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ABSTRACT

The ROC curve is the major tool for assessing not only the performance but also
the fairness properties of a similarity scoring function. In order to draw reliable
conclusions based on empirical ROC analysis, accurately evaluating the uncertainty
level related to statistical versions of the ROC curves of interest is absolutely
necessary, especially for applications with considerable societal impact such as
Face Recognition. In this article, we prove asymptotic guarantees for empirical
ROC curves of similarity functions as well as for by-product metrics useful to assess
fairness. We also explain that, because the false acceptance/rejection rates are of the
form of U-statistics in the case of similarity scoring, the naive bootstrap approach
may jeopardize the assessment procedure. A dedicated recentering technique must
be used instead. Beyond the theoretical analysis carried out, various experiments
using real face image datasets provide strong empirical evidence of the practical
relevance of the methods promoted here, when applied to several ROC-based
measures such as popular fairness metrics.

1 INTRODUCTION
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Figure 1: Empirical ROC curves for three
different models (ArcFace, CosFace, Ada-
Cos) and for two distinct evaluation datasets
(see 4). The ROC curves for the first dataset
are depicted with solid lines while the ROC
curves for the second dataset are displayed
with dashed lines. A confidence band for the
ROC computed with the ArcFace model on
the first dataset is displayed in light blue.

The massive deployment of AI technologies brings
with it a pressing demand for methodological tools
to assess their trustworthiness. The reliability of
AI systems concerns their estimated performance of
course, but also their properties regarding fairness:
ideally, the system should exhibit approximately the
same performance, independently of the sensitive
group (determined by e.g. gender, age group, race)
to which it is applied. This is particularly true for
Face Recognition (FR) systems, the running exam-
ple through this article, now under scrutiny by the
general public and regulatory organizations, refer to
e.g. Grother & Ngan (2019) or Snow (2018).

The task of designing a FR system is usually for-
mulated as a similarity scoring/learning problem,
see e.g. Vogel et al. (2018). Assuming that the
system processes pixellated face images X in Rd,
the goal is to build a (symmetric) scoring function
s : Rd × Rd → R such that the larger the simi-
larity score s(x, x′) related to a pair of images, the
larger (hopefully) the probability that both images
correspond to the same individual. In this case, one
assigns a positive label to the pair and a negative label otherwise. The gold standard to measure the
performance of such a similarity s is the Receiver Operating Characteristic (ROC) curve (D.M.Green
& Swets, 1966), namely the plot of the false rejection rate against the false acceptance rate, as the
similarity scoring threshold varies.

∗Alternative correspondence: jeanremy.conti@gmail.com.
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If, until now, the benchmark of FR systems has been essentially reduced to an ad-hoc evaluation
of the performance metrics, to the computation of empirical ROC curves based on FR evaluation
datasets of reference (see Grother & Ngan (2019)), the quantification of the uncertainty inherent in the
randomness of the evaluation datasets (referred to as aleatoric uncertainty sometimes, see Hüllermeier
& Waegeman (2021)) is essential to compare and appreciate fully the merits of such systems regarding
accuracy and fairness with confidence. The significance of the uncertainty quantification step is
illustrated in Fig. 1. The ROC curves for three different FR models are computed on two distinct
evaluation datasets (see 4 for details on models and datasets). On the first dataset (solid lines), one
would conclude that ArcFace is a better model than CosFace, as the former has a lower empirical
FRR than the latter, for any FAR value. However, one would draw the opposite conclusion, looking
at the second dataset (dashed lines). Selecting models only depending on their empirical performance
(ROC) has its flaws, as the uncertainty of those metrics is not taken into account. Note that the
method for building confidence bands for the ROC, which we present in this paper, would have
avoided such conclusions. Indeed, both models are indistinguishable in terms of performance, as
their ROC curves are contained within the band. On the contrary, the AdaCos model performs worse
than ArcFace/CosFace on both datasets and its empirical ROC curves are far from the confidence
band. One could thus favor confidently ArcFace/CosFace over AdaCos regarding their performance.

In order to make meaningful comparisons, the (possibly high) uncertainty inherent in the statistical
nature of the estimation must be taken into account. Indeed, this evaluation is crucial to judge
whether the similarity scoring function candidates meet the performance/fairness requirements in
a trustworthy manner. The main purpose of this paper is precisely to explain how to quantify the
uncertainty/variability of similarity ROC curves, by means of a dedicated bootstrap methodology in
particular, in a sound validity framework generalizing the one established by Bertail et al. (2008) in
the non pairwise setup.

Related works. To our knowledge, the uncertainty issue inherent to ROC curve estimation and
fairness metrics estimation is poorly documented in the literature, particularly for similarity scoring
problems such as FR. It has been studied at length for scoring functions, but in the non pairwise
setup, using bootstrap methods in (Bertail et al., 2008). The major difference between the analysis
carried out therein and our framework lies in the fact that, in the similarity scoring context, false
acceptance/rejection rates are not basic i.i.d. averages anymore but generalized U -statistics (refer to
Lee (1990) or Arcones & Gine (1992)). It has a significant impact on the methodology that can be
used to quantify the uncertainty of empirical performance/fairness measures. As shall be seen in this
paper, naively applying the bootstrap of Bertail et al. (2008) to similarity scoring problems (e.g. FR)
strongly underestimates the ROC curve, resulting in confidence bands for the ROC curve which do
not even contain the empirical ROC curve most of the time. In Vogel et al. (2018), non asymptotic
confidence bounds for the estimation error of empirical similarity ROC curves have been established
by means of linearization techniques tailored to U -statistics in a slightly different probabilistic
framework (stipulating random labels). It is the purpose of the present paper to investigate how to
accurately approximate the distribution of the estimation error by means of dedicated resampling
techniques and build bootstrap confidence bands with satisfactory probability coverage.

Contributions. As will be explained in the subsequent analysis, a naive application of the bootstrap
procedure yields a systematic underestimation of the similarity ROC curve. We provide (i) a
recentering technique to counteract this, while still being accurate asymptotically. Resulting from
this bootstrap variant, (ii) confidence bands for the ROC curve and FR fairness metrics are shown to
be consistent, in addition to achieve nominal coverage on synthetic data. The recentered bootstrap
also allows to define (iii) a scalar uncertainty measure for the ROC and fairness metrics, which can
be employed to compare the robustness of several FR fairness metrics. Finally, in addition to the
statistical analysis presented, the relevance of the approach is supported by (iv) illustrative numerical
experiments, based on real data of face images, together with a discussion about the practical use of
the information produced, in order to make more reliable decisions concerning accuracy and fairness.
These results pave the way for a more valuable and trustworthy comparative analysis of the merits
and drawbacks of FR systems.

Organization of the paper. The main concepts at work in similarity scoring/learning and in FR
are briefly recalled in Section 2, together with the notions pertaining to ROC analysis used in this
article to evaluate predictive performance and build fairness criteria. The consistency of empirical
similarity ROC curves, is stated in section 3. It is also explained therein how to bootstrap empirical
similarity ROC curves in a valid manner, as well as by-product summary statistics reflecting the
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accuracy or fairness properties of the similarity scoring functions under study. Numerical experiments
are presented and discussed in section 4 for illustration purpose.

2 BACKGROUND AND PRELIMINARIES

We introduce here the main notations used throughout the article and briefly recall the standard
similarity scoring/learning framework, involved in the design of FR systems in particular, and
the key concepts pertaining to ROC analysis that are involved in the subsequent study. We next
explain how to formulate fairness criteria based on similarity ROC curves in the FR context. Here
and throughout, the indicator function of any event E is denoted by I{E}, the Dirac mass at any
point x by δx, and the pseudo-inverse of any cumulative distribution function (cdf) κ(t) on R by
κ−1(α) = inf{t ∈ R : κ(t) ≥ α}.

2.1 SIMILARITY SCORING - PROBABILISTIC AND STATISTICAL FRAMEWORK

The probabilistic framework considered here to formulate the similarity learning problem is the same
as that of multi-class classification: Y is a discrete random label defined on a probability space
(Ω, A, P), valued in Y = {1, . . . , K} with K ≥ 2, and X is a random vector defined on the
same probability space and taking its values in a high dimensional space X ⊂ Rd with d≫ 1. For
all k ∈ Y , we denote the supposedly continuous conditional distribution of X given Y = k by
Fk, the probability that Y equals k by pk = P{Y = k}. Equipped with these notations, the joint
distribution P of the random pair (X,Y ) is fully characterized by {(Fk, pk) : k = 1, . . . , K}. In
the running example considered through this paper, X is an image depicting the face of an individual
in a population of K identities, the identity being indexed by Y . In similarity learning, the objective
pursued is to find a mapping s : X 2 → R ∪ {+∞}, called a similarity scoring function, such that,
given two independent pairs (X,Y ) and (X ′, Y ), the larger the similarity score s(X,X ′), the more
likely the same label should be shared (i.e. one should observe the event Y = Y ′) ideally. Before
recalling performance/fairness metrics in similarity scoring, we explain the usual methodology at
work in FR.

Similarity scoring in Face Recognition. In FR, one learns, from a dataset of face images with
identity labels, an encoder function f : Rh×w×c → Rp that embeds the images in a way that brings
same identities closer together in a certain sense. Each image is of size (h,w), while c corresponds
to the color channel dimension. It is worth noticing that a pre-processing detection step (finding a
face within an image) is required so that all face images have the same size (h,w). For an image
x ∈ Rh×w×c, its latent representation f(x) ∈ Rp is referred to as the face embedding of x. Since
the advent of deep learning, the encoder f is usually a deep Convolutional Neural Network (CNN)
whose parameters are learned on a huge FR dataset, made of face images and identity labels. In brief,
the training consists in taking all images x(k)

i , labelled with identity k, computing their embeddings
f(x

(k)
i ) and adjusting the parameters of f so that those embeddings are as close as possible (for a

given similarity measure) and as far as possible from the embeddings of identity l ̸= k. The usual
similarity measure is the cosine similarity, defined as

s(xi, xj) :=
f(xi)

⊺f(xj)

∥f(xi)∥ · ∥f(xj)∥
(1)

for two images xi and xj , where ∥·∥ stands for the usual Euclidean norm. In some early works (Schroff
et al., 2015), the Euclidean metric ∥f(xi)− f(xj)∥ is also used.

Multi-sample statistical setup. In the subsequent analysis, the pk’s are supposed to be given and are
part and parcel of the performance criterion (a possible choice consists in giving the same weight to
all identities, i.e. pk = 1/K for k = 1, . . . , K), whereas the Fk’s are unknown in practice. In order
to evaluate empirically the properties of a (trained) similarity scoring function s(x, x′), it is assumed
throughout the paper that K i.i.d. samples are available:

X
(k)
1 , . . . , X(k)

nk

i.i.d.∼ Fk, where nk ≥ 1 for k = 1, . . . , K.

In the FR context, we thus suppose that nk images are available for identity k ∈ {1, . . . , K}, the
size of the pooled sample being denoted by n = n1+ . . .+nK . Those images belong to a test dataset,
used to evaluate a trained FR model f (or equivalently its associated similarity s in Eq. 1). Based on
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these data, empirical versions of performance and fairness metrics can be computed. Their statistical
accuracy will be next investigated from an asymptotic perspective, as the nk’s simultaneously tend to
infinity at the same rate as n: for all k ∈ Y , there exists λk > 0 such that nk/n→ λk as n→ +∞.

2.2 ROC ANALYSIS - EVALUATION OF PERFORMANCE/FAIRNESS IN SIMILARITY SCORING

As formulated in Vogel et al. (2018), similarity learning can be seen as a specific bipartite ranking
problem, where the input space is of the form of a product space X × X : given two independent
observations (X,Y ) and (X ′, Y ′) drawn from P, the input r.v. is formed by the pair (X,X ′), while
Z = 2I{Y = Y ′}−1 is the binary label. The gold standard to evaluate bipartite ranking performance
is ROC analysis: a statistical learning view can be found in e.g. Clémençon & Vayatis (2009). In the
similarity learning context, the ROC curve of a similarity scoring function s(x, x′) is the plot of the
False Rejection Rate (FRR) against the False Acceptance Rate (FAR) as the acceptance threshold
varies, namely the mapping ROC: α ∈ (0, 1) 7→ FRR ◦ FAR−1(α), where, for all t ∈ R,

FAR(t) = P{s(X,X ′) > t | Z = −1} =
∑

k<l pkplP{s(X,X ′) > t | Y = k, Y ′ = l}∑
k<l pkpl

,

FRR(t) = P{s(X,X ′) ≤ t | Z = +1} =
∑

k∈Y p2kP{s(X,X ′) ≤ t | Y = Y ′ = k}∑
k∈Y p2k

.

A note on the definition of the pseudo-inverse for the FAR quantity is available in D.1.

Remark 1. (ROC CONVENTIONS) In machine learning, the ROC curve usually refers to the PP-plot
t ∈ R 7→ (FAR(t), 1 − FRR(t)), or equivalently α ∈ (0, 1) 7→ 1 − FRR ◦ FAR−1(α). The FR
community preferably plots FAR(t) on the x-axis and FRR(t) on the y-axis. Both components
correspond to error rates that should be minimized, one possibly more than the other depending
on the use case. Of course, these two curves provide exactly the same information as there is a
one-to-one correspondence between them. Note that we use the FR convention throughout the paper.

In practice, special attention is paid to certain points of the ROC curve. The FAR level α ∈ (0, 1)
determines the operational point of the FR system and corresponds to the security risk one is ready to
take. According to the FR use case, it is typically set to 10−i with i ∈ {1, . . . , 9}.
Fairness metrics. In order to inspect the fairness properties of a FR system based on a similar-
ity scoring function s, one generally looks at differentials in performance amongst several sub-
groups/segments of the population, a sensitive attribute (e.g. gender, race, age class, ...) making
them distinguishable. For a given (discrete) sensitive attribute that can take M > 1 different val-
ues, in A = {0, 1, . . . ,M − 1} say, we enrich the probability space and now consider a random
vector (X,Y,A) where A ∈ A indicates the subgroup to which the individual indexed by Y be-
longs to. For every fixed value a ∈ A, we can further define the FAR/FRR related to subgroup a:
FARa(t) = P{s(X,X ′) > t | Y ̸= Y ′, A = A′ = a} and FRRa(t) = P{s(X,X ′) ≤ t | Y =
Y ′, A = A′ = a} for all t ∈ R, where by (X ′, Y ′, A′) is meant an independent copy of the random
triplet (X,Y,A). Ideally, a fair scoring function s would exhibit nearly constant FARa(t) values
when a varies, for all t (and the same property for the FRRa(t) values). A FR fairness metric
quantifies how much a model s is far from this property. The FR fairness metrics considered in
this paper are those used by the U.S. National Institute of Standards and Technology (NIST) in
their FRVT report (Grother, 2022). They attempt to quantify the differentials in (FARa(t))a∈A and
(FRRa(t))a∈A. Each fairness metric has two versions (one for the differentials in terms of FAR, the
other in terms of FRR). A typical fairness metric is the max-min fairness below:

FARmax
min (t) =

maxa∈A FARa(t)

mina∈A FARa(t)
, FRRmax

min (t) =
maxa∈A FRRa(t)

mina∈A FRRa(t)
.

In practice, the threshold t is set as for the ROC curve, i.e. it achieves a level FAR(t) = α ∈ (0, 1)
for the global/total population, and not for some specific subgroup. Three other popular FR fairness
metrics are the max-geomean metric, the log-geomean metric and the Gini coefficient. Their definition
is postponed to A.1 for conciseness.
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3 SIMILARITY SCORING METRICS - ASSESSING UNCERTAINTY

Motivated by the need to make trustworthy decisions taking into account the uncertainty inherent
in the evaluation data, we now investigate the statistical accuracy of empirical counterparts of the
ROC curve of a given similarity scoring function s(x, x′) in the statistical multi-sample framework
described in 2.1. We next explain how to use the bootstrap methodology to estimate the related
uncertainty level and build accurate confidence bands for the ROC and fairness metrics. For notational
simplicity, the results are stated and proved in the case where pk = 1/K for all k ∈ Y , extension to
the general case being straightforward.

3.1 STATISTICAL INFERENCE - CONSISTENCY RESULT

An estimator of the ROC curve is naturally obtained by replacing the quantities FAR and FRR with
their natural statistical counterparts in the definition of the ROC curve. In the multi-sample statistical
setup defined in 2.1, the empirical versions of FAR(t) and FRR(t) can be expressed as follows,
using the symmetry property of similarity scoring functions: for all t ∈ R,

F̂ARn(t) =
2

K(K − 1)

∑
k<l

1

nknl

nk∑
i=1

nl∑
j=1

I{s(X(k)
i , X

(l)
j ) > t}, (2)

F̂RRn(t) =
1

K

K∑
k=1

2

nk(nk − 1)

∑
1≤i<j≤nk

I{s(X(k)
i , X

(k)
j ) ≤ t}. (3)

Notice that the terms involved in the two averages above are not independent, as each X
(k)
i is involved

in many terms of both averages, in contrast to the standard bipartite ranking framework (Bertail et al.,
2008) where one deals with i.i.d. mean statistics. As detailed in A.2, these averages are actually
generalized U -statistics, the simplest extensions of standard i.i.d. mean statistics. Properties and
asymptotic theory of U -statistics can be found in Lee (1990) while concentration properties are
investigated in Clémençon et al. (2016). The quantities (2) and (3) can then be used to compute the
empirical similarity ROC curve based on the available evaluation datasets:

R̂OCn : α ∈ (0, 1) 7→ F̂RRn ◦ (F̂ARn)
−1(α). (4)

Empirical versions of fairness metrics are naturally obtained in a similar plug-in fashion (see D.3).

The result stated below reveals the uniform consistency of the curve (4) in the multi-sample asymptotic
framework considered here.
Proposition 1. (STRONG CONSISTENCY) With probability one, we have:

sup
α∈(0,1)

{R̂OCn(α)− ROC(α)} → 0, as n→ +∞. (5)

Refer to D.2 for the technical proof. While the true ROC curve is unknown, this result gives
confidence in the quantity R̂OCn one computes based on data. A similar consistency result is stated
in Hsieh & Turnbull (1996), when the negative and positive cdf’s are estimated by basic i.i.d. averages,
and proved by means of classic results for empirical processes. The case of empirical similarity
ROC curves cannot be handled in the same way because, as previously emphasized, (2) and (3)
are generalized U -statistics and the terms involved in these averages exhibit a complex dependence
structure. Linearization tricks (i.e. Hoeffding decomposition), such as those used in Vogel et al.
(2018), would be required to establish in addition the asymptotic Gaussianity of (a rescaled version
of) the fluctuation process

rn(α) :=
√
n{R̂OCn(α)− ROC(α)}, α ∈ (0, 1). (6)

As underlined in Bertail et al. (2008), where the (much simpler) statistical framework considered is
the same as in Hsieh & Turnbull (1996), the identification of the Gaussian limit of the process of Eq. 6
is of very poor interest regarding the construction of (asymptotic) confidence bands for the similarity
ROC curve: beyond the computational difficulties inherent in simulating Brownian bridges, the
presence of the unknown quantity ROC(t) in the complex limit law makes its use impracticable to
build confidence bands. Appropriate bootstrap techniques, whose asymptotic validity can be proved,
should be preferably used instead.
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3.2 BOOTSTRAPPING THE PERFORMANCE/FAIRNESS METRICS - CONFIDENCE REGIONS

Provided that representative datasets of the target populations are available, the empirical ROC
curve (4) (and its related scalar summaries) of a similarity scoring function s(x, x′) is the main
tool to assess performance and fairness in various applications such as FR. However, in order to
make meaningful comparisons, the (possibly high) uncertainty inherent in the statistical nature of
the estimation must be taken into account. Indeed, this evaluation is crucial to judge whether the
similarity scoring function candidates meet the performance/fairness requirements in a trustworthy
manner, as will be discussed on real examples in the next section. We now explain how to use a
specific bootstrap resampling methodology to quantify the variability of the fluctuation process (6) in
an asymptotically valid manner and why a naive bootstrap technique fails in the present situation.

Objective. When computing R̂OCn(α) to estimate the true ROC curve, one makes the error

ϵ̂n(α) = R̂OCn(α)− ROC(α), (7)

which is unknown, just like ROC(α). The variability of the random variable ϵ̂n(α) fully characterizes
the uncertainty of the empirical ROC curve. The objective is to approximate ϵ̂n(α) so that its
variability can be estimated. This variability (i.e. the uncertainty of R̂OCn(α)) will be used to build
confidence bands around the empirical ROC curve and to define a scalar uncertainty metric. In order
to approximate ϵ̂n(α), the bootstrap approach makes it possible to sample an estimate of ϵ̂n(α). With
many samples, one can retrieve the variability of the error ϵ̂n(α).

Naive bootstrap. The bootstrap paradigm, introduced by Efron (1979) and developped at length
in Bertail et al. (2008), suggests to recompute the empirical similarity ROC curve (4) from K

independent sequences of i.i.d. variables X(k)∗
1 , . . . , X

(k)∗
nk

i.i.d.∼ F̂k = 1
nk

∑
1≤i≤nk

δ
X

(k)
i

, con-

ditioned upon the evaluation dataset D := {X(k)
1 , . . . , X

(k)
nk : k = 1, . . . , K}. In other words,

for each identity k within the dataset, one simply randomly samples with replacement nk images
X

(k)∗
1 , . . . , X

(k)∗
nk among the nk face images X(k)

1 , . . . , X
(k)
nk available for identity k. The boot-

strap sample, which should be viewed as a sort of replicate of the evaluation dataset, is obtained
by concatenating all the images thus sampled. Notice that the bootstrap sample may contain the
same images several times due to the use of the sampling with replacement scheme, in contrast
to the original dataset D. In practice, the resampling scheme is replicated B ≥ 1 times in order
to compute a Monte-Carlo approximation of the distribution of the bootstrap ROC, i.e. the curve
α 7→ R̂OC

∗
n(α) := F̂RR

∗
n ◦ (F̂AR

∗
n)

−1(α), with

F̂AR
∗
n(t) =

2

K(K − 1)

∑
k<l

1

nknl

nk∑
i=1

nl∑
j=1

I{s(X(k)∗
i , X

(l)∗
j ) > t}, (8)

F̂RR
∗
n(t) =

1

K

K∑
k=1

2

nk(nk − 1)

∑
1≤i<j≤nk

I{s(X(k)∗
i , X

(k)∗
j ) ≤ t}. (9)

The curve R̂OC
∗
n is nothing but the empirical ROC curve computed with a bootstrap sample,

instead of the original dataset. It turns out that, conditionally to the dataset D, the quantity
ϵ̂
(1)
n (α) = R̂OC

∗
n(α) − R̂OCn(α) approximates ϵ̂n(α)’s law. The approximation procedure

is asymptotically valid, as proved in D.5, so that it satisfies our objective. In practice, one would
use B bootstrap samples, get B realizations of R̂OC

∗
n(α), and thus B realizations of ϵ̂(1)n (α) which

allow to compute the variability of ϵ̂(1)n (α), in order to estimate the variability of ϵ̂n(α), i.e. the
uncertainty of the ROC curve. The bootstrap percentile method enables to build accurate confidence
regions for the quantity R̂OCn of interest. Indeed, for a fixed α ∈ (0, 1), a confidence interval,
at level 1 − αCI ∈ [0, 1], around R̂OCn(α) can be obtained by considering the αCI

2 -th and the
1−αCI

2 -th quantiles of B realizations of R̂OCn(α) + ϵ̂
(1)
n (α). It is worth noticing that, in spite of its

asymptotic validity, the method can be seriously compromised in the non asymptotic regime when
the distribution of R̂OC

∗
n(α) is not centered at R̂OCn(α). This is typically the case in the present

situation, as depicted in Fig. 2: the B = 200 realizations of R̂OC
∗
n(α) (light blue) are not at all

centered around the empirical ROC curve (dark blue), the confidence band formed by the naive
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Figure 2: Bootstrap versions of the ROC curve
(R̂OC

∗
n in light blue) and the empirical ROC

curve (R̂OCn in dark blue). The V-statistic
counterpart R̃OCn is depicted in red.
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Figure 3: Confidence bands at 95% confidence
level for the empirical ROC curve (dark blue),
using two methods: the naive bootstrap (light
red) and the recentered bootstrap (light blue).

bootstrap, at level 1−αCI = 95%, being displayed in Fig. 3 (light red). Note that the naive bootstrap
of Bertail et al. (2008) yields strongly inaccurate confidence bands (in the non asymptotic regime)
as the bands do not even contain the empirical ROC curve most of the time. For both Figures, the
pretrained encoder f defining the similarity function s (cf Eq. 1) is ArcFace, while MORPH is the
evaluation dataset (see 4 for details on models and datasets). We now explain why the distribution of
R̂OC

∗
n(α) is not centered around R̂OCn(α) i.e. why the naive bootstrap of Bertail et al. (2008) fails.

V -statistic version of the ROC and recentering. Firstly, one can easily check that
E∗[F̂AR

∗
n(t) | D] = F̂ARn(t), where by E∗[· | D] and P∗{· | D} are meant the conditional

expectation and probability given the dataset D used to compute the empirical criterion R̂OCn.
Whereas the quantity F̂AR

∗
n(t) is well centered around the empirical F̂ARn(t) given D, this is not

the case for the FRR metric in general. Indeed, we have:

E∗
[
F̂RR

∗
n(t) | D

]
=

1

K

K∑
k=1

1

n2
k

∑
1≤i,j≤nk

I{s(X(k)
i , X

(k)
j ) ≤ t} := F̃RRn(t). (10)

The quantity above is an average of K independent V -statistics, that may slightly differ from
F̂RRn(t), the difference being of order O(1/n). This is due to the presence of the diagonal terms
I{s(X(k)

i , X
(k)
i ) ≤ t}, which results from the fact that perfect similarities (i.e. similarities equal to 1

in the cosine similarity (1)) can be observed in the bootstrap samples with non zero probability, while
this cannot occur when computing F̂RRn(t). Hence, the empirical FRR tends to be underestimated
by its naive boostrap version in general. This is reflected in the bootstrap ROC curves R̂OC

∗
n being

centered around their V-statistic version R̃OCn(α) := F̃RRn ◦ (F̂ARn)
−1(α), and not around the

empirical ROC curve R̂OCn, as depicted by Fig. 2. Notice incidentally that this phenomenon is
specific to similarity scoring, because of the pairwise nature of the statistic (3), and does not occur in
the classic bipartite ranking framework (Bertail et al., 2008). In fact, the V-statistic version of the
ROC curve is of great interest since the recentered error ϵ̂(2)n (α) : = R̂OC

∗
n(α)− R̃OCn(α) also

approximates ϵ̂n(α)’s law, as proved in D.5. In the same way than for ϵ̂(1)n (α), we are able to build
confidence intervals, at confidence level 1−αCI ∈ [0, 1], for the quantity R̂OCn(α). Considering B

bootstrap samples, one would compute l
(n,B)
αCI (α) (resp. u(n,B)

αCI (α)) the αCI

2 -th (resp. the 1−αCI

2 -th)
quantile of the B realizations of R̂OCn(α) + ϵ̂

(2)
n (α). l(n,B)

αCI (α) and u
(n,B)
αCI (α) are respectively the

lower and upper bounds of the confidence interval, obtained with a variant of the naive bootstrap
which we call recentered bootstrap. The difference with ϵ̂

(1)
n (α) is that, using Eq. 10, one finds that

E∗
[
R̂OCn(α) + ϵ̂

(2)
n (α) | D

]
= R̂OCn(α), i.e. the confidence intervals are well centered around

the empirical ROC curve, as depicted in Fig. 3.
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The theoretical considerations within this section can be summarized by the result below. It states
that the confidence interval, at confidence level 1− αCI , for the ROC curve, using the recentered
bootstrap, has a probability of containing the true ROC curve which is truly equal to 1− αCI when
n and B tend to +∞. Refer to D.6 for the technical proof. The result holds when applying the
recentered bootstrap to the considered fairness metrics (see D.7).
Theorem 1. Let α ∈ (0, 1) and αCI ∈ (0, 1). Under the (mild) assumptions in D.4, we have:

P{l(n,B)
αCI

(α) ≤ ROC(α) ≤ u(n,B)
αCI

(α)} → 1− αCI ,

as n and B both tend to +∞.

This is an asymptotic result. In the non asymptotic regime, i.e. with a finite evaluation dataset, an
interesting question is to find what happens to this probability of containing the true ROC curve. For
that purpose, it is common practice to use synthetic datasets allowing for an approximation of the true
ROC curve. On each dataset, one can compute confidence intervals and check whether the frequency,
over all datasets, of containing the true ROC curve is truly equal to 1− αCI . In B.1, we generate
200 synthetic datasets and conclude that it is very close to 1− αCI , underlining the soundness of the
recentered bootstrap, while it is not the case for the naive bootstrap of Bertail et al. (2008).

Uncertainty metric. To quantify the uncertainty about the ROC curve, one might be interested in a
scalar quantity which summarizes its uncertainty. For instance,

√
Var[ϵ̂n(α)] seems appropriate for

such a quantification. However, in order to compare this scalar uncertainty at several FAR levels α, it
seems reasonable to consider a relative quantity such as

√
Var[ϵ̂n(α)]/R̂OCn(α). To estimate this

quantity, we use the recentered bootstrap and define the normalized uncertainty of the ROC curve as:

U [R̂OCn(α)] =

√
Var[ϵ̂

(2)
n (α) | D]

R̂OCn(α)
, (11)

as ϵ̂
(2)
n (α) = R̂OC

∗
n(α) − R̃OCn(α) approximates ϵ̂n(α)’s law. In practice, one would use B

bootstrap samples, get B realizations of R̂OC
∗
n(α), thus of ϵ̂(2)n (α). From those data, one would

compute their standard deviation, normalized by the empirical ROC curve. The definition of the
normalized uncertainty is naturally extended to fairness metrics (see D.7).

The pseudo-codes for the naive/recentered bootstrap methods, the computation of confidence intervals,
as well as of the normalized uncertainty for the ROC curve and fairness metrics are available in C.

4 NUMERICAL EXPERIMENTS - APPLICATIONS

Models and datasets. We take as encoder f several pre-trained models1 (AdaCos of Zhang et al.
(2019), ArcFace of Deng et al. (2019a), CosFace of Wang et al. (2018), CurricularFace of Huang et al.
(2020)) whose backbone is a MobileFaceNet (Chen et al., 2018), trained on the MS-Celeb-1M-v1c-r
dataset2. This dataset is a cleaned version of the MS-Celeb1M dataset (Guo et al., 2016) and it
contains 3.28M images of 73k identities. We choose the MORPH dataset (Ricanek & Tesafaye, 2006)
as evaluation dataset. It is composed of 55k face images from 13k distinct identities. This dataset is
widely used for fairness evaluation since it is provided with ground-truth age and gender labels (the
available labels for the latter are female and male). All images are pre-processed by the Retina-Face
detector (Deng et al., 2019c) and are of size 112× 112 pixels. Unless specified, all experiments use
B = 200 bootstrap samples.

To highlight the significance of the tackled problem in this paper, we show in Fig. 1 the empirical
ROC curves of three models (ArcFace, CosFace and AdaCos), computed on two distinct datasets.
Those datasets are obtained by splitting MORPH in two parts, with the same number of images, each
identity being present in both splits (see A.3). A confidence band at 95% confidence level, computed
for ArcFace on one split of data, suggests that ArcFace and CosFace are indistinguishable in terms of
performance, for the FAR levels displayed on the x-axis. This insight is interesting as there is no
model between ArcFace and CosFace that performs better than the other on both datasets.

1https://github.com/JDAI-CV/FaceX-Zoo/blob/main/training_mode/README.md.
2See footnote 1.
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Then, we investigate the uncertainty related to the fairness metric FRRmax
min . The gender label is

used here as the sensitive attribute. We display in Figure 4 the confidence bands at 95% confidence
level for the FRRmax

min fairness metric (see B.3 for other fairness metrics), for two models (AdaCos
and ArcFace). Three zones (A, B, C) are delimited by dashed lines. For the zone A (resp. C), the
empirical fairness is better for AdaCos (resp. ArcFace), while the upper-bound of the confidence
band is lower for AdaCos (resp. ArcFace). One would conclude that, for each zone, one model is
better than the other in terms of FRR fairness (AdaCos for zone A, ArcFace for zone C). The case
of zone B is more complex. Only using the empirical fairness metrics, one would choose ArcFace
as the fair model. However, the uncertainty for ArcFace is high, and one may choose AdaCos for
its robustness, especially in the case where there would be a strict fairness constraint to deploy the
technology (e.g. a legislation requiring FRRmax

min ≤ 4 at FAR = 6× 10−4 for any evaluation dataset).

Finally, we compute the normalized uncertainty of Eq. 11 for all fairness metrics. As illustrated in
Figure 5, the max-geomean metric displays (almost always) the lowest uncertainty, both in terms of
FAR and FRR, which makes it particularly suitable for fairness evaluation. This finding is supported
by similar experiments in B.2, where the trained model, the evaluation dataset and the used sensitive
attribute change. In particular, we employ a ArcFace model with a ResNet backbone, evaluated on
RFW (Wang et al., 2019). In addition to be more robust than other fairness metrics, the max-geomean
metric has the significant advantage to be interpretable.

5 CONCLUSION

In this paper, we consider the problem of assessing the uncertainty inherent in estimating ROC
curves, using evaluation datasets, in the context of similarity scoring. Quantifying this uncertainty
is of great interest since the ROC curve is the gold standard to evaluate performance and fairness
in various applications, such as Face Recognition. We show the consistency of empirical similarity
ROC curves and propose a variant of the bootstrap approach to build confidence bands around
performance/fairness metrics, in order to quantify their variability. The procedure is proved to be
asymptotically valid and its relevance is illustrated through applications in Face Recognition. Finally,
some popular Face Recognition fairness metrics are compared in terms of their uncertainty, revealing
that the max-geomean metric is the more robust to assess fairness. While the gold standard by which
fairness will be evaluated in the future is not fixed yet, we believe that it should definitely incorporate
uncertainty measures, since it could lead to wrong conclusions otherwise. The bootstrap approach
is simple, fast and could greatly improve the reliability of accuracy and fairness metrics, especially
within the Face Recognition community.

Reproducibility. Pseudo-codes for the experiments of the paper are available in the Supplementary
Material C. The open-source pre-trained models used for the experiments are available with download
links.
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