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Abstract

Argumentation is a central subarea of Artificial Intelligence (AI) for modeling and reasoning about
arguments. The semantics of abstract argumentation frameworks (AFs) is given by sets of arguments
(extensions) and conditions on the relationship between them, such as stable or admissible. Today’s solvers
implement tasks such as finding extensions, deciding credulous or skeptical acceptance, counting, or enu-
merating extensions. While these tasks are well charted, the area between decision, counting/enumeration
and fine-grained reasoning requires expensive reasoning so far. We introduce a novel concept (facets)
for reasoning between decision and enumeration. Facets are arguments that belong to some extensions
(credulous) but not to all extensions (skeptical). They are most natural when a user aims to navigate, filter,
or comprehend the significance of specific arguments, according to their needs. We study the complexity
and show that tasks involving facets are much easier than counting extensions. Finally, we provide an
implementation, and conduct experiments to demonstrate feasibility.

1 Introduction
Abstract argumentation [10, 5] is a formalism for modeling and evaluating arguments and its reasoning
problems has many applications in artificial intelligence (AI) [4, 30]. The semantics is based on sets of
arguments that satisfy certain conditions regarding the relationship among them, such as being stable or
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Figure 1: An example argumentation framework.

admissible [10]. Such sets of arguments are then called extensions of a framework and various practical
solvers for decision and reasoning tasks [15, 28, 37, 2] compete biannually in the ICCMA competition [38].

Qualitative reasoning problems such as finding an extension or deciding credulous or skeptical acceptance
are reasonably fast to compute [12] but have limitations. Namely, these two reasoning modes represent
extremes on the reasoning spectrum, as they provide no insight into preferences among arguments for further
analysis. As a result, enumeration, counting, and fine-grained quantitative reasoning modes have been studied
and computationally classified [17, 19] enabling probabilistic reasoning over arguments. While enumeration
is well suited when the total number of extensions is small, some argumentation semantics easily result in a
vast number of extensions. However, users might still want to investigate the space of possible extensions in
more detail. Possible examples are restricting or diversifying extensions, identifying resilient arguments or
sanity checks, evaluating outcomes in argumentation frameworks generated by LLMs, or gaining insights into
specific frameworks through explanations.

In all such scenarios evaluating the significance for individual arguments in a framework is central. In
existing proposals, computing the significance for arguments relied on quantitative measures over extensions
containing certain arguments or supporting particular claims. These notions rely on counting all extensions
containing a particular argument (or claim), which is computationally expensive [19]. Example 1 illustrates
difficulties when comparing significance of certain arguments in the overall world of extensions.

Example 1. Consider the argumentation framework F , depicted in Figure 1, illustrating the choice between a
sweet or savory breakfast, that is between maple syrup and burrito. Intuitively, if one prefers a savory flavor,
they would not choose maple syrup; likewise, sweet attacks burrito. One does not go to taco bell expecting
maple syrup, nor are small portions typical at taco bell. While it is possible to make burritos at home, doing
so requires buying expensive ingredients. Making a small portion or going to taco bell avoids this.

The stable extensions of F are: {w,m, p}, {s, b, p} and {s, b, t}. Now it is not immediate to compare the
significance of accepting/rejecting certain arguments to each other.

In this paper, we propose a combination of credulously and skeptically accepted arguments, which ask
whether a given argument belongs to some extension (credulous) but not all extensions (skeptical). We
call arguments that are credulously but not skeptically accepted facets. Facets quantify the uncertainty of
arguments in extensions, providing a measure of their indeterminacy within the framework. They can be
utilized to evaluate the significance of specific arguments.

Example 2 provides a brief intuition.

Example 2. We return to the argumentation framework F from Example 1. Six of the seven arguments are
facets under stable semantics, with only e being a non-facet, indicating a substantial degree of uncertainty.

Assume we aim to compare the relative significance of an argument. Consider the extensions of F
rejecting (not containing) the argument “sweet”. There are two such stable extensions {s, b, p} and {s, b, t}.
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Problems/σ σ1 σ2 σ3

ISFACETσ P R3 NP T5 ΣP
2

T5/7

FACETS≥k
σ P T8 NP T14 ΣP

2
T15

FACETS≤k
σ P T8 coNP T18 ΠP

2

T18

FACETS=k
σ P T19 DP T20 ∈ DP2

T21

Sσ[F, ℓ] “∈ P” T19 “∈ ∆P
2” T24 “∈ ∆P

3” T24

Table 1: Overview of our complexity results for the semantics σ1 ∈ {conf, naiv}, σ2 ∈ {adm, stab, comp}, and
σ3 ∈ {pref, semiSt, stag}. All results depict completeness except for P-cases or when stated o/w. ISFACETσ asks
whether a given argument is a facet; FACETS·kσ asks whether there are at least (≥ k), at most (≤ k), or exactly (= k)
facets. Sσ[F, ℓ] asks what the significance of approving (ℓ = a) or disapproving (ℓ = ā) of a σ-facet a in AF F is.
Superscripts behind the complexity classes refer to Remark (R) and Theorem (T), with the proof. “∈ ∆P

i ” slightly
abuses notation meaning that it can be computed by a deterministic polynomial-time Turing machine with access to a
ΣP
i−1 oracle.

Therefore, rejecting the argument w leaves us with two facets p and t. In contrast, consider the extensions
accepting (containing) the argument “sweet”. This results in one stable extension {w,m, p} and hence no
facets. Accepting the argument w eliminates any uncertainty, whereas rejecting w does not. Consequently, we
consider accepting “sweet” to be more significant than rejecting “sweet”.

While the computational complexity of credulous and skeptical reasoning is well studied [12], we ask for
the concrete complexity of facets and whether counting facets provides a theoretical benefit over projected
counting and projected enumerating extensions.

Contributions. In more details, we establish the following.

1. We introduce facets to abstract argumentation as a reasoning tool for significance and filtering extensions
in a directed way. By this, we fill a gap in the literature between quantitative and qualitative reasoning.

2. We present a comprehensive complexity analysis for various qualitative and quantitative problems
involving facets. Table 1 provides an overview on our results.

3. Finally, we present experiments that demonstrate the feasibility of our framework. We evaluate our
implementation on instances of the ICCMA competition.

Related Work. The computational complexity in abstract argumentation is well understood for decision
problems [11, 14, 12], parameterized complexity involving treewidth [16], for (projected) counting [19] as
well as for fine-grained reasoning based on counting [17]. The decision complexity ranges from P to ΣP

2 for
credulous reasoning, and from P to ΠP

2 for skeptical reasoning. The complexity of counting extensions ranges
between #P and # · coNP depending on the semantics. In theory, we know that PH ⊆ P#·P [39] where⋃
k∈N ∆

P
k = PH and NP ⊆ ∆P

2 = PNP [35]. This renders counting extensions theoretically significantly
harder. Approximate counting is in fact easier, i.e., approx-#·P ⊆ BPPNP ⊆ ΣP

3 [25, 32, 34], but turns out to
be still harder than counting facets. Facets were initially proposed for answer-set programming (ASP) by [1] as
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a tool to navigate large solution spaces. Their computational complexity has been systematically classified [31].
ASP is a popular framework and problem solving paradigm to model and solve hard combinatorial problems
in form of a logic program that expresses constraints [24]. Plausibility reasoning has been developed for ASP
based on full counting [20]. [9] developed a tool to navigate argumentation frameworks using ASP-facets.
Note that ASP-navigation is based on forbidding or enforcing atoms in a program using integrity constraints.
In contrast, argumentation facets enable approving or disapproving arguments, while not necessarily removing
the extensions entirely leading to a natural notion of significance of an argument (see Section 4). Finally,
we remark that our complexity analysis (Table 1) indicates a computational gain for reasoning with facets
compared to separately asking credulous/skeptical reasoning in each case (see e.g., [13]). Facets have recently
also been applied to planning [33].

2 Preliminaries
We assume familiarity with computational complexity [29], graph theory [8], and Boolean logic [6].

Complexity Classes We use standard notation for basic complexity classes and for example write P (NP)
for the class of decision problems solvable in (non-deterministic) polynomial time. Additionally, we let coNP
be the class of decision problems whose complement is in NP, and let DP be the class of decision problems
representable as the intersection of a problem in NP and a problem in coNP. On top, we use more classes
from the polynomial hierarchy [36, 35, 40], ∆P

0 := ΠP
0 := ΣP

0 := P and ∆P
i := PΣP

i−1 , ΣP
i := NPΣP

i−1 , and
ΠP
i := coNPΣP

i−1 for i > 0 where CD is the class C of decision problems augmented by an oracle for some
complete problem in class D. Recall that PH :=

⋃
i∈N ∆

P
i [35]. The canonical NP-complete problem is the

Boolean satisfiability problem for formulas in conjunctive normal form (CNF), i.e., given φ :=
∧m
i=1Ci where

each Ci is a clause, decide whether φ admits at least one satisfying assignment. For coNP the corresponding
problem is simply to check unsatisfiability, and for DP to check whether φ is satisfiable and ψ unsatisfiable
for a given pair of formulas (φ, ψ) (the SAT-UNSAT problem). The complexity class DPk is defined as
DPk := {L1∩L2 | L1 ∈ ΣP

k, L2 ∈ ΠP
k}, DP=DP1 [26]. For ΠP

2 we may e.g. consider the evaluation problem
for a quantified Boolean formula of the form ∀X∃Y.φ where X and Y are two disjoint sets of variables and φ
a formula in CNF over X and Y . For ΣP

2 the problem is instead to check that ∀X∃Y.φ is false.

Abstract Argumentation We use Dung’s argumentation framework ([10]) and consider only non-empty
and finite sets of arguments A. An (argumentation) framework (AF) is a directed graph F = (A,R), where A
is a set of arguments and R ⊆ A× A, consisting of pairs of arguments representing direct attacks between
them. An argument a ∈ E, is called defended by E in F if for every (a′, a) ∈ R, there exists a′′ ∈ E such
that (a′′, a′) ∈ R. The family defF (E) is defined by defF (E) := { a | a ∈ A, a is defended by E in F }.
In abstract argumentation, one strives for computing so-called extensions, which are subsets E ⊆ A of the
arguments that have certain properties. The set E of arguments is called conflict-free in E if (E×E)∩R = ∅;
E is admissible in F if (1) E is conflict-free in F , and (2) every a ∈ E is defended by E in F . Let
E+
R := E ∪ { a | (b, a) ∈ R, b ∈ E } and E be conflict-free. Then, E is (1) naive in F if no E ′ ⊃ E exists

that is conflict-free in F , and (2) stage in F if there is no conflict-free set E ′ ⊆ A in F with E+
R ⊊ (E ′)+R. An

admissible setE is (1) complete in F if defF (E) = E; (2) preferred in F , if noE ′ ⊃ E exists that is admissible
in F ; (3) semi-stable in F if no admissible setE ′ ⊆ A in F withE+

R ⊊ (E ′)+R exists; and (4) stable in F if every
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a ∈ A \E is attacked by some a′ ∈ E. For a semantics σ ∈ {conf, naiv, adm, comp, stab, pref, semiSt, stag},
we write σ(F ) for the set of all extensions of semantics σ in F . Let F = (A,R) be an AF.

Then, the problem EXISTσ asks if σ(F ) ̸= ∅. The problems cσ and sσ question for a∈A, whether a is in
some E ∈ σ(F ) (“credulously accepted”) or every E ∈ σ(F ) (“skeptically accepted”), respectively. We let
Cσ (resp., Sσ) denote the set of all credulously (skeptically) accepted arguments under semantics σ.

3 Facet Reasoning
Central reasoning problems in argumentation include deciding whether an argument is credulously (or
skeptically) accepted. In the following, we will see how the problem of deciding facets can be seen as a
generalization of these two modes.

We begin by defining reasoning problems pertaining to facets in argumentation. Intuitively, a σ-facet is an
argument which is accepted in some, but not all σ-extensions for the considered semantics σ. Formally, given
a semantics σ, then an argument a is a σ-facet if a ∈ Cσ \ Sσ. Given an AF F and semantics σ, then Fσ(F )
denotes the set of all σ-facets in F In this work, we consider the following reasoning problems parameterized
by a semantics σ.

• The problem ISFACETσ asks, given an AF F = (A,R) and an argument a ∈ A, is a a σ-facet in F ?

• The problems FACETS=k
σ , FACETS≥k

σ and FACETS≤k
σ has an integer k as an additional input, and ask

whether an input F = (A,R) has exactly, at least, or at most k σ-facets, respectively.

We continue by analyzing the complexity of these problems, beginning with ISFACETσ in Section 3.1,
FACETS≥k

σ and FACETS≤k
σ in Section 3.2, and complete the study with FACETS=k

σ in Section 3.3.

3.1 Complexity of Deciding Facets
Regarding the complexity classification, for conflict-free and naive semantics, the problem ISFACET is rather
straightforward to classify. To see this, for conf, each argument not attacking itself is a facet (provided there
are at least two such arguments in the AF), and for naiv, one additionally has to remove each argument not in
conflict with any other argument since it can not be a facet.

Remark 3. ISFACETσ is in P for σ ∈ {conf, naiv}.

For the remaining semantics, we get hardness by observing that ISFACETσ is as hard as the credulous
reasoning (cσ) for each considered semantics σ.

Lemma 4. Let σ be any semantics. Then cσ ≤P
m ISFACETσ.

Proof. We provide a polynomial time many-one reduction from cσ to ISFACETσ for each semantics σ as
follows. Let F = (A,R) be an AF, and a ∈ A be an argument. Our reduction yields an AF F ′ where
we duplicate the argument a which has all the incoming and outgoing attacks similar to a ∈ A. Precisely,
F ′ = (A′, R′) is as follows:

• A′ := A ∪ {a′} for a fresh a′ ̸∈ A,

• R′ := R ∪ {(a, a′), (a′, a)} ∪ {(a′, x) | (a, x) ∈ R} ∪ {(x, a′) | (x, a) ∈ R}.
5



Then, for any semantics σ, the argument a is credulously accepted under σ in F iff a is a facet under σ in F ′.
Indeed, let a be credulously accepted, then there is a σ-extension E ⊆ A such that a ∈ E. Since a defends
itself against a′ in F ′, we have that a is also credulously accepted in F ′ as the other attacks remain the same.
Finally, a can not be in all σ-extensions E in F ′, as E \ {a} ∪ {a′} is also a σ-extension. Therefore the claim
follows.

We specifically obtain the following characterization.

Theorem 5. ISFACETσ is NP-complete for σ ∈ {adm, comp, stab} and ΣP
2 -complete for σ ∈ {semiSt, stag}.

Proof. The hardness in each case follows due to Lemma 4 and the complexity for credulous reasoning under
corresponding semantics.

The membership follows, since one can guess two σ-extensions for an input F , one containing the argument
in the question, and another without it. The verification (of σ-extensions) requires (1) polynomial time for
σ ∈ {adm, comp, stab}, and (2) coNP-oracle for σ ∈ {semiSt, stag}. This establishes the membership
results.

The following observation is necessary to establish the hardness proof in Theorem 7. Let Φ = ∀X∃Y.φ be
a QBF instance, where φ :=

∧n
i=1Ci is a CNF. If φ is not satisfiable, the formula Φ can not be true. Whereas,

the problem to check whether φ is satisfiable, is NP-complete. Given Φ, one can construct a new formula
Φ′ = ∀X ′∃Y.φ′ such that φ′ is satisfiable and Φ is true iff Φ′ is true. To this aim, we let X ′ = X ∪ {z} for
a fresh variable z ̸∈ X ∪ Y . Then φ′ :=

∧
C∈φ(¬z ∨ C). Notice that Φ[z 7→ 0] is trivially true whereas

Φ[z 7→ 1] is true iff Φ is true. Consequently, we have the following observation.

Remark 6. Given a QBF instance Φ = ∀X∃Y.φ, where φ is a CNF. One can assume w.l.o.g. that φ is
satisfiable.

Next, we establish that ISFACETpref is ΣP
2 -complete. Notice that this case is not covered by Theorem 5 as

the credulous reasoning for preferred semantics (cpref) is only NP-complete.

Theorem 7. ISFACETpref is ΣP
2 -complete.

Proof. The membership follows since one can guess two preferred extensions for an input F , one containing
the argument in the question, and another without it. The verification of pref-extensions requires an NP-oracle.
This establishes the mentioned membership results.

For hardness, we utilize the following reduction proving ΠP
2-hardness of skeptical acceptance with

preferred semantics [13, Reduction 3.7].
Given a QBF Φ = ∀Y ∃Z.φ where φ :=

∧m
i=1Ci is a CNF-formula with clauses Ci over variables

X = Y ∪ Z. We construct an AF FΦ = (A,R), where A = {φ, φ̄} ∪ {C1, . . . , Cm} ∪X ∪ X̄ . The relation
R includes the following attacks:

{ (Ci, φ) | 1 ≤ i ≤ m }∪
{ (x,Ci) | x ∈ Ci } ∪ { (x̄, Ci) | x̄ ∈ Ci }∪
{ (x, x̄), (x̄, x) | x ∈ var(φ) }∪
{(φ, φ̄), (φ̄, φ)} ∪ {(φ̄, z), (φ̄, z̄) | z ∈ Z}.

Then, it holds that there is a preferred extension in FΦ not containing the argument φ iff the formula Φ is
false. Furthermore, we have that φ is satisfiable. Therefore, there exists a preferred extension S containing φ.
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Namely, S corresponds to a satisfying assignment θ for φ as S = {φ, ℓ | ℓ ∈ X ∪ X̄, θ(ℓ) = 1}. As a result,
φ is a pref-facet iff there is a preferred extension S ′ with φ ̸∈ S ′ iff the formula Φ is false. This results in
ΣP

2 -hardness.

3.2 Atleast/Atmost k Facets Complexity
We begin by proving that for conflict-free and naive semantics, one can count all the facets in polynomial
time.

Theorem 8. FACETS≥k
σ and FACETS≤k

σ are both in P for σ ∈ {conf, naiv}.

Proof. For conf, the AF F has at least k facets if F contains at least k non self-conflicting arguments (without
self-attacks). For naiv, one additionally has to remove arguments (N ) not in conflict with any other argument
since those can not be a facet. Thus, F has at least k naiv-facets if F \N contains at least k non self-conflicting
arguments, where N includes those arguments not participating in any attack.

The following reduction is essential for proving Lemma 10 which we utilize later in achieving certain
lower bounds.

Definition 9 ([13]). Let φ :=
∧m
i=1Ci, be a CNF-formula where each Ci is a clause. Consider the AF

Fφ = (A,R) constructed as follows:

A :={φ,C1, . . . , Cm} ∪ { x, x̄ | x ∈ var(φ)}
R :={ (Ci, φ) | i ≤ m } ∪ { (x, x̄), (x̄, x) | x ∈ var(φ) }

∪ { (x,Ci) | x ∈ Ci } ∪ { (x̄, Ci) | x̄ ∈ Ci }.

We call Fφ the argumentation framework of φ generated via the standard translation.

It is known that φ is satisfiable iff the argument φ is credulously accepted in Fφ under semantics
σ ∈ {adm, comp, stab}. We next prove the following intermediate lemma. Essentially, the standard translation
allows us to characterize exactly the number of facets in Fφ based on whether the formula φ is satisfiable or
not.

Lemma 10. Let φ be a CNF-formula involving m clauses and n variables. Moreover, let Fφ be the AF of
φ as depicted in Definition 9 and let k = 2n + m + 1. Then the following statements are true for every
σ ∈ {adm, comp, stab}.

1. φ is satisfiable iff Fφ admits exactly k σ-facets.

2. φ is not satisfiable iff Fφ admits exactly k − 1 σ-facets.

Proof. First, we assume, w.l.o.g., that for all 1 ≤ i ≤ m, Ci ̸≡ ⊤. As a result, for every Ci ∈ φ there exists
an assignment θi such that θi ̸|= Ci. Further, it follows that such θi do not satisfy φ, and hence φ is not
tautological. Next, let θ be an arbitrary assignment over var(φ). Then, for each variable x, we have that either
x ∈ θ or x̄ ∈ θ and not both. Thus, θ (seen as set of arguments) is conflict-free. By slightly abusing the
notation, for a literal argument ℓ ∈ θ, we write ℓ̄ = x̄ if ℓ = x and ℓ̄ = x if ℓ = x̄.

We prove the following intermediate claims.
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Claim 11. Every clause argument Ci ∈ A is a σ-facet in Fφ for each σ ∈ {adm, comp, stab}.

Proof of Claim. We prove the following two statements. That is, every clause argument Ci ∈ A is contained
in some σ-extension, but not all σ-extensions.

(C1) Every Ci is credulously accepted under σ. This holds since {Ci} ∪ {ℓ̄ | ℓ ∈ Ci} is an admissible
set of arguments. Therefore each clause Ci is credulously accepted under admissible semantics. Furthermore,
we can combine multiple clauses together with their non-satisfying assignments to yield results for complete
and stable semantics. To this aim, let Si = {Ci} ∪ {ℓ̄ | ℓ ∈ Ci}. Consider a clause Cj such that Cj ∩ Si = ∅.
This is the case iff Cj does not contain any literal ℓ with ℓ̄ ∈ Ci. Then, for Sj = {Cj} ∪ {ℓ̄ | ℓ ∈ Cj}, the
set Si ∪ Sj is conflict-free. We repeat this process to get a maximal extension Sm such that: each clause
Ck ∈ φ \ Sm contains a literal ℓ ∈ Sm, and hence it is attacked by Sm. Now consider the literals ℓ such that
ℓ, ℓ̄ ̸∈ Sm. Recall that ℓ, ℓ̄ ̸∈ C for any C ∈ Sm, thus both literals are conflict free with Sm, and we get two
stable extensions by taking both literals in turn (i.e., Sm ∪ {ℓ}, Sm ∪ {ℓ̄}). Since one can construct such an
admissible extension for each clause, and those extensions can be merged together to get a stable (hence also
complete) extension, we have that each Ci is in some σ-extension for each σ ∈ {adm, comp, stab}.

(C2) No Ci is skeptically accepted under σ. Let θ be an arbitrary assignment such that θ |= Ci. Recall
that θ (seen as set of arguments) is conflict-free as either x ∈ θ or x̄ ∈ θ (and not both) for each variable x.
We have the following cases:
(I.) θ |= φ. Then θ ∪ {φ} is a σ-extension not containing the argument Ci.
(II.) θ ̸|= φ. Then, the set C = {Cj | θ ̸|= Cj} of clauses is non-empty and Ci ̸∈ C. Moreover, the set of
arguments θ ∪ C is conflict-free since no Cj ∈ C is attacked by any literal ℓ ∈ θ (i.e., there is no ℓ ∈ θ ∩ Cj
for any Cj ∈ C). The set θ ∪ C is also admissible as any Cj ∈ C is defended against the attacker ℓ ∈ Cj by
ℓ̄ ∈ θ (recall that θ either contains x or x̄ for every variable x).

We next observe that θ ∪ C is also stable, as (i.) every literal ℓ ̸∈ θ is attacked by ℓ̄ ∈ θ, (ii.) every clause
not in C is attacked by its satisfying literal in θ (iii.) φ is attacked by each clause in C, which is non-empty.

We next prove that θ ∪C is also complete. That is, θ ∪C contains every argument it defends. Note that (i.)
the case for literals is trivial, (ii.) let Cj be a clause defended by θ ∪ C. Since arguments in C do not attack
any literal, and those literals are the only attackers of Cj , we have that Cj is actually defended by θ. In other
words, for each ℓ ∈ Cj we have that ℓ̄ ∈ θ since literals are only attacked by their opposites. But this results
in θ ̸|= Cj , and hence Cj ∈ C. (iii.) φ is not defended by θ ∪ C as there are unsatisfied clauses in C. Thus
θ ∪ C contains every argument it defends, making it a complete extension.

From (I.) and (II.), we conclude that for each Ci ∈ A, there is a σ-extension for σ ∈ {adm, comp, stab}
that does not contain Ci.

Claim 12. Every literal argument ℓ ∈ A is a σ-facet in Fφ for each σ ∈ {adm, comp, stab}.

Proof of Claim. Let θ be an arbitrary assignment. Recall that θ is a conflict-free set of arguments in Fφ. It
suffice to prove that every literal in θ is credulously accepted in Fφ under semantics σ. That every literal in
θ is a σ-facet, follows by considering the dual assignment θ̄ = {ℓ̄ | ℓ ∈ θ} for θ. First, we distinguish the
following two cases.

(I.) θ |= φ. Then, θ ∪ {φ} is a σ-extension for each σ ∈ {adm, comp, stab}.
(II.) θ ̸|= φ. Then, the set C = {Ci | θ ̸|= Ci} of clauses is non-empty. Moreover, the set of arguments

θ ∪ C is conflict-free since no Ci ∈ C is attacked by any literal ℓ ∈ θ (i.e., there is no ℓ ∈ θ ∩ Ci for
any Ci ∈ C). The set θ ∪ C is also admissible as any Ci ∈ C is defended against the attacker ℓ ∈ Ci by
ℓ̄ ∈ θ (recall that θ either contains x or x̄ for every variable x). The claims regarding stable and complete
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semantics use the same argument as in the proof of Claim 11. As a result, every literal ℓ ∈ θ is contained in
the σ-extension θ ∪ C and, is thus credulously accepted.

Claim 13. The argument φ ∈ A is a σ-facet in Fφ for each σ ∈ {adm, comp, stab}iff the formula φ is
satisfiable.

Proof of Claim. If φ is not satisfiable, then φ does not belong to any σ-extension in Fφ. As a result, φ is not a
facet.

Suppose φ is satisfiable and let θ be an assignment such that θ |= φ. Then, θ ∪ {φ} is a σ-extension
as established in Claim 11 (C2). Now, due to Claim 11 (C1), there is a σ-extension covering each clause
argument and hence not containing φ. As a result, φ is a σ-facet in Fφ.

Combining Claims (11–13), we achieve that (1) every argument A \ {φ} is a σ-facet and (2) the argument
φ ∈ A is a σ-facet iff φ is satisfiable. As a result, Fφ has exactly (1) k σ-facets iff φ is satisfiable and (2) k− 1
σ-facets otherwise.

Consequently the lemma follows since |A| = k.

We continue with FACETS≥k
σ and prove that it is either NP-complete or ΣP

2 -complete depending on the
choice of σ.

Theorem 14. FACETS≥k
σ is NP-complete for σ ∈ {adm, stab, comp}.

Proof. For membership, we guess k distinct arguments {a1, . . . , ak}, and simultaneously 2k σ-extensions
P1, . . . , Pk, N1, . . . , Nk such that: ai ∈ Pi and ai ̸∈ Ni. The verification that each S ∈ {Pi, Ni | i ≤ k} is a
σ-extension can be done in polynomial time. Then, F has at least k σ-facets iff each argument in {ai | i ≤ k}
is a σ-facet.

For hardness, we utilize Lemma 10. Indeed, φ is satisfiable iff the AF Fφ has at least k facets where
k = 2n+m+ 1 for the formula φ with n variables and m clauses.

Theorem 15. FACETS≥k
σ is ΣP

2 -complete for σ ∈ {pref, semiSt, stag}.

Proof. For membership, we guess k distinct arguments {a1, . . . , ak}, and simultaneously 2k σ-extensions
P1, . . . , Pk, N1, . . . , Nk such that: ai ∈ Pi and ai ̸∈ Ni. The verification that each S ∈ {Pi, Ni | i ≤ k} is a
σ-extension can be done via an NP-oracle. Then, F has at least k σ-facets iff each argument in {ai | i ≤ k} is
a σ-facet. This yields membership in NPNP (equivalently, ΣP

2 ).
For hardness, we reduce from ISFACETσ for σ ∈ {pref, semiSt, stag}. To this aim, let F = (A,R) be an

AF and a ∈ A be an argument in the question. Assume that |A| = n. We let n− 1 additional copies of a and
consider the set Ca = {a1, . . . , an} of arguments where a1 = a and ai ̸∈ A are fresh arguments for i ≥ 2.
Then, we construct the AF F ′ = (A′, R′) where A′ = A ∪ Ca. The relation R′ consists of R and additionally
the following attacks: {(ai, x) | (a, x) ∈ R, i ≤ n} ∪ {(x, ai) | (x, a) ∈ R, i ≤ n}. That is, F ′ simply copies
the argument a together with all its incoming and outgoing attacks for each of the n− 1 fresh arguments.

We first prove that for a conflict-free (resp., admissible) set S in F , adding arguments from Ca to S does
not change its conflict-freeness (admissibility) in F ′ as long as S contains a.

Claim 16. A set S ⊆ A containing a is conflict-free (resp., admissible) in F iff S ∪ Ca is conflict-free
(admissible) in F ′.

9



Proof of Claim. We prove the case for conflict-freeness, the case for admissible semantics follows analogously.
If S is not conflict-free in F then S is also not conflict-free in F ′ since R ⊆ R′. Conversely, suppose S is
conflict-free in F . Suppose to the contrary, there exists x, y ∈ S ∪ Ca such that (x, y) ∈ R′. Recall that Ca
is conflict-free in F ′ by definition and S is conflict-free in F ′ \ Ca. Then, it must be the case that x ∈ S
and y ∈ Ca (or vise versa). But this leads to a contradiction to the conflict-freeness of S since a ∈ S and
(x, ai) ∈ R′ iff (x, a) ∈ R. Analogous case holds if x ∈ Ca and y ∈ S. Thus S ∪ Ca is conflict-free in F ′.

We are now ready to prove the following claim.

Claim 17. The argument a is a σ-facet in F iff each argument ai ∈ Ca is a σ-facet in F ′ for each σ ∈
{pref, semiSt, stag}.

Claim Proof. Suppose a is a σ-facet in F . Then, there are σ-extensions S1, S2 in F such that a ∈ S1 and
a ̸∈ S2. Then, we prove that each argument in Ca belongs to some, but not all σ-extensions of F ′. Notice
first that S1 is not a σ-extension in F ′ for any σ ∈ {pref, semiSt, stag}. This holds due to the arguments in Ca.
Indeed, if S1 is a σ-extension in F , then S1 ∪ {x | x ∈ Ca} is a counter-example to S1 being σ-set in F ′ due
to Claim 16.

SomeE: S1 ∪ Ca is a σ-extension containing each ai ∈ Ca (again, due to Claim 16).
NotAllE: We prove that S2 is a σ-extension in F ′ and ai ̸∈ S2 for each ai ∈ Ca. We prove the claim for

preferred semantics, other cases can be proven analogously. Since S2 is a subset maximal admissible set in F
and a ̸∈ S2, either S2 ∪ {a} is not conflict-free, or not admissible in F . Consequently, either S2 ∪ {ai} is not
conflict-free, or not admissible (by Claim 16). Since A′ \ A = Ca, this proves that S2 is a preferred set in F ′.
Similar arguments (with Claim 16) yield results for the remaining two semantics. As a result, each ai ∈ Ca is
a σ-facet since ai ̸∈ S2 for each ai ∈ Ca.

Conversely, suppose a is not a σ-facet in F . If a is not in contained in any σ-extension of F , then no
argument from Ca can be in any σ-extension of F ′ (using the same argument as in SomeE). Hence, no
argument ai ∈ Ca is a σ-facet in F ′. Similarly, if a belongs to every σ-extension of F , once again we have
that every ai ∈ Ca is contained in every σ-extension in F ′ (due to NotAllE). This results once again in no
argument ai ∈ Ca being a σ-facet in F ′.

We next observe that the argument a is a σ-facet in F iff the AF F ′ admits at least n σ-facets for each
σ ∈ {pref, semiSt, stag}. Indeed, a is a σ-facet in F iff each ai ∈ Ca is also a facet in F ′ due to Claim 17.
Thus resulting in at least n facets in F ′. In contrast, if a is not a facet in F then no argument in ai ∈ Ca is a
facet. Hence F ′ has at most n− 1 facets.

It is worth remarking that the reduction from ISFACETσ to FACETS≥k
σ presented in the proof of Theorem 15

does not work for admissible semantics. This holds since the converse direction of Claim 17 ‘if a is not a facet
in F then no argument ai ∈ Ca is a facet in F ′’ is no longer true. Suppose a is not a facet. Assume further
that a belongs to all admissible sets and there is at least one such set. Now, take any admissible set S in F .
Clearly, a ∈ S, however, S \ {a} ∪ {ai} is admissible in F ′ and does not contain a. This results in every
ai ∈ Ca being adm-facet in F ′. Consequently, a is not an admissible-facet in F although each of its copy in
F ′ is an admissible-facet. Moreover, F ′ also admits at least n− 1 adm-facets in this case, thus violating the
proof from Theorem 15.

Theorem 18. FACETS≤k
σ is coNP-complete for σ ∈ {adm, stab, comp}, whereas ΠP

2-complete for σ ∈ {pref,
semiSt, stag}.

Proof. The complement FACETS≥k
σ of FACETS≤k

σ is NP-complete (resp., ΣP
2 -complete) for the mentioned

semantics.
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3.3 Exact k Facets
Perhaps unsurprisingly, FACETS=k also turns out to be easy for conflict-free and naive semantics.

Theorem 19. FACETS=k
σ is in P for σ ∈ {conf, naiv}.

Proof. Similar to the proof of Theorem 8, one can count all the σ-facets in polynomial time for σ ∈
{conf, naiv}.

For σ ∈ {adm, stab, comp} the problem FACETS=k
σ turns out to be more interesting since it is complete

for the comparably esoteric class DP.

Theorem 20. FACETS=k
σ is DP-complete for σ ∈ {adm, stab, comp}.

Proof. The membership follows directly from FACETS≥k
σ (Thm. 14) and FACETS≤k

σ (Thm. 18).
For hardness, we reduce from SAT-UNSAT. To this aim, we utilize Lemma 10 for an instance (φ, ψ)

of SAT-UNSAT. We assume w.l.o.g. that φ and ψ do not share variables. Then, φ is satisfiable and ψ is
not satisfiable iff the AF Fφ has k1 facets and Fψ has k2 − 1 facets, where Fi is the corresponding AF for
i ∈ {φ, ψ} with ki arguments. However, there is a small technical issue as the AF Fφ ∪Fψ can not distinguish
the failure of the satisfaction of φ from that of ψ. Therefore, we can not simply take the union Fφ ∪Fψ and let
the number of facets be k1 + k2 − 1. Nevertheless, we duplicate the argument φ in Fφ to yield the pair φ, φ′.
Then Fφ includes the additional attacks (φ, φ′), (φ′, φ) as well as (C,φ′) for each C ∈ φ. The resulting AF
Fφ has k1 + 1 arguments and φ is satisfiable iff Fφ has k1 + 1 facets. Note that the newly added argument
φ′ is a σ-facet iff φ is σ-facet for each σ ∈ {adm, comp, stab}. Then, the theorem follows since (φ, ψ) is a
positive instance of SAT-UNSAT iff φ is satisfiable and ψ is not satisfiable iff Fφ ∪ Fψ has exactly (k1 + k2)
σ-facets for σ ∈ {adm, comp, stab}.

We conclude our complexity analysis by stating the non-tight bounds for FACETS=k
σ for the remaining

semantics.

Theorem 21. FACETS=k
σ is in DP2 for σ ∈ {pref, semiSt, stag}.

Proof. Follows directly from FACETS≥k
σ (Thm. 15) and FACETS≤k

σ (Thm. 18).

4 Significance
Our notion of significance adopts a decision-driven perspective. We define significance of arguments in terms
of the influence of a decision to eliminate the degree of freedom (on choices of remaining arguments). While
counting approaches assess the plausibility of arguments in terms of their likelihood of being accepted, we
measure how much the acceptance of an argument decreases freedom (or increases the significance of the
decision). Intuitively, a higher significance score indicates that a specific decision does have a huge influence
on the remaining facets. Furthermore, the number of facets directly measures the amount of uncertainty in
extensions. Consider an argument a (as an opinion or a view point) and denote by ā the complement/negation
of a. E.g., an argument is approved (a) versus not approved (ā). Then, a facet ℓ ∈ {a, ā} can be seen as
the uncertainty regarding a, since a can either be included in, or be excluded from certain extensions. We
next introduce the notion of approving and disapproving an argument. Let F = (A,R) be an AF, and σ
be a semantics. Recall that σ(F ) denotes the collection of σ-extensions in F . Moreover, Cσ (resp., Sσ)
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ℓ ∈ {w,m, t, s̄, b̄, p̄} {s, b, w̄, m̄} {p, t̄}∣∣F ℓ
stab(F )

∣∣ 0 2 4
Sstab[F, ℓ] 1 2

3
1
3

Table 2: Argument significance for the AF from Example 23.

denotes the collection of credulously (skeptically) accepted arguments in F under semantics σ. For an
argument a, we let σa(F ) denote the σ-extensions in F approving the argument a. Precisely, we define
σa(F ) = {E ∈ σ(F ) | a ∈ E}. Moreover, σā(F ) = {E ∈ σ(F ) | a ̸∈ E} represents the σ-extensions in F
disapproving a. Now, let Caσ (resp., Saσ) be the arguments in some (all) E ∈ σa(F ). Finally, Fa

σ(F ) denotes
the σ-facets by considering only extensions in σa(F ) (i.e., Caσ \ Saσ).

For an argument a ∈ A and ℓ ∈ {a, ā}, we denote ℓ̄ = ā if ℓ = a and ℓ̄ = a for ℓ = ā. We say that ℓ is
approved iff ℓ̄ is disapproved. Approving a facet ℓ ∈ {a, ā} reduces the uncertainty regarding the remaining
arguments in A by restricting the extensions space to sets (not) containing a. Further, approving ℓ can render
a facet argument b ∈ A non-facet. This holds since, either (C1) b ∈ E for each E ∈ σℓ(F ) but b ̸∈ E for each
E ∈ σ(F ), or (C2) b ̸∈ E for any E ∈ σℓ(F ) but b ∈ E for some E ∈ σ(F ). Intuitively, we say that the
uncertainty of such an argument b has been resolved by approving ℓ. Further, we say that approving ℓ results
in the approval of b in the case of (C1), and disapproval of b if (C2) is the case.

Notice that approving (or disapproving) an argument results in fewer facets for every semantics σ. That
is, the (dis)approval of any argument can not generate new facets. Intuitively, we have less uncertainty than
before after we (dis)approve certain arguments. Precisely, we have the following lemma.

Lemma 22. For any argument a ∈ A and semantics σ, Fa
σ(F ) ⊆ Fσ(F ).

Proof. Let b ∈ A be such that b ̸∈ Fσ(F ). If b ∈ E for all E ∈ σ(F ), then b ∈ E for all E ∈ σa(F ) as well,
hence b ̸∈ Fa

σ(F ). Conversely, if b ̸∈ E for any E ∈ σ(F ), then b ̸∈ E for any E ∈ σa(F ) as well, hence
again b ̸∈ Fa

σ(F ).

Let σ be a semantics, a ∈ A be a σ-facet and ℓ ∈ {a, ā}. The observation that “ℓ reduces the uncertainty
among remaining arguments” leads to the notion of significance of ℓ under semantics σ. For an AF F , we
define:

Sσ[F, ℓ] :=
|Fσ(F )| −

∣∣F ℓ
σ(F )

∣∣
|Fσ(F )|

. (1)

Intuitively, approving an argument a is less significant if many uncertain arguments (facets) remain in
Fa
σ(F ). Similarly, disapproving a (and thus approving ā) is less significant if many facets remain in F ā

σ(F ).

Example 23 (Arguments Significance). Reconsider the AF F from Example 1 with stable extensions
stab(F ) = {{w,m, p}, {s, b, p}, {s, b, t}}. While Example 2 gave an intuition of significance, Table 2
presents precise values for each argument. As outlined, the argument w has score 1, and is thus more
significant than w̄ (score 2/3). The argument e not being a stab-facet is excluded for significance reasoning.
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Computing Significance for Arguments
Let F = (A,R) be an AF, σ be a semantics and a ∈ A be an argument. Observe that the computation of
Sσ[F, ℓ] (Equation 1) requires counting facets in Fσ(F ) and F ℓ

σ(F ). We argue that one can count the number
of σ-facets in a framework F = (A,R) without having to enumerate or count all σ-extensions explicitly.
In fact, Fσ(F ) can be computed by asking ISFACETσ for each argument a ∈ A, which requires |A|-many
queries. Moreover, one can also count the exact facets in F ℓ

σ(F ) without having to explicitly identify all
σℓ-extensions. Observe that F ℓ

σ(F ) corresponds to the result of remaining facets after approving ℓ.

Theorem 24. Let σ be a semantics and F = (A,R) be an AF. For every a ∈ A and ℓ ∈ {a, ā} the sets Fσ(F )
and F ℓ

σ(F ) can be computed by a deterministic polynomial-time Turing machine with access to

• an NP oracle for σ ∈ {adm, comp, stab}.

• a ΣP
2 oracle, for σ ∈ {pref, semiSt, stag}.

Proof. Given an AF F = (A,R), semantics σ and argument a ∈ A. To compute Fσ(F ), we consider the
following procedure. For each b ∈ A:

1. Guess two sets E1, E2 ⊆ A,

2. Check that b ∈ E1, b ̸∈ E2,

3. Check that Ei ∈ σ(F ),

4. Answer “Yes” if each check is passed in Step 2− 3.

This procedure is repeated polynomially-many times (precisely |A|-many times). As a post-processing,
count the number of arguments b ∈ A, for which Step-4 answers “Yes”. The 2nd step requires non-
determinstic guesses, whereas the 3rd step needs (1) P for σ ∈ {adm, comp, stab} and (2) coNP, for
σ ∈ {pref, semiSt, stag}. Step-4 is again a final post-processing. As a result, the procedure overall runs in the
mentioned runtime for corresponding semantics. That is, P-time with an NP oracle for σ ∈ {adm, comp, stab}
and ΣP

2 -oracle, for σ ∈ {pref, semiSt, stag}.
To compute F ℓ

σ(F ), we additionally include the following check to the Step-2 in the above procedure.

2a. Check that a ∈ E1, a ∈ E2 if ℓ = a, and check a ̸∈ E1, a ̸∈ E2 if ℓ = ā.

This does not increase runtime, and completes the proof.

Observe that one can not expect to lower the runtime in Theorem 24 (e.g., to NP in the case of σ ∈
{adm, comp, stab}). Intuitively, although each step (Step 1− 4 in the proof of Theorem 24) requires NP-time,
the final post-processing needs counting the number of arguments for which each check is passed. In fact,
this would contradict Theorem 20 (unless NP = DP) since one can count all facets in an AF and determine
whether this number equals k.
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σ n I #e #f te tf

adm⋆ 128 [106, ·) †189.0 · 106 165.1 61.0 0.5
adm 11 [106, ·) 27.1 · 106 40.6 6.2 1.3
adm 187 (0, 106) 29.4 · 103 266.7 0.8 1.4
stab⋆ 1 (0, 106) †3.0 · 100 — 61.0 61.0
stab ‡310 (0, 106) 36.0 · 100 43.1 0.7 0.8
stab 14 [0, 0] 0.0 · 100 0.0 1.4 1.2
semiSt⋆ 9 (0, 106) †43.8 · 100 79.9 61.0 49.4
semiSt 177 (0, 106) 50.9 · 100 33.9 3.7 2.1
semiSt⋆ 140 [0, 0] †0.0 · 100 — 61.0 —

Table 3: Overview of results on enumerating extensions and computing facets for semantics σ ∈ {adm, semiSt, stab}
where ⋆ marks timeouts (in order to distinguish the cases with/without timeout on enumerating extensions) and the
columns contain the total number n of argumentation frameworks with the interval I = [a, b) referring to a ≤ #e < b;
the average number #e and #f of extensions/facets; the average runtime te and tf for enumerating extensions (e) /
computing facets (f). The symbol † illustrates that there is only a lower bound as computation did not finish. We excluded
one instance (‡) due to timeout when computing credulous/skeptical extensions.

5 Implementation and Experiments
Implementation We implemented counting of extensions and facets for various semantics into our tool
called frame (Facets for Reasoning and Analyzing Meaningful Extensions). We build on the Aspartix
system, an ASP-based argumentation system for Dung style abstract argumentation and extensions thereof [15].
We employ Aspartix’s ASP encoding and take the ASP solver clingo version 5.7.1 [24] to compute
credulous and skeptical consequences and take set differences. We leverage ASP as the solvers have native
support for enumerating consequences without exhaustive enumeration of all answer-sets [3, 23].

Design and Expectations We ran our experiments on a Ubuntu 11.4.0 Linux 5.15 computer with an eight
core Intel i7-14700 CPU 1.5 GHz machine with 64GB of RAM. Each run is executed exclusively on the
system. To illustrate that we can count facets on practical instances and obtain insights over counting, we
take the admissible, stable semantics, and semi-stable semantics over instances from the 3rd International
Competition on Computational Models of Argumentation (ICCMA’19) [7]. This gives us 326 different
argumentation frameworks of varying sizes in the range of 0 to 10.000 arguments with an average of 800.3
arguments and a median of 160.0 arguments. We take admissible, stable, and semi-stable semantics as
representative from each different level of hardness (see Table 1). We take the 2019 competition as instances
are of reasonable size, runtime, number for the scope of this experiment, and we can use input instances
without further modification. We limit the runtime on each instance to 60 seconds for sustainability reasons,
as differences become visible already with the limitation, and as a user might not want to wait long when
investigating search spaces. We collect the number of extensions and facets and measure the solver runtime.
We have the following expectations: (i) computing facets is faster than enumerating extensions, (ii) facets are
still accessible when the number of extensions is very high and enumeration takes longer runtime, (iii) even
when there are many extensions, there are reasonably small number of facets.
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Observations and Summary Table 3 presents a survey of our results. Details on the evaluation are available
in the supplemental data. We see that the number of admissible extensions can be larger than 106 and clingo
fails to enumerate all extensions (⋆) if the number of extensions is very high. For the admissible extensions,
we observe that even if the number of extensions is quite high, the number of facets remains reasonably small
making it interesting to diversify extensions, or investigate more details about those arguments, which still
allow flexibility. The observations confirm our expectations for the admissible semantics. However, we gain
only limited insights for the semantics stab and semiSt. Here the number of extensions is fairly low and the
solver either manages to enumerate all extensions, or already fails to solve one.

6 Conclusion
We defined a new perspective on exploring significance of arguments in extensions of an abstract argumentation
framework. We present a comprehensive complexity analysis for deciding whether an argument is a facet
(ISFACET) and deciding whether an argumentation framework has at least k facets (FACETS≥k

σ ), at most k
facets (FACETS≤k

σ ), and exactly k facets (FACETS=k
σ ). We establish that the complexity ranges between P and

DP2, including tight lower bounds for most cases (see Table 1). While our primary focus lies on establishing
a comprehensive complexity picture, our implementation allows computing the number of facets practically
for concrete abstract argumentation frameworks building on top of existing solvers.

For future work, we plan to investigate techniques whether significance originating from facets can be
extended to arguments depending on each other and notions of fairness in argumentation frameworks. We
also believe that the missing case for σ ∈ {pref, semiSt, stag} remains interesting to study. We expect
that the problem is also hard, as the decision problems for at least and at most are ΣP

2 - and ΠP
2-complete.

From a practical perspective, we believe that it would be interesting to integrate facet-based reasoning and
significance computation into modern SAT-based argumentation solvers. Moreover, investigating facets for
other formalisms such abductive reasoning [27] or default logic [21] seems interesting as well as closing the
gap to the topic of inconsistencies [18, 22].
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