
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIXTURE OF NEURAL OPERATOR EXPERTS FOR
LEARNING BOUNDARY CONDITIONS AND MODEL SE-
LECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

While Fourier-based neural operators are best suited to learning mappings be-
tween functions on periodic domains, several works have introduced techniques
for incorporating non trivial boundary conditions. However, all previously intro-
duced methods have restrictions that limit their applicability. In this work, we in-
troduce an alternative approach to imposing boundary conditions inspired by vol-
ume penalization from numerical methods and Mixture of Experts (MoE) from
machine learning. By introducing competing experts, the approach additionally
allows for model selection. To demonstrate the method, we combine a spatially
conditioned MoE with the Fourier based, Modal Operator Regression for Physics
(MOR-Physics) neural operator and recover a nonlinear operator on a nontrivial
2d domain. Next, we extract a large eddy simulation (LES) model from direct nu-
merical simulation of channel flow and show the domain decomposition provided
by our approach. Finally, we train our LES model with Bayesian variational infer-
ence and obtain posterior predictive samples of flow far past the DNS simulation
time horizon.

1 INTRODUCTION

Fully resolved simulations of partial differential equations (PDEs) are prohibitively expensive for
most systems, even on the largest supercomputers. Accordingly, under-resolved simulations are
supplemented with models for subgrid-scale dynamics. For example, for the Navier-Stokes equa-
tions in the turbulent regime, the turbulence dynamics are approximated statistically via large eddy
simulation (LES) or Reynolds averaged Navier-Stokes (RANS) models; such models are imperfect
as they encode various empirical assumptions and hand-tuned approximations Pope (2000).

Neural operators are a class of surrogate models that parameterize unknown operators with neu-
ral networks and can learn PDE models from high-fidelity simulation and/or experimental data.
Originally introduced as a theoretical construction by Chen & Chen (1995), recent numerical im-
plementations of neural operators have seen recent success in learning a variety of PDEs, e.g., Patel
& Desjardins (2018); Patel et al. (2021); Li et al. (2021); Lu et al. (2021); Rahman et al. (2023);
Tripura & Chakraborty (2023b).

Neural operators utilizing the Fourier transform, e.g., MOR-Physics Patel & Desjardins (2018) and
Fourier Neural Operator (FNO) Li et al. (2021) are particularly attractive due to the simplicity of
parametrization and computational efficiency. However, the Fourier transform exhibits Gibbs phe-
nomenon when attempting to model discontinuities and cannot handle non-periodic boundary con-
ditions. Fourier Neural Operators (FNOs) Li et al. (2021) tries to remedy this by adding “bias
functions”, Wv(x) that operate along the Fourier convolution layers. However, Lu et al. (2022)
has shown that this does not fully alleviate the weakness that FNO has around non-periodic bound-
ary conditions and discontinuities, e.g., shock waves. Tripura & Chakraborty (2023a) introduced
wavelet neural operators (WNO) to address limitations of Fourier based neural operators for prob-
lems involving neural operators, arguing that wavelet bases contain both spatial and spectral infor-
mation and can better resolve discontinuities and spikes and circumvent the Gibbs phenomenon.
Another neural operator, NORM Chen, Gengxiang et al. (2024), generalizes the modal strategy to
Riemannian manifolds, but requires precomputation of the eigenfunctions of the Laplace-Beltrami

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

operator and lacks a fast transform. (Li et al., 2023), learns in addition to an FNO, a deformation
from a nontrivial domain to a periodic domain but is ill-suited for higher dimensional domains Chen,
Gengxiang et al. (2024).

Instead, we address model discontinuities and boundary conditions by proposing a mixture of ex-
perts model, where the weighting of experts is determined locally across space via a partition of
unity (POU). This mechanism enables the model to choose different experts on each side of a dis-
continuity or non-periodic transition, e.g. zero velocity at the walls for channel flow. We apply
a POU-Net Lee et al. (2021); Shazeer et al. (2017) with a set of MOR-Physics Operators Patel &
Desjardins (2018) to better learn boundary conditions, introducing POU-MOR-Physics. In addition
to being well suited to nontrivial boundary conditions, our method interpretably divides the domains
for the experts. To demonstrate the method, we simultaneously learn the boundary conditions and
a LES model for channel flow using the Johns Hopkins Turbulence Database (JHTDB) Li et al.
(2008); Graham et al. (2016); Perlman et al. (2007). We find this approach to demonstrate superior
performance over WNO for LES modeling.

We also take measures to accommodate the limited high-fidelity JHTDB DNS dataset. We embed a
forward-Euler PDE solver in our model for training and implement uncertainty quantification (UQ)
to provide a range of predictions outside the training data. The integration of the PDE solver with
the learned correction serves a purpose similar to data augmentation: enabling higher-quality pre-
dictions despite the limited data. The UQ is implemented with Mean-Field Variational Inference
(MFVI) Blei et al. (2017), which enables (1) the identification of the support of the dataset at pre-
diction time (and hence detection of out-of-distribution (OOD) queries), and (2) the modeling of the
notoriously high aleatoric uncertainty that are inherent to turbulence.

We leverage our neural operator to provide the missing physics for the subgrid scale dynamics in
turbulent channel flow, i.e., LES closure modeling. To the best of our knowledge, the current state of
the art for LES modeling of wall bounded turbulence with operator learning was presented by (Wang
et al., 2024). The authors used an UNet enhanced FNO to learn a model for flows up to Re=590.
In comparison, with the novel methods presented in this paper, our LES model incorporates UQ, a
priori known physics, models flows up to Re=1000, and is more interpretable due to Mixture-of-
Expert style partitioning.

1.1 CONTRIBUTIONS

In this work we,

• Describe a connection between volume penalized numerical methods and POU-Nets.

• Leverage the connection to develop a novel operator learning strategy capable of learning
multi-physics systems with non-trivial boundary conditions.

• Demonstrate the method in simple 2D operator learning problems.

• Advance the State-of-the-Art relative to Wang et al. (2024), by accurately modeling
Re=1000 3d wall bounded turbulence via neural operators and quantifying uncertainties.

• Outperform WaveletNO and CNN SATO comparison models on the LES model learning
task.

2 METHODS

Given pairs of functions as data,

D = {(ui, vi)|i ∈ 1, . . . , n, ui ∈ U, vi ∈ V } ,

where U and V are two Banach spaces, we seek an operator, P : U → V . The spaces U and V
are sets of functions defined on ui : X → Rm and vi : Y → Rp, where X and Y are compact
subsets of Rd1 and Rd2 , respectively. Given our target application, we will consider X = Y and
therefore d1 = d2 = d. Operator learning introduces a parametrization for the unknown operator,
P : U × Φ → V , where ϕ ∈ Φ are parameters. As we demonstrate with learning an LES closure
model in Section 3.2, models can also incorporate a priori known physics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Given the parametrization, we can learn a deterministic model by solving the minimization problem,

ϕ = argmin
ϕ̂

L(D,P(·, ϕ̂)), (1)

where L is a loss function, e.g., least squares. Alternatively, we can learn a probabilistic model by
solving the optimization problem,

Q = argmin
Q̂

L′(D,P, Q̂), (2)

where Q is a variational distribution over Φ and L′ is a loss function, e.g., the negative of evidence
lower bound (ELBO). The recovered operator must respect boundary conditions, which for neural
operators leveraging the Fourier transform is a nontrivial task Li et al. (2023).

One approach, volume penalization Brown-Dymkoski et al. (2014); Kadoch et al. (2012), is an
embedded boundary method that integrates a variety of PDEs with complex boundary conditions.
Volume penalization partitions a simple domain in two, where one of the subdomains is X , and
applies forcing in each subdomain such that the solution to the new PDE, when restricted to X , ap-
proximates the solution to the original PDE. More generally, different kinds of physics may operate
in different regions of space, and must be modeled as a collection of PDEs in disjoint domains, e.g.,
fluid-structure interaction Engels et al. (2015). For these multi-physics problems, volume penal-
ization partitions the extended domain accordingly with the appropriate forcing. In this work, we
focus on Fourier pseudo-spectral methods which, while simple, efficient, and accurate, only solve
PDEs on periodic domains with Cartesian meshes in their base form. Applied to Fourier pseudo-
spectral methods Kolomenskiy & Schneider (2009), volume penalization retains the simplicity of
the original discretization while expanding its reach to nontrivial problems.

Our approach identifies physical systems with complex boundary conditions or multiphysics sys-
tems by learning the requisite partitions and forcing in a volume penalized Fourier pseudo-spectral
scheme. We approach this task with the machine learning technique, mixture of experts, where
experts learn their operations in subdomains of the problem space partitioned by learnable gating
functions.

Taking inspiration from volume penalization and mixture of experts, we parameterize P using a
mixture of neural operators where each neural operator is a parameterized Fourier pseudo-spectral
operator. This composite neural operator, which we refer to as POU-MOR-Physics, however, relies
on the Fourier transform, so is designed for smooth functions with periodic domains. Ideally, a
smooth extension for ui to this periodic domain is constructed to avoid Gibbs phenomena originating
from the interface between X and the periodic domain. We first discuss a strategy for constructing a
smooth extension of ui in the next section that is compatible with the neural operator in Section 2.2.

2.1 FEATURE ENGINEERING – SMOOTH EXTENSION OF FUNCTIONS TO PERIODIC DOMAINS

Our neural operator, P , discussed in Section 2.2, is parameterized via the Fourier transform and
therefore is only well-defined for periodic functions. However, U and V are functions on the torus,
Td, so we embed X in Td, and must supply extensions for our functions in the new domain. Our
complete prediction mechanism, including the neural operator, restriction, and extension, takes the
form,

Pe : u
E7→ ue

P7→ ve
R7→ v. (3)

where E is an extension and R is a restriction; we have suppressed dependence on the parameters,
ϕ,

Since we only compute losses in X , we do not choose an extension for the output functions and
allow our neural operators to produce actions (i.e. v ∈ V) that behave arbitrarily in the complement,
Td \X . Our procedure provides a smooth extension of input functions to the torus. Input functions
with constant traces on the boundary are extended simply by setting the function value in Td \ X
to the constant value. For other functions, a similar approach would lead to discontinuities, which
induce Gibbs phenomena due to the Fourier transforms in our parametrization. We discuss the
details of our approach to extension in Appendix C. For the remainder, we will drop the subscript,
e, and identify ue with u, ve with v, and Pe with P .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Pointwise nonlinear
operator 0 Fourier layer 1 Fourier layer L-1... Fourier layer L

skip 0

Fourier Layer

skip?

Pointwise nonlinear
operator

skip

Fourier Integral Operator
LayerNorm

Figure 1: MOR Operator diagram, showing architecture of each expert operator Ni. Black arrows
denote function composition.

2.2 MODEL DESIGN – PARTITION OF UNITY NETWORK WITH MOR-PHYSICS NEURAL
OPERATORS

We now construct a neural operator, POU-MOR-Physics, for functions with domain, Td. Our pa-
rameterization is a spatially conditioned POU-network composed of a gating network and neural
operator experts:

(P(u;ϕ))(x) =
I∑

i=1

Gi(x;ϕGi
)(Ni(u;ϕNi

))(x), (4)

where G forms a partition of unity, i.e. ∀x ∈ Td,

I∑
i

Gi(x;ϕGi
) = 1 and Gi(x;ϕGi

) ≥ 0, (5)

and where ϕ are the combined set of parameters in the full model and ϕ∗ are parameters for the
various subcomponents of the model. Where the context is clear, we will suppress in our notation
the dependence on the parameters. We describe each of the components of P – the neural operators
Ni, i = 1, . . . , I , the gating network, G, and the time-dependent autoregressive strategy – in turn,
which then situates the model to be used for mean-field variational inference (MFVI).

2.2.1 MOR-PHYSICS OPERATOR

The neural operators in Equation equation 4, Ni, are modified versions of the MOR-Physics Op-
erator presented in Patel & Desjardins (2018); Patel et al. (2021). For convenience, we drop the
subscript i, as we define each Ni operator similarly. We will exclusively parameterize operators
with the approach detailed below. However, if we have a priori knowledge about a system, we can
use a predefined operator in addition to the learned ones. In our exemplars, we include the zero
expert in our ensemble of experts, i.e., an operator that evaluates to zero for any input function.

We compose L MOR-Physics operators, N (l), l = 1 : L, thereby introducing latent functions,
v(l) : Td → Rm(l)

, after the action of each operator,

v(l+1) = N (l+1)(v(l)) = LN
[
v(l) + h(l+1) ◦ F−1(g(l+1) · F(v(l)))

]
, (6)

where F is the Fourier transform, h(l) is a learned point-wise operator, implemented with a neural
network, g(l) is a weighting function in Fourier frequency space, and LN is layer normalization. The
skip connection in the above equation can also be removed. The multiplication operation, ·, in Equa-
tion equation 6 is both the Hadamard product and a matrix multiplication, i.e., at every wavenumber,
k, we have a matrix-vector product between g(l+1)(k) ∈ Cm(l+1)×m(l)

and F(v(l))(k) ∈ Cm(l)

.
This operation is comparable to linear operations across channels in a convolutional neural network
(CNN). .

To build these operators, we discretize the domains on Cartesian meshes and replace the abstract
linear operations with the appropriate matrix operations. Depending on the problem, we implement
g(l)(k) either as a neural network or a parameterized tensor. In either case, we truncate the higher

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

modes of either the g(l)(k) or F(v(l))(k) tensors (which ever has more in a given dimension) so that
their shapes are made compatible. This effectively results in a low pass filter; more details can be
seen in Patel & Desjardins (2018).

Ultimately, each Ni is then built via composition of several layers N (l), so that

v = v(L) = Ni(u) := (N (L) ◦ N (L−1) ◦ · · · ◦ N (1) ◦ h0)(u).

and v(L) = v provides the action of the composite MOR-Physics operator. This architecture is
sketched in Figure 1, mapping from an input u to a target v through the intermediate layers v(l).
As required to allow for v(l) to vary in output dimension, the skip connections in equation 6 can be
removed.

2.2.2 GATING NETWORK

The gating network G : Td → RI is built from a neural network, taking the coordinates as inputs.
Its output logits are transformed via softmax or a custom designed importance normalized softmax
(see Appendix D for details) into coefficients to compute a convex combination of neural experts,
Ni, at location x ∈ Td. The Gating network does not take u(x) as input, it only uses the location
x which is sufficient to partition the space for different experts. See Figure 2 for a schematic of the
gating function.

Since we rely on the Fourier transform for our operator parameterization, we use a smooth mapping,
Td → R2d, to provide the input to the gating network. The domain, Td, is parameterized by d
angles, θi and mapped to a vector in R2d as,

[sin(θ1), . . . , sin(θd), cos(θ1), . . . , cos(θd)]
T . (7)

This yields more consistently interpretable expert partitions; In our 2D exemplar discussed in Sec-
tion 3.1 we found this approach to produce symmetric partitions that conform to the problem speci-
fication, while the simpler approach using the angles as coordinates led to asymmetric partitions.

Although we describe a neural network gating function in this section, a priori known gates can
replace the network, e.g., when a PDE domain is already well characterized.

Operator Experts:

Gating Logits:

Expert 1 Expert 2

importance normalized
softmax

Figure 2: Mixture of Experts model, where a weighted sum of gating weights Gi(x) is applied to
expert outputs Ni(u). The gating weights are spatially localized, depending only on x and not u.

2.2.3 AUTOREGRESSIVE POU-MOR-PHYSICS MODEL

Autoregressive models are well-suited for learning spatiotemporal dynamics. We can specialize the
model in equation 4 to learn an update operator representing the evolution of the system over a small
period of time, ∆t, by letting P : U → U and,

u(·, (n+ 1)∆t) = Pu(·, t)
= un+1 = Pun.

(8)

In this context, the operator P can be composed with itself to predict the system at discrete times,
un+p = Ppun. In many cases, parts of a model are a priori known and we have a PDE with an
unknown operator,

∂tu =Mu+ P̃u (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

whereM is known and P̃ is unknown. A first order in time operator splitting allows for the update,

un+p = [P(I +∆tM)]
p
un = (P ◦ E)p(un) = Upun (10)

where P is a new unknown operator that provides the same effect as P̃ . Since the Euler update
operator, E = I + ∆tM, is a common time integrator for PDEs, we will refer to it as the PDE
solver for the remainder of this work. We will demonstrate an autoregressive model in Section 3.2
by learning an LES closure model for wall bounded turbulent flow.

We introduce the operator, Up
, to give a time series prediction of p time steps from an initial field,

and denote its action on an initial condition, Up
un = u[n,n+p], where the subscript indicates a

time-series beginning from timestep n and ending with timestep n+ p.

Given a time-series of functional data, D = {ũn}n=0,...,N , an autoregressive model can be found
by solving an optimization problem, i.e., equation 1 or equation 2.

2.3 MEAN-FIELD VARIATIONAL INFERENCE (MFVI)

The auto-regressive nature of our Bayesian MFVI model (in Section 3.2) necessarily changes our
otherwise standard implementation of MFVI. The details of the major difference are highlighted in
Figure 3.

To build MFVI into our neural operator, we assume independent Gaussian variational posteriors
for each model parameter, exploiting the conventional reparameterization trick Kingma (2013) for
normally distributed weights; see Appendix A.1 for how it applies to complex parameters. Further
details on the VI method can be found in Blundell et al. (2015).

Following Blundell et al. (2015)’s convention we treat the VI model as a probabilistic model, in the
sense that it directly predicts the mean and variance of Gaussian likelihoods, that is PLES : U → U,
where U = M ×Σ, such that the mean and variance are given by u = (µ, σ) ∈ U . Only the µ fields
are integrated by the PDE solver as described in Figure 3. We let P be a neural operator producing
unconstrained real vector valued functions, P(E(µ(n)), σ(n)) : x 7→ (ν(n+1), ρ(n+1)), and constrain
its outputs with the following transformations,

µ(ν) = 2 ∗ tanh(ν) σ(ρ) = log(1 + eρ) + ϵ, (11)

We refer to the composition of these constraint transformations, the neural operator, and the a priori
known physics as PLES .

Given a time-series of data, ṽ, we learn a Bayesian model using variational inference by optimizing
the ELBO,

max
q

(log p
(
ṽ[0,N]|U

P
ũ0

)
−DKL(q||p0)) (12)

where q is a variational distribution over Θ, p0 is a prior distribution over Θ, log p is a Gaussian
log likelihood with mean and variance provided by u. We use MFVI and select q to be a diagonal
Gaussian variational distributions with softplus positivity constraints for the standard deviations
Blundell et al. (2015). Equation equation 12 is not computationally tractable, so we use a strided
sliding window strategy and obtain,

max
q

∑
m=0:N :P

(log p
(
ṽ[m,m+P]|U

P
ũm

)
−DKL(q||p0)) (13)

where ũ[n,n+P] is the subset of data from timestep n to n + P and P is a hyperparameter for
the number of autoregressive steps used during training. The notation, 0 : N : P , borrows from
Python’s array slicing syntax. To initialize the means and variances, we set, ∀m, ũm = (ṽm, σ̃m =
0). We approximate the sum via stochastic mini-batch optimization. Overlapping sliding windows
would constitute data-augmentation, which has been shown to cause the cold posterior effect (CPE)
Izmailov et al. (2021), therefore we avoid using them.

With MFVI, the resulting model outputs Gaussian distribution predictions by applying a weighted
sum of the experts’ output tensors, c.f. Equation equation 4, where now these output tensors contain
both µ and σ channels for each output feature.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Flow of Uncertainty through Learned PDE solver model. The PDE solver operates on the
mean field, µn ∈ M , while the uncertainty field, σn ∈ Σ is entirely modeled and updated by the
Neural Operator.

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

Input

POU-MOR-Physics Output POU-MOR-Physics Error

−1 0 1

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

True Output

−1 0 1

x

DeepONet Output

−1 0 1

x

DeepONet Error

−1.0

−0.5

0.0

0.5

1.0

−0.3

−0.2

−0.1

0.0

0.1

−0.2

0.0

−0.005

0.000

0.005

−0.3

−0.2

−0.1

0.0

0.1

−0.04

−0.02

0.00

0.02

0.04

104 105

Number of parameters

10 1

Re
la

tiv
e

L 2
 e

rro
r

Nexp1
Nexp2
Nexp4
Nexp8
DON

Figure 4: (Left) Visual comparison of POU-MOR-Physics (8 experts) and DeepONet learned opera-
tors for nonlinear Poisson equation with nontrivial boundary conditions. Both architectures contain
∼ 100K parameters. (Right) relative errors for POU-MOR operator with varying number of param-
eters and experts and DeepONet for varying number of parameters. NexpI refers to POU-MOR-
Physics with I experts. DON refers to DeepONet

3 NUMERICAL DEMONSTRATIONS

We demonstrate our method with two numerical examples. This section describes the problem for-
mulations and our results. In first example, we learn the solution operator to a nonlinear Poisson
equation with mixed boundary condition. In the second, we learn an LES model for turbulent chan-
nel flow.

3.1 SOLUTION OPERATOR FOR NONLINEAR POISSON PROBLEM ON THREE-QUARTERS DISK

In this section, we demonstrate the mixture-of-experts in POU-MOR-Physics provides a viable ap-
proach to learning solution operators for nonlinear PDEs with complex domains. We begin by
generating pairs of data, (ui, vi), that solve a nonlinear Poisson equation,

∇ · tanh(∇v) = u x ∈ Ω
v = 0 x ∈ ∂Ω

(14)

where the domain, Ω, is the three-quarters of the unit disk shown in Figure 4. We generate ui

by sampling a Gaussian process with mean zero and square exponential covariance kernal with
correlation length, l = 0.2. For each ui we solve equation 14 for vi using a finite element code
with P1 elements and a characteristic mesh size of 0.025. We generate 10000 samples of (ui, vi),
partitioned by 60%/20%/20% into training, validation, and test sets. We train solution operators,
P : ui 7→ vi using POU-MOR-Physics, varying the parameter count and number of experts, and
DeepONet for similar parameters counts. The left subplot in Figure 4 shows a visual comparison
between actions recovered for POU-MOR-Physics and DeepONet for around 100K parameters. We
observe that POU-MOR-Physics has substantially lower error than DeepONet for this problem. On
the right subplot, we plot the average relative L2 error over the test set between the FEM solution
and the neural operators. We find that the experts are necessary to recover the solution operator and
can further improve accuracy as more experts are added. With enough experts, POU-MOR-Physics
outperforms DeepONet for all parameter counts tested. DeepONet appears to converge somewhat
faster but even if there is a parameter count for which DeepONet performs better, it is likely to be
unreasonably high number of parameters to be competitive with POU-MOR-Physics. We provide
training and parameterization details in Appendix E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model: ELBO: val ↑ ELBO-long ↑ R2: val ↑ R2-long ↑ MAE: val ↓ MAE-long ↓
Recursive Steps 5.47153 5.2897 99.081% 98.864% 0.001802 0.0019609

MoE+IN 5.16139 -93.94615 98.431% 24.262% 0.0026547 0.02711
MoE 5.06351 -671.67914 98.505% -699.483% 0.0030291 0.080844

Control 5.12027 -233.91377 98.743% -488.797 % 0.0029808 0.079651
Ours 5.63422 5.48693 0.99456% 0.99325% 0.0015041 0.0016127

Table 1: Ablation Study (Appendix I): Shorthand: IN=Importance Normalization, LN=LayerNorm,
MoE=Mixture of Experts, PP-LL=Posterior-Predictive-Log-Likelihood. Ours combines all features
described. Recursive Steps has 10 auto-regressive timesteps (as does our model).

Model: ELBO: val ↑ ELBO: 100 step ↑ R2: val ↑ R2: 100-step ↑ MAE: val ↓ MAE: 100 step ↓
CNN-k4 3.41832 2.9057 0.24721 0.23969 0.022192 0.027813
Ours-k4 3.54017 3.44403 0.37666 0.35351 0.017363 0.018602

Table 2: CNN Comparison (CNO Proxy: Ours>CNN≥CNO): we make the argument in subsec-
tion I.2 that our CNN model serves as a band-unlimited proxy to CNO (similar to a bandlimited
CNN).

3.2 LARGE EDDY SIMULATION MODELING

Our target application is extracting an LES model from 3d+1 DNS provided by the JHTDB dataset
Graham et al. (2016). The simulation data is obtained from the Re=1000 channel flow problem with
no-slip boundary conditions (BCs) on the top and bottom of the flow, and periodic BCs on the left,
right, front and back. See Appendix H for these details.

We subsample the DNS data spatially (see Table 4 in Appendix 4) and keep the full resolution in the
time dimension, motivated by the need to have a larger training dataset. The spatial sub-sampling is
performed after applying a box filter to the DNS data, ensuring the sub-sampled grid is representative
of the whole DNS field.

From this data, we seek to obtain an autoregressive (Section 2.2.3), MFVI (Section 2.3) model that
incorporates physics by leveraging the standard LES formulation (Appendix F). While the JHTDB
dataset only simulates the flow for one channel flow through time, t = T , we use our model to
extrapolate the flow to long times, t = 2T , and evaluate the predictions and uncertainties from our
model.

G
1

G
2

Expert weights

G
3

0.0

0.5

1.0

v 1
v 2

Filtered DNS at t = T

v 3

LES model at t = 2T

Figure 5: (Left) 3D Expert Partitions for JHTDB dataset. G3 is the zero expert, i.e., N3 = 0. Fields
from filtered (Center) DNS at t = T and learned (Right) Sample of LES model predictions after
2 channel flow-through times. We observe excellent agreement between the learned model and the
filtered DNS data, and we find the partitions to align with the channel walls.

Model: ELBO: val ↑ ELBO: 100 step ↑ R2: val ↑ R2: 100-step ↑ MAE: val ↓ MAE: 100 step ↓
WNO 1.91353 2.16997 -3.43538 -1.78457 0.036095 0.031982
Ours 2.95503 2.82594 0.47534 0.34528 0.0172 0.018449

Table 3: WNO Comparison: see subsection I.1

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

104

E(
)

0.00

0.25u 1

t = 1T

0.0

0.5

u r
m

s

100

104

E(
)

1 0 1
y

0.00

0.25u 1

t = 2T

1 0 1
y

0.0

0.5

u r
m

s

Figure 6: MFVI LES model captures (Left) energy spectrum and (Center) bulk velocity, and (Right)
RMS fluctuations. Posterior predictive samples are shown in black & uncertainty bars in blue. The
DNS results are shown in orange. Kolmogorov’s 5/3 rule is shown in green.

We use our LES model to evolve the system to 2 channel flow-through times. Since the JHTDB only
includes one flow length’s worth of data, we are predicting dynamics in an extrapolatory regime and
using the VI model to provide predictions with error bars. In Figure 5, we find that the gating
network is able to partition the domain and find separate models for the bulk and boundary layers
of the JHTDB channel data. We see spatial partitions that reflect the boundary layer, with different
support forN1 vs. N2 Moreover, the transition fromN1 toN2 is continuous roughly approximating
the strength of the velocity at those points in the simulation. This demonstrates the model’s ability
to find multiple, spatially conditioned models. In Figure 5, we also show a comparison between the
filtered DNS fields at t = T and the model predictions at t = 2T , observing qualitatively similar
fields.

Since the flow is at a statistical steady state, we should see the same mean statistics for our model
as the DNS data. Figure 6 shows a statistical comparison between our model and the filtered DNS
data. We see that the energy spectrum closely matches that of DNS and obey’s Kologmorov’s 3/5’s
rule (the error bars don’t pass the threshold). In the middle figures we see close agreement also
even at t=2T. However we also see the uncertainty is as expected increasing with time. Finally we
see decent agreement with RMS velocity fluctuations in the right most figures, however there is
still some room for improvement as matching RMS fluctuations Pope (2000) is more difficult. We
demonstrate in Appendix B that the velocities predicted by the POU-MOR-Physics model closely
matches the filtered DNS.

We perform an ablation study for POU-MOR-Physics, considering various components of our model
(see Table 5). We find that the mixture-of-experts and the recursive timestepping to be essential for
our approach. In Table 7 and Table 6 we find our approach to outperform equivalent CNN and a
WNO models, respectively. See Appendix ?? for details on these studies.

4 CONCLUSION

In this work, we addressed the challenge of learning non-periodic boundary conditions and discon-
tinuities in PDE simulations using a Mixture of Experts (MoE) approach, specifically applied to the
MOR-Physics neural operator. The motivation for this work stems from the limitations of tradi-
tional Fourier-based PDE solvers, which struggle with non-periodic boundary conditions, such as
those found in Navier-Stokes simulations. By integrating a forward Euler PDE solver and applying
a correction operator at each timestep, we were able to enhance solver accuracy. Our methods were
tested on both 2D synthetic data and LES for 3D channel flow, demonstrating promising results.
The model was highly successful in the 2D case, where it flawlessly captured the zero boundary
conditions. Furthermore, the Bayesian 3D channel flow problem yielded promising results with a
close match between the energy spectra of the DNS and model predictions.

5 REPRODUCIBILITY STATEMENT

If accepted, we will provide a github repository for the 2D Poisson example and the LES turbu-
lence model. We will provide methods for constructing, training, and evaluating the models. We
refer readers to the JHTDB Graham et al. (2016) for the turbulent channel flow dataset. We will

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

provide code for generating synthetic data for the 2D Poisson example. This code cannot easily
be anonymized due to references to specific computational infrastructure, so we cannot provide it
during the review period.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems,
28, 2015.

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,
2014.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Eric Brown-Dymkoski, Nurlybek Kasimov, and Oleg V Vasilyev. A characteristic based volume pe-
nalization method for general evolution problems applied to compressible viscous flows. Journal
of Computational Physics, 262:344–357, 2014.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, 1995. doi: 10.1109/72.392253.

Chen, Gengxiang, Liu, Xu, Meng, Qinglu, Chen, Lu, Liu, Changqing, and Li, Yingguang. Learning
neural operators on riemannian manifolds. Natl Sci Open, 3(6):20240001, 2024. doi: 10.1360/
nso/20240001. URL https://doi.org/10.1360/nso/20240001.

Thomas Engels, Dmitry Kolomenskiy, Kai Schneider, and Jörn Sesterhenn. Numerical simulation
of fluid–structure interaction with the volume penalization method. Journal of Computational
Physics, 281:96–115, 2015.

P Goyal. Accurate, large minibatch sg d: training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

J Graham, K Kanov, XIA Yang, M Lee, N Malaya, CC Lalescu, R Burns, G Eyink, A Szalay,
RD Moser, et al. A web services accessible database of turbulent channel flow and its use for
testing a new integral wall model for les. Journal of Turbulence, 17(2):181–215, 2016.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What
are bayesian neural network posteriors really like? In International conference on machine learn-
ing, pp. 4629–4640. PMLR, 2021.

Benjamin Kadoch, Dmitry Kolomenskiy, Philippe Angot, and Kai Schneider. A volume penalization
method for incompressible flows and scalar advection–diffusion with moving obstacles. Journal
of Computational Physics, 231(12):4365–4383, 2012.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Dmitry Kolomenskiy and Kai Schneider. A fourier spectral method for the navier–stokes equations
with volume penalization for moving solid obstacles. Journal of Computational Physics, 228(16):
5687–5709, 2009.

Kookjin Lee, Nathaniel A Trask, Ravi G Patel, Mamikon A Gulian, and Eric C Cyr. Partition of
unity networks: deep hp-approximation. arXiv preprint arXiv:2101.11256, 2021.

10

https://doi.org/10.1360/nso/20240001

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yi Li, Eric Perlman, Minping Wan, Yunke Yang, Charles Meneveau, Randal Burns, Shiyi Chen,
Alexander Szalay, and Gregory Eyink. A public turbulence database cluster and applications to
study lagrangian evolution of velocity increments in turbulence. Journal of Turbulence, (9):N31,
2008.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. J. Mach. Learn. Res., 24(1), January
2023. ISSN 1532-4435.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021. doi: 10.1038/s42256-021-00302-5.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineer-
ing, 393:114778, 2022.

Ravi G Patel and Olivier Desjardins. Nonlinear integro-differential operator regression with neural
networks. arXiv preprint arXiv:1810.08552, 2018.

Ravi G. Patel, Nathaniel A. Trask, Mitchell A. Wood, and Eric C. Cyr. A physics-informed oper-
ator regression framework for extracting data-driven continuum models. Computer Methods in
Applied Mechanics and Engineering, 373:113500, 2021. ISSN 0045-7825.

Eric Perlman, Randal Burns, Yi Li, and Charles Meneveau. Data exploration of turbulence simula-
tions using a database cluster. In Proceedings of the 2007 ACM/IEEE Conference on Supercom-
puting, pp. 1–11, 2007.

Stephen B. Pope. Turbulent Flows. Cambridge University Press, 2000.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped neural
operators. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Bogdan Raonic, Roberto Molinaro, Tobias Rohner, Siddhartha Mishra, and Emmanuel de Bezenac.
Convolutional neural operators. In ICLR 2023 workshop on physics for machine learning, 2023.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Richard Sinkhorn. A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic
Matrices. The Annals of Mathematical Statistics, 35(2):876 – 879, 1964. doi: 10.1214/aoms/
1177703591. URL https://doi.org/10.1214/aoms/1177703591.

Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of residual networks
using large learning rates. CoRR, abs/1708.07120, 2017. URL http://arxiv.org/abs/
1708.07120.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pp. 369–386. SPIE, 2019.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial dif-
ferential equations in computational mechanics problems. Computer Methods in Applied Me-
chanics and Engineering, 404:115783, 2023a. ISSN 0045-7825. doi: https://doi.org/10.1016/
j.cma.2022.115783. URL https://www.sciencedirect.com/science/article/
pii/S0045782522007393.

11

https://doi.org/10.1214/aoms/1177703591
http://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120
https://www.sciencedirect.com/science/article/pii/S0045782522007393
https://www.sciencedirect.com/science/article/pii/S0045782522007393

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial differ-
ential equations in computational mechanics problems. Computer Methods in Applied Mechanics
and Engineering, 404:115783, 2023b. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2022.
115783.

Yunpeng Wang, Zhijie Li, Zelong Yuan, Wenhui Peng, Tianyuan Liu, and Jianchun Wang. Prediction
of turbulent channel flow using fourier neural operator-based machine-learning strategy. Physical
Review Fluids, 9(8):084604, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

A APPENDIX

A.1 COMPLEX VALUES AND REPARAMETERIZATION TRICK

The complex-valued weights in the network architecture in Equation equation 6 are defined as
θi = wi + iw̃i, where θi ∈ C, and the values wi ∼ N(µi, σ

2
i), w̃i ∼ N(µ̃i, σ̃

2
i), with Gaussian

values parameterized by the reparameterization trick. This scheme yields twice as many parameters
(1/2 real, and 1/2 imaginary) as compared to a comparable network parameterized with real-valued
weights.

B FILTERED DNS AND LES FIELDS FROM DETERMINISTIC MODEL

We include here a comparison between sample fields predicted by the POU-MOR-Physics LES
model and the fields from the filtered DNS. We note the close correspondence between the two sets
of fields.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 7: Learned Simulation: X Velocity

Figure 8: DNS: X Velocity

Figure 9: Comparison of X velocity field from learned simulation vs DNS from JHTDB.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 10: Learned Simulation: Y Velocity

Figure 11: DNS: Y Velocity

Figure 12: Comparison of Y velocity field from learned simulation vs DNS from JHTDB.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 13: Learned Simulation: Y Velocity

Figure 14: DNS: Y Velocity

Figure 15: Comparison of Y velocity field from learned simulation vs DNS from JHTDB.

C SMOOTH EXTENSION OF FUNCTIONS ON ARBITRARY DOMAINS TO THE
TORUS

In this section, we provide details on our approach to smooth extension as discussed in section 2.1.
We approach this problem by solving a constrained optimization problem that minimizes the H1

semi-norm of the extended function such that it matches the original function with domain, X .

minue

∫
∇ue · ∇uedx

s.t. Rue = u
(15)

The Lagrangian Bertsekas (2014) for this optimization problem is,

L =

∫
∇ue · ∇uedx+ (λ,Rue − u)L2(U) (16)

where the Lagrange multiplier, λ ∈ U . Using the Plancherel theorem, we rewrite the Lagrangian as,

L =
∑
κ

(κFue) · (κFue) + (λ,Rue − u)L2(U) (17)

Using the unitary Fourier transform, F−1 = F∗, the first order conditions give a linear system,

∇[ue,λ]TL = 0⇒
[
F−1κ · κF RT

R 0

] [
ue

λ

]
=

[
0
u

]
= Aq = b

(18)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ze
ro

 p
ad

u Nu

Sm
oo

th
 e

xt
en

sio
n ue Nue

Figure 16: The smooth extension prevents Gibbs oscillation for Burgers action on a function orig-
inally defined on a quarter disk. (Top right) Simple extension of input function to torus via zero
padding. (Bottom right) Smooth extension of input function to torus. (Top left) Burgers action on
simple extension. (Bottom left) Burgers action on smooth extension.

where RT is given by (Rue, u)X = (ue,RTu)Td . We efficiently solve the normal equations for
this system using matrix free operations in a conjugate gradient (CG) solver.

To illustrate this method, Figure 16 compares the smooth extension of an input function with an
extension that sets the function values to zero outside of the domain and compares the action of the
Burgers operator, v = u ·∇u, on the two extensions. The discontinuity in the simple extension leads
to an oscillatory action while the action from the smooth extension is less oscillatory. This test was
performed using input function data generated as per Section 3.1.

D IMPORTANCE NORMALIZED SOFTMAX

While our particular flavor of ”mixture of experts” (aka partition of unity), is distinct from the name
sake in Shazeer et al. (2017) we did find that our model benefited from a form of expert importance
normalization inspired by Shazeer et al. (2017). In particular we used a Sinkhorn iteration Sinkhorn
(1964) algorithm to normalize both total expert usage across space and the sum of gating weights at
a particular point in space to 1.

(S̃n+1(G̃)i)(x) = (S̃n(G̃)i)(x)− log(

∫
x̃∈Td

exp(S̃n(G̃)i(x̃))dx̃)− log(

I∑
j=1

exp(S̃n(G̃)j)(x))

(19)

s.t. S̃0(G̃) = G̃ (20)

G = Sn(G̃) = exp(S̃n(G̃)) is the gating weights resulting from importance normalized softmax
with n Sinkhorn iterations (in our models n=10).

E DETAILS ON NONLINEAR POISSON EQUATION STUDY

This section provides training and archecture details on the problem examined in Section 3.1. To
better isolate the effects of the mixture-of-experts model, we resort to a simpler POU-MOR-Physics
model that only contains a mixture of single Fourier layers and removing the layer normaliza-
tions. We choose the gating network, G̃ to be a width 32 and depth 5 neural network. We use
softmax to transform the gating network logits into weights. We choose the Fourier multipli-
ers, g, to be neural network functions and h and g to be depth 5 neural networks with varying
widths. We vary the widths of the latter two networks and target architectures with approximately
(8000,16000,32000,64000,128000) total weights. We choose the unstacked variant of DeepONet
for this study Lu et al. (2021), keeping the branch and truck networks fixed to a depth of 5 and vary-
ing the width to target the same above total parameter counts. We train all models using the Adam

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

0.8

1.0

Figure 17: Partitions discovered by the POU-MOR-Physics operator in the left subplot of Figure 4

optimizer with the cosine learning rate scheduler with an initial learning rate of 0.01, α = 0.01, and
10000 decay steps. We train all models with a batch size of 40 over 400 epochs.

In Figure 17, we show the partitions discovered by training the POU-MOR-Physics operator with 8
experts and ∼ 100K parameters.

F a priori KNOWN PHYSICS FOR LES MODEL

Our LES model is an autoregressive model with a priori known physics. See Section 2.2.3 for the
general formulation of autoregressive models in our framework. In this section, we will start from
the standard formulation of LES models and arrive at an LES model that incorporates a learned
operator for various unclosed terms. As in Section 2.2.3, we will separate the known physics from
the unknown and expose the unknown physics to operator learning.

Direct numerical simulation (DNS) solves the Navier-Stokes equations,

∂tv +∇v ⊗ u = −1

ρ
∇p+ ν∇2v x ∈ Ω

∇ · v = 0 x ∈ Ω

v = 0 x ∈ ∂Ω

(21)

Equation equation 21 is typically expensive to integrate because real systems often contain a large
range of spatiotemporal scales that must be resolved. The LES equations are obtained by applying
a low pass spatiotemporal filter to the Navier-Stokes equations,

∂tṽ +∇ṽ ⊗ ṽ = −1

ρ
∇p̃+ ν∇2ṽ −∇τ x ∈ Ω

∇ · ṽ = 0 x ∈ Ω

ṽ = 0 x ∈ ∂Ω

(22)

where τ = ṽ ⊗ v−ṽ⊗ṽ is the residual stress tensor. Since the small scale features have been filtered
out, Equation equation 22, can be much cheaper to numerically integrate than Equation equation 21.
However, τ is an unclosed term that must be modeled. Traditionally, one uses a combination of
intuition and analysis to arrive at a simple model with a few parameters that can be fitted to DNS
simulation or experiments. Here, we will use POU-MOR-Physics to provide the closure.

To obtain our model, we will first consider LES in a triply periodic domain.

∂tṽ +∇ṽ ⊗ ṽ = −1

ρ
∇p̃+ ν∇2ṽ −∇τ x ∈ Ω

∇ · ṽ = 0 x ∈ Ω

(23)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We use the Chorin projection method to eliminate the pressure term and the explicit Euler time
integrator to obtain an evolution operator,

v̂n+1 =ṽn −F−1 (iκ · F ṽn ⊗ ṽn

+
iκ

||κ||22
(κ⊗ κ) : F ṽn ⊗ ṽn − ||κ||22F ṽn

)
=LES(ṽn)

(24)

where F is the Fourier transform and κ is the wave vector.

This update operator does not include the boundary conditions, the missing sub-grid scale physics,
or any forcing. We model these as an operator learned correction to the action above and obtain,

ṽn+1 = P(LES(ṽn)) = U(ṽn) (25)

where P is the POU-MOR-Physics operator discussed in Section 2.2. We can learn the closure
P from low pass filtered DNS data and obtain a model that operates on much lower dimensional
features than the original DNS, as we demonstrate in Section 3.2 and Appendix B.

G POST PROCESSING DETAILS FOR JHTDB CHANNEL DATASET

Below in Table 4, we provide postprocessing details for the channel dataset.

Parameter Value
Spatial Stride sx = sy = sz = 20
Sub-Sampled Dimensions 103× 26× 77
Time Dimension t = 4000
Box Filter Dimension b = 20

Table 4: Post Processing Parameters for JHTDB problem.

H TRAINING DETAILS FOR LARGE EDDY SIMULATION MODEL

Due to the memory demands of this learning task, we required parallelization to train our LES
model. To handle the computational load efficiently, we employ 20 A100 GPUs alongside the Fully-
Sharded Data Parallel (FSDP) strategy Zhao et al. (2023), thereby exploiting data-parallel training
and necessitating a scaled learning rate that follows the batch size Goyal (2017).

To further mitigate the substantial memory requirements, we utilized the real Fast Fourier Transform
(rFFT) within the MOR-Physics Operator Patel et al. (2021), effectively conserving memory without
compromising performance.

We used the linear scaling rule from Goyal (2017) and the ”One Cycle” warm-up schedule from
Smith & Topin (2019); without warm-up, the model parameters may change too rapidly at the outset
Goyal (2017) for effective training.

Adhering to the linear scaling rule from Goyal (2017), we set the batch size to batch size = n
and the learning rate to learning rate = 1.25 × 10−4 ∗ n, where n represents the number of GPUs
utilized. Although memory constraints necessitated a small per-GPU batch size of 1, we found that
combining this approach with gradient clipping yielded effective training results.

To improve the stability of the learned subgrid dynamics operator, we employed several (i.e. 8) auto-
regressive time steps during training, following methodologies similar to those proposed by Bengio
et al. Bengio et al. (2015) (but without the curriculum). Statistical auto-regressive time series models
often suffer from exponentially growing errors because the model’s flawed outputs feed back into its
inputs, compounding errors over multiple time steps. By exposing the model to this process during
training — taking several auto-regressive steps before each optimization step — the model learns to
correct its own compounding errors, mitigating problems at prediction time Bengio et al. (2015).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model: ELBO: holdout ↑ ELBO: 100 step ↑ R2: holdout ↑ R2: 100-step ↑ MAE: holdout ↓ MAE: 100 step ↓ Param Train time-horizon: MoE? IN?
Recursive Steps 5.47153 5.2897 99.081% 98.864% 0.001802 0.0019609 8.60588e+08 10-steps No No

MoE+IN 5.16139 -93.94615 98.431% 24.262% 0.0026547 0.02711 8.39004e+08 1-step Yes Yes
MoE 5.06351 -671.67914 98.505% -699.483% 0.0030291 0.080844 8.39004e+08 1-step Yes No

Control 5.12027 -233.91377 98.743% -488.797 % 0.0029808 0.079651 8.60588e+08 1-step No No
Ours 5.63422 5.48693 0.99456% 0.99325% 0.0015041 0.0016127 8.39004e+08 10-steps Yes Yes

Table 5: Ablation Study: Shorthand: IN=Importance Normalization, LN=LayerNorm,
MoE=Mixture of Experts, PP-LL=Posterior-Predictive-Log-Likelihood.

I ABLATION STUDY AND SATO COMPARISONS

In our ablation study we choose to keep the amount of output (ground-truth) data fixed per step
rather than the total amount of ground truth data per step across models. The reasoning here is
two-fold: first of all in Bayesian theory the ”weight” of the data (i.e. magnitude of the NLL) is
proportional only to the size of the output data, second we derived scaling equations for both learning
rate and gradient clipping keeping amount of output data constant represented a special case in
these scaling equations where learning rate and gradient clipping could also be kept constant which
seemed particularly elegant. Also the reason that the distinction between keeping total vs output
amount of ground truth data per-step constant is meaningful is because we were comparing using
recursive auto-regressive training vs 1-step-ahead training; in the former case model outputs are
reused as model inputs which reduces the amount of ground-truth data needed in the inputs. We
chose effectively to replace all model predictions in the inputs with actual data.

Also for all model comparisons we used ”area resampling” (i.e. area down-sampling) to further
reduce the 103x26x77 resolution of the production dataset described in subsection 3.2. ”Area re-
sampling” a continuous version of box averaging which is what we originally used to coarsen the
much larger 2048×512×1536 DNS data to the 103x26x77 dataset in subsection 3.2 (which our pro-
duction model uses). Specifically for the Ablation study and the CNN comparison we reduced the
resolution to 70x17x52. For the WNO comparison we had to reduce the resolution to powers of 2:
64x16x64 (required by the WNO). Also all compared models as tested as LES models inside the
forward Euler PDE solver we have. For all model comparisons in a particular bracket we approx-
imated as best we could (given discrete architecture parameters) equal parameter count and used
exactly equal training epochs as well as hyper-parameters like learning rate, gradient clipping, etc...
Lastly for model comparisons we use the ELBO as the primary metric to determine the best model.
This metric encompasses: uncertainty calibration and prediction accuracy. We calculate it for both:
holdout data and long—100 step—horizon validation (and particularly decide the best model based
on the long-horizon version). We also report R2 and MAE of model mean predictions.

I.0.1 HYPER-PARAMETERS

• Our large ”single expert config” used in ”Recursive Steps” and ”Control” models used 6
layers and 36 hidden channels.

• While our mixture of experts config used 4 layers and 32 hidden channels per expert, and
4 point-wise convolution layers for the gating network.

• Also we used learning rate=0.0011253600000000002, and gradient clipping (by value) at
5.892556509887896. And the OneCycle Smith & Topin (2017) learning rate scheduler for
all experiments.

The most obvious result of the ablation study is the importance of recursive multi-step-ahead training
which really should be the only way to train an auto-regressive model like this. Since training 1-
step-ahead then ”transferring” to auto-regressive prediction represents distribution drift that hinders
model performance. Similar results for auto-regressive language models have been shown in Bengio
et al. (2015), however they use a curriculum which we don’t. We aren’t aware of this kind of result
being established in auto-regressive timeseries field modeling or SciML in general however. It is
also apparent that ”importance normalization” was important for mixture of experts in this problem.
It appears without it might over-rely on whichever expert is already the most accurate which leads

19

https://docs.pytorch.org/docs/2.8/generated/torch.nn.functional.interpolate.html

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Model: ELBO: holdout ↑ ELBO: 100 step ↑ R2: holdout ↑ R2 : 100− step ↑ MAE: holdout ↓ MAE: 100 step ↓ Param
WNO 1.91353 2.16997 -3.43538 -1.78457 0.036095 0.031982 1.16636e+09
Ours 2.95503 2.82594 0.47534 0.34528 0.0172 0.018449 8.82402e+08

Table 6: WNO Comparison

Model: ELBO: holdout ↑ ELBO: 100 step ↑ R2: holdout ↑ R2 : 100− step ↑ MAE: holdout ↓ MAE: 100 step ↓ Param
CNN-k4 3.41832 2.9057 0.24721 0.23969 0.022192 0.027813 1.23076e+06
Ours-k4 3.54017 3.44403 0.37666 0.35351 0.017363 0.018602 1.27844e+06

Table 7: CNN Comparison

the model to under-utilize it’s parameters. The mixture of experts method really is the best though
when combined with recursive time stepping.

I.1 WNO COMPARISON:

Wavelet Neural Operator Tripura & Chakraborty (2023a) was invented to alleviate the Gibbs phe-
nomena weakness in FNO for complex non-periodic boundary conditions so it was a natural SATO
comparison point. We found however the WNO was very slow to train (1/5 the speed of our model
even after multiple optimizations), so we reduced the training epochs significantly (to just 150). We
also used only 1 wavelet decomposition level because: it made it easier to match parameter count
to our full-mode MOR Operator Mixture of Experts model and it doubled the training speed. We’re
not sure if the slow speed of WNO is algorithmic or just due to an inefficient implementation. Also
since the WNO requires power of 2 resolutions we down-sampled to 64x16x64 as mentioned earlier.
We trained special version of our model for the sake comparison because our model is best when
using full-modes and our default problem has resolution 103x26x77 so we had to make a special
one with 64x16x64 modes which also nearly matched the parameter count of the WNO. We didn’t
test the WNO with output Layer Normalization like we used for the CNN and our model simply
because we wanted to test the architecture as-is. We actually beat the WNO quite squarely despite
using a decent amount less parameters.

I.2 CNN COMPARISON (CNO PROXY: OURS¿CNN¿=CNO):

CNO Raonic et al. (2023) is a SATO neural operator which attempts to alleviate aliasing errors im-
peding FNO ? resolution invariance. These aliasing errors are caused by activations which introduce
high frequency content that is aliased in the following Fourier transforms, so CNO solves this by
following the activation functions by linear transformations and a low pass filter which return the
”activations” to dense tensors which respect the band limit. It is effectively a CNN that operates in
function space (via a form of interpolation) and adheres to a strict internal band limit to it’s preserve
resolution invariance property. It is of course following by a projection module like FNO has in
order to recover some of the lost higher frequency information. It has been pointed out by reviewers
of CNO however that while this innovation is advantageous–especially for resolution invariance–the
imposed band limit could reduce expressive capacity to an extent. Our problem is a special case
where we don’t explicitly evaluate our model at different resolutions, so we figured we could use
a CNN has a band-unlimited proxy comparison point for CNN since in the fixed resolution setting
CNN¿=CNO, therefore if we establish that Ours¿CNN it follows that Ours¿CNN¿=CNO (for our
turbulence problem, given fixed resolution). CNN also stands as a strong baseline comparison point
on it’s own since they remain the status-quo for SATO performance in general computer vision
(which simulation surrogates fall under the umbrella of). We used a ResNet-style CNN, containing
10 layers (with kernel size: 4x4x4), skip connections and LayerNorm Ba et al. (2016) to normalize
the activation statistics after summing the skip connections. We used LayerNorm because our batch
size was very small due to large 3d video predictions and the GroupNorm paper ? demonstrated
that for ResNet with small batch sizes BatchNorm degrades far below LayerNorm and GroupNorm.
However we tried GroupNorm and it didn’t do as well as LayerNorm right away and we didn’t have
the budget to tune the number of groups to get better performance from GroupNorm. We could have
used a U-Net architecture for comparison but that is out of scope.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Normally we use our model with maximum kernel size but the CNN wasn’t capable of matching
this since it is much slower at convolution O(n2) vs O(nlog(n) + n) = O(nlog(n)) (with kernel
size k=n input resolution per dimension). So we matched the kernel size k=4x4x4 of the CNN in
our model as well. This is actually significant limitation of the CNN though because our model can
do much better by using the full kernel k=103x26x77 which is computational intractable for a CNN.
This finding is also in contrast the common understanding about FNO’s that the higher frequency
modes are just noise and not very useful.

Stability Features Introduced for CNN: We had to introduce two stabilizing features in order to
make the CNN viable, it was very unstable in general—prone to diverging into NaNs during auto-
regressive rollouts. These stabilizing features—while not strictly necessary for our models—were
still observed to improve performance somewhat and so for consistency we implemented them on
our models as well.

The stabilizing features were:

1. Bounding output mean predictions µ← 2 ∗ tanh(µ) (all values in the dataset −0.5 < u <
1.5 satisfy this bound).

2. Using LayerNorm directly on the model raw output ”logits” N (u) = LayerNorm ◦ x(u)
(before application of µ and σ transformations).
(a) This may be counter-intuitive since it removes scale information and usually is re-

served for hidden layers but the added stabilization was immensely helpful (especially
given VI).

It should also be noted that we tried BatchNorm but encountered a pathological case where Batch-
Norm’s different behavior between training and validation lead to catastrophic failure. This is be-
cause the model was an auto-regressive timeseries model so the same normalization layer was reused
at different recursive time-steps where it encountered very different pre-normalization predictive
distributions (e.g. imagine compounding error where early predictions are stable and later ones are
erratic). Since it did actual normalization during training the model came to rely on it but during val-
idation it simply became an affine transformation based on aggregate statistics from all time-steps
it was used for which was not appropriate (causing NaN holdout performance). This is a unique
situation where LayerNorm is actually categorically different and much more useful.

21

	Introduction
	Contributions

	Methods
	Feature engineering – Smooth extension of functions to periodic domains
	Model Design – Partition of Unity network with MOR-Physics neural operators
	MOR-Physics Operator
	Gating Network
	Autoregressive POU-MOR-Physics model

	Mean-Field Variational Inference (MFVI)

	Numerical demonstrations
	Solution operator for nonlinear Poisson problem on three-quarters disk
	Large Eddy Simulation Modeling

	Conclusion
	Reproducibility statement
	Appendix
	Complex Values and Reparameterization Trick

	Filtered DNS and LES fields from deterministic model
	Smooth extension of functions on arbitrary domains to the torus
	Importance Normalized Softmax
	Details on nonlinear Poisson equation study
	a priori known physics for LES model
	Post processing details for JHTDB channel dataset
	Training details for Large eddy simulation model
	Ablation Study and SATO Comparisons
	Hyper-Parameters
	WNO Comparison:
	CNN Comparison (CNO Proxy: Ours>CNN>=CNO):

