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ABSTRACT

Recent advancements in scalable deep architectures and large-scale pretraining
have enabled text-to-video generation has achieved unprecedented capabilities
in producing high-fidelity, instruction-following content across a wide range of
styles, supporting applications in advertising, entertainment, and education. How-
ever, these models’ ability to render precise on-screen text, such as captions or
mathematical formulas, remains largely untested, posing significant challenges
for applications requiring exact textual accuracy. In this work, we introduce
T2VTextBench, the first human-evaluation benchmark dedicated to evaluating
on-screen text fidelity and temporal consistency in text-to-video models. Our suite
of prompts integrates complex text strings with dynamic scene changes, testing
each model’s ability to maintain detailed instructions across frames. We evaluate
ten state-of-the-art systems, ranging from open-source solutions to commercial
offerings, and find that most struggle to generate legible, consistent text. These
results highlight a critical gap in current video generators and provide a clear
direction for future research aimed at enhancing textual manipulation in video
synthesis.

1 INTRODUCTION

Text-to-video generative AI (Singer et al., 2023; Hong et al., 2023; Wu et al., 2023; Yang et al.,
2024) has been a game-changer in real-world applications such as advertising, entertainment, and
education purposes. Thanks to recent advances in scalable deep architectures, particularly diffusion
models (Ho et al., 2022; Esser et al., 2023) and Transformers (Arnab et al., 2021; Liu et al., 2022),
and large-scale training on text-video pairs harvested from the web, such systems currently exhibit
unprecedented instruction-following ability and aesthetic quality across a wide variety of styles.
State-of-the-art models such as Sora (OpenAI, 2024) and SD Video (Blattmann et al., 2023) are
rapidly being adopted as central elements of users’ online experiences, gaining widespread attention
and impact.

Despite these successes, there is growing concern over text-to-video models’ ability to generate ac-
curate on-screen text (Park et al., 2024; Liu et al., 2024a). In many applications, this limitation
can have serious consequences. For instance, in advertising, a brand name must be rendered pre-
cisely, and in educational videos, explanatory text or mathematical formulas also should appear
correctly. While recent research has significantly improved textual manipulation in text-to-image
models (Chen et al., 2023; Tuo et al., 2024; Zhu et al., 2024; Peng et al., 2025), the correspond-
ing capability in text-to-video remains largely untested. A systematic evaluation of on-screen text
fidelity in video generation is therefore essential both for guiding downstream applications and for
uncovering fundamental model limitations.

To address this gap, we propose T2VTextBench, a comprehensive benchmark for evaluating textual
manipulation in modern text-to-video models. Our benchmark stresses both complex textual content
and temporal coherence (consistent rendering across frames), probing each model’s ability to follow
intricate human instructions. The benchmark also incorporates comprehensive human evaluation,
aligning with human preferences and addressing nuances in temporal dynamics. We systematically
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evaluate ten leading models, including both open-source and proprietary systems, to cover the latest
advances in text-to-video generation.

Our contributions are summarized as follows:

• We propose T2VTextBench, a comprehensive human evaluation on how up-to-date text-to-
video generators manipulate on-screen text in videos.

• We analyze the impact of temporal text transformations, geometric, visual, and structural,
and demonstrate that current text-to-video models are unstable with these changes.

• We examine the effect of text granularity, finding that models perform well on single words
but show significant gaps when generating longer sentences and random individual charac-
ters.

• We present a cost analysis evaluating the cost-effectiveness of current models for generating
on-screen text.

Roadmap. We systematically review the relevant works of this benchmark in Section 2. We de-
scribe the details of our proposed T2VTextBench benchmark in Section 3. We show the key assess-
ment results of our benchmark in Section 4. We present some concluding remarks for this paper in
Section 5.

2 RELATED WORKS

Visual Text Generation. Generative visual models have achieved unprecedented success in var-
ious real-world applications, producing human-preference-aligned images and videos with high fi-
delity and aesthetic standards (Ho et al., 2020; Song et al., 2021a;b; Lipman et al., 2023; Hong et al.,
2023; Wu et al., 2023; Yang et al., 2024). Despite these advancements, generating accurate and
coherent text in visual outputs has increasingly become a significant challenge. One prominent line
of research focuses on text rendering in general text-to-image models (Chen et al., 2023; Yang et al.,
2023; Zhu et al., 2024; Zhang et al., 2024; Zhao et al., 2024). For instance, TextDiffuser (Chen
et al., 2023) determines text layout using a Transformer model and generates textual images with
diffusion models conditioned on both textual prompts and text layouts, while GlyphControl (Yang
et al., 2023) enhances text rendering capabilities. Next, SceneVTG (Zhu et al., 2024) leverages the
strong reasoning ability of multimodal LLMs to suggest desirable text layouts and content at various
scales and levels for diffusion model conditioning.

Another important line of research focuses on typography design and generation using generative
AI. These models generate specific textual icons or word art using specially designed architectures,
with many early works emphasizing the generation of static images (He et al., 2023; Xiao et al.,
2024; Park et al., 2024; Choi et al., 2024). Recently, KineTy (Park et al., 2024) introduced a method
for generating textual videos with diverse visual effects, employing zero-convolution guidance to
control text visibility and glyph loss to ensure readability. Despite previous successes in text manipu-
lation within general text-to-image models and typography-focused models, these approaches either
overlook the temporal dynamics of multi-frame videos or fail to generate general-purpose videos
beyond typography. Consequently, there remains a substantial gap in text manipulation within text-
to-video models, making it highly desirable to benchmark current progress and highlight future
research directions.

Several pioneering studies have explored text generation in text-to-video models. For example,
Wan2.1 (Alibaba, 2025) enhances text-to-video models’ intrinsic text generation capabilities through
data curation and large-scale training, incorporating hundreds of millions of synthetic text images
along with OCR-annotated real image-text pairs. Meanwhile, Text-Animator (Liu et al., 2024a) pro-
poses a plug-and-play approach to improve the 3D-Unet in existing text-to-video generation mod-
els, injecting text embeddings via ControlNet and incorporating a camera control module to embed
perspective-related pose information. However, while these models excel at generating relatively
short text in videos, they may not adequately address complex temporal dynamics involving motion
or text organization. In contrast, our benchmark considers these factors and provides an in-depth
evaluation.
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Benchmarking Text-to-Video Generative Models. Due to the widespread real-world impact of
text-to-video models, evaluating their capabilities has become a fundamental research topic. Prior
work on benchmarking these generative models has addressed many important aspects, including
but not limited to the composition of different properties (Feng et al., 2024; Sun et al., 2024), video
fidelity (Liu et al., 2023), temporal coherence (Liao et al., 2024; Ji et al., 2024), object counting (Guo
et al., 2025a; Cao et al., 2025b), physical constraint adherence (Meng et al., 2024; Guo et al., 2025b),
and storytelling (Bugliarello et al., 2023). Specifically, (Liu et al., 2023) proposed a fine-grained
evaluation benchmark for text-to-video models, considering three fundamental factors: major con-
tent, controllable attributes, and prompt complexity, with manual evaluation conducted on four main-
stream text-to-video models. EvalCrafter (Liu et al., 2024b) introduces a comprehensive benchmark
featuring an exhaustive set of prompts, 17 automated objectives, and coverage both image-to-video
and text-to-video models. VBench (Huang et al., 2024a;b) evaluates video quality and prompt con-
sistency across 16 human-aligned dimensions, each with tailored prompts and metrics validated
against human preferences. Despite the effectiveness of previous benchmarks, most focus on con-
crete entities (e.g., humans, real objects) while overlooking the ability to generate text and maintain
temporal text consistency, which motivates the exploration in our paper. The proposed benchmark
inspires a wide range of future works, such as limitation of deep visual architectures (Chen et al.,
2025b; Li et al., 2025; Hu et al., 2024a; 2025a;b; Chen et al., 2025c; 2024; Li et al., 2024; Ke et al.,
2025), theory in diffusion models (Hu et al., 2024b; 2025c; Chen et al., 2025a; Cao et al., 2025a),
novel diffusion model architectures (Wen et al., 2024; Wang et al., 2024b; 2023; 2024a; Liang et al.,
2025).

3 THE T2VTEXTBENCH BENCHMARK

We present our proposed T2VTextBench benchmark in this section. We show the baseline models
in Section 3.1. We describe the detailed setting of benchmark prompts in Section 3.2. We illustrate
our evaluation standard in Section 3.3.

3.1 BASELINE MODELS

Table 1: Overview of 10 Evaluated Text-to-Video Models in Our Benchmark.

Model Name Year Organization # Params Open
SD Video (Blattmann et al., 2023) 2023 Stability AI 1.4B Yes

Kling (Kling, 2024) 2024 Kuai N/A No
Dreamina (ByteDance, 2024) 2024 ByteDance N/A No

Qingying (Zhipu, 2024) 2024 Zhipu 5B Yes
Sora (OpenAI, 2024) 2024 OpenAI N/A No

Mochi-1 (Genmo, 2024) 2024 Genmo 10B Yes
LTX Video (HaCohen et al., 2024) 2024 Lightricks 2B Yes

Hailuo (MiniMax, 2025) 2025 MiniMax N/A No
Wan 2.1 (Alibaba, 2025) 2025 Alibaba 14B Yes

Pika 2.2 (Pika, 2024) 2025 Pika Labs N/A No

In this paper, we evaluate a broad selection of modern text-to-video generators that have been pub-
licly available from 2023 to 2025. This model selection reflects the latest advancements in text-to-
video systems and reliably highlights their inherent limitations in handling complex textual content
within videos. Specifically, we assess 10 models, including both commercial and open-source gen-
erators. Basic model information is provided in Table 1.

To generate videos, this benchmark adopts the lowest accessible resolution of these generative mod-
els, typically 720p, to reach a balance between video quality and textual accuracy. We maintain a
16:9 width-height ratio and limit the length of videos to a short span, usually around 4 seconds, to
focus the assessment on core textual behaviours. Additional details regarding implementation can
be found in Appendix A.

3
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3.2 BENCHMARK PROMPTS

Stepwise or Symbolic 
Visualization App & Web UI Simulation Everyday Digital Moments

Sora
Prompt: Types the word "hello" on the 
screen, one letter at a time: h, e, l, l, o. 

Each letter appears clearly in the center.

Pika 2.2
Prompt: Unlocking an achievement. A 
badge icon pops up on screen with the 

text: "Achievement Unlocked: First 
Blood – Defeat your first enemy."

LTX Video
Prompt: Starting a new RPG quest. A 
dialogue box appears with the text: " 
Welcome, traveler. Will you accept 
the quest to retrieve the lost amulet? 

(Yes/No)"

Kling
Prompt: Joining a game in LOL. A 

countdown reads: "Game starts in 3... 2... 
1..."

Qingying
Prompt: Navigating with GPS. A map 

screen shows the text "Turn right 
onto Oak Avenue in 200 m." and a 

blue route line curves right.

Dreamina
Prompt: Scanning a QR code. A 

smartphone camera viewfinder frames a 
black-and-white code, then shows the 

text "Open 
https://example.com/welcome" on screen.

Figure 1: T2V Model Generate Text Result Across Different Measures.

Cinematic or Presentation 
Scenes Math Relative Multilingual (Chinese)

Mochi-1
Prompt: Turning book pages. Page 1 

has the text "What is the fastest 
animal?" Page 2 has the text "The 

Peregrine Falcon."

Hailuo
Prompt: Opening credits of a 

documentary. One by one, the words 
appear: " Produced by Terra Lens 

Studios", "Directed by Ava Kwon."

Wan 2.1
Prompt: List all the even numbers from 

1 to 20 in order.

Pika 2.2
Prompt (in Chinese): Surfing the Internet. A 
web browser window shows the Wikipedia 
article specifically about the 'Bald Eagle', 

and the view is scrolling down from the top 
towards the bottom of the page.

SD Video
Prompt: Writing equations on the 

blackboard. We write the linear equation 
y = ax + b from left to right on a 

blackboard.

Kling
Prompt (in Chinese): Typing in a chat 

app. A chat bubble appears with the text
“Are we still meeting at 3 PM?” 

followed by your reply bubble “Yes, see 
you then!"

Figure 2: T2V Model Generate Text Result Across Different Measures.

In this project, we design a prompt suite to assess the text generation capabilities of text-to-video
models under complex temporal dynamics. Our evaluation scenarios are grounded in real-world
settings, addressing both text manipulation and contextual coherence. Specifically, we consider
six types of prompts: Stepwise or Symbolic Visualization, App & Web UI Simulation, Everyday
Digital Moments, Cinematic or Presentation Scenes, Math-Related, and Multilingual (Chinese).
Each category consists of 8 prompts, and with additional ablation study prompts included in the
overall results, we have a complete suite of 73 prompts for each generative model. Example prompts
and corresponding videos can be found in Figure 1 and Figure 2.

3.3 EVALUATION STANDARD

Inspired by the prior success of FETV (Liu et al., 2023) and VideoPhy (Bansal et al., 2025), we
employ a fully human-evaluation approach in this paper to align with human preferences and ac-
count for the inherent nuances of temporal dynamics and text within specific contexts. We invite
three undergraduate or graduate students with a general level of expertise in AI, who independently
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examine each output video and assign it to one of the predefined accuracy levels. Specifically, we
introduce a 0-1 point scale evaluation standard for assessing the ability of text-to-video models to
generate text:

• 0 (Poor): The model does not understand the prompt requirements at all, producing gener-
ated text that is completely gibberish or irrelevant.

• 0.25 (Fair): The model partially understands the prompt’s textual requirements, but only
a small portion of the generated text (less than 50%) is correct or recognizable, while the
majority of the content remains significantly incorrect or missing.

• 0.5 (Good): The model demonstrates a solid understanding of the prompt’s textual require-
ments, with the majority (50% - 80%) of the generated text being correct and capturing the
core content, though some errors or omissions persist.

• 1 (Excellent): The model accurately comprehends and executes the textual requirements
of the prompt, generating text that is either almost entirely correct or contains only a few
minor, insignificant flaws.

This evaluation method grants full credit for entirely correct generations while also awarding partial
points for near-accurate cases. For each model, we compute an overall text-generation score by
averaging the scores across all prompts and annotators. This final score is then used to rank the
models accordingly.

4 EXPERIMENTS

In Section 4.1, we show the overall assessment results on generating textual contents. In Section 4.2,
we show some observations of text-to-video models’ performance changes under text spatial or
colour transformations. In Section 4.3, we present the influence of prompts with various levels of
text organization on generation quality. In Section 4.4, we show the pricing analysis.

4.1 OVERALL EVALUATION RESULTS

Table 2: Overall Results Within Various Prompt Categories.

Model Stepwise App/Web UI Digital Moments Cinematic Math Multilingual Avg. Score
Kling 0.03 0.00 0.00 0.00 0.00 0.00 0.01

Dreamina 0.06 0.19 0.06 0.19 0.09 0.09 0.11
Qingying 0.13 0.13 0.25 0.22 0.06 0.25 0.17
Mochi-1 0.13 0.13 0.25 0.16 0.28 0.22 0.19

LTX Video 0.19 0.19 0.25 0.22 0.22 0.16 0.20
Wan 2.1 0.28 0.44 0.38 0.34 0.31 0.25 0.33

SD Video 0.28 0.34 0.34 0.38 0.31 N/A 0.33
Hailuo 0.25 0.47 0.34 0.50 0.25 0.31 0.35

Pika 2.1 0.41 0.28 0.44 0.41 0.31 0.34 0.36
Sora 0.44 0.50 0.47 0.28 0.28 0.25 0.37

In this experiment, we compared all the models previously listed in Table 1 based on their text ma-
nipulation capabilities across six prompt categories. Specifically, the table presents all the categories
from Section 3.2 with the following acronyms: Stepwise or Symbolic Visualization (Stepwise), App
& Web UI Simulation (App & Web UI), Everyday Digital Moments (Digital Moments), Cinematic
or Presentation Scenes (Cinematic), Math-Related (Math), and Multilingual (Chinese) (Multilin-
gual). The results are presented in Table 2.

According to the table, all models exhibit noticeable failures in generating videos with textual con-
tent. The highest average score is reported for Sora, which is only 0.37. Another striking result is
from Kling, which has almost no text generation ability and fails entirely in all categories except for
Stepwise visualization, where it achieves only a 0.01 average score. This highlights the limitations
of current text-to-video models in generating coherent and accurate textual content.
Observation 4.1. Recent advances in text-to-video generative models do not adequately support the
generation of textual content, as all models have an average score below 0.4, indicating a consistent
failure.

5
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Another observation concerns the large variance between both models and prompt categories. First,
a model’s performance can differ significantly across prompt categories. For instance, Sora reports
a score of 0.5 for App/Web UI prompts, but as low as 0.28 for Cinematic prompts. Meanwhile,
Hailuo achieves 0.5 in Cinematic scenarios, but its score drops to 0.25 for mathematical text prompts.
Across different models, Sora and Pika 2.1 have overall accuracy above 0.35, while Dreamina and
Kling score below 0.12, demonstrating a large variance between models. Therefore, we observe the
following:
Observation 4.2. The variance between different models and prompt categories is significant, high-
lighting the instability of current text-to-video models in textual generation tasks.

Qualitative Study. To further verify our observations, we carefully examine some video examples
in Figure 1 and Figure 2 qualitatively. In Figure 1, Kling produces only random symbols with no
recognizable letters, Dreamina cannot understand the prompt accurately and generates the prompt
partially, and Qingying generates overlapping glyphs, making it less readable. Likewise, in Figure 2,
Mochi-1 generates meaningless strings unrelated to the prompt, and Wan 2.1 outputs distorted nu-
merals that do not match the target text. These failures in both figures, confirm the uniformly poor
text-rendering ability of current models in Observation 4.1.

Besides, in Figure 1, Sora successfully follows a multi-step English prompt with clear, coherent
letters, while Kling fails completely and LTX Video produces partially blurred characters. In Fig-
ure 2, Hailuo correctly renders the Chinese prompt with only minor glyph errors, whereas SD Video
replaces the target formula with an incorrect equation. These differences across the same and dif-
ferent prompts highlight the instability and uneven performance of text-to-video models as shown
in Observation 4.2.

4.2 IMPACT OF TEXT TRANSFORMATIONS

Wan 2.1 Sora

LTX Video
Pika 2.2

Kling

Dreamina

Qingying
Mochi-1

Hailuo

SD Video
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

0.31

0.25

0.00

0.38

0.00

0.13

0.19

0.31

0.25

0.19

0.33 0.33

0.17

0.42

0.00

0.17

0.08

0.42

0.25

0.50

0.42 0.42

0.33

0.58

0.00

0.25 0.25

0.50

0.58

0.25

Text Geometric Transform
Text Visual Transform
Text Structural Transform

Figure 3: Ablation Study on Text Generation under Different Transformations.

In this study, we explore the capability of text-to-video models to generate complex geometric,
visual, and structural transformations of text, thereby evaluating their ability to follow more intricate
human instructions. Specifically, we use three types of prompts (see Figure 4 for example inputs
and outputs):

• Geometric: Prompts that require simple geometric transformations of the text, such as
translation or rotation.

• Visual: Prompts that specify changes in visual properties of the text, such as color shifts,
fading, or blinking.

• Structural: Prompts that request structural transformations of the text, for example, ren-
dering the text as a waving flag or a rainbow.

The results of this ablation study are shown in Figure 3. First, we observe that all models exhibit
substantial room for improvement. For example, the best-performing model, Pika 2.2, achieves
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Prompt: Flipping the word "hello". First, display the word "hello", then flip it horizontally 
to show "olleh", and finally flip it back to "hello".

Prompt: Rainbow color shift on "hello"  . Show the word "hello" in normal color, then cycle 
its letters through a rainbow gradient before returning to the original color.

Pika 2.2

Kling

LTX
Video

Mochi-1

Prompt: Waving the word "hello"  . Display the word "hello", then make it wave smoothly 
from side to side like a flag, and finally return to its original position.

Prompt: Sliding the word "hello". Place the word "hello" off-screen, and slide it from the 
left, then out from the right, and back to the left.

Text Motion

Figure 4: Case Study on Text Transformations.

scores of 0.38, 0.42, and 0.58 on geometric, visual, and structural transforms, respectively. As in
earlier experiments, Kling fails on all three types of prompts, scoring zero across the board. Across
all models and classes, no score exceeds 0.58, and most scores lie between 0.2 and 0.45. Thus, we
have the following observation:

Observation 4.3. There remains a significant performance gap on all three text-motion classes,
indicating a clear limitation of current text-to-video models in generating temporal variations of
textual content.

We also observe that prompt difficulty varies by category. Figure 3 reveals a consistent difficulty
ranking, except for Qingying and SD Video, where geometric transforms yield the lowest scores,
visual transforms perform moderately better, and structural transforms receive the highest scores.
For example, LTX Video fails entirely on geometric prompts, scores 0.17 on visual transforms, and
peaks at 0.33 on structural transforms. While the category gaps are modest overall, some models
like LTX Video show dramatic variation across classes. Conversely, models such as Wan 2.1 exhibit
consistent performance, with only a 0.10 difference between its lowest (0.31 on geometric) and
highest (0.42 on structural) scores. Thus, we have the following observation:

Observation 4.4. With few exceptions, most models consistently score lowest on geometric trans-
formations, achieve moderate performance on visual changes, and perform best on structural trans-
formations. The size of this category-wise performance gap varies considerably between models.

Qualitative Study. To further demonstrate the widespread failure of text-to-video models in gen-
erating transformed textual content, we highlight several illustrative bad cases in Figure 4. All four
models fail to render the word “hello” correctly, producing outputs such as “lhello” in LTX Video,
“helo” in Mochi-1, or entirely garbled text in Kling. In addition to incorrect textual rendering, the
transformation instructions are also ignored. For example, LTX Video changes only the background
color and does not alter the text color as specified.

4.3 IMPACT OF TEXT RANDOMNESS

In this study, we consider an in-depth setting that primarily aims to examine whether text-to-video
diffusion models truly understand text manipulation or merely memorize text snippets from their

7
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Figure 5: Ablation Study of Prompts with Different Levels of Text Randomness.

training data. Specifically, we explore different levels of randomness in our textual prompts and
introduce a three-level prompt suite (see Figure 6 for prompt and video examples):

• Normal Sentence: All sentences generated at this level are meaningful and recognizable.
• Random Word: These prompts contain sentences composed of random and uncommon

words with no actual meaning.
• Random Character: All characters in this level are completely random and meaningless.

Our results for textual randomness can be found in Figure 5. First, we observe that in all three
categories, despite an outlier observed in Wan 2.1, random character prompts yield the worst perfor-
mance. For instance, in LTX Video, the result is 0.9 for random word prompts, while the counterpart
for random character prompts is only 0.3. The second-best performing category is the random word
prompt, as normal sentence prompts perform significantly worse than random word prompts in Wan
2.1 (0.75 to 0.45), LTX (0.9 to 0.6), Pika 2.2 (1 to 0.55), and Hailuo (0.6 to 0.45). In other mod-
els, the gap between random word and normal sentence prompts is either negligible or nonexistent.
Thus, we observe the following:
Observation 4.5. Across all models, random word prompts yield the best performance, normal
sentence prompts show moderate performance, and random character prompts perform the worst.
This suggests that text-to-video models primarily memorize textual training data at the word level,
while their ability to control sentence structure and individual characters still requires improvement.

Qualitative Study. We further present a case study in Figure 6 to support our quantitative find-
ings. Specifically, we find that Pika 2.2 almost perfectly generated the correct text and performed
excellently in terms of text continuity, which aligns with its strong performance in Figure 5. Al-
though Dreamina correctly generated the scene, it included text that was irrelevant to the task. Kling
completely failed to generate the correct text and was unable to follow the task instructions. These
results match their low quantitative performance.

4.4 PRICING ANALYSIS

Pricing analysis plays a crucial role in identifying the most cost-efficient models, enabling users
to make informed, cost-effective decisions while ensuring the desired output quality. We compare
the costs and performance scores of text-to-video models based on the 73 prompts discussed in
Section 3.2. By evaluating each model’s average cost and average performance score, we assess the
trade-offs between expense and output quality. Specifically, the SD Video model supports only 65
prompts due to its inability to handle Chinese input.
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Random Character Prompt Random Word Prompt Normal Sentence Prompt

Pika 2.2

Wan 2.1

Dreamina

Kling

Prompt: The wall is graffitied with the words: 
"dF2@jMnV%qWxL4!Z"

Prompt: The wall is graffitied with the words:
"  Squizz, Blorf, Mizzent "

Prompt: The wall is graffitied with the words: 
"To live is to suffer, to survive is to find meaning"

Prompt: There is a quote on the blackboard: 
"tR&W1qP?oIuY!aSK$lMnB"

Prompt: There is a quote on the blackboard: 
"Gribble, Squeez, Frabjous"

Prompt: There is a quote on the blackboard: 
"To be or not to be, this is a question"

Prompt: A message is written in the sand: 
"bN5&yGhP$eJsK7*F"

Prompt: A message is written in the sand:
"  Jibber, Zonkle, Frubble"

Prompt: A message is written in the sand: 
"The unexamined life is not worth living" 

Prompt: The noticeboard displays a sentence: 
"rT8$kYbC^pHzU5#D"

Prompt: The noticeboard displays a sentence: 
"  Blimpy, Womble, Jargle "

Prompt: The noticeboard displays a sentence: 
"No man is an island entire of itself"

Figure 6: Case Study on Text Randomness.

Table 3: Cost and Score Across Different Models.

Model Prompt Number Total Cost($) Avg. Cost($) Avg. Score
Kling 73 15.84 0.22 0.01

Dreamina 73 3.79 0.05 0.13
Qingying 73 5.00* 5.00* 0.18
Mochi-1 73 9.12 0.13 0.22

LTX Video 73 4.39 0.06 0.28
Sora 73 20.00* 20.00* 0.36

Hailuo 73 21.90 0.30 0.37
SD Video 65 17.30 0.24 0.38
Wan 2.1 73 Free Free 0.39
Pika 2.2 73 20.00 0.27 0.44

The results of the pricing analysis are shown in Table 3. First, we observe a positive correlation
between a model’s pricing and text generation quality. For example, Dreamina and Mochi-1 are
among the most affordable models, with average costs of 0.05 and 0.13, respectively, but their
average performance scores are relatively low, at 0.13 and 0.22. In contrast, higher-priced models
like Hailuo and Pika 2.2, priced at 0.30 and 0.27, achieve much better results, with scores of 0.37
and 0.44. Thus, we observe the following:

Observation 4.6. Apart from a few outliers, higher-cost models tend to deliver better generation
quality, reflecting a general positive correlation between price and performance.

5 CONCLUSION

In this work, we introduced T2VTextBench to systematically evaluate on-screen text fidelity in mod-
ern text-to-video generation models, addressing a critical gap in their ability to render precise textual
content. Our extensive human-evaluation of ten leading systems revealed a consistent failure to gen-
erate accurate on-screen text (all models scoring below 0.43), significant instability across prompt
categories and model architectures, and clear limitations under temporal text transformations, par-
ticularly geometric ones. We further showed that while models handle single words reasonably well,
their performance degrades sharply on longer sentences and arbitrary character sequences, indicating
reliance on memorized word-level patterns. Finally, our cost analysis uncovered a positive corre-
lation between API cost and generation quality, with Wan 2.1 emerging as the most cost-effective
solution. These findings highlight the need for future research on integrating explicit text model-
ing, enhancing temporal coherence, and developing more efficient architectures to support reliable
textual manipulation in video.
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Appendix
Roadmap. In Section A, we describe the detailed implementation settings for our selected base-
line models. In Section B, we outline an impact statement on the societial implications of this
benchmark. In Section C, we show additional video samples under different prompts.

A BASELINE DETAILS

In this subsection, we extend the basic model information in Table 1 with extra details of these text-
to-video generation models. Specifically, our additional experimental settings are shown as follows:

• Kling (Kling, 2024): For Kling’s four different versions, we select a recent version, Kling
1.6, within its standard generation mode. We use its basic standard generation mode with
no creative parameters. It does not offer camera movement options. We use the default
random seed setting in the generation processes.

• Wan 2.1 (Alibaba, 2025): We adopt the fast generation mode for Wan 2.1 with an aspect
ratio of 16:9. We use the default setting for prompt input and Inspiration Mode, and do not
add sound effects in the generated videos.

• Sora (OpenAI, 2024): Sora is a proprietary text-to-video generator introduced by OpenAI
in 2024. It operates in a single mode and supports output resolutions of 480p, 720p and
1080p, with aspect ratios of 16:9, 1:1, and 9:16. We generate 5-second videos with a 30
FPS refresh rate. This model can generate four videos simultaneously for a single prompt.
After reaching its daily generation limit, it will slow down its generative process.

• Mochi-1 (Genmo, 2024): Mochi-1 generates 5-second videos at 24 FPS. We use the default
setting for prompt hints and seed functions. This model renders each batch of videos for
three minutes, and each batch contains two video samples. After several generations, this
model will slow down its generation process.

• LTX Video (HaCohen et al., 2024): Different from other models, this model does not
support our standard 720p setting, and only supports a 768×512 (512p) resolution, with a
24 FPS refresh rate. For extra settings, such as scene settings or style settings, we use the
default version.

• Pika 2.2 (Pika, 2024): In this model, we use the basic setting of Pika 2.2 without addi-
tional features such as PikaFrames and PikaEffects. We default the negative prompt and
seed configurations. This model generates four videos simultaneously, each requiring ap-
proximately 30 seconds, and enables prompt copying and editing with a single click.

• Dreamina (ByteDance, 2024): For Dreamina, we adopt its Video S2.0 version without its
prompt enhancements from external LLMs. All the generated videos are by default in 24
FPS, and there are no other refresh rate settings.

• Qingying (Zhipu, 2024): Qingying serves as the commercial version of CogVideo (Hong
et al., 2023) and CogVideoX (Yang et al., 2024). We use its fast generation model, with
5-second and 30 FPS sound-free video settings. For all the advanced options on style,
emotion and camera movements, we adopt its default setting.

• Hailuo (MiniMax, 2025): Different from other models, Hailuo’s only duration setting is
6 seconds and 24 FPS, and we adopt this video length. For text conversion, we use the
T2V-01-Director base model.

• Stable Video Diffusion (Blattmann et al., 2023): We use the default generation setting on
video length for Stable Video Diffusion, which is 4 seconds.

B IMPACT STATEMENT

The paper discusses potential positive impacts on generating accurate and temporally coherent text
in text-to-video models, which may bring social good across entertainment, education, and other
domains. Its comprehensive evaluation framework will accelerate the development of more reliable
and user-friendly video generation systems. We do not foresee significant negative societal impacts.
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Although enhanced text manipulation could facilitate the creation of realistic but misleading video
content, existing safety barriers and responsible deployment practices for large models help mitigate
this risk.

C VIDEO EXAMPLES

In this subsection, we show additional video samples generated with this benchmark’s extensive
provided prompts. The results are outlined in Figure 7 to Figure 16. Each result highlights outputs
from a single generative model across six distinct scenarios. To illustrate temporal changes, ten
key frames were extracted from each clip. These chosen examples correspond to the full set of
experimental cases outlined in Section 4.

Prompt:   A fantasy adventure book.   The page animates as golden ink writes: "The dragon’s 
weakness?" A fiery illustration burns away to reveal: "Its own reflection."

Prompt: Typing in a chat app. A chat bubble appears with the text “Are we still meeting at 
3 PM?” followed by your reply bubble “Yes, see you then!".

Prompt: Presenting at a conference. The slide title says: 'Novel Nanoparticle Delivery 
System for Targeted Chemotherapy – Preliminary Results'

Prompt: Draw a heart shape using text: first show "<", then "3", 
– finally display the full heart "<3".

Wan

Prompt (in Chinese): Types the word 'hello' on the screen, one letter at a time: h, e, l, l, o. 
Each letter appears clearly in the center.

Prompt: Writing equations on the blackboard. We write the linear equation y = ax + b from 
left to right on a blackboard.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Multilingual
(Chinese)

Figure 7: Results of Videos Generated by Wan.
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Prompt: Turning book pages. Page 1 has the text "What is the fastest animal?". Page 2 has 
the text "The Peregrine Falcon.".

Prompt: Navigating with GPS. A map screen shows the text “Turn right onto Oak Avenue 
in 200 m” and a blue route line curves right.

Prompt: Joining a game in LOL. A countdown reads: 'Game starts in 3... 2... 1...'

Prompt: Types the word 'hello' on the screen, one letter at a time: h, e, l, l, o. 
Each letter appears clearly in the center.

Sora

Prompt (in Chinese): Typing in a chat app. A chat bubble appears with the text “Are we 
still meeting at 3 PM?” followed by your reply bubble “Yes, see you then!".

Prompt: List all the even numbers from 1 to 20 in order.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Multilingual
(Chinese)

Figure 8: Results of Videos Generated by Sora.
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Prompt: Opening credits of a documentary. One by one, the words appear: 
“Produced by TerraLens Studios”, “Directed by Ava Kwon”.

Prompt: Typing in a chat app. A chat bubble appears with the text “Are we still meeting at 
3 PM?” followed by your reply bubble “Yes, see you then!".

Prompt: Using a calculator app. You type “45 × 12” and the display 
shows “540” immediately.

Prompt: Show the process of typing "WOW" one letter at a time: W, O, W.

LTX Video

Prompt (in Chinese): Joining a game in LOL. A countdown reads:
 'Game starts in 3... 2... 1...'

Prompt: Write out the multiplication table for numbers 1 through 5, 
arranging the results in a grid.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Multilingual
(Chinese)

Figure 9: Results of Videos Generated by LTX Video.
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Prompt: A superhero origin story.   Comic book text "POW!" and "BAM!" 
flash as the screen cracks: "Power activated."

Prompt: Compare two product prices: 'Notebook – $5.99 at Store A' vs. 
'Notebook – $4.50 at Store B'. Highlight the cheaper one.

Prompt: Opening scene of a thriller film. On-screen text appears: “Chicago, 1987”.

Prompt: Show the ticking process of a digital clock: first display "12:00", 
then "12:01", followed by "12:02".

Pika 2.2

Prompt (in Chinese): Surfing the Internet. A web browser window shows the Wikipedia article specifically 
about the 'Bald Eagle',and the view is scrolling down from the top towards the bottom of the page.

Prompt: Draw a triangle with angles 60°, 60°, and 60°, and label each angle.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Multilingual
(Chinese)

Figure 10: Results of Videos Generated by Pika 2.2.
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Prompt:   Neon city news. Glowing blue text scrolls across skyscraper screens: "Today's 
precipitation will contain trace nanobots - umbrellas recommended".

Prompt: Activating an alarm on a phone. The screen shows: 'Alarm set for 7:00 AM'. 
The alarm rings, and the screen updates to: 'Wake up! 7:00 AM'

Prompt: Signing a PDF document. You click the “Signature” button, draw your signature 
“J. Smith” in the box, and save the document.

Prompt: Show the process of typing "WOW" one letter at a time: W, O, W.

Kling

Prompt (in Chinese): Typing in a chat app. A chat bubble appears with the text “Are we 
still meeting at 3 PM?” followed by your reply bubble “Yes, see you then!".

Prompt: Use square units to show the area of a rectangle with length 4 and width 3. 
Draw and count the squares.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Multilingual
(Chinese)

Figure 11: Results of Videos Generated by Kling.
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Prompt: A sports highlight reel.   Bold text slides in: "Game 7 – 3 seconds left..." The 
scoreboard updates: "108-107" as the crowd erupts.

Prompt: Navigating with GPS. A map screen shows the text “Turn right onto Oak Avenue 
in 200 m” and a blue route line curves right.

Prompt: Reading a box plot label. The chart title says: 'Gene Expression Levels – Control 
vs Treated – Median Shift: +2.4 units'

Prompt: Unlocking an achievement. A badge icon pops up on screen with the text: 
'Achievement Unlocked: First Blood – Defeat your first enemy.'

Dreamina

Prompt (in Chinese): Use square units to show the area of a rectangle with length 4 and 
width 3. Draw and count the squares.

Prompt: Show a math word problem: 'Sara has 3 apples. She buys 2 more. How many does 
she have now?' Then display: 'Answer: 5 apples'.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Multilingual
(Chinese)

Figure 12: Results of Videos Generated by Dreamina.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt: Turning book pages. Page 1 has the text "What is the fastest animal?". 
Page 2 has the text "The Peregrine Falcon.".

Prompt: Posting a tweet. The Twitter compose box contains “Just tried the new café on 
Main Street—highly recommend!” and the “Tweet” button is clicked.

Prompt: Starting a new RPG quest. A dialogue box appears with the text: 'Welcome, 
traveler. Will you accept the quest to retrieve the lost amulet? (Yes/No)'

Prompt: Display the days of the week, one by one: Monday, Tuesday, Wednesday...

Qingying

Prompt (in Chinese): Converting units: "Convert 100 cm to meters." Display the 
calculation: "100 cm = 100 ÷ 100 = 1 meter".

Prompt: Write out the multiplication table for numbers 1 through 5, 
arranging the results in a grid.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Multilingual
(Chinese)

Figure 13: Results of Videos Generated by Qingying.
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Prompt (in Chinese): Presenting at a conference. The slide title says: 'Novel Nanoparticle 
Delivery System for Targeted Chemotherapy – Preliminary Results'

Prompt: A sports highlight reel.   Bold text slides in: "Game 7 – 3 seconds left..." The 
scoreboard updates: "108-107" as the crowd erupts.

Prompt: Scanning a QR code. A smartphone camera viewfinder frames a black‑and‑white 
code, then shows the text “Open https://example.com/welcome” on screen.

Prompt: Signing a PDF document. You click the “Signature” button, draw your signature 
“J. Smith” in the box, and save the document.

Prompt: Show a progress update: "Task 1: Starting...", then 20%, 50%, 80%, 
and finally "Task Completed!" when the progress hits 100%.

Mochi-1

Prompt: Use square units to show the area of a rectangle with length 4 and width 3. 
Draw and count the squares.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Multilingual
(Chinese)

Figure 14: Results of Videos Generated by Mochi-1.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Prompt: A superhero origin story.   Comic book text "POW!" and "BAM!" 
flash as the screen cracks: "Power activated."

Prompt: Activating an alarm on a phone. The screen shows: 'Alarm set for 7:00 AM'. 
The alarm rings, and the screen updates to: 'Wake up! 7:00 AM'

Prompt: Joining a game in LOL. A countdown reads: 'Game starts in 3... 2... 1...'

Prompt: Types the word 'hello' on the screen, one letter at a time: h, e, l, l, o. 
Each letter appears clearly in the center.

Hailuo

Prompt (in Chinese): Scanning a QR code. A smartphone camera viewfinder frames a black‑and‑white 
code, then shows the text “Open https://example.com/welcome” on screen.

Prompt: List all the even numbers from 1 to 20 in order.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Multilingual
(Chinese)

Figure 15: Results of Videos Generated by Hailuo.
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Prompt: Turning book pages. Page 1 has the text "What is the fastest animal?". 
Page 2 has the text "The Peregrine Falcon.".

Prompt: Navigating with GPS. A map screen shows the text “Turn right onto Oak Avenue 
in 200 m” and a blue route line curves right.

Prompt: Starting a new RPG quest. A dialogue box appears with the text: 'Welcome, 
traveler. Will you accept the quest to retrieve the lost amulet? (Yes/No)'

Prompt: Draw a heart shape using text: first show "<", then "3", 
– finally display the full heart "<3".

SD Video

Prompt: Draw a triangle with angles 60°, 60°, and 60°, and label each angle.

Stepwise or 
Symbolic Visualization

App & Web 
UI Simulation

Everyday 
Digital Moments

Cinematic or 
Presentation Scenes

Math relative

Figure 16: Results of Videos Generated by SD Video.
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LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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