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Abstract
We introduce a deterministic variational formulation for training Bayesian last layer neural
networks. This yields a sampling-free, single-forward pass objective that effectively improves
network uncertainty representation. Our variational Bayesian last layer can be trained and
evaluated inexpensively, with only quadratic complexity in last layer width, and is thus
(nearly) computationally free to add to existing architectures.

1. Introduction

Well-calibrated uncertainty quantification is essential for robust decision-making with machine
learning systems. However, many methods for improving uncertainty quantification in deep
learning (including Bayesian methods) have seen limited application due to their complexity
over standard deep learning. For example, methods such as sampling-based mean field
variational inference (Blundell et al., 2015), Markov chain Monte Carlo (MCMC) methods
(Papamarkou et al., 2022; Neal, 1995; Izmailov et al., 2021), and comparatively simple
heuristics such as Bayesian dropout (Gal and Ghahramani, 2016) all have substantially
higher computational cost than baseline networks. Single-pass methods (so named because
only one network evaluation is required) often require substantial modifications to network
architectures, regularization, or training and evaluation procedures, even for the simplest
such models (Liu et al., 2022; Wilson et al., 2016b; Kristiadi et al., 2021).

In this work, we investigate variational learning of Bayesian last layer (BLL) neural
networks. In contrast to previous Bayesian deep learning formulations, BLL models consider
only the uncertainty over the output layer of the network. While this is relatively restrictive
in representational ability, it enables desirable features such as exact inference under certain
distributional assumptions and exact likelihood computation. To train these variational BLL
(VBLL) models, we derive deterministic lower bounds on the marginal likelihood. In contrast
to standard variational training strategies, our bounds can be computed without sampling
and may be trained with standard mini-batch training strategies. Moreover, we show that
all resulting training loss terms may be computed with complexity no greater than standard
neural network training complexity.

2. Bayesian Last Layer Neural Networks

We first introduce Bayesian last layer models which maintain a non-point posterior only
for the last layer in a neural network. These models correspond to Bayesian (linear or
logistic) regression or Bayesian Gaussian discriminant analysis (for each of the three models
we present, respectively) with learned features. The subscript t ∈ N is used to index the
data, and we assume T total data points.
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2.1. Regression

The canonical BLL model for the regression case1 is yt = w>φ(xt,θ) + εt where φ :
RNx ×Θ → RNφ is a vector of neural network features; the input θ ∈ Θ is the weights of
the neural network2. We will typically write φt := φ(xt,θ) for notational convenience and
refer to these parameters as features because they define the map from inputs to the feature
embedding on which the BLL operates. The term εt is assumed to be normally distributed
with zero mean and covariance Σ, and these noise terms are i.i.d. across realizations.

We specify a Gaussian prior p(w) = N (w̄0, S0), assumed independent of the noise εt.
Posterior inference in the BLL model is analytically tractable for a fixed set of features. The
marginal likelihood may be computed either via direct computation or by iterating over the
dataset. Fixing a distribution over w of the form N (w̄, S) (and writing η = (w̄, S)) the
posterior predictive is

p(y | x,η,θ) = N (w̄>φt,φ
>
t Sφt + Σ). (1)

2.2. Discriminative Classification

In this subsection we introduce a BLL model that closely matches standard classification
neural networks. We assume Ny classes, and we aim to predict the correct class given an
input xt. We write Ty for the number of data points belonging to class y. Our model takes
the form

zt = Wφ(xt,θ) + εt, p(yt | xt,W,θ) = softmax(zt) (2)

where zt ∈ RNy are the logits. These are also interpreted as unnormalized joint data-label
log likelihoods (Grathwohl et al., 2020), where

zt = log p(xt,yt |W,θ)− Z(W,θ) (3)

where Z(W,θ) is a normalizing constant, independent of the data. The term εt ∈ RNy is a
zero-mean Gaussian noise term with variance Σ. Typically in logistic regression this noise
term is ignored, although it has seen use to model label noise (Collier et al., 2021). We
include it to unify the presentation, and the variance can be assumed zero as necessary.

As in the regression case, we specify a Gaussian prior forW . In contrast with the regression
setting, exact inference and computation of the posterior predictive is not analytically
tractable in this model. We refer to this model—consisting of multinominal Bayesian logistic
regression on learned neural network features—as discriminative classification, as logistic
regression is a classical discriminative learning algorithm.

2.3. Generative Classification

The second classification model we consider is the generative classification model, so-called
due to its similarity to classical generative models such as Gaussian discriminant analysis.
We again assume deterministic input features parameterized by a neural network, which we
write as φt. We will assume that in this feature space, the features associated with each class

1. We present a scalar output version of regression, and defer the multivariate output case to the appendix.
2. We discuss only scalar-output regression in the body of the paper; we defer details on the multivariate

case to the appendix.
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are normally distributed. Placing a normal prior on the means of these feature distributions
and a (conjugate) Dirichlet prior on class probabilities, we have a model of the form

ρ ∼ Dir(α0) φ̄[yt] ∼ N (µ0[yt], S0[yt]) (4)
yt ∼ Cat(ρ) φt | yt ∼ N (φ̄[yt],Σ). (5)

In this model, µ0[yt] ∈ RNφ and S0[yt] ∈ RNφ×Nφ are the prior mean and covariance over
φ̄[yt] ∈ RNφ , the mean embedding for each class3. We use the square bracket notation to
index the statistics for each class; thus, we parameterize µ0[k] and S0[k] for k = 1, . . . , Ny.
The terms ρ ∈ PNy correspond to class probabilities, and where PNy denotes the probability
simplex embedded in RNy . These class probabilities are in turn used in the categorical
distribution over the class. We will write φ̄ := {φ̄[1], . . . , φ̄[Ny]}.

For a distribution over model parameters

p(ρ, φ̄ | η) = Dir(α)

Ny∏
k=1

N (µ[k], S[k]) (6)

for which we write η = {α,µ, S}, we have

p(x | y,η) = N (µ[y], C[y]), p(y = k | η) =
α[k]∑Ny

k′=1α[k′]
(7)

via analytical marginalization, and where C[y] := Σ + S[y]. To compute the predictive over
class labels, we apply Bayes’ rule, yielding

p(y | x,η) = softmaxy(log p(x | y,η) + log p(y | η)). (8)

Here,

log p(x | y,η) = −1

2
((φ− µ[y])>C[y]−1(φ− µ[y]) + logdetC[y] + c) (9)

where c is a constant, shared for all classes, that may be ignored due to the shift-invariance
of the softmax. Grouping the log determinant term with the class prior yields a bias term.
Instead of a linear transformation of the input features to obtain a class logit, we instead have
a quadratic transformation. This formulation generalizes standard classifier architectures
(Harrison, 2021), in which we have quadratic decision regions as opposed to linear ones.

2.4. Inference and Training in BLL Models

BLL models have seen growing popularity in recent years, ironically driven in part by a need
for compatibility with increasingly deep models (Snoek et al., 2015; Azizzadenesheli et al.,
2018; Harrison et al., 2018; Weber et al., 2018; Riquelme et al., 2018; Harrison et al., 2020;
Ober and Rasmussen, 2019; Kristiadi et al., 2020; Thakur et al., 2020; Watson et al., 2020,
2021; Daxberger et al., 2021a; Willes et al., 2022; Sharma et al., 2022; Schwöbel et al., 2022;
Zhang et al., 2021; Moberg et al., 2019; Fiedler and Lucia, 2023). Exact marginalization
enables computationally efficient treatment of uncertainty, as well as resulting in lower-
variance training objectives compared to sampling-based Bayesian models. The standard

3. With some abuse of notation, the term yt may refer both to an integer class index and a one-hot encoding,
depending on the context.

3



Variational Bayesian Last Layers

7.5 5.0 2.5 0.0 2.5 5.0 7.5
4

3

2

1

0

1

2

3

4

Figure 1: Left: a variational BLL (VBLL) regression model with BNN features trained on
50 data points generated from a re-scale cubic with Gaussian noise. The plot
shows the 95% predictive credible region under the variational posterior for several
sampled feature weights. Right: Visualizing (re-scaled) p(x | y = 1)−p(x | y = 0)
predicted by a trained generative VBLL model on the half moon dataset, showing
good sensitivity to Euclidean distance and sensible embedding densities.

objective for training in BLL models is the (log) marginal likelihood (Harrison et al., 2018),
via gradient descent on

1

T
log p(Y | X,θ) (10)

where X,Y denote stacked data across t. We include a factor of 1/T to enable better
comparison with standard, non-Bayesian, training pipelines (typically based on average loss
over mini-batches) and across dataset sizes. This training objective can be problematic,
however: gradient computation requires computing the full marginal likelihood, and mini-
batches do not yield unbiased gradient estimators as in standard training with an arbitrary
loss function.

3. Deterministic Stochastic Variational Inference for BLL Networks

To exploit exact marginalization while avoiding full marginal likelihood computation, we will
turn to stochastic variational inference (Hoffman et al., 2013). In particular, we aim to jointly
compute an approximate last layer posterior and optimize network weights by maximizing
lower bounds on marginal likelihood. As such, we will avoid distributional assumptions
made in the previous section. We write the last layer parameters as ξ and aim to find an
approximate posterior q(ξ | η) parameterized by η. Concretely, throughout this section we
will develop bounds of the form

1

T
log p(Y | X,θ) ≥ L(θ,η,Σ)− 1

T
KL(q(ξ | η)||p(ξ)) (11)

where L is architecture dependent and developed in the remainder of this section.

3.1. Regression

We consider the log marginal likelihood log p(Y | X,θ), with marginalized parameters
ξ = {w}, and have the following lower bound.
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Theorem 1 Let q(ξ | η) = N (w̄, S) denote the variational posterior for the BLL model
defined in Section 2.1. Then, (11) holds with

L(θ,η,Σ) =
1

T

T∑
t=1

(
logN (yt | w̄>φt,Σ)− 1

2
φ>t SφtΣ

−1

)
. (12)

The proof for this result and all others is available in Appendix B. When q(ξ | η) = p(ξ | Y,X)
and distributional assumptions are satisfied, this lower bound is tight (this may be shown
by direct substitution). This correspondence between the variational and true posterior for
appropriately-chosen variational families is well known—see (Knoblauch et al., 2019) for a
thorough discussion. We note that a similar objective for regression models was developed in
(Watson et al., 2021).

3.2. Discriminative Classification

In the discriminative classification case, the parameters are ξ = {W}. We will assume a
diagonal covariance matrix Σ, and write σ2

i := Σii. We will fix a mean field variational
posterior of the form q(W | η) =

∏Ny
k=1 q(w[k] | η) =

∏Ny
k=1 q(w̄[k], S[k]), where w[k] denotes

the k’th row of W . This factorization retains dense covariances for each class, but sacrifices
cross-class covariances. While we only present this factorized variational posterior, a similar
training objective may be derived with a fully dense variational posterior. Under the mean
field variational posterior, we have the following bound on the marginal likelihood.

Theorem 2 Let q(W | η) =
∏Ny
k=1N (w̄[k], S[k]) denote the variational posterior for the

discriminative classification model defined in Section 2.2. Then, (11) holds with

L(θ,η,Σ) =
1

T

T∑
t=1

(
y>t W̄φt − LSEk

[
w̄[k]>φt +

1

2
(φ>t S[k]φt + σ2

k)

])
(13)

Here, LSE(·) denotes the log-sum-exp function. In contrast to the regression case, this lower
bound is a lower bound on the standard ELBO (due to two applications of Jensen’s inequality)
and the bound is not tight. We have reduced variance (which would be induced by sampling
logit values before the softmax in standard SVI (Ovadia et al., 2019)) for bias due to this
lower bound. Our proof leverages the same double application of Jensen’s inequality used by
(Blei and Lafferty, 2007). We note that tighter analytically tractable lower bounds exist for
the logistic regression model (Depraetere and Vandebroek, 2017; Knowles and Minka, 2011),
although for simplicity of the resulting algorithm we use the above lower bound.

3.3. Generative Classification

In the generative classification case, the parameters are ξ = {φ̄,ρ}. In this setting, the
Dirichlet posterior over class probabilities p(ρ | Y ) can be computed exactly with one
pass over the data by simply counting class occurrences. We therefore only consider a
variational posterior of the form q(ξ | η, Y ) = q(φ̄ | η) for the class embeddings, where
q(φ̄ | η) =

∏Ny
k=1N (µ[k], S[k]). This yields the following lower bound.

Theorem 3 Let q(φ̄ | η) =
∏Ny
k=1N (µ[k], S[k]) denote the variational posterior over class

embeddings for the generative classification model defined in Section 2.3. Let p(ρ | Y ) =

5



Variational Bayesian Last Layers

Accuracy (↑) ECE (↓) NLL (↓) SVHN AUC (↑) CIFAR-100 AUC (↑)
DNN 95.8± 0.19 0.028± 0.028 0.183± 0.007 0.946± 0.005 0.893± 0.001
SNGP 95.7± 0.14 0.017± 0.003 0.149± 0.005 0.960± 0.004 0.902± 0.003

D-VBLL 96.4± 0.12 0.022± 0.001 0.160± 0.001 0.969± 0.004 0.900± 0.004
G-VBLL 96.3± 0.06 0.021± 0.001 0.174± 0.002 0.925± 0.015 0.804± 0.006

G-VBLL-MAP − − − 0.950± 0.006 0.893± 0.003
BNN 96.0± 0.08 0.033± 0.001 0.333± 0.014 0.957± 0.004 0.844± 0.013

D-VBLL BNN 95.9± 0.15 0.058± 0.019 0.238± 0.036 0.832± 0.026 0.744± 0.010
G-VBLL BNN 95.9± 0.16 0.009± 0.001 0.229± 0.010 0.917± 0.005 0.779± 0.009

Table 1: Results for Wide ResNet-28-10 on CIFAR-10.
Dir(αT ) denote the exact Dirichlet posterior over class probabilities, with αT denoting the
Dirichlet posterior concentration parameters. Then, (11) holds with

L(θ,η,Σ) =
1

T

T∑
t=1

( logN (φt | µ[yt],Σ)− 1

2
tr(Σ−1S[yt]) + logαT [yt] (14)

− LSEk[logN (φt | µ[k],Σ + S[k]) + logαT [k]])

This training objective is again a lower bound on the ELBO, and is not tight. The first
Dirichlet term (in the upper line) vanishes in gradient computation, but the second term
inside the log-sum-exp function does not. In the case that the posterior concentration
parameters are equal for all classes (as in the case of a balanced dataset), the concentration
parameter can be pulled out of the LSE(·) (due to the equivariance of log-sum-exp under
shifts) and can be ignored.

3.4. Training and Prediction in VBLL Models

We propose two methods to learn the features in VBLL models. First, we can jointly optimize
the last layer variational posterior together with MAP estimation of the features. While
one may expect this to result in substantial over-concentration for weak feature priors, in
practice we observe that stochastic regularization due to mini-batch optimization prevents
overconcentration. Throughout this work, we will place simple isotropic zero-mean Gaussian
priors on feature weights (yielding weight decay regularization) and a canonical inverse-
Wishart prior on Σ. For Gaussian priors (as developed throughout this section) the KL
regularization term can be computed in closed form. Second, we can combine last layer
SVI with variational feature learning (Blundell et al., 2015), corresponding to approximate
collapsed VI (Teh et al., 2006). Details on both methods are presented in the appendix.

4. Experiments and Discussion

We investigate all three VBLL models. All results and experimental details are available in
the appendix. For regression, we present results on the UCI regression datasets (Dua and
Graff, 2017), where VBLL models show strong results compared to both single-pass and
multi-pass baselines. For classification, we present results on CIFAR-10 and CIFAR-100.
CIFAR-10 results are presented in Table 1, above. Both the generative and discriminative
models perform well, including compared to SNGP (Liu et al., 2022), which is an established
and effective single-pass last layer uncertainty quantification method. Overall, VBLL methods
provide consistent improvements to predictive error (as measured through accuracy or MSE)
and calibration, while the cost associated with their use is near-zero for even reasonably
sized neural networks.
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Appendix A. The Multivariate Regression Model

In the multivariate regression case, we consider a model of the form

yt = Wφt + εt (15)

and place a matrix normal (Tiao and Zellner, 1964; Geisser, 1965) prior on W , with W ∼
MN (W̄0, I, S0). For a discussion of the matrix normal distribution, we refer the reader to
(Box and Tiao, 2011).

Given the matrix normal prior and the above model, the posterior is also matrix normal.
We thus fix a matrix normal variational posterior. In Appendix B.2, we obtain an ELBO of
the form

L(θ,η,Σ) =
1

T

T∑
t=1

(
logN (yt | W̄φt,Σ)− 1

2
φ>t Sφttr(Σ

−1)

)
. (16)

for η = {W̄ , S}, and we use this as a training objective.
For a parameter distribution MN (W̄ , I, S), prediction in this model is analytically

tractable and is
p(yt | xt,η,θ) = N (W̄φt,φ

>
t SφtI + Σ). (17)

Appendix B. Proofs and Further Theoretical Results

B.1. Helper Results

Our first result builds on results from the variational Gaussian process literature (Titsias,
2009; Hensman et al., 2013).

Lemma 4 Let q(µ) = N (µ̄, S) and p(y | X,µ) = N (Xµ,Σ) with y ∈ RN , µ̄,µ ∈ RM ,
X ∈ RN×M , and S,Σ ∈ RM×M . Then

Eq(µ)[log p(y | X,µ)] = log p(y | X, µ̄)− 1

2
tr(Σ−1XSX>). (18)

Proof We have

Eq(µ)[log p(y | Xµ)] = −1

2
Eq(µ)[c+ logdet(2πΣ) + (y −Xµ)>Σ−1(y −Xµ)] (19)

= −1

2

(
c+ logdet(2πΣ) + Eq(µ)[(y −Xµ)>Σ−1(y −Xµ)]

)
(20)

= −1

2

(
c+ logdet(2πΣ) + (y −Xµ̄)>Σ−1(y −Xµ̄) + tr(Σ−1XSX>)

)
(21)

where c ∈ R is a constant and where the last line follows from the fact that y − Xµ ∼
N (y −Xµ̄, XSX>). The first two terms form the desired log density.

Based on this result, we can state a straightforward corollary for generative classification.

Corollary 5 Let q(µ) = N (µ̄, S) and p(y | µ) = N (µ,Σ) with y, µ̄,µ ∈ RN , S,Σ ∈ RN×N .
Then

Eq(µ)[log p(y | µ)] = log p(y | µ̄)− 1

2
tr(Σ−1S). (22)
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Proof This result follows from Lemma 4 by simply choosing X = I.

We can also present a variant for multivariate classification.

Corollary 6 Let q(W ) =MN (W̄ , I, S) and p(y | x,W ) = N (Wx,Σ) with y ∈ RM , W̄ ,W ∈
RM×N ; x ∈ RN ; S ∈ RN×N ; and Σ ∈ RM×M . Then

Eq(W )[log p(y | x,W )] = log p(y | x, W̄ )− 1

2
x>Sx tr(Σ−1). (23)

Proof Our proof closely follows that of Lemma 4. Expanding the likelihood in the expectation,
we have

Eq(W )[log p(y | x,W )] = log p(y | x, W̄ )− 1

2
EW [x>(W − W̄ )>Σ−1(W − W̄ )x] (24)

Leveraging the matrix normal identity

EW∼MN (W̄ ,V,U)[W
>AW ] = Utr(A>V ) + W̄>AW̄ (25)

and the fact that W − W̄ ∼MN (0, I, S), we have

E[(W − W̄ )>Σ−1(W − W̄ )] = Str(Σ−1) (26)

which completes the proof.

Lemma 7 Let p(x | x̄) = N (x̄,Σ), and let x̄ ∼ N (µ, S). Then,

Ex̄[p(x | x̄)] = N (µ,Σ + S). (27)

Proof We build upon (Jacobson, 1973) and note

Ex∼N (µ,S)[exp(−1

2
x>Σ−1x)] =

√
det(S−1)

det(S−1 + Σ−1)
exp(−1

2
µ>S−1(S−(Σ−1+S−1)−1)S−1µ).

(28)
Note, by Woodbury’s identity

S−1(S − (Σ−1 + S−1)−1)S−1 = (S + Σ)−1 (29)

Let z := x− x̄, then zt ∼ N (x− µ, S). We then have

E[p(x | x̄)] = E[exp(−1

2
‖x− x̄‖2Σ−1 +

1

2
logdet(2πΣ−1))] (30)

= E[exp(−1

2
z>Σ−1z)]] exp(

1

2
logdet(2πΣ−1)) (31)

For the expectation we apply (28). We simplify the determinant term of (28) as√
det(S−1)

det(S−1 + Σ−1)
= exp(−1

2
logdet(I + SΣ−1)) (32)
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Combining, we have

E[exp(−1

2
z>Σ−1z)]] = exp(−1

2
(‖x− µ‖2(S+Σ)−1 + logdet(I + SΣ−1)) (33)

We have two log determinant terms, from (31) and the above. We can combine them as

1

2
logdet(2πΣ−1)− 1

2
logdet(I + SΣ−1) = −1

2
(logdet(

1

2π
Σ) + logdet(I + SΣ−1)) (34)

= −1

2
logdet((

1

2π
Σ)(I + SΣ−1)) (35)

= −1

2
logdet(

1

2π
Σ +

1

2π
S) (36)

Combining all terms completes the proof.

B.2. Proof of Theorem 1

Theorem 1 Let q(ξ | η) = N (w̄, S) denote the variational posterior for the BLL model
defined in Section 2.1. Then, (11) holds with

L(θ,η,Σ) =
1

T

T∑
t=1

(
logN (yt | w̄>φt,Σ)− 1

2
φ>t SφtΣ

−1

)
. (37)

Proof First,

log p(Y | X,θ) = log Ep(ξ)[p(Y | X, ξ,θ)] (38)

= log Eq(ξ|η)[p(Y | X, ξ,θ)
p(ξ

q(ξ | η)
] (39)

≥ Eq(ξ|η)[log p(Y | X, ξ,θ)]−KL(q(ξ | η)||p(ξ)) (40)

=

T∑
t=1

Eq(ξ|η)[log p(yt | xt, ξ,θ)]−KL(q(ξ | η)||p(ξ)). (41)

Note that the first term in the last line is the log of a Normal distribution. Applying Lemma
5, we have

Eq(ξ|η)[log p(yt | xt, ξ,θ)] = log p(yt | xt, ξ,θ)− 1

2
φ>t SφtΣ

−1 (42)

which completes the proof.

We can also state the following corollary for the multivariate case.

Corollary 8 Let q(ξ | η) = MN (W̄ , I, S) denote the variational posterior for the multi-
variate BLL model defined in Appendix A. Then, (11) holds with

L(θ,η,Σ) =
1

T

T∑
t=1

(
logN (yt | W̄φt,Σ)− 1

2
φ>t Sφttr(Σ

−1)

)
. (43)

Proof The proof follows the proof of Theorem 1, applying Corollary 6 instead of Lemma 5.
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B.3. Proof of Theorem 2

Theorem 2 Let q(W | η) =
∏Ny
k=1N (w̄[k], S[k]) denote the variational posterior for the

discriminative classification model defined in Section 2.2. Then, (11) holds with

L(θ,η,Σ) =
1

T

T∑
t=1

(
y>t W̄φt − LSEk

[
w̄[k]>φt +

1

2
(φ>t S[k]φt + σ2

k)

])
(44)

Proof We construct an ELBO via

log p(Y | X,θ) = log Ep(ξ)[p(Y | X,θ, ξ)] (45)
≥ Eq(ξ|η)[log p(Y | X,θ, ξ)]−KL(q(ξ | η)||p(ξ)) (46)

= Eq(ξ|η)[

T∑
t=1

log softmaxy(log p(xt,yt | θ, ξ))]−KL(q(ξ | η)||p(ξ)) (47)

Expanding the log-softmax term, we have

Eq(ξ|η)

[∑
t

log softmaxyt(log p(xt,yt | θ, ξ))

]
= (48)∑

t

Eq(ξ|η)[log p(xt,yt | θ, ξ))]−
∑
t

Eq(ξ|η)[LSEyt [log p(xt,yt | θ, ξ)].

As previously, under the variational posterior these likelihoods factorize across the data. The
first term may be directly evaluated, yielding

Eq(ξ|η)[log p(xt,yt | θ, ξ))] = Eq(ξ|η)[w[yt]
>]φt = w̄[yt]

>φt. (49)

The second term (containing the log-sum-exp) can not be computed exactly, and so we will
bound this term for both the discriminative and generative classifiers. Via Jensen’s inequality,
we have

− Eq(ξ|η)[LSEyt [log p(xt,yt | θ, ξ)] ≥ − log
∑
yt

Eq(ξ|η)[exp(log p(xt,yt | θ, ξ))] (50)

In the case of the discriminative model, we follow (Blei and Lafferty, 2007) and note that for
each row i

Ewi∼N (w̄i,Si)[exp(w>i φt + εt[i])] = exp(w̄>i φt +
1

2
(φ>t Siφt + σ2

i )) (51)

which relies on assumed independence of rows of W (although relaxation of this assumption
is possible). Combining these results yields a lower bound on the ELBO, which is itself a
lower bound on the marginal likelihood.
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B.4. Proof of Theorem 3

Theorem 3 Let q(φ̄ | η) =
∏Ny
k=1N (µ[k], S[k]) denote the variational posterior over class

embeddings for the generative classification model defined in Section 2.3. Let p(ρ | Y ) =
Dir(αT ) denote the exact Dirichlet posterior over class probabilities, with αT denoting the
Dirichlet posterior concentration parameters. Then, (11) holds with

L(θ,η,Σ) =
1

T

T∑
t=1

( logN (φt | µ[yt],Σ)− 1

2
tr(Σ−1S[yt]) + logαT [yt] (52)

− LSEk[logN (φt | µ[k],Σ + S[k]) + logαT [k]])

Proof Note that

log p(Y | X,θ) ≥ Eq(ξ|η)[log p(Y | X, ξ,θ)]−KL(q(ξ | η)||p(ξ)) (53)

where

Eq(ξ|η)[log p(Y | X, ξ,θ)] = Eq(ξ|η) [log p(X | Y,θ, ξ)− log p(X | θ, ξ)] + Eq(ξ|η)[log p(Y | ξ)]

(54)

All of these terms factorize over the data, as previously. We first note that for the last term,

log Eρ[p(yt | θ,ρ)] = logα[yt]− log
∑
y

α[y]. (55)

via standard Dirichlet-Categorical marginalization, and where α correspond to posterior
Dirichlet concentration parameters. The first term in (54) is the embedding likelihood; we
can compute this expectation of the log likelihood via Corollary 5.

The second term in (54) is less straight-forward. Note that

E[log p(xt | θ, ξ)] = E[log
∑
y

p(xt | y,θ, ξ)p(y | θ, ξ)] (56)

which can be written as a log-sum-exp of log joint likelihood. We will again apply Jensen’s
to exchange the log and sum, and note

−E[log p(xt | θ, ξ)] = −E[log
∑
y

p(xt | y,θ, ξ)p(y | θ, ξ)] (57)

≥ − log E[
∑
y

p(xt | y,θ, ξ)p(y | θ, ξ)] (58)

= − log
∑
y

Eφ̄[y][p(xt | y,θ, φ̄[y])]Eρ[p(y | θ,ρ)] (59)

= −LSEy[log Eρ[p(y | θ,ρ)] + log Eφ̄[y][p(xt | y,θ, ξ)]] (60)

where the second line follows from Jensen’s, and the third line follows from the structure of
the variational posterior. The first term in (60) corresponds to (55). The second term in
(55) (the sum over concentration parameters) is equivalent for all classes y, and thus can be
pulled out of the log-sum-exp (due to the equivariance of this function under shifts) where it
cancels the same third term in (54).

To compute the second expectation in (60), we apply Lemma 7. Combining all terms
completes the proof.
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Appendix C. Algorithmic Details

In this section we present concrete details on training VBLL models. We first describe the
procedure for MAP estimation and variational learning of features, as described in the paper
body. We then discuss prior choice, describe the resultant regularization terms, and describe
prediction within these models.

C.1. Feature Point Estimation

We propose to train our models via joint variational inference for the last layer and MAP
estimation of network weights (and noise covariance), yielding optimization problem

θ∗,η∗,Σ∗ = arg max
θ,η,Σ

{
L(θ,η,Σ) +

1

T
(log p(θ) + log p(Σ)−KL(q(ξ | η)||p(ξ)))

}
. (61)

We will write the three terms on the RHS (scaled by 1/T ) as R(θ,η,Σ). Reasonable priors
for neural network weights have been discussed in several papers (Blundell et al., 2015; Pearce
et al., 2020; Fortuin, 2022; Farquhar et al., 2020; Watson et al., 2020; Dusenberry et al., 2020;
Nalisnick, 2018). In this work, we use simple isotropic Gaussian priors which yields a weight
decay regularizer. We use an inverse-Wishart prior on the noise covariance (or a product of
inverse Gamma priors for diagonal covariances). While variational inference for the noise
covariance is possible, we choose point estimation to simplify the model. This optimization
problem is solved via stochastic gradient descent on mini-batch objectives.

For prediction with VBLL models, we predict directly using the variational posterior,
exploiting the conjugate prediction results described in Section 2. For all three VBLL models,
training objective computation and prediction can be reduced from cubic to quadratic
complexity (in the last layer input width) by careful parameterization and computation. The
assumptions required to achieve quadratic complexity for the first two models are minor.
However, for the generative classification model, diagonal covariances must be assumed. We
discuss complexity in the next section.

C.2. Collapsed Variational Inference for Bayesian Neural Networks

Stochastic variational approximations to the posterior over the network weights have pre-
viously been used for Bayesian learning (Blundell et al., 2015). In this section, we aim
to compute a variational posterior q(θ), following the same SVI methodology as discussed
previously. Whereas our approaches developed in the previous section were deterministic, SVI
for all network weights is not possible via deterministic marginalization. Thus, computing

Eq(θ)[log p(y | x,θ)] (62)

is typically approximated using Monte Carlo methods. In (Blundell et al., 2015), the authors
turn to the reparameterization gradient estimator (Kingma and Welling, 2014; Mohamed
et al., 2020) to enable the computation of the (Monte Carlo estimator of the) gradient with
respect to the parameters of the variational posterior. We could take a similar strategy for
both ξ and θ, turning to sampling-based approximation. However, this sampling scheme
yields both noisy gradient estimates and is expensive, as each sample corresponds to a full
network evaluation. Our approach will instead marginalize the last layer and sample (some
of) the other layers. This corresponds to Rao-Blackwellization (Rao, 1992; Blackwell, 1947)
of the variational lower bound estimator, yielding lower variance gradient estimates.
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We will choose a mean field posterior that factorizes over the parameters and weights,
q(ξ,θ | η) = q(ξ | ηξ)q(θ | ηθ). We also, in the discussion below, suppress dependence
on Σ; in practice, we will turn to point estimation for this term. Note that further mean
field approximations for q(θ | η) are typically employed. For example, (Blundell et al.,
2015) factorize the posterior over all weights in the neural network. Given this posterior
approximation, we have

log p(Y | X) ≥ Eq(θ|ηθ)q(ξ|ηξ)[log p(Y | X, ξ,θ)]−KL(q(ξ | ηξ)||p(ξ))−KL(q(θ | ηθ)||p(θ))

(63)

under the assumption that the prior p(ξ,θ) = p(ξ)p(θ) and thus

1

T
log p(Y | X) ≥ Eq(θ|ηθ)[L(θ,ηξ)]−

1

T
KL(q(ξ | ηξ)||p(ξ))− 1

T
KL(q(θ | ηθ)||p(θ)) (64)

for the lower bounds L developed in Section 3. Thus, algorithmically, we first compute
the inner expectation and then approximate the outer expectation with a sampling-based
estimator.

C.3. Weight Priors

We place a prior on all trainable terms: the (neural network) feature weights as well as
the noise covariance Σ. In the regression and generative classification case, it is possible
to perform conjugate inference for the noise covariance in addition to means. Due to the
algorithmic complexity of this approach, we instead propose to perform MAP estimation
of Σ for these models. We use a standard inverse-Wishart prior for the noise covariance.
Ignoring terms that vanish in gradient computation, we have likelihood

log p(Σ) =
ν +N + 1

2
logdetΣ−1 − 1

2
tr(MΣ−1) (65)

where Σ is N ×N , ν > N − 1 are the degrees of freedom and M is the scale matrix. The
terms ν,M are hyperparameters that are fixed.

For the feature weights θ we will typically use a simple isotropic Gaussian prior, which
corresponds to l2 regularization. Numerous regularization strategies have been proposed for
controlling the kernel generated by neural network features (Watson et al., 2021; Fortuin,
2022), and we view this as necessary follow-up work but beyond the scope of this paper.

C.4. Training

We now present our full training approach for the regression and classification settings.
Generally, we will minimize the lower bounds we developed for each model. We note that L
is a sum over data; following (Blundell et al., 2015), we compute an (unbiased) estimator L̂
for this term with mini-batches.

The factorization of the ELBO over the data implies a mini-batch estimator for the
gradient. Note that

1

T

T∑
t=1

Eq(ξ|η)[log p(yt | xt, ξ,θ)] = EtEq(ξ|η)[log p(yt | xt, ξ,θ)] (66)
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where the outer expectation is with respect to a uniform distribution over t = 1, . . . , T . Note
that this also holds for lower bound on the data likelihood, in the case of classification. We
can construct a randomized estimator for this expectation based on sub-sampling the data,
in our case in mini-batches. For a mini-batch of B datapoints, this yields an estimator for
the ELBO of the form

L̂(θ,η,Σ) =
1

B

B∑
t=1

Eq(ξ|η)[log p(yt | xt, ξ,θ,Σ)]. (67)

In the classification case, this may be an inequality. This re-scaling of the KL divergence
was also discussed by (Blundell et al., 2015). Note that in the limit of infinite training data
(T →∞) the weight on the KL term goes to zero.

We have trained VBLL models with both momentum SGD and AdamW (Loshchilov and
Hutter, 2017). While both work effectively, they result in different uncertainty representations
far from the data. The interaction of VBLLs with the stochastic regularization associated
with different optimizers is an important direction of future work. Practically, gradient
clipping was necessary to stabilize late training, especially in the regression case. As the
noise variance concentrates, gradient magnitude is highly sensitive to small perturbations to
features, which can be rapidly destabilizing; gradient clipping was necessary and sufficient to
prevent this destabilization. Beyond these details, training VBLL models did not differ from
training normal models.

C.5. Hyperparameters

VBLL models introduce a small number of hyperparameters over standard network training.
First, standard hyperparameters may need to be modified for VBLL models. For example,
we found longer training runs resulted in slightly improved calibration, but we believe further
investigation of learning rate schedules is necessary. For MAP features estimation, we use
standard weight decay regularization values.

The main novel hyperparameters introduced by the VBLL model are those associated
with priors. In particular, the last layer mean prior (defined by a mean and variance; in
the regression case, these are written w̄0, S0) must be chosen. Practically, it is common
to normalize outputs to have isotropic Gaussian distributions for regression, and thus we
have found w̄0 = 0 and S0 = I yield a reasonable if diffuse prior. For the classification case,
we found these values similarly induce reasonable epistemic uncertainty over the predictive
categorical distribution.

The other novel hyperparameters are those associated with the noise covariance inverse-
Wishart prior, the degrees of freedom ν and the scale matrix M . For all experiments,
we fix the scale matrix as a scalar multiple of the identity matrix, M = mI. In our
regression experiments we fix these to be (1, 1), and find good resulting performance, but
further investigation is possible. In the classification case—and in particular the generative
classification case—these parameters control the degree of concentration in the feature
space, and thus must be more carefully selected (and often co-selected with the weight
decay strength). While we have not established effective rules of thumb for selecting these
hyperparameters, we believe such rules are possible to avoid expensive hyperparameter search.
Moreover, the performance dependence on these parameters was observed to be fairly weak.

20



Variational Bayesian Last Layers

C.6. Prediction and Monitoring

After training, we have learned network weights θ∗ (or a variational posterior over these
weights), noise covariance Σ∗, and variational posterior parameters η∗. To make predictions,
there are two options. In the case of the regression and generative classification model,
we may discard the variational posterior and leverage exact conjugacy. Under (Gaussian)
distributional assumptions, exact posteriors may be computed with fixed features.

Exact posteriors may be badly calibrated due to violation of distributional assump-
tions. Instead, we may make predictions under the variational posterior directly, under the
assumption that q(ξ | η∗) ≈ p(ξ | X,Y ), yielding

p(y | x, X, Y ) ≈ Eq(ξ|η∗)[p(y | x, ξ,θ∗,Σ∗)] (68)

where (x,y) denote a test point. For the discriminative classification model, only prediction
under the variational posterior is possible, and in this model, sampling or an approximation
(e.g. Laplace) may be used. In the regression and generative classification case, conjugacy
with respect to the variational posteriors may be exploited to yield a closed-form predictive
density (via (1) and (8)).

The generative classification case provides predicted class probability biases (the predicted
probability of seeing a particular class before observing a label) through the Dirichlet posterior.
In cases where a system designer believes there is likely to exist distributional shift between
the training data and the evaluation conditions, predictions may be directly controlled by
modifying this Dirichlet posterior.

For the variational feature approach, prediction can be done by sampling features and
computing mixture distributions, yielding

p(y | x, X, Y ) ≈ Eq(θ|η∗)Eq(ξ|η∗)[p(y | x, ξ,θ,Σ∗)] (69)

≈ 1

K

K∑
k=1

Eq(ξ|η∗)[p(y | x, ξ,θk,Σ∗)] (70)

for θk sampled i.i.d. from the variational posterior. In the regression case, this averaging is
straightforward. For the classification cases, we can average pre-softmax or post-softmax.
For example, in the case of generative classification, both

p(y | x, X, Y ) ≈ 1

K

K∑
k=1

softmaxy(log p(y | X,Y ) + log Eq(ξ|η∗)[p(x | y, ξ,θk)]) (71)

and

p(y | x, X, Y ) ≈ softmaxy(log p(y | X,Y ) + log
1

K

K∑
k=1

Eq(ξ|η∗)[p(x | y, ξ,θk)]) (72)

are valid Monte Carlo estimators for the predictive density, and the same holds for the
discriminative classifier. In practice, we typically use the former (in which we directly average
the post-softmax samples) due to the relative implementation simplicity, although the latter
is necessary for some forms of out of distribution detection. Note that in the latter estimator,

log
1

K

∑
k

xk = LSEk(logxk)− logK (73)

for generic xk and logK vanishes in the softmax and my therefore be ignored, and where
the use of log-sum-exp improves numerical stability.
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C.7. Out of Distribution Detection

A desirable feature of robust deep learning models is the ability to distinguish between in-
distribution and out of distribution (OOD) data. We use several metrics for OOD detection
with VBLL models. For the discriminative VBLL, we follow previous work (Liu et al., 2022)
and use the maximum softmax probability (Hendrycks and Gimpel, 2016) for an OOD
measure. This is computed by sampling from the distribution over logits and passing these
samples through the softmax, where they are averaged.

For the generative classification model, we can use the feature density

p(x | X,Y ) ≈
∑
y

Eθ,ξ[p(x,y | ξ,θ)] (74)

as an OOD measure. In the above, the expectation are with respect to the variational
posteriors; for the MAP estimation case, this corresponds to direct evaluation.

In practice, we found post-training noise covariance calibration improved OOD detection
performance for the G-VBLL model. More precisely, we aim to replace a shared diagonal
Σ across all classes with a Σ[y] for each class. Our intuition is that while the Σ that is
used in training is prescriptive—in the sense that it provides a model within which learning
occurs—the estimated per-class Σ[y] are descriptive of the accuracy of modelling during
training. Indeed, the training objective for the G-VBLL model is label (marginal) predictive
likelihood, and so the training signal to model class feature densities highly accurately is
weak.

Our calibration procedure is as follows. First, we assume a (MAP) point estimate for
feature means φ̄[y]. For sufficiently large datasets S[y] rapidly concentrates, so the impact
of this assumption is relatively minor. For each class, we then compute the MAP noise
covaraince Σ[y] under the inverse-Wishart prior. Concretely, the mean under Gaussian prior
N (µ0,Σ0) and known noise covariance Σ is

µ[y] = (Σ−1
0 [y] + TyΣ

−1)(Σ−1
∑

φt + Σ−1
0 [y]µ0[y]) (75)

= (
1

Ty
Σ−1

0 [y]Σ + I)(
1

Ty

∑
φt + ΣΣ−1

0 [y]µ0[y]) (76)

where recall Ty is the number of class occurances for class y and where the sum is over all
inputs in class y. For sufficiently large T and zero mean prior, this mean is approximately
equal to the empirical average 1

T

∑
xt. Thus, taking µ̂ = 1

T

∑
xt, the noise covariance can

be estimated as

Σ̂[y] =
1

Ty + ν +N + 1
(M +

∑
(φt − µ̂[y])(φt − µ̂[y])>) (77)

which corresponds to the MAP posterior with a known mean, and where the sum is again
over all inputs in class y.

We note that while our strategy of sequentially estimating two MAP estimates is relatively
unsophisticated, it is straightforward and yields good results, and is consistent for large
datasets (under straightforward distributional assumptions). In the above, N corresponds
to the dimension of the covariance matrix (as in (65)) and ν and M corresponds to the
prior degrees of freedom and scale matrix, respectively. We found that this MAP covari-
ances estimation outperformed the max likelihood covariance estimation as performed in
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(Liuet al., 2022). Moreover, we note that both the empirical mean of the features for each
class and the covariance can be recursively estimated in one pass over the data, and so the
complexity of this step is O(T ). Inspired by (Ren et al., 2019, 2021), we subtract the log
density under the feature prior as a normalization strategy, which also slightly improves
performance.

While this post-training last layer posterior improves OOD performance, it is substantially
over-concentrated for label prediction, yielding to dramatically over-confident predictions. It
is an open question how to best estimate the last layer posterior to achieve both effective
and calibrated label and OOD prediction.

Appendix D. Parameterization and Complexity

In this section, we discuss how to parameterize each of the terms appearing in each type
of VBLL. In each model, we use a “mixed” parameterization—in contrast to the standard
parameterization or natural parameterization. More precisely, we will parameterize the
inverse noise covariance Σ−1 and the covariance of the variational posterior S via Cholesky
factorizations, and directly parameterize means W̄ ,µ. In our (limited) comparisons of
the performance of different parameterizations, we found that our mixed parameterization
performed equivalently (if slightly better) to the standard parameterization, and both
performed better than natural parameterization. Interestingly, this stands in contrast to
standard practice in variational Gaussian process learning (Hensman et al., 2013), in which
authors frequently aim to derive natural gradient optimization algorithms.

We will show that for each VBLL model, under a set of reasonable assumptions, complexity
is at worst quadratic in the last layer width and linear in the output dimension. These
complexity results enable use of VBLL models on problems with high input dimensionality
and high output dimensionality. Moreover, our mini-batch gradient estimation training
objective results in (standard) linear complexity of gradient estimation in batch size, enabling
training on much larger datasets than is possible with standard marginal likelihood objectives.

D.1. Regression

Our analysis will focus on the multivariate case, for which the univariate outputs are a special
case. We directly parameterize the mean W̄ ∈ RNy×Nφ . The covariances are parameterized via
Cholesky decomposition to guarantee positive semi-definiteness; in particular we parameterize
Σ−1 = LL> and S = PP>. Each of these Cholesky matrices must be lower triangular with
positive diagonals, and so they are parameterized in automatic differentiation packages as

L = tril(Ld) + diag(exp(m)) (78)

for matrix Ld and vector m, and where tril denotes the triangular-lower function.
Given these parameterization, we show the complexity of each operation required for

training is at most quadratic in Nφ. The training objective has two terms: the log Gaussian
density and the trace term. For the log density, we have

e>t Σ−1et = e>t LL
>et (79)

for et = y − W̄φt. The term L>et can be computed in O(N2
y ) time. The second term is

φ>t Sφttr(Σ−1), for which φ>t Sφt can be computed in O(N2
φ) time, and the trace term

tr(Σ−1) = tr(LL>) = ‖L‖2F (80)
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which can be computed in O(N2
y ) time via squaring and summing the elements of L.

The remaining terms are the KL penalty on the variational posterior, and the inverse-
Wishart prior on the noise covariance. Fixing a priorMN (W̄0, I, S0), the KL penalty for
the multivariate regression case is (ignoring constants)

KL(q(ξ | η)||p(ξ)) =
1

2
(tr((W̄ − W̄0)>(W̄ − W̄0)S−1

0 ) +Nytr(S−1
0 S) +Ny log

detS0

detS
) (81)

We will fix an isotropic prior, S0 = sI for s > 0. Thus, the first term is

tr((W̄ − W̄0)>(W̄ − W̄0)S−1
0 ) =

1

s
‖W̄ − W̄0‖2F (82)

yielding complexity O(NyNφ), and the second term is

Nytr(S−1
0 S) =

Ny

s
tr(S) (83)

where the trace can again be computed as the squared Frobenius norm of the Cholesky factor
of P , for complexity O(N2

φ). The last term is

Ny log
detS0

detS
= NyNφ log s−NylogdetS (84)

where logdetS = 2logdet(P ) which is equal to the sum of the log diagonal elements, which
can be computed in O(Nφ).

Finally, we have the inverse-Wishart noise covariance prior, which has terms logdetΣ−1

and tr(MΣ−1) for scale matrixM . The log determinant term may be computed as previously,
with complexity O(Ny). Choosing scale matrix M = mI, we have tr(MΣ−1) = mtr(Σ−1)
which again is O(N2

y ). Summing all of this up, we have the total complexity of VBLL
computations as O(N2

y + N2
φ), which is equivalent to the complexity of standard matrix

multiplication; thus, there is effectively zero added computational expense from the VBLL
model compared to a standard network. The reader may easily verify that complexity of
prediction is no greater than the training complexity in the regression model.

D.2. Classification

The complexity for the discriminative classification model follows from the regression model.
We use the same parameterization, although we turn to a diagonal noise covariance Σ. The
computation of the KL penalty is identical to the regression case. The only difference is
that φ>t S[y]φt must be computed for all classes y, yielding complexity O(N2

φNy). This term
dominates the complexity of this model; however, further factorization of the covariance is
straightforward and can reduce the practical complexity. To predict in these models, sampling
realizations of the last layer must be done to sample logits. This sampling is straightforward
to do using the Cholesky factorization of the covariance, and has quadratic complexity.

For the generative classification model, we are limited by the Σ + S[y] term in the
log-sum-exp. As far as we are aware, there is no (practical) way to compute this term with
quadratic complexity, or otherwise inexpensively compute this log density. Thus, in this
paper we restrict Σ and S to diagonal matrices, which results in linear complexity in Nφ for
all operations in loss computation. Thus, under this approximate posterior, the complexity
of the full training loss computation is O(NφNy), which is equivalent to standard neural
network models. This covariance structure is relatively restrictive, and improvements may
results from sparse covariance structures.
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Appendix E. Related Work and Discussion

Bayesian methods capable of flexible nonlinear learning have been a topic of active study for
the last several decades. Historically, early interest in Bayesian neural networks (MacKay,
1992; Neal, 1995) diminished as Gaussian processes rose to prominence (Rasmussen, 2004).
In recent years, however, there has been growing interest in methods capable of learning
expressive features, effectively quantifying uncertainty, and training efficiently on large
datasets. Variational methods have seen particular attention in both neural networks
(Blundell et al., 2015; Ovadia et al., 2019) and GPs (Hensman et al., 2013; Titsias, 2009;
Liu et al., 2020) due to their flexibility and their ability to produce mini-batch gradient
estimation training schemes.

While a wide range of work has aimed to produce more performant approximate Bayesian
methods (including more expressive prior and posterior representations (Fortuin et al., 2021;
Izmailov et al., 2021; Sun et al., 2019; Wilson and Izmailov, 2020)), they have still seen
limited application, often due to the increased computational expense of these methods
(Lakshminarayanan et al., 2017; Dusenberry et al., 2020). While some approaches to Bayesian
neural networks have focused on improving the quality of the posterior uncertainty through
e.g. better priors (Farquhar et al., 2020; Fortuin, 2022) or inference methods (Izmailov et al.,
2021), other lines of work have focused on designing comparatively inexpensive approximate
Bayesian methods. Indeed, simple strategies such as Bayesian dropout (Gal and Ghahramani,
2016) and stochastic weight averaging (Maddox et al., 2019) have seen much wider use than
more expressive methods due to their simplicity.

One of the simplest Bayesian models is the BLL model that is the focus of this paper,
which enables single-pass, often deterministic uncertainty prediction. This model has gained
prominence through the lens of deep kernel learning (Wilson et al., 2016b,a; Watson et al.,
2020; Liu et al., 2022) and within few-shot learning (Harrison et al., 2018, 2020; Harrison,
2021; Watson et al., 2021; Zhang et al., 2021). Deep kernel learning aims to augment standard
neural network kernels with neural network inputs. This approach allows control of the
behavior of uncertainty, particularly as a function of Euclidean distance (Liu et al., 2022).
While stochastic variational inference has been applied to these models (Wilson et al., 2016a),
efficient and deterministic mini-batch methods have not been a major focus. Moreover,
classification in these models typically relies on sampling logits applying softmax functions,
which increases variance (Ovadia et al., 2019; Kristiadi et al., 2020, 2021), or on Laplace
approximation (Liu et al., 2022).

Within few-shot learning, exact conjugacy of the Bayesian linear regression model (Har-
rison et al., 2018) and Bayesian GDA (Harrison et al., 2020; Zhang et al., 2021; Snell
et al., 2017) has been exploited for efficient few-shot adaptation. These models have (in
addition to (Van Amersfoort et al., 2020) among others) shown the strong performance of
GDA-based/radial basis function networks, especially on problems such as out of distribution
detection, which we further highlight in this work. However, training these models (as well
as the DKL methods discussed previously) relies on direct computation of the marginal
likelihood. In contrast to prior work on DKL and few-shot learning, our approach achieves
efficient and deterministic training and prediction through our variational objectives and
through similarly exploiting conjugacy, and thus the added complexity compared to standard
neural network models is minimal.
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Boston Concrete Energy
NLL (↓) RMSE (↓) NLL (↓) RMSE (↓) NLL (↓) RMSE (↓)

VBLL 1.80± 0.04 1.42± 0.05 2.49± 0.07 2.76± 0.12 0.69± 0.07 0.45± 0.03
GBLL 2.90± 0.05 4.19± 0.17 3.09± 0.03 5.01± 0.18 0.69± 0.03 0.46± 0.02

LDGBLL 2.60± 0.04 3.38± 0.18 2.97± 0.03 4.80± 0.18 4.80± 0.18 0.50± 0.02
MAP 2.60± 0.07 3.02± 0.17 3.04± 0.04 4.75± 0.12 1.44± 0.09 0.53± 0.01

RBF GP 2.41± 0.06 2.83± 0.16 3.08± 0.02 5.62± 0.13 0.66± 0.04 0.47± 0.01
VBLL BNN 1.78± 0.09 1.37± 0.11 2.61± 0.12 2.92± 0.25 0.57± 0.09 0.39± 0.03

BNN 2.39± 0.04 2.74± 0.16 2.97± 0.03 4.80± 0.13 0.63± 0.05 0.43± 0.01
Ensemble 2.48± 0.09 2.79± 0.17 3.04± 0.08 4.55± 0.12 0.58± 0.07 0.41± 0.02
Dropout 2.36± 0.04 2.78± 0.16 2.90± 0.02 4.45± 0.11 1.33± 0.00 0.53± 0.01
SWAG 2.64± 0.16 3.08± 0.35 3.19± 0.05 5.50± 0.16 1.23± 0.08 0.93± 0.09

Table 2: Negative log likelihood (NLL) and root mean squared error (RMSE) for UCI
regression tasks. Baseline models are reproduced from (Watson et al., 2021), and
our experimental procedure carefully matched theirs. The upper set of methods
(VBLL through RBF GP) are single-pass methods, whereas the lower group are
multiple-pass.

Power Wine Yacht
NLL (↓) RMSE (↓) NLL (↓) RMSE (↓) NLL (↓) RMSE (↓)

VBLL 2.67± 0.01 3.48± 0.01 0.45± 0.02 0.37± 0.01 1.71± 0.29 0.83± 0.07
GBLL 2.77± 0.01 3.85± 0.03 1.02± 0.01 0.64± 0.01 1.67± 0.11 1.09± 0.09

LDGBLL 2.77± 0.01 3.85± 0.04 1.02± 0.01 0.64± 0.01 1.13± 0.06 0.75± 0.10
MAP 2.77± 0.01 3.81± 0.04 0.96± 0.01 0.63± 0.01 5.14± 1.62 0.94± 0.09

RBF GP 2.76± 0.01 3.72± 0.04 0.45± 0.01 0.56± 0.05 0.17± 0.03 0.40± 0.03
VBLL BNN 2.73± 0.02 3.70± 0.07 0.67± 0.02 0.46± 0.01 1.96± 0.22 1.03± 0.13

BNN 2.77± 0.01 3.86± 0.04 0.95± 0.01 0.63± 0.01 1.43± 0.17 1.10± 0.11
Ensemble 2.70± 0.01 3.59± 0.04 0.95± 0.01 0.63± 0.01 0.35± 0.07 0.83± 0.08
Dropout 2.80± 0.01 3.90± 0.04 0.93± 0.01 0.61± 0.01 1.82± 0.01 1.21± 0.13
SWAG 2.77± 0.02 3.85± 0.05 0.96± 0.03 0.63± 0.01 1.11± 0.05 1.13± 0.20

Table 3: Further results for UCI regression tasks.
Appendix F. Experiments

We investigate the three VBLL models, with both MAP and variational feature learning, in
regression and classification tasks. To illustrate VBLL models, we show predictions on simple
datasets in Figure 1. The left figure shows a regression VBLL model with variational features
trained on the function f(x) = cx3, with training data shown in red. This figure shows the
behavior on so-called gap datasets—so named because of the interval between subsets of the
data. The VBLL model shows desirable increasing uncertainty between the intervals (Foong
et al., 2019). The right figure shows the generative classification model (G-VBLL) on the
half-moon dataset. In particular, we visualize the feature density for each class. Importantly,
the density has high Euclidean distance sensitivity, which has been advocated by (Liu et al.,
2022) as a desirable feature for robustness and out of distribution detection.

Metrics. For regression experiments, we report the predictive negative log likelihood (NLL)
of test data, which can be computed in closed form for point feature estimates. We also report
the root mean squared error (RMSE), a standard metric for regression. For classification, in
addition to the negative log likelihood, we also report predictive accuracy (based on standard
argmax of the predictive distribution), and expected calibration error (ECE), which measures
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how the model’s subjective predictive uncertainty agrees with predictive error. Finally, we
also investigate out of distribution detection performance, a standard evaluation scheme for
robust and probabilistic machine learning (Liu et al., 2022). We compute the area under the
ROC curve (AUC) for near-OOD and far-OOD datasets, which is discussed in more detail
later in this section.

Baselines. We distinguish baselines between single-pass and multi-pass models, which we
show in upper and lower segments of each table, respectively. Single-pass methods require
only a single network evaluation, and we compare VBLLs with MAP feature estimation
to these models. Within regression, we compare to models which exploit exact conjugacy,
including Bayesian last layer models (GBLL and LDGBLL (Watson et al., 2021)) and RBF
kernel Gaussian processes. We note that these methods require computing full marginal
likelihood and are thus difficult to scale to large training sets. We also compare to MAP
learning, in which a full network is trained via MAP estimation, and a Bayesian last
layer is fit to these fixed features (Snoek et al., 2015). Within classification, we primarily
compare to standard networks (DNN), as these output a distribution over labels and thus
can be directly compared to our model. We also compare to SNGP (Liu et al., 2022),
which is a similar last layer model wihch aims to approximate deep kernel GPs (Wilson
et al., 2016b). We note that in contrast to SNGP (Liu et al., 2022), we do not modify a
standard neural network backbone, such as including aggressive weight decay, adding residual
connections, or using sinusoidal nonlinearities. Multi-pass methods require several network
evaluations, and includes variational methods like Bayes-by-backprop (which we refer to as
BNN) (Blundell et al., 2015), ensembles (Lakshminarayanan et al., 2017), Bayesian dropout
(Gal and Ghahramani, 2016) and stochastic weight averaging-Gaussian (SWAG) (Maddox
et al., 2019).

F.1. Regression

We investigate the performance of the regression VBLL models on UCI regression datasets
(Dua and Graff, 2017), which are standard benchmarks for Bayesian neural network regression
(Moberg et al., 2019; Ober and Rasmussen, 2019; Daxberger et al., 2021b; Watson et al.,
2021; Kristiadi et al., 2021). Results are shown in Tables 2, 3. We include baseline models
run in (Watson et al., 2021), and we replicate their experimental procedure as closely as
possible (details in the appendix). We use a fixed inverse-Wishart prior with ν = 1 and
identity scale matrix for all datasets.

Our experiments show strong results for VBLL models across datasets. Of particular
interest is the performance relative to the GBLL model, which is trained directly on the exact
marginal likelihood within the Bayesian last layer model. There are several contributing fac-
tors: the prior parameters were jointly optimized with the feature weights in the GBLL model,
whereas prior terms were fixed in our VBLL model, resulting in a stronger regularization
effect. Moreover, exact Bayesian inference can perform poorly under model misspecification
(Grünwald and Van Ommen, 2017), whereas variational Bayes has comparatively favorable
robustness properties and asymptotics (Giordano et al., 2018; Wang and Blei, 2019), although
the Gaussian process (GP) model generally also has strong performance across datasets.
Finally, directly targeting the marginal likelihood (computed exactly within conjugate models
such as BLL models) has been shown to induce substantial overfitting (Ober et al., 2021;
Thakur et al., 2020; Harrison, 2021), which the variational approach may avoid due to worse
inferential efficiency.

27



Variational Bayesian Last Layers

Accuracy (↑) ECE (↓) NLL (↓) SVHN AUC (↑) CIFAR-10 AUC (↑)
DNN 80.4± 0.29 0.107± 0.004 0.941± 0.016 0.799± 0.020 0.795± 0.001
SNGP 80.3± 0.23 0.030± 0.004 0.761± 0.007 0.846± 0.019 0.798± 0.001

D-VBLL 80.7± 0.03 0.040± 0.002 0.913± 0.011 0.849± 0.006 0.791± 0.003
G-VBLL 80.4± 0.10 0.051± 0.003 0.945± 0.009 0.767± 0.055 0.752± 0.015

G-VBLL-MAP − − − 0.793± 0.032 0.765± 0.008
BNN 79.6± 0.04 0.127± 0.002 1.611± 0.006 0.809± 0.060 0.777± 0.008

D-VBLL BNN 77.6± 0.17 0.041± 0.003 1.169± 0.018 0.785± 0.022 0.756± 0.002
G-VBLL BNN 78.1± 0.18 0.046± 0.002 1.156± 0.008 0.832± 0.023 0.742± 0.004

Table 4: Results for Wide ResNet-28-10 on CIFAR-100.
F.2. Classification

To quantitatively evaluate performance of VBLL models in classification, we train the
discriminative (D-VBLL) and generative (G-VBLL) classification models on the CIFAR-10
and CIFAR-100 image classification task. Following (Liu et al., 2022), all experiments
utilize a Wide ResNet-28-10 backbone architecture. We evaluate out of distribution (OOD)
detection performance using the Street View House Numbers (SVHN) (Netzer et al., 2011)
as a far-OOD dataset for both datasets, and CIFAR-100 for CIFAR-10 (and vice-versa) as
near-OOD datasets. In-distribution data normalization is used in both cases. The DNN,
BNN, D-VBLL and D-VBLL BNN models use maximum softmax probability (Hendrycks
and Gimpel, 2016) as an OOD measure. The G-VBLL and G-VBLL BNN models use a
normalized feature density. Two methods for this exist: G-VBLL and G-VBLL BNN both use
the learned variational posteriors to compute feature likelihoods. However, the performance
of this is relatively weak, as there is no guarantee that learned feature likelihoods correspond
effectively to true embedding densities. Thus, we also investigate an approach in which
we estimate distributions for fixed features after training. This method estimates noise
covariances for each class using the trained features, similar to the approach used in (Liu
et al., 2022). We refer to this model is G-VBLL-MAP, as the approach corresponds to MAP
noise covariance estimation. These estimated covariances often result in overly-confident
predictions, and so we do not advocate for label prediction under these fit covariances,
and do not include results for them. Appendix C.7 discusses OOD methods, and further
experimental details are in Appendix G.

Tables 1, 4 summarize the CIFAR-10 and CIFAR-100 results. D-VBLL and G-VBLL
report strong accuracy performance and competitive metrics for both ECE and NLL. D-VBLL
in particular demonstrates extremely strong accuracy results, as well as competitive (with
SNGP) NLL and OOD detection ability. Despite its comparative simplicity, it outperforms
SNGP on accuracy and OOD on CIFAR-10 and accuracy on CIFAR-100. It matches SNGP
on OOD for CIFAR-100, and is competitive (although slightly worse) on ECE and NLL.
Overall, D-VBLL models stand out as exceptionally strong performance relative to their
complexity.

While models with MAP feature estimation show very strong performance versus baseline
models, the performance of variational feature learning models (BNN) is more mixed. In
regression tasks, these models are competitive, while in classification the performance is worse
than deterministic models. In both settings, we use default KL term weighting (one over the
dataset size). This contrasts with the tempered/cold posterior effect (Kapoor et al., 2022;
Wenzel et al., 2020; Izmailov et al., 2021; Aitchison, 2020), in which it has been observed
that alternative weightings of the likelihood and the KL may outperform this one. This is
attributable (in part) to two factors: data augmentation and stochastic regularization. In
regression there is no data augmentation and the model is trained for substantially longer
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than deterministic models; in classification we use standard augmentation and our training
is more limited. Thus, it is possible that classification BNN models are over-regularized. We
investigate this question in more detail in the appendix.

Appendix G. Experimental Details

This section contains details about the experiments in the body of the paper. We note
that for highlighting in the tables in the paper body, if a single-pass method (in the upper
half of each table) is the best performing in a metric, that result is highlighted. If the best
performing is multi-pass, we highlight both the best multi-pass and single-pass method in
the column. We believe that this is important, as many applications required single-pass
methods and thus multi-pass results are irrelevant.

G.1. Toy Experiments

Figure 1 contains simple visualizations for the regression model and the generative VBLL
model. In particular, the regression model shows predictions with variational feature learning
(with KL weight of 1.0) on a cubic function with a gap in the data. This dataset consisted of
100 points sampled in [−4,−2] ∪ [2, 4], with a noise standard deviation of 0.1. The model
was consisted of a two hidden-layer MLP of width 128, trained for 1000 epochs with a batch
size of 32, with stochastic gradient descent with momentum, with a learning rate of 3 · 10−4,
zero weight decay, and momentum beta parameters of 0.9. These values were arbitrarily
chosen, although the choice of SGDM versus Adam (Kingma and Ba, 2015) does make a
difference on prediction far from the data. Gradient clipping with a maximum magnitude of
2.0 was used. The DOF and scale parameters were both set to 1.0

For the classification problem, we used the scikit-learn implementation of the half moon
dataset, with 1000 data points and a noise standard deviation of 0.2. We trained a G-VBLL
model with residual-structured MLP of width 128 (each hidden layer is added to the layer
input). This model was trained with SGDM with learning rate 3 · 10−2, momentum beta 0.9,
and weight decay 10−4, for 100 epochs and with a batch size of 32. The DOF parameter was
128, and the scale parameter was 1.0.

G.2. Regression

Our UCI experiments closely follow (Watson et al., 2021), and we compare directly to
their baselines. For VBLLs, we used a N (0, I) last layer mean prior and a W−1(1, 1) noise
covariance prior. For all experiments, we use the same MLP used in (Watson et al., 2021)
consisting of two layers of 50 hidden units each (not counting the last layer). For all datasets
we matched (Watson et al., 2021) and used a batch size of 32, other than the Power dataset
for which we used a batch size of 256 to accelerate training. For all datasets we normalize
inputs (using the training set statistics) and subtract the training set means for the outputs.
We did not re-scale the output magnitudes, to retain comparability of NLLs. We note that
the extent to which outputs were normalized in (Watson et al., 2021) is unclear. However,
they make the parameters of their prior learnable, which can have a similar effect to centering
the outputs, and so we believe our output centering is reasonable. All results shown in the
body of the paper are for leaky ReLU activations. For all experiments, a fixed learning rate of
0.001 was used with the AdamW optimizer (Loshchilov and Hutter, 2017). A default weight
decay of 0.01 was used for all experiments. We clipped gradients with a max magnitude of
1.0.
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Features Boston Concrete Energy Power Wine Yacht
MAP 3000 3000 2000 3000 1000 2000

Variational 10000 10000 10000 10000 10000 10000

Table 5: Maximum number of epochs for each set of features and each UCI dataset.

Feature KL Weight
LL KL Weight MAP 50 5 0.5

1.0 0.160 0.266 0.281 0.282
0.1 0.162 0.266 0.286 0.272
0.01 0.168 0.268 0.268 0.280
0.001 0.160 0.267 0.272 0.276

Table 6: CIFAR-10 NLL for varying values of KL weights, for both the last layer and the
feature weighting in variational feature learning.

For all deterministic feature experiments, we ran 20 seeds. For each seed, we split the
data in to train/val/test sets (0.72/0.18/0.1 of the data respectively). We train on the train
set and monitor performance on the validation set to choose a total number of epochs. In
contrast to (Watson et al., 2021) who compute validation performance for every epoch, we
compute validation performance (predictive NLL) every 10 epochs (note that the datasets
are small and typically train for hundred of epochs). After choosing a number of epochs,
we train on the combined training and validation set and evaluate performance on the test
set. We use a max number of epochs shown in Table 5, which were large enough to not be
reached but often lower than those used in (Watson et al., 2021).

For our BNN feature models, we ran 10 seeds with a similar procedure to the above. We
follow (Watson et al., 2021) and use a N (0, 4/

√
nin) for each weight (where nin denotes the

layer input width). Validation performance was monitored every 100 epochs, and 10 weight
samples were used to compute the validation predictive likelihood and choose a full training
number of epochs. For test set evaluation, 100 weight samples were used.

G.3. Classification

All classification experiments utilize the Wide ResNet-28-10 (WRN-28-10) backbone network
architecture. Hyperparameters are similar to those proposed by (Zagoruyko and Komodakis,
2016). Unlike the original implementation of WRN, we do not employ Nesterov momentum
and we fully decay an initial learning rate of 0.1 according to a Cosine Annealing schedule
instead of a stepped decay schedule. Gradients are clipped with a maximum magnitude of
2.0 and we impose a last layer KL weight of 1.0. We All classification results are reported
across 3 seeds and use the standard WRN data-augmentations proposed by (Zagoruyko and
Komodakis, 2016).. For the deterministic feature experiments, we train each model for 300
epochs.

The BNN backbone-based models utilize the same WRN architecture and are primarily
deterministic. The BNN models implement a single final Bayesian linear layer with a prior
distribution of N (0, 0.01). Each BNN-based model used 10 weight samples for test set
evaluation. This operation is relatively cheap when compared to a fully stochastic network
because the intermediate features are cached prior to the final Bayesian linear layer weight
sampling and computation. All BNN are trained for 400 epochs and we impose a last layer
KL weight of 1.0 and a feature KL weight of 0.5 the VBLL-BNN and DBLL-BNN models.
The BNN baseline model utilized a feature KL weight of 50. We additionally explore the
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NLL sensitivity of the DBLL and DBLL-BNN models to various KL weighting configurations.
In Table 6, we sweep across orders of magnitude for both the last layer and feature KL
weighting parameters. The exploration results suggest that higher feature KL weighting
improves the BNN-based models.
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