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Abstract
Test-time scaling, which is also often referred
to as slow-thinking, has been demonstrated to
enhance multi-step reasoning in large language
models (LLMs). However, despite its widespread
utilization, the mechanisms underlying slow-
thinking methods remain poorly understood.
This paper explores the mechanisms of external
slow-thinking from a theoretical standpoint. We
begin by examining the snowball error effect
within the LLM reasoning process and connect
it to the likelihood of correct reasoning using
information theory. Building on this, we show
that external slow-thinking methods can be
interpreted as strategies to mitigate the error
probability. We further provide a comparative
analysis of popular external slow-thinking
approaches, ranging from simple to complex,
highlighting their differences and interrelation-
ships. Our findings suggest that the efficacy of
these methods is not primarily determined by the
specific framework employed, and that expanding
the search scope or the model’s internal reasoning
capacity may yield more sustained improvements
in the long term. We open-source our code
at https://github.com/ZyGan1999/
Snowball-Errors-and-Probability.

1. Introduction
Scaling laws (Kaplan et al., 2020) have been widely ac-
cepted as a guiding principle in the development of large
language models (LLMs), indicating that the performance
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of LLMs improves with the growth of model size and train-
ing data. Over the past few years, the trend in this field has
been toward expanding the scale of training phase, result-
ing in significant performance improvements (Yuan et al.,
2023; Zelikman et al., 2022; Rafailov et al., 2024). How-
ever, the marginal gains in model performance diminish as
scale increases, and training more powerful models necessi-
tates a substantial rise in investment. Consequently, recent
researches have shifted focus to scaling strategies beyond
model size, including optimizations during the post-training
phase and even at the test-time stage (Snell et al., 2024).

Following the release of LLMs with remarkable reason-
ing capabilities, such as OpenAI’s o1 (2024), DeepSeek’s
R1 (2025), and Qwen’s QwQ (2024b), it has become widely
acknowledged that scaling the inference process of LLMs
offers a promising avenue for further enhancing model per-
formance. Specifically, empirical studies have shown that
the reasoning quality of LLMs improves with extended in-
ference time (Lightman et al., 2023). This observation has
sparked a new research trajectory focused on augmenting
the reasoning abilities of LLMs by increasing inference
costs during the test-time phase, a concept referred to as
test-time scaling, or more colloquially, slow-thinking.

Test-time scaling strategies can be generally classified
into two primary approaches: internal and external slow-
thinking (Jiang et al., 2024; Min et al., 2024). Internal
slow-thinking involves adjusting model parameters through
additional training on specifically designed reasoning tasks,
aiming to inherently extend the model’s output length
and thereby enhance its reasoning capabilities. In con-
trast, external slow-thinking focuses on increasing infer-
ence costs by introducing additional computational steps,
such as re-sampling or re-generating model outputs multiple
times (Brown et al., 2024), thereby prolonging inference
time and improving reasoning quality.

This paper focuses on external slow-thinking techniques,
which are inspired by human cognitive processes. When
facing complex questions, humans often take extra time
to reflect and refine their intermediate answers, leading to
greater accuracy. Similarly, external slow-thinking methods,
such as the Best-of-N (BoN) strategy, draw multiple sam-
ples and evaluate them using techniques like majority voting
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(a) The Platonic Representation Hypothesis

(b) The Platonic Reasoning Hypothesis

Figure 1. Two examples of Plato’s allegory of the cave in artificial intelligence. (a) The training data accessible to the model are just
shadows on the wall, serving as projections of the real world. (b) The responses of the LLM we observe are also shadows on the wall,
reflecting the model’s implicit reasoning thoughts during task execution.

or ranking (Cobbe et al., 2021). Beyond simpler methods,
advanced frameworks like CoT (Wei et al., 2022), ToT (Yao
et al., 2024), and MCTS-based approaches inspired by Al-
phaGo (Silver et al., 2016) explore solution spaces in tree
structures to identify optimal answers (Zhang et al., 2024;
Feng et al., 2023).

Despite their promise, external slow-thinking methods face
several challenges. First, the mechanisms behind their ef-
fectiveness remain poorly understood, hindering the design
of more advanced and efficient strategies. Second, practi-
cal implementations of complex slow-thinking techniques
often achieve limited success unless significant computa-
tional resources are added. This is due to the difficulty of
optimizing design choices and hyperparameters, which fre-
quently results in suboptimal performance. To address these
challenges, we propose a systematic framework based on
information theory, linking external slow-thinking methods
to the probability of correct reasoning in LLMs.

We begin by analyzing the snowball errors in LLM rea-
soning in Section 2, and subsequently relate this effect to
the likelihood of reasoning errors in Section 3. In Sec-
tion 4, we further explore the probability of correct reason-
ing within the the real-world practice, and compare various
slow-thinking strategies in Section 5. Finally, we review
relevant literature in Section 6 and present our conclusions
in Section 7.

2. Snowball Errors in LLM Reasoning
Imagine rolling a snowball on a snowy surface during winter.
As the distance increases, the snowball grows at an accel-

erating rate. This “snowball effect” illustrates how small
changes can compound over time. In the context of LLMs,
this effect first manifests as the progressive accumulation of
token-level errors in auto-regressive next-token prediction
(NTP) tasks, potentially causing significant deviations from
the expected or golden answers (Bachmann & Nagarajan,
2024).

For reasoning tasks, however, the snowball effect shifts to
the sentence level, making the errors more challenging to
characterize. To understand these errors, it is critical to first
examine the nature of reasoning. Prior research suggests
that LLM reasoning can be conceptualized as executing a
sequence of primitive tasks at each reasoning step (Ton et al.,
2024), prompting further investigation into how such errors
accumulate across the reasoning process.

Let’s reconsider Plato’s allegory of the cave1, which has
been widely used to highlight the limitations of AI mod-
els (Huh et al., 2024). In this analogy, training data serve
as mere projections of the real world, akin to shadows on
the wall, as illustrated in Figure 1(a). Similarly, in LLM
reasoning, generated responses are the shadows, reflect-
ing the model’s implicit reasoning processes, as illustrated
in Figure 1(b).

For example, when solving a problem like “Calculate 3x+
2y,” the model implicitly executes reasoning steps such as t1:
{Calculate 3x} → t2: {Calculate 2y} → t3: {Add 3x and
2y}. However, these steps are abstract and cannot be directly
observed in outputs. Instead, the response sequence r1 →

1In this allegory, Plato describes individuals confined to a cave,
learning about the world solely through the shadows on its wall.

2



Rethinking External Slow-Thinking: From Snowball Errors to Probability of Correct Reasoning

r2 → r3 can be multiple possible expressions of the same
reasoning process. Moreover, since individual responses
rl cannot fully encapsulate the corresponding steps tl,
minor inaccuracies accumulate, ultimately leading to
significant snowball errors.

To quantify snowball errors in LLM reasoning, we consider
mutual information (MI) between the implicit reasoning
sequence t and the observed response sequence r, denoted
as I(t; r). This metric captures the shared information
between the two sequences. Furthermore, the minor in-
accuracies in the responses at each reasoning step can be
assessed as information loss, which can be quantified by
the difference between the MI I(t; r) and the information
entropy of the implicit thoughts t, denoted as H(t). And it
can be mathematically defined as:
Definition 2.1. (Information loss.) Given a reasoning pro-
cess with implicit thoughts t and corresponding responses
r, the information loss in the l-th step is defined as:

InfoLoss(rl) = H(tl)− I(tl; rl) = H(tl|rl).

The snowball errors can be further defined as the accumula-
tion of information loss across all reasoning steps as follows:
Definition 2.2. (Snowball errors, or cumulative information
loss.) Given a reasoning process with implicit thoughts t
and corresponding responses r, the snowball errors in the
l-th step are defined as:

H<l(t|r) =
l−1∑
i

H(ti|ri),

where l denotes the number of reasoning steps.

3. From Snowball Errors to Probability
In this section, we seek to establish a theoretical connection
between snowball errors and the probability of reasoning er-
rors in LLMs. We begin by formally defining the probability
of reasoning errors and subsequently derive a lower bound
for this probability using principles from information theory.
Finally, we empirically validate the presence of snowball
errors in the reasoning processes of LLMs.

3.1. Probability of Reasoning Errors

As the reasoning path grows longer, snowball errors accu-
mulate, leading to significant factual inaccuracies, which
we define as reasoning errors. This subsection explores the
relationship between snowball errors and the probability of
reasoning errors.

To evaluate reasoning errors, we first define them clearly.
Since the response rl represents the implicit thought tl, a
natural approach is to assess whether a sufficiently powerful
mapping function f can reconstruct tl from rl.

Proposition 3.1. (Probability of reasoning errors.) Let
tl denote an implicit thought at step l, and rl represent
the corresponding generated response. Given a predicted
thought t̂l derived from rl using a prediction function t̂l =
f(rl), the probability of reasoning error at step l is defined
as the likelihood of the event el, where el : t̂l ̸= tl. This
probability is denoted as P (el) = P (t̂l ̸= tl).

To estimate the probability of reasoning errors, we propose
utilizing information theory to establish a connection be-
tween snowball errors and the likelihood of reasoning errors.
Specifically, our analysis start from the following lemma:

Lemma 3.2. (Information loss inequality.) Given a reason-
ing process defined above, and under the assumption that
the mutual information I(tl; rl) decreases with respect to l
when l ≥ 2, the information loss in the l-th step satisfies:

H(tl|rl) ≥
H<l(t|r)
l − 1

.

The proof is provided in Appendix A.1. Lemma 3.2 indi-
cates that the information loss in the l-th step is bounded by
the average snowball errors in the previous steps. Based on
this lemma, we can subsequently derive the lower bound of
the probability of reasoning errors.

Theorem 3.3. (Lower bound of P (el).) Given a reasoning
process and conditions defined above, when l ≥ 2, the
probability of reasoning error at step l satisfies:

P (el) ≥ log−1(|Tl| − 1)

[
H<l(t|r)
l − 1

−Hb(el)

]
,

where |Tl| is the size of the support of tl. Hb(el) is the
entropy of the indicator random variable of event el, which
is a relatively small constant.

The proof mainly relies on Fano’s inequality (Fano, 2008)
and is provided in Appendix A.2. Theorem 3.3 sets a lower
bound on the probability of reasoning errors at every inter-
mediate step l. Since H<l(t|r) represents the cumulative
information loss up to step l, it is assumed to increase at
least linearly with l. Furthermore, when the snowball ef-
fect occurs, H<l(t|r) may grow faster than linearly. As
a result, the lower bound on the probability of reasoning er-
rors rises with the reasoning path length l, indicating that the
chance of errors increases as snowball errors accumulate.

3.2. Empirical Verification

To empirically verify the existence of snowball errors
in LLM reasoning, we conducted experiments using the
GSM8k dataset (Cobbe et al., 2021). The evaluation was
performed on three state-of-the-art reasoning LLMs: Llama-
3.1-8B-Instruct (2024), Qwen2.5-7B-Instruct (2024a), and
Skywork-o1-Open-Llama-3.1-8B (2024). We estimate the
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Figure 2. The estimated MI and reward of the responses generated by different LLMs on GSM8k. The x-axis denotes the average length
of the responses. The left y-axis represents the estimated MI between each response and the golden answer, whereas the right y-axis
shows the corresponding reward. “•” indicates the estimated MI for individual questions, while “ ” and “ ” respectively depict
the fitted curves of the estimated MI and reward. “ ” depicts the linear baseline.

mutual information I(t; r) per token and the reward of the
responses to illustrate their relationship with the reasoning
path length L. Detailed experimental settings are provided
in Appendix C.1.

As illustrated in Figure 2, the estimated mutual information
decreases in a nearly exponential and much faster rate than
linear decay as L increases. Since our verification com-
putes the average mutual information per token, the actual
rate of decline in mutual information for tokens appearing
later in the sequence is likely to be more pronounced. Fur-
thermore, the reward scores of the responses correspond to
the mutual information, and also diminish with increasing
response length. These findings confirm the existence of
snowball errors by verifying that the information loss can
accumulate much faster than linearly in the reasoning pro-
cesses of LLMs, and illustrate their relevance to the quality
of responses, aligning with our theoretical analysis. For a
more robust verification, we also include results on larger
LLMs for a more robust verification in Appendix D.1 and
an additional analysis by different difficulty levels in Ap-
pendix D.2.

4. Probability of Correct Reasoning in
External Slow-Thinking

Previous analyses demonstrate that the probability of reason-
ing errors, P (el), increases with the number of reasoning
steps l. In the practice, however, reasoning errors are often
reflected in the reward associated with the generated re-
sponses. In this section, we extend our theoretical analysis
to real-world scenarios and explore the mechanisms under-
lying the effectiveness of external slow-thinking methods.

4.1. What is a Correct Reasoning?

We begin our analysis by defining the reasoning process in
real-world settings. Given a question r0, a response R is

represented as a sequence of L reasoning steps, i.e., R =
[r1, r2, · · · , rL], generated autoregressively by the LLM.
An oracle ϕ is then employed to evaluate the quality of each
step rl produced at layer l, denoted as ϕ(rl). In practice,
this evaluation is often determined by human feedback or
a reward model. Furthermore, we assume that for each
reasoning step, there exists a corresponding golden step
r∗l , representing the most accurate and correct step that the
LLM should generate, aligning with ideal human reasoning.

Based on the above setting, the oracle evaluation can be
used to quantify the correctness of a response. Specifically,
we define this measure as follows:

Definition 4.1. (τ -correct step.) A step rl is considered as
τ -correct if the quality difference between the step and the
golden step is less than τ , i.e., |ϕ(rl)− ϕ(r∗l )| ≤ τ .

Similarly, we can define the correctness of an entire reason-
ing process as follows:

Definition 4.2. (τ -correct reasoning.) A response R is
considered as τ -correct if all steps in the sequence are τ -
correct, i.e., ∀l, |ϕ(rl)−ϕ(r∗l )| ≤ τ (denoted as ψ(R) ≤ τ ).

Definition 4.1 and Definition 4.2 provide formal definitions
for measuring the correctness of a reasoning step or an entire
reasoning process. Intuitively, for a given task, the proba-
bility of achieving a τ -correct step is determined by three
primary factors: the capability of the LLM, the correctness
threshold τ , and the length of the current reasoning path.

4.2. Probability of Correct Reasoning

The results shown in Figure 2 indicate that the average MI
can decrease exponentially with the reasoning length, which
suggests that the average snowball errors increase exponen-
tially with the reasoning length. Since the probability cannot
exceed 1, with Theorem 3.3, we thus hypothesize that the
probability of encountering an error in practice follows an
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exponential decay function: P (el) = 1− λe−l for the con-
venience of subsequent analyses. Thus the probability of
generating a correct step in layer l can be proposed as:

Proposition 4.3. (Probability of τ -correct step.) We pro-
pose that the probability of generating a τ -correct step is
related to the layer index l in the following way:

Pr [|ϕ(rl)− ϕ(r∗l )| ≤ τ ] = min(λτe
−l, 1),

where λτ is a constant relevant to correctness τ , and a
premise is that the step rl−1 is already τ -correct.

This proposition mainly aims to obtain more intuitive con-
clusions in subsequent analysis and is based on the intuition
of LLM’s multi-step reasoning errors. In particular, we
point out in Appendix B that under a more relaxed and gen-
eralized proposition, our subsequent theoretical results can
still be guaranteed.

With Proposition 3.1, we can derive the probability of gen-
erating a τ -correct response R as follows:

Lemma 4.4. (Probability of τ -correct reasoning.) The
probability of generating a τ -correct response R is:

Pr [ψ(R) ≤ τ ] =

L∏
l=1

Pr [|ϕ(rl)− ϕ(r∗l )| ≤ τ ]

≤ λLτ e
−L(L+1)

2 .

Lemma 4.4 shows that the probability of generating a correct
response decreases exponentially with the reasoning leangth
L. This result aligns with the practical experience that the
LLM is more likely to make mistakes in more complex
reasoning tasks with more reasoning layers.

4.3. External Slow-Thinking Mechanisms

In general, external slow-thinking methods aim to enhance
the correctness of generated responses by incorporating ad-
ditional reasoning steps. Due to the inherent stochastic
nature of the LLM’s sampling mechanism, the probabil-
ity of generating a correct response cannot be guaranteed.
However, by introducing supplementary reasoning steps and
employing multiple re-sampling strategies, the likelihood of
producing a correct response can be effectively increased.

Although different methods employ varying strategies to
explore the reasoning space, they share two common char-
acteristics: (1) Width-Expansion. For a reasoning sequence
of length L, most external slow-thinking methods aim to
expand the width of the reasoning space. This expansion
is achieved either through simple re-generation techniques
(e.g., BoN, CoT-SC) or via more sophisticated approaches
like tree search (e.g., ToT, MCTS). (2) Generation & Selec-
tion. Despite the challenge of generating a good reasoning

step, the expansion of the reasoning space introduces the
challenge of selecting the most promising reasoning path
from a pool of candidates. In summary, let Pr(τgenerate) de-
note the probability of generating a τ -correct reasoning and
Pr(τselect) denote the probability of selecting a τ -correct
reasoning. The overall probability of obtaining a τ -correct
response can then be expressed as:

Pr [ψ(R) ≤ τ ] = Pr (τgennerate)× Pr (τselect) .

While the width-expansion strategy can effectively increase
Pr (τgenerate), the additional reasoning steps introduced also
heighten the complexity of selecting the most promising rea-
soning path, thereby reducing Pr (τselect). To illustrate this
trade-off, we use beam search as a baseline width-expansion
strategy. Beam search is a widely adopted method in tree
search algorithms, where the search tree’s width is expanded
by generating k child nodes at each layer while retaining
only the top-b most promising candidates. The result of this
analysis is formalized in the following lemma.

Lemma 4.5. (Probability of τ -correct reasoning in width-
expanding methods.) For a beam-search-like strategy which
samples k steps and keeps b steps as candidates at each
expansion, the probability of obtaining a τ -correct response
is upper bounded by:

Pr [ψ(R) ≤ τ ] ≤
L∏

l=1

ϵb[1− (1− λτe
−l)k],

where ϵb is the probability of selecting a τ -correct step
from b candidates, which is primarily determined by the
reliability of the value function employed in the selection.

The proof is provided in Appendix A.3. Since the typical
reasoning setting holds that k ≥ 1, and 0 ≤ λτe

−l ≤ 1, the
probability of generating a correct response can be further
simplified as follows:

Theorem 4.6. (Upper bound of the probability of τ -correct
reasoning in width-expanding methods.) The probability of
obtaining a τ -correct response is upper bounded by:

Pr [ψ(R) ≤ τ ] ≤ ϵb
LkLλLτ e

−L(L+1)
2 .

The proof is provided in Appendix A.4, and we also pro-
vide an empirical analysis about the influence of k in Ap-
pendix D.3. Lemma 4.5 and Theorem 4.6 show that the prob-
ability of generating a correct response in width-expanding
methods depends on three key factors: the number of gen-
erations k per layer, the number of candidates b selected
per layer, and the correctness threshold τ . Specifically,
components related to ϵb represent Pr (τselect), which are
influenced by the reliability of the value function used in
selection. Meanwhile, Pr (τgenerate) is mainly determined by
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the expansion width k and reasoning path length L. Com-
pared with Lemma 4.4, Theorem 4.6 further illustrates the
mechanism of external slow-thinking methods. By scaling
k, these methods can improve the probability of correct rea-
soning at the cost of additional reasoning steps. However,
the effectiveness heavily depends on the reliability of the
value function, reflected in ϵLb . For slow-thinking methods
to be effective, the value function must satisfy ϵb > 1

k to
ensure an improvement in the probability upper bounds.

Based on the above analysis, we can infer the underlying
mechanisms of external slow-thinking methods. By ex-
panding the reasoning space, these methods effectively
increase the probability of generating a correct response,
thereby mitigating the impact of snowball errors. How-
ever, selecting the most promising reasoning path poses a
significant challenge, as the effectiveness of this selection
heavily depends on the reliability of the employed value
function, which can substantially influence the overall
performance of the method. We also provide analyses
of the mechanism of external slow-thinking methods from
other perspective in Appendix E.

5. Comparison between External
Slow-Thinking Frameworks

Previous analyses have demonstrated that external slow-
thinking methods effectively increase the search width,
thereby enhancing the probability of correct reasoning. In
this section, we use the simplest strategy, Best-of-N (BoN),
and the widely adopted sophisticated strategy, Monte Carlo
Tree Search (MCTS), as examples to compare their effective-
ness and examine the impact of specific framework designs.

5.1. Correct Reasoning Probability

We begin by determining the probability of correct reasoning
for BoN and MCTS using the results from Theorem 4.6.
With the assumption that the total number of reasoning steps
is L, BoN can be characterized as generating N reasoning
steps in the first layer, followed by the generation of a single
step in subsequent layers, and finally applying a reward
model (RM) to select one path from the N candidates in
the L-th layer. Accordingly, the probability of achieving
τ -correct reasoning with BoN can be bounded as follows:
Lemma 5.1. (Upper bound of the probability of τ -correct
reasoning with BoN.) The probability of obtaining a τ -
correct response in BoN satisfies:

Pr [ψ(R) ≤ τ ] ≤ ϵNN
LλLτ e

−L(L+1)
2 .

In contrast, MCTS employs a more intricate structure, mak-
ing it difficult to derive a closed-form expression for the
probability of correct reasoning. To simplify the analysis,
we consider the “best-case” and “worst-case” scenarios for

MCTS. Here, the “best” and “worst” cases are defined based
on the difficulty for BoN to achieve a comparable probabil-
ity of correct reasoning, rather than the actual performance
of MCTS.

Using the RAP-like classic MCTS strategy (Hao et al., 2023)
as an example, where MCTS terminates once a reasoning
path of length L is derived, the best-case scenario occurs
when MCTS expands only the deepest leaf node at each
step. Assuming b child nodes are expanded per iteration,
MCTS in this scenario reduces to a beam search strategy
with both a sample size and beam width of b. The probability
of obtaining a τ -correct reasoning in the best-case scenario
can then be expressed as:
Lemma 5.2. (Upper bound of the probability of τ -correct
reasoning with MCTS in best case.) The probability of
obtaining a τ -correct response in MCTS in the best case
satisfies:

Pr [ψ(R) ≤ τ ] ≤ ϵLb b
LλLτ e

−L(L+1)
2 .

In the worst-case scenario, MCTS must expand all pos-
sible child nodes at each step, ultimately constructing
a complete b-ary search tree that terminates at the L-th
layer. Consequently, the probability of obtaining a τ -correct
response with MCTS in the worst-case scenario can be
bounded as:
Lemma 5.3. (Upper bound of the probability of τ -correct
reasoning with MCTS in worst case.) The probability of
generating a τ -correct response in MCTS in the worst case
satisfies:

Pr [ψ(R) ≤ τ ] ≤ λLτ

(e
b

)−L(L+1)
2

L∏
l=1

ϵbl .

The proof is analogous to that of Theorem 4.6, with the
primary difference being that, in Lemma 5.2, we have k = b,
whereas in Lemma 5.3, k = bl.

Lemma 5.2 and Lemma 5.3 establish upper bounds on the
probability of correct reasoning for MCTS in the best-case
and worst-case scenarios, respectively. These results illus-
trate that the probability of correct reasoning with MCTS
is influenced by both the search width b and the length of
the reasoning path L. Although MCTS provides a more
sophisticated reasoning strategy and introduces additional
complexity to mitigate snowball errors, it is important to
note that selection errors also accumulate due to the in-
creased complexity. This accumulation is reflected in the
exponential term within the ϵ terms.

5.2. Comparison between BoN and MCTS

Since MCTS introduces exponential selection errors due to
its increased complexity, it is necessary to perform a fair
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PrOntoQA

GSM8k

Figure 3. Comparison of the accuracy of various reasoning strategies on GSM8k and PrOntoQA. “ ” indicates the accuracy of the
baseline MCTS, while “ ” represents the accuracy of BoN under different N settings. The x-axis corresponds to the varying values of
N . Additionally, the estimated values Ñres and Ñcall are marked by vertical green dashed lines.

comparison between BoN and MCTS. This challenge arises
from the inability to fully characterize the reward model
(RM) employed in practice. For instance, it is difficult to
determine whether selecting a correct step from N candi-
dates in a single iteration is more or less challenging than
selecting a correct step from b candidates across L iterations,
particularly when N = O(bL).

To address this issue, we compare the two methods by exam-
ining the minimal value of N required for BoN to achieve
a probability of correct reasoning comparable to MCTS in
both the best-case and worst-case scenarios, assuming the
use of an ideal reward model, which ensures that whenever
at least one correct candidate exists, ∀k, ϵk = 1.

Under this assumption, we derive the minimal N required
for BoN to match the probability of correct reasoning with
MCTS in the best-case scenario by comparing the upper
bounds provided in Lemma 5.1 and Lemma 5.2:

Corollary 5.4. Despite the influence of RM, the minimal N
for making BoN obtain the comparable correct reasoning
probability with MCTS in best case is N best

min = O(b).

Similarly, we can derive the minimal N required for BoN

to match the probability of correct reasoning with MCTS
in the worst-case scenario by comparing the upper bounds
provided in Lemma 5.1 and Lemma 5.3:

Corollary 5.5. Despite the influence of RM, the minimal N
for making BoN obtain the comparable correct reasoning
probability with MCTS in worst case is Nworst

min = O(b
L
2 ).

Corollary 5.4 and Corollary 5.5 reveal that the minimal
N required for BoN to achieve a probability of correct
reasoning comparable to MCTS is O(b) in the best-case
scenario and O(b

L
2 ) in the worst-case scenario.

Next, we analyze the total reasoning cost of BoN and MCTS
when N is set with corresponding Nmin. Since BoN gener-
atesN reasoning paths, each of length L, the total reasoning
cost for BoN is N × L. Using the results from the above
corollaries, we can infer that when MCTS operates in the
best-case scenario, the total reasoning cost of BoN isO(bL).
In contrast, when MCTS is in the worst-case scenario, the to-
tal reasoning cost of BoN increases to O(Lb

L
2 ). For MCTS,

according to previous analyses, the total reasoning cost is
O(bL) in the best-case scenario and O(bL) in the worst-
case scenario. We summarize the comparison of the total
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BoN (comparable) MCTS (baseline)
Best Case O(bL) O(bL)

Worst Case O(Lb
L
2 ) O(bL)

Table 1. Comparison of the total reasoning cost between MCTS
and its comparable BoN. We assume MCTS generates a reasoning
path of length L and expands b child nodes at each expansion,
while BoN generates Nmin reasoning paths, each of length L.

reasoning cost between BoN and MCTS in Table 1.

The results in Table 1 indicate that when BoN and MCTS
achieve a comparable probability of correct reasoning, the
total reasoning cost of BoN remains close to that of MCTS.
In the best-case scenario, their costs are asymptotically
equivalent, while in the worst-case scenario, BoN’s cost
may exceed MCTS when L is small but stays reasonable.
As L grows larger, BoN’s cost can even fall below MCTS.
This analysis shows that BoN can achieve similar reasoning
accuracy to MCTS with comparable reasoning costs, and
these findings are applicable to other external slow-thinking
frameworks.

In conclusion, external slow-thinking methods introduce
additional reasoning steps to mitigate the impact of snow-
ball errors. However, on one hand, the inaccuracy of the
reward function can result in the additional reasoning
steps incurring extra selection costs, which may decrease
the probability of correct reasoning. On the other hand, the
effectiveness of mitigating snowball errors is primarily
determined by the total reasoning cost, with the specific
framework having limited impact on the overall outcome.

5.3. Empirical Evaluation

We empirically compare the accuracy of BoN and MCTS on
two reasoning tasks: GSM8k (Cobbe et al., 2021) and PrOn-
toQA (Saparov & He, 2022). Following prior work (Feng
et al., 2023), we use the recommended settings to optimize
MCTS and calculate the corresponding N for BoN to align
its reasoning cost with MCTS. Due to differences in how
reasoning paths are generated, exact alignment is imprac-
tical. To address this, we define N as reasonable if it lies
between Ñres (aligned reasoning steps) and Ñcall (aligned
LLM calls). We evaluate BoN with three selection strategies:
Self-Consistency, ORM Vote, and ORM Max. Details of the
experimental setup are in Appendix C.2, and results are pre-
sented in Figure 3. Furthermore, we also include additional
experimental verifications on a planning task Game24 (Yao
et al., 2024) in Appendix D.4.

Since PrOntoQA is a binary classification task with only true
or false answers, increasing N in the Self-Consistency strat-
egy cannot improve BoN’s performance without a reward
model. In contrast, for GSM8k, where answers are diverse,

increasing N can enhance BoN’s performance even without
a reward model. For ORM Vote and ORM Max strategies,
guided by the reward model, BoN achieves performance
comparable to MCTS when N lies between Ñres and Ñcall.
Notably, when N is near Ñres, BoN may slightly underper-
form compared to MCTS but not significantly. Conversely,
setting N to a larger value within this range allows BoN
to match or even surpass MCTS. These findings align with
previous observations of MCTS’s limited success in LLM
reasoning and support our theoretical analysis.

6. Related Work
Information Theory. Information theory provides a theoret-
ical basis for quantifying the information contained in ran-
dom variables. The entropy H(X) of a random variable X
measures its information content, while mutual information
I(X;Y ) = H(X) − H(X|Y ) quantifies the information
shared between two variables. Applications of informa-
tion theory span numerous fields, including bounding the
generalization capacity of deep learning models (Russo &
Zou, 2019; Xu & Raginsky, 2017) and improving task inter-
pretability (Slonim et al., 2001; Hu et al., 2019; West et al.,
2019). Recently, it has been employed to analyze synthetic
data generation (Gan & Liu, 2024) and measure reasoning
errors in LLMs (Ton et al., 2024).

Reasoning with LLMs. LLMs have made substantial
progress in understanding and generation, particularly for
complex reasoning tasks. Foundational work (Brown et al.,
2020) established LLMs as few-shot learners, while Chain-
of-Thought (CoT) prompting (Wei et al., 2022) introduced
multi-step reasoning by explicitly generating intermediate
steps. Self-Consistency (Wang et al., 2022) further im-
proved robustness by aggregating multiple reasoning paths.
Information-theoretic approaches (Ton et al., 2024) have
also provided theoretical insights into quantifying and miti-
gating reasoning errors, showcasing the interplay between
empirical advancements and theoretical frameworks.

External Slow-Thinking. Test-time scaling has proven ef-
fective in enhancing LLM reasoning (Snell et al., 2024), this
timely inference scaling law has been empirically analyzed
and verified (Wu et al., 2024). External slow-thinking meth-
ods, such as generating additional tokens (Wei et al., 2022)
and incorporating tree search algorithms (Yao et al., 2024),
expand the reasoning space without retraining. Techniques
like beam search (Kang et al., 2024) and Monte Carlo Tree
Search (MCTS) (Zhang et al., 2024; Feng et al., 2023) have
further advanced reasoning capabilities. However, these
methods require significantly more computational resources
compared to simpler strategies like Best-of-N and often
yield limited practical improvement. The underlying mech-
anisms of their effectiveness remain an area of ongoing
exploration.
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7. Conclusion
In this paper, we analyzed the mechanisms behind the ef-
fectiveness of external slow-thinking methods. We linked
snowball errors in LLM reasoning to reasoning errors using
information theory and showed how external slow-thinking
methods reduce errors by expanding the reasoning space.
We also examined the trade-off between additional reason-
ing costs and the probability of achieving correct reasoning.
Through comparisons of methods ranging from Best-of-
N (BoN) to Monte Carlo Tree Search (MCTS), we found
that the key factors influencing effectiveness are the reward
function’s capability and the total reasoning cost, with the
specific search framework playing a secondary role. Our
findings suggest that optimizing reward functions and im-
proving policy model reasoning capabilities are more es-
sential for designing more effective external slow-thinking
methods in a long run.
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A. Proofs
A.1. Proof of Lemma 3.2

Proof. Since I(tl; rl) decreases with respect to l, we have

I(tl; rl) ≤
∑l−1

i I(ti; ri)

l − 1
,

by the definition of mutual information, we can derive that

H(tl)−H(tl|rl) ≤
l−1∑
i

[
H(ti)−H(ti|ri)

l − 1

]

H(tl|rl) ≥
l−1∑
i

H(ti|ri)
l − 1

+H(tl)−
l−1∑
i

H(ti)

l − 1

(1)

Since along the reasoning process, LLM is continiously introducing new information, we have H(tl) ≥
∑l−1

i
H(ti)
l−1 .

Therefore, we have:
l−1∑
i

H(ti|ri)
l − 1

+H(tl)−
l−1∑
i

H(ti)

l − 1
≥

l−1∑
i

H(ti|ri)
l − 1

. (2)

Hence, together with equation (1) and equation (2), we can further derive that:

H(tl|rl) ≥
l−1∑
i

H(ti|ri)
l − 1

:=
H<l(t|r)
l − 1

. (3)

This finishes the proof.

A.2. Proof of Theorem 3.3

Proof. Define an indicator random variable E, where E = 1 if el occurs, and E = 0 otherwise. More specifically,

E :=

{
1 if t̂l ̸= tl,

0 if t̂l = tl.

Based on the definition of entropy, we have:

H(tl|t̂l) = H(E|t̂l) +H(tl|E, t̂l). (4)

For the first term H(E|t̂l), we have:
H(E|t̂l) ≤ H(E) := Hb(el). (5)

For the second term H(tl|E, t̂l), we can expand it as:

H(tl|E, t̂l) = H(tl|E = 0, t̂l)P (E = 0) +H(tl|E = 1, t̂l)P (E = 1). (6)

Since E = 0 implies t̂l = tl, we have H(tl|E = 0, t̂l) = 0. And since E = 1 implies t̂l ̸= tl, we have P (E = 1) = P (el).
Therefore, we have:

H(tl|E, t̂l) = H(tl|E = 1, t̂l)P (el). (7)

Considering the upper bound of the entropy of a random variable, we have the following lemma.

Lemma A.1. (Principle of maximum entropy.) Let X be a random variable with support X , the entropy H(X) satisfies:

H(X) ≤ log(|X |),

with equality if and only if X is uniformly distributed over X .
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Since E = 1 indicates that t̂l ̸= tl, then when t̂l is given as condition, random variable tl can be narrowed down to |Tl| − 1
different values, where Tl is the support of tl. Therefore, we have:

H(tl|E = 1, t̂l) ≤ log(|Tl| − 1). (8)

Combining equation (7) and equation (8), we have:

H(tl|E, t̂l) ≤ log(|Tl| − 1)P (el). (9)

Combining equation (5) and equation (9), we have:

H(tl|t̂l) ≤ log(|Tl| − 1)P (el) +Hb(el). (10)

Considering the markov chain tl → rl → t̂l, due to data processing inequality, we have:

I(tl; t̂l) ≤ I(tl; rl).

Based on the definition of mutual information, we can further derive that:

H(tl|rl) ≤ H(tl|t̂l). (11)

With equation (10) and equation (11), we have:

H(tl|rl) ≤ log(|Tl| − 1)P (el) +Hb(el). (12)

With lemma 3.2, we have:

H(tl|rl) ≥
H<l(t|r)
l − 1

. (13)

Together with equation (12) and equation (13), we have:

log(|Tl| − 1)P (el) +Hb(el) ≥
H<l(t|r)
l − 1

. (14)

Hence, we can further derive that:

P (el) ≥ log−1(|Tl| − 1)

[
H<l(t|r)
l − 1

−Hb(el)

]
. (15)

This finishes the proof.

A.3. Proof of Lemma 4.5

Proof. Assuming that the probability of generating a τ -correct thought is p, then with k sampling times, the probability of
generating at least one τ -correct thought is 1− (1− p)k.

With lemma 4.3, we have p ≤ λe−l, then the probability of generating a τ -correct thought at the l-th layer is

Pr [|ϕ(rl)− ϕ(r∗l )| ≤ τ ] ≤ 1− (1− λτe
−l)k. (16)

The probability of generating a τ -correct response is the product of the probability of generating a τ -correct thought in each
layer,

Pr [ψ(R) ≤ τ ] =

L∏
l=1

ϵb Pr [|ϕ(rl)− ϕ(r∗l )| ≤ τ ] ≤
L∏

l=1

ϵb[1− (1− λτe
−l)k]. (17)
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A.4. Proof of Theorem 4.6

Proof. The following inequality always holds when k ≥ 1 and 0 ≤ λe−l ≤ 1:

(1− λτe
−l)k ≥ 1− kλτe

−l. (18)

Then with lemma 4.5, we have:

Pr [ψ(R) ≤ τ ] ≤
L∏

l=1

ϵb[1− (1− λτe
−l)k]

≤
L∏

l=1

ϵb[1− (1− kλτe
−l)]

=

L∏
l=1

ϵbkλτe
−l

= ϵb
LkLλLτ e

−L(L+1)
2 .

(19)

This finishes the proof.

B. Relaxed Theoretical Results
Proposition 4.3 was designed to facilitate subsequent analyses while maintaining readability. The negative exponential form
provides a simple yet effective characterization of accuracy decay. Below, we would like to prove that our main results
remain valid under a weaker assumption when Pr [|ϕ(rl)− ϕ(r∗l )| ≤ τ ] decreases monotonically with l.
Proposition B.1. (Relaxed probability of τ -correct step for Proposition 4.3.) Instead of requiring
Pr [|ϕ(rl)− ϕ(r∗l )| ≤ τ ] = min

(
λτe

−l, 1
)
, we now assume only that the left-hand side decreases monotonically

with l and converges to 0, i.e.,

Pr [|ϕ(rl)− ϕ(r∗l )| ≤ τ ] = min (ξ(l, τ), 1) ,

where ξ(l, τ) ≥ 0 decreases monotonically with l and converges to 0.

Under this weaker condition, by noting that ξL(l, τ) :=
∏L

l=1 ξ(l, τ), we derive revised relaxed bounds for subsequent
results in the main text presented below:
Lemma B.2. (Relaxed probability of τ -correct reasoning for Lemma 4.4.) After relaxation, the probability of generating a
τ -correct response R is:

Pr [ψ(R) ≤ τ ] =

L∏
l=1

Pr [|ϕ(rl)− ϕ(r∗l )| ≤ τ ]

≤ ξL(l, τ).

Lemma B.3. (Relaxed probability of τ -correct reasoning in width-expanding methods for Lemma 4.5.) After relaxation, for
a beam-search-like strategy which samples k steps and keeps b steps as candidates at each expansion, the probability of
obtaining a τ -correct response is upper bounded by:

Pr [ψ(R) ≤ τ ] ≤
L∏

l=1

ϵb

[
1− (1− ξ(l, τ))

k
]
.

Theorem B.4. (Relaxed upper bound of the probability of τ -correct reasoning in width-expanding methods for Theorem 4.6.)
After relaxation, the probability of obtaining a τ -correct response is upper bounded by:

Pr [ψ(R) ≤ τ ] ≤ ϵLb k
LξL(l, τ).

Lemma B.5. (Relaxed upper bound of the probability of τ -correct reasoning with BoN for Lemma 5.1.) After relaxation,
the probability of obtaining a τ -correct response in BoN satisfies:

Pr [ψ(R) ≤ τ ] ≤ ϵNN
LξL(l, τ).
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Lemma B.6. (Relaxed upper bound of the probability of τ -correct reasoning with MCTS in best case for Lemma 5.2.) After
relaxation, the probability of obtaining a τ -correct response in MCTS in the best case satisfies:

Pr [ψ(R) ≤ τ ] ≤ ϵLb b
LξL(l, τ).

Lemma B.7. (Relaxed upper bound of the probability of τ -correct reasoning with MCTS in worst case for Lemma 5.3.)
After relaxation, the probability of generating a τ -correct response in MCTS in the worst case satisfies:

Pr [ψ(R) ≤ τ ] ≤ b
L(L+1)

2 ξL(l, τ)

L∏
l=1

ϵbl .

These modifications of relaxed results preserve the validity of Corollary 5.4, Corollary 5.5, and Table 1, confirming that our
theoretical results are robust even without the original exponential form in Proposition 3.1.

C. Experiment Settings
C.1. Settings for Verifying Snowball Errors

For each question, we generated multiple responses from the LLMs and collected them as a set to represent r. Additionally,
a larger LLM, Llama-3.1-Nemotron-70B-Instruct-HF (2024), was used to rewrite the ground-truth answers multiple times,
creating a set of rewritten golden answers as an estimate of t. We also utilize an outcome reward model Skywork-Reward-
Llama-3.1-8B (Liu et al., 2024) to evaluate the quality of the responses. Following prior studies (Qian et al., 2024; Ma et al.,
2020), we utilized the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005) as an estimator of mutual
information, I(tl; rl).

In our experiments, we generated responses for each question in the GSM8k dataset (Cobbe et al., 2021) 10 times using
the tested LLMs to construct the response set r. Similarly, the ground-truth answers were rewritten 10 times using the
Llama-3.1-Nemotron-70B-Instruct-HF model (Wang et al., 2024) to form a set of rewritten golden answers, serving as an
approximation of t.

The Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005) was employed to estimate the mutual information
I(tl; rl) between the response set and the rewritten golden answers. The bandwidth parameter σ for the Gaussian kernel
used in HSIC computation was set to 50. To account for differences in response lengths, the estimated HSIC values were
further normalized to obtain a per-token measure, ensuring fair comparison across responses of varying lengths.

To ensure consistency in response generation, we utilized the following reasoning prompt for the tested LLMs:

Please answer the question step by step and put the final answer in \boxed{}.

For rewriting the ground-truth answers, the following rewriting prompt was used:

You will be given a problem-solving process. Please rewrite this process without changing its logic or content.
Ensure that the output includes only the rewritten process and nothing else.
**Problem-Solving Process:** {input}
**Rewritten Process:**

This setup was carefully designed to capture the relationship between the generated responses and the golden answers while
controlling for logical consistency and content fidelity during the rewriting process.

C.2. Settings for Comparison between BoN and MCTS

Given a baseline MCTS which expands for p times, and expands b child nodes at each expansion, with the aim to equal the
times of calling LLM for inference, we can calculate the corresponding value of N for BoN as Ñcall = p× b. Similarly,
with the aim to equal the times of reasoning steps, given the average length of reasoning paths is L, we can calculate the
corresponding value of N for BoN as Ñres =

p×b
L .
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To ensure a fair and comprehensive comparison, we consider any N within the range of Ñcall to Ñres as a reasonable value
for BoN to achieve a comparable reasoning cost to MCTS. Subsequently, we evaluated the performance of BoN using three
different selection strategies: (1) Self-Consistency: Select the most frequent final answer among the N reasoning results. (2)
ORM Vote: Select the final answer with the highest total ORM scores across all reasoning paths. (3) ORM Max: Select the
result of the reasoning path with the highest individual ORM score.

In our experiments, we compared the performance of BoN and MCTS in the context of the Snowball task. We first determine
the baseline MCTS setting according to the recommendation in previous work (Feng et al., 2023). Specifically, in GSM8k,
we set the tree max width to 6 Tree Max depth to 8. In PrOntoQA, we set the tree max width to 6 and Tree Max depth to 15.
And in Game24, we set the tree max width to 20 and Tree Max depth to 4.

Subsequently, we trace the search process of the baseline MCTS and statics the average expansion width b and average
expansion times p for the two tasks. We then estimate the ideal average reasoning steps L for the two tasks by analyzing the
ground-truth reasonings. Finally, we calculate corresponding Ñcall and Ñres according to above values. The detailed results
are shown in Table 2.

GSM8k PrOntoQA Game24
avg. b 4.26 1.67 4.56
avg. p 4.54 9.45 3.99
avg. L 3.11 4.00 3.00
Ñcall 19.40 15.77 18.24
Ñres 6.23 3.94 6.08

Table 2. Settings for BoN and MCTS in GSM8k, PrOntoQA and Game24.

D. Additional Empirical Verification
D.1. Snowball Error Verifications on Larger LLMs

For a more robust verification of our theoretical findings, we have conducted extensive analyses on larger language models
(Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct) in addition to the 7B/8B models presented in Figure 2. We maintained
identical experimental settings and workflow as described in the original experiments to ensure methodological consistency,
and we present the additional results in Figure 4.

Our key findings from these additional experiments demonstrate that the MI decay pattern remains consistent across larger
model sizes, exhibiting similar behavior to smaller models. Also, response quality continues to show a negative correlation
with output length, as observed in our original experiments.

D.2. Snowball Error Analysis by Difficulty Levels

We have conducted verifications for the snowball errors at different difficulty levels. The experiments are performed on
MATH-500 (Lightman et al., 2023), where the questions are divided into 5 different difficulty levels (level 1 for the simplest,
level 5 for the most difficult). The results are presented in Figure 5. In (a), we present the relationship between the estimated
MI and average response length at different levels. For all 5 levels, we observe similar MI decay phenomena like Figure 2
in our main text. In (b), we present the relationship between the average accuracy and the length of responses at different
levels. For all 5 levels, we observed that accuracy generally decreases with response length. Furthermore, the accuracy of
the simplest level 1 decreases significantly when the length increases, demonstrating the harm of overthinking. These results
demonstrate that the MI decay phenomenon is highly relevant to the response length even when the influence of question
difficulty is similar.

D.3. Influence of k

For better understanding Theorem 4.6, we have conducted an analysis about the influence of k in the theoretical findings,
which is presented in Figure 6. The experiments are performed on GSM8k and PrOntoQA.

The results illustrate that: (1) the reasoning correctness increases when the reasoning cost k increases, which aligns with the
theoretical findings in Theorem 4.6; (2) for simpler PrOntoQA task where the value function is more reliable, the accuracy
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Figure 4. Additional snowball error verifications. We have conducted extra experiments on larger LLMs, including Qwen2.5-14B-Instruct
and Qwen2.5-32B-Instruct, with the same setting as results in Figure 2 of our main text.

(a) MI Analysis by Difficulty Levels (b) Accuracy Analysis by Difficulty Levels

Figure 5. Snowball error analysis by different difficulty levels. We have conducted extra experiments to analyze the mutual information
(MI) and accuracy at different difficulty levels. The questions at the same level share similar difficulty. (a) The MI analysis by difficulty
levels. (b) The accuracy analysis by different difficulty levels.
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Figure 6. Influence of k. We have conducted extra experiments to further verify Theorem 4.6 by examining the influence of k. The
experiments are performed on GSM8k and PrOntoQA, and we vary the value of the max-action of an MCTS while keeping other
hyperparameters optimal, according to previous studies.

N 2 4 6 8 10 12 14 16 18 20

ORM-Vote 17.96% 29.01% 38.67% 46.13% 50.83% 53.87% 59.94% 63.81% 66.85% 67.68%
ORM-Max 17.96% 29.01% 38.67% 46.13% 50.83% 53.87% 59.94% 63.81% 67.13% 68.23%

Table 3. Additional verification for BoN v.s. MCTS in Game24. The baseline MCTS obtain an accuracy of 64.80% where Ñres = 6.08
and Ñcall = 18.24.

increases faster than GSM8k when k increases.

D.4. Additional Verification for BoN v.s. MCTS

We conducted additional verification experiments using the Game24 benchmark (Yao et al., 2024), which requires solving
arithmetic puzzles to obtain the number 24. The setting is similar with Figure 3, and we present the results in Table 3.

This result illustrates a similar conclusion to Fig.3, when the total reasoning cost is comparable, BoN can achieve a
comparable and even better performance than MCTS.

E. More External Slow-Thinking Mechanisms Analysis
The external slow-thinking methods sometimes not only expand the width of the search space, but also perform repeatedly
sampling and evaluating.

For example, besides expanding the width, Lookahead Search increase the computation steps in evaluating the thought by
looking ahead for r steps. This can be seen as a test of whether the current thought is good enough, i.e., affecting ϵb.

An intuitive understanding is that the more steps we look ahead, the more likely we can find the best thought. This is due to
the fact that the probability of generating a correct thought is related to the layer index l, and the probability of generating a
correct thought increases with the layer index l.

Definition E.1. (δ-wrong thought.) A thought rl is considered as δ-wrong if the difference between the thought and the
golden thought is larger than δ, i.e., |ϕ(rl)− ϕ(r∗l )| ≥ δ.

Lemma E.2. (probability of generating δ-wrong thought.) The probability of generating a δ-wrong thought is:

Pr [|ϕ(rl)− ϕ(r∗l )| ≥ δ] = max(1− λδe
−l, 0). (20)
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Definition E.3. (distinguishable condition.) We now assume that ϵb is guaranteed only if the correct thought and woring
thuought are distinguishable. That is, given a correct thought rl (should be selected) and a wrong thought r−l (should not be
selected), the following inequality holds:

Pr
[
ϕ(rl)− ϕ(r−l ) ≥ δ − τ

]
. (21)

We further analysis the lower bound of eq. (21) in the following theorem.
Theorem E.4. (lower bound of distinguishable condition.) The distinguishable condition is guaranteed with the following
probability lower bound with the condition when l ≥ lnλτ :

Pr
[
ϕ(rl)− ϕ(r−l ) ≥ δ − τ

]
≥ λτe

−l − λτλδe
−2l. (22)

Proof.
Pr

[
ϕ(rl)− ϕ(r−l ) ≥ δ − τ

]
= Pr

[
ϕ(r∗l )− ϕ(r−l )− [ϕ(r∗l )− ϕ(rl)] ≥ δ − τ

]
≥ Pr

[
ϕ(r∗l )− ϕ(r−l ) ≥ δ

]
× Pr [ϕ(r∗l )− ϕ(rl) ≤ τ ] .

(23)

For the first term, since Pr
[
ϕ(r∗l )− ϕ(r−l ) ≥ δ

]
= max(1− λδe

−l, 0), we have:

Pr
[
ϕ(r∗l )− ϕ(r−l ) ≥ δ

]
≥ 1− λδe

−l. (24)

While for the second term, since l ≥ lnλτ , we have λτe−l ≤ 1, thus

Pr [ϕ(r∗l )− ϕ(rl) ≤ τ ] = min(λτe
−l, 1) = λτe

−l, (25)

With eq (23), we have

Pr
[
ϕ(rl)− ϕ(r−l ) ≥ δ − τ

]
≥ Pr

[
ϕ(r∗l )− ϕ(r−l ) ≥ δ

]
× Pr [ϕ(r∗l )− ϕ(rl) ≤ τ ]

≥ (1− λδe
−l)× λτe

−l

= λτe
−l − λτλδe

−2l.

(26)

This finishes the proof.

With theorem E.4, we can derive the best setting of rollout step γ in Lookahead Search.
Corollary E.5. (best setting of rollout step γ in Lookahead Search.) The best setting of rollout step γ in the l-th layer in
Lookahead Search is:

γ∗l = max(ln 2λδ − l, 0). (27)

Proof. Evaluating the thought in the l-th layer by looking ahead for γ steps, the lower bound of distinguishable condition is:

f(γl) = λτe
−(l+γl) − λτλδe

−2(l+γl). (28)

the derivation of f(γl) is:
d

dγl
f(γl) = −λτe−(l+γl) + 2λτλδe

−2(l+γl)

= −λτe−(l+γl)(1− 2λδe
−l).

(29)

Let d
dγl
f(γl) = 0, we have:

γ̃l = ln 2λδ − l. (30)

Considering the practical meaning, we have

γ∗l = max(γ̃l, 0) = max(ln 2λδ − l, 0). (31)

This finishes the proof.

This corollary shows that the best setting of rollout step γ in Lookahead Search is related to the layer index l, and not always
the larger the better.
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