi-domain translation. Perera et al. (Perera et al., 2018) proposed an alternative
method where they utilize multi-domain input modalities with a latent-consistency loss.
Kim et al. proposed U-GAT-IT (Kim et al., 2019) with an advanced generator equipped
with adaptive layer instance normalization layers and attention. Torbunov et al. proposed
UVCGan (Torbunov et al., 2023) employing a pre-trained vision transformer as generator
in a cycle-consistent framework for improved translation performance.
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Text-guided image translation. Following the advancements in vision-language models
(Radford et al., 2021) several text-guided unsupervised image translation methods proposed
with or without cycle-consistency constraint. Park et al. proposed LANIT (Park et al.,
2023) where they use CLIP to generate pseudo labels for unlabeled images with a similar
approach in Starganv2. Gal et al. proposed StyleGAN-NADA (Gal et al., 2022) for CLIP
driven adaptation of Stylegan2 generator (Karras et al., 2020). Patashnik et al. proposed
StyleCLIP (Patashnik et al., 2021) where they invert source image to find its latent code for
CLIP guided feature manipulation. Yu et al. proposed (Yu et al., 2022) a counterfactual
image manipulation pipeline using CLIP.

Diffusion-based image translation. More recently, building on the success of diffu-
sion models in image generation, various unsupervised image translation methods utiliz-
ing diffusion-based backbones have been proposed. Zhao et al. proposed EGSDE (Zhao
et al., 2022) where they utilize energy-guided translation between diversely trained diffu-
sion models. Özbey et al. proposed SynDiff (Özbey et al., 2023), where they use multiple
cycle-consistent diffusive and non-diffusive generators for improved translation performance.
Kwon et al. proposed DiffuseIT (Kwon and Ye, 2022) and used pre-trained vision transform-
ers as guidance in image manipulation. Tumanyan et al. (Tumanyan et al., 2023) offered
a plug and play framework to adapt pre-trained text-to-image diffusion models in image
translation. Zhan et al. proposed MedM2G (Zhan et al., 2024), where they proposed a uni-
fied multi-modal diffusive framework for text to image, image to text synthesis and image
translation tasks. Our approach shares similarities with MedM2G (Zhan et al., 2024) in em-
ploying a multi-modal text-guided framework for image translation. However, our model is
over an order of magnitude smaller, leveraging a feed-forward generative adversarial network
architecture and enforcing cycle-consistency across translations. We also incorporate com-
mon loss terms with DiffuseIT (Kwon and Ye, 2022), utilizing CLS tokens from pre-trained
vision transformers for semantically meaningful information extraction. Nonetheless, our
approach differs in its use of cycle-consistency and the feed forward generative adversarial
methodology adopted. We named our method in reference to the text-to-image generative
adversarial model Galip (Tao et al., 2023). However, apart from the CLIP based feature
extraction utilized for the Discriminator, our method does not share further similarities
with Galip in terms of architecture or training methodology.

Appendix B. Datasets and Competing Methods

B.1. Datasets

1. IXI: Translation performance demonstrated in a single-coil brain MRI dataset from
(http://brain-development.org/ixi-dataset/). T1-, T2- and PD-weighted acquisitions
are considered. In IXI, 25 subjects are used for training, 5 for validation and 10 for
testing.

2. CT-MRI: Translation performance demonstrated in pelvic T1- and T2-weighted MRI
and CT data from (Nyholm et al., 2018). In CT-MRI dataset, 9 subjects are used for
training, 1 for validation and 4 for testing.
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B.2. Competing Methods

1. CycleGAN: Cycle-consistent generative adversarial model is considered (Zhu et al.,
2017). The Adam optimizer is utilized for training with an initial learning rate set at
0.0002, which linearly decreased to 0 after the 50th epoch. The training process spans
a total of 100 epochs. Weights for adversarial, cycle, identity losses are selected as 1,
10, 0.5 respectively.

2. U-GAT-IT: An attention guided GAN model with adaptive layer-instance normal-
ization designed for unsupervised image translation is considered (Kim et al., 2019).
Adam optimizer is utilized for training with a learning rate of 0.0001. Training lasts
for 100 epochs. Weights for adversarial, cycle, identity and CAM losses are selected
as 1, 10, 10, and 1000 respectively.

3. SynDiff : A cycle-consistent diffusion-based image translation model is considered
(Özbey et al., 2023). Adam optimizer is used for training with a learning rate of
0.0001. Training length is 50 epochs. The weights assigned to the cycle-consistency
and adversarial loss terms are λϕ

1 , λ
θ
1 = 0.5 and λϕ

2 , λ
θ
2 = 1, respectively. The noise

variance schedule is bounded between βmin = 0.1 and βmax = 20. Other diffusion
related hyper-parameters are directly obtained from (Özbey et al., 2023).

4. UNIT: An unsupervised GAN model designed for unsupervised image translation is
considered (Liu et al., 2017). Adam optimizer is utilized for training with a learning
rate of 0.0001 for 100 epochs. Weights for adversarial, image, style, and content
reconstruction losses are selected as 1, 10, 1, 1 respectively.

5. EGSDE: A diffusion based unpaired image translation model is considered (Zhao
et al., 2022). Seperate DDPM models are trained for each translation domain to be
utilized in EGSDE model. 500,000 diffusion steps are used for training of the DDPMs
and T is selected as 150 to maintain source structure, and cross-validated weight
parameters λs and λi are selected as 1× 10−7 and 10.
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