
Normalization Layers Are All That
Sharpness-Aware Minimization Needs

Maximilian Müller
University of Tübingen
and Tübingen AI Center

maximilian.mueller@wsii.uni-tuebingen.de

Tiffany Vlaar
McGill University and

Mila - Quebec AI Institute
tiffany.vlaar@mila.quebec

David Rolnick
McGill University and

Mila - Quebec AI Institute
drolnick@cs.mcgill.ca

Matthias Hein
University of Tübingen
and Tübingen AI Center

matthias.hein@uni-tuebingen.de

Abstract

Sharpness-aware minimization (SAM) was proposed to reduce sharpness of minima
and has been shown to enhance generalization performance in various settings.
In this work we show that perturbing only the affine normalization parameters
(typically comprising 0.1% of the total parameters) in the adversarial step of
SAM can outperform perturbing all of the parameters. This finding generalizes
to different SAM variants and both ResNet (Batch Normalization) and Vision
Transformer (Layer Normalization) architectures. We consider alternative sparse
perturbation approaches and find that these do not achieve similar performance
enhancement at such extreme sparsity levels, showing that this behaviour is unique
to the normalization layers. Although our findings reaffirm the effectiveness of
SAM in improving generalization performance, they cast doubt on whether this is
solely caused by reduced sharpness.

1 Introduction

Numerous works have been dedicated to studying the potential connection between flatness of minima
and generalization performance of deep neural networks [34, 18, 21, 45, 4]. Several aspects of training
are thought to affect sharpness, but how these interact with each other remains an ongoing area of
research. Recently, sharpness-aware minimization (SAM) has become a popular approach to actively
try to find minima with low sharpness using a min-max type algorithm [23]. SAM was found to be
remarkably effective in enhancing generalization performance for various settings [23, 14, 7, 1, 33].

Several variants of SAM have been proposed, focusing both on enhanced performance [37, 35] and
reduced computational cost [11, 20]. In particular, with the original aim of making SAM more
efficient Mi et al. [42] propose a ‘sparse’ SAM approach, which applies SAM only to a select number
of parameters. Although they do not actually succeed in reducing wall-clock time, they make the
surprising observation that using 50% (in some settings even up to 95%) sparse perturbations can
maintain or even enhance performance compared to applying SAM to all parameters. They thus
hypothesize that “complete perturbation on all parameters will result in suboptimal minima”.

Similar to the effect of SAM [23, 14], normalization layers are thought to reduce sharpness [41, 46].
Frankle et al. [24] found for ResNets that the trainable affine parameters of the normalization layers

Code is provided at https://github.com/mueller-mp/SAM-ON.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/mueller-mp/SAM-ON

10 3 10 2 10 1 100 101

81

82

83

84

85

Te
st

 A
cc

ur
ac

y
(%

)

all
OnlyNorm
no-norm

ASAM, p=2.0, elem.
ASAM, p=2.0, layer
ASAM, p=inf, elem.
SAM, p=2.0
SGD
all
OnlyNorm
no-norm

Figure 1: The interplay of normalization layers with SAM: Perturbing only normalization layers
(OnlyNorm, dashed) improves generalization performance, while omitting them in the perturbation
(no-norm, dotted) can harm training. WideResNet-28-10 trained with different SAM-variants on
CIFAR-100. Best seen in color.

have remarkable representation capacity in their own right, whereas disabling them can reduce
performance. Inspired by this we focus on the interplay between SAM and normalization layers and
show that for various settings perturbing exclusively the normalization layers of a network (often less
than 0.1% of the total parameters) outperforms perturbing all parameters. We find that this can not be
solely attributed to possible benefits of sparse perturbation approaches and highlight the unique role
played by the normalization layer affine parameters. As our main contributions we show that:

• Applying SAM only to the normalization layers of a network (SAM-ON, short for SAM-OnlyNorm)
enhances performance on CIFAR data compared to applying SAM to the full network (SAM-all)
and also performs competitively on ImageNet. We corroborate the remarkable generalization
performance of SAM-ON for ResNet and Vision Transformer architectures, across different SAM
variants, and for different batch sizes. (Section 4)

• Alternative sparse perturbation approaches do not result in similar performance as SAM-ON,
especially not at the extreme sparsity levels of our method. (Section 5.1)

• Similar to SAM-all, SAM-ON yields non-trivial adversarial robustness (Section 4.2). It also reduces
the feature-rank, but the sharpness-reducing qualities of SAM-all are not fully preserved (Section
5.2).

2 Related Work

Normalization layers. Batch Normalization (BatchNorm) [31] and Layer Normalization (Layer-
Norm) [6] form an essential component of most convolutional [25, 29] and Transformer [51, 19]
architectures, respectively. Across various works these normalization layers were shown to accelerate
and stabilize training, reducing sensitivity to initialization and learning rate [13, 5, 60, 36]. But
despite their widespread adoption and illustrated effectiveness, a conclusive explanation for their
success is still elusive. The original motivation for BatchNorm as reducing internal covariance
shift [31] has been disputed [46]. The hypothesis that normalization layers enhance smoothness is
supported through both empirical and theoretical analyses [46, 10, 41], though also not completely
undisputed [57]. Unlike LayerNorm, BatchNorm is sensitive to the choice of batch size [38, 49].
Ghost BatchNorm, where BatchNorm statistics from disjoint subsets of the batch are used, is found
to regularize and generally enhance generalization [28, 49] even though it reduces smoothness [17].

Affine parameters. There are relatively few papers that study the role of the trainable affine
parameters of the normalization layers. Frankle et al. [24] were able to obtain surprisingly high
performance on vision data by only training the BatchNorm layers, illustrating the expressive power
of the affine parameters, which potentially achieve this by sparsifying activations. For BatchNorm in
ResNets, disabling the affine parameters was shown empirically to reduce generalization performance
[24], but for LayerNorm in Transformers to not affect or even improve performance [56]. For few-shot
transfer tasks disabling the BatchNorm affine parameters during pretraining was found to enhance
performance [58]. Further, many other aspects of training will have a non-trivial effect, e.g. applying
weight decay to the BatchNorm affine parameters was found to increase performance for ResNets but
harm performance in other settings [49].

2

Sharpness-aware minimization. SAM was developed to try to actively seek out minima with low
sharpness [23]. Training with SAM may lead to increased sparsity of active neurons [14] and models
which are more compressible [44]. SAM has been shown to be effective in enhancing generalization
performance in various settings, but also increases the computational overhead compared to base
optimizers [23, 14, 7]. Hence there have been several approaches to try to reduce the computational
cost of SAM, such as ESAM which utilizes sharpness-sensitive data selection and perturbs only a
randomly selected fraction of parameters [20]. Related work shows that “only employing 20% of the
batch to compute the gradients for the ascent step, ... [can] result in equivalent performance” [11] and
that only applying SAM to part of the parameters (SSAM) using e.g. a Fisher-information mask can
lead to enhanced performance [42]. A common variant of SAM utilizes m-sharpness [23], which
uses subbatches of size m and benefits performance [20, 2, 43] though nuances in its implementation
vary [8]. Andriushchenko and Flammarion [2] argue that its success is not unique to settings with
BatchNorm and hence cannot be attributed to the Ghost BatchNorm effect. Andriushchenko et al. [3]
further show that SAM leads to low-rank features. We discuss different SAM variants in Section 3.2.

3 Background: SAM and Normalization Layers

In this paper, we focus on the interplay between two popular aspects of neural network training,
both of which we recapitulate here: In Sec. 3.1 we provide an overview of normalization layers, in
particular BatchNorm and LayerNorm, and in Sec. 3.2 of Sharpness-Aware Minimization variants.

3.1 BatchNorm and LayerNorm

Modern neural network architectures typically incorporate normalization layers. In this work we will
focus on Batch Normalization (BatchNorm) [31] and Layer Normalization (LayerNorm) [6], which
are an essential building block of most convolutional [25, 29] and transformer [51, 19] architectures,
respectively. Normalization layers transform an input x according to

N(x) = γ × x− µ

σ
+ β (1)

where µ and σ2 are the mean and variance, which are computed over the batch dimension in the case
of BatchNorm, or over the embedding dimension, in the case of LayerNorm. BatchNorm is therefore
sensitive to the choice of batch size [38, 49]. For BatchNorm, µ and σ are computed from the current
batch-statistics during training, and running estimates are used at test time. In our experiments, we
focus on the trainable parameters γ and β, which perform an affine transformation of the normalized
input.

3.2 SAM and its variants

We recapitulate SAM [23], ASAM [37] and Fisher-SAM [35] with their respective perturbation
models. To this end, we consider a neural network fw : Rd −→ Rk which is parameterized
by a vector w as our model. The training dataset Strain = {(x1,y1), ...(xn,yn)} consists of
input-output pairs which are drawn from the data distribution D and we write the loss function as
l : Rk × Rk −→ R+. The goal is to learn a model fw with good generalization performance, i.e.
low expected loss LD(w) = E(x,y)∼D[l(y, fw(x))] on the distribution D. The training loss can be
written as L(w) = 1

n

∑n
i=1 l(yi, fw(xi)). Conventional SGD-like optimization methods minimize

(a regularized version of) L by stochastic gradient descent. SAM aims at additionally minimizing
the worst-case sharpness of the training loss in a neighborhood defined by an ℓp ball around w, i.e.
max||ϵ||p≤ρ L(w + ϵ)− L(w). This leads to the overall objective

min
w

max
||ϵ||p≤ρ

L(w + ϵ). (2)

In practice, SAM uses p = 2 and approximates the inner maximization by a single gradient step,
yielding ϵ = ρ∇L(w)/||∇L(w)||2 and requiring an additional forward-backward pass compared to
SGD. The gradient is then re-evaluated at the perturbed point w + ϵ, giving the actual weight update

w←− w − α∇L(w + ϵ) (3)

with learning rate α. Computing ϵ separately for the batch of each GPU in multi-GPU settings and
then averaging the resulting perturbed gradients for the update step in Eq. (3) has been shown to

3

increase SAM’s performance [23]. This method is called m-sharpness, with m being the number
of samples on each GPU. Since the perturbation model in Eq. (2) is not invariant with respect to a
rescaling of the weights that leaves fw invariant [18], ASAM [37], a partly scale-invariant version of
SAM, was proposed, with the objective

min
w

max
||T−1

w ϵ||p≤ρ
L(w + ϵ) (4)

where Tw is a normalization operator, making the perturbation adaptive to the scale of the network
parameters. Kwon et al. [37] choose Tw to be diagonal with entries T i

w = |wi| + η for weight
parameters and T i

w = 1 for bias parameters, called elementwise normalization. η is typically set to
0.01. As with SAM, the inner maximization is solved by a single gradient step:

ϵ2 = ρ
T 2
w∇L(w)

||Tw∇L(w)||2
for p = 2, ϵ∞ = ρTwsign

(
∇L(w)

)
for p =∞. (5)

We note that for Tw equal to the identity matrix and p = 2, this is equivalent to the original SAM
formulation. Recently, Kim et al. [35] proposed to use a distance metric induced by the Fisher
information instead of a Euclidean distance measure between parameters. The approach can also
be framed as a variant of ASAM, with Tw being diagonal with entries T i

w = 1/
√
1 + ηfi and fi

approximating the ith diagonal entry of the Fisher-matrix by the squared average batch-gradient,
fi = (∂wi

LBatch(w))
2. For our experiments, we additionally employ layerwise normalization. This

is, we set the diagonal entries of T i
w = ||Wlayer[i]||2, which corresponds to a normalization with

respect to the ℓ2-norm of a layer, similar to [39].

4 SAM-ON: Perturbing Only the Normalization Layers

We study the effect of applying SAM (and its variants) solely to the normalization layers of a
considered model. We will refer to this approach as SAM-ON (SAM-OnlyNorm) throughout this
paper and provide a convergence analysis for SAM-ON in Appendix C. We find that SAM-ON
obtains enhanced generalization performance compared to conventional SAM (denoted as SAM-all)
for ResNet architectures with BatchNorm (Section 4.1) and Vision Transformers with LayerNorm
(Section 4.2) on CIFAR data and performs competitively on ImageNet. For comparison, we also study
the reverse of SAM-ON, i.e. we exclude the affine normalization parameters from the adversarial
SAM-step, which we shall refer to as no-norm.

Training set-up. We use SGD with momentum, weight decay, and cosine learning rate decay as our
base optimizer for ResNet architectures and employ label smoothing to adopt similar settings as in
the literature [37]. For Vision Transformers we employ AdamW [40] as our base optimizer on CIFAR
and for ImageNet we additionally use Lion [15]. We use both basic augmentations (random cropping
and flipping) and strong augmentations (basic+AutoAugment, denoted as +AA). We consider a range
of SAM-variants which differ either in the perturbation model (ℓ2 or ℓ∞) or in the definition of the
normalization operator. We train models for 200 epochs, and do not employ m-sharpness unless
indicated otherwise. Complete training details are described in Appendix A.

4.1 BatchNorm and ResNet

CIFAR. We showcase the effect of SAM-ON, i.e. only applying SAM to the BatchNorm parameters,
for a WideResNet-28-10 (WRN-28) on CIFAR-100 in Figure 1. We observe that SAM-ON obtains
higher accuracy than conventional SAM (SAM-all) for all SAM variants considered (more SAM-
variants are shown in Figure 6 in the Appendix). In contrast, excluding the affine BatchNorm
parameters from the adversarial step (no-norm) either significantly decreases performance (for
elementwise-ℓ2 variants) or maintains similar performance as SAM-all (for all other variants). For
variants which do not experience a performance drop for no-norm, the ideal SAM perturbation radius
ρ shifts towards larger values, indicating that the perturbation model cannot perturb the BatchNorm
parameters enough when all parameters are used. To study if the benefits of only perturbing the
normalization layers extends to other settings, we train more ResNet-like models on CIFAR-10 and
CIFAR-100. For each SAM-variant and dataset, we probe a set of pre-defined ρ-values (shown in
Table 7 in the Appendix) with a ResNet-56 (RN-56) and fix the best-performing ρ for the other
models to compare SAM-ON to SAM-all. We report mean accuracy and standard deviation over
3 seeds for CIFAR-100 in Table 1. On average, SAM-ON outperforms SAM-all for all considered

4

Table 1: SAM-ON improves over SAM-all for BatchNorm and ResNets: Test accuracy for ResNet-
like models on CIFAR-100. Bold values mark the better performance between SAM-ON and SAM-all
within a SAM-variant, and underline highlights the overall best method per model and augmentation.

RN-56 [25] RNxT [55] WRN-28 [59]
variant all ON all ON all ON

ba
si

c
au

g.

SGD 72.82±0.3 80.16±0.3 80.71±0.2

SAM 75.07±0.6 75.58±0.4 81.79±0.4 82.22±0.2 83.11±0.3 84.19±0.2

el. ℓ2 75.05±0.1 76.25±0.0 81.26±0.2 82.30±0.3 82.38±0.2 83.67±0.3

el. ℓ2, orig. 75.54±0.7 76.07±0.2 82.15±0.3 81.90±0.4 83.67±0.1 83.53±0.2

el. ℓ∞ 75.36±0.1 76.10±0.2 81.02±0.6 82.38±0.3 83.25±0.2 84.14±0.2

Fisher 75.01±0.4 75.65±0.1 81.55±0.2 82.21±0.2 83.37±0.1 84.01±0.1

layer. ℓ2 74.63±0.1 76.03±0.3 81.66±0.2 82.52±0.2 83.23±0.2 84.05±0.2

ba
si

c
au

g.
+

A
A SGD 75.26±0.2 80.31±0.3 83.62±0.1

SAM 76.33±0.3 76.02±0.3 82.33±0.5 83.19±0.2 85.30±0.1 85.42±0.1

el. ℓ2 76.51±0.1 76.04±0.3 82.00±0.3 83.20±0.1 84.80±0.3 85.43±0.3

el. ℓ2, orig. 76.49±0.2 76.58±0.4 82.78±0.1 82.87±0.3 85.25±0.4 85.41±0.1

el. ℓ∞ 74.89±0.4 76.19±0.4 82.33±0.1 83.11±0.2 85.28±0.1 85.46±0.1

Fisher 76.67±0.1 76.25±0.2 82.56±0.3 83.28±0.4 85.09±0.3 85.35±0.1

layer. ℓ2 76.23±0.5 76.93±0.4 82.61±0.3 83.32±0.2 85.32±0.3 85.95±0.1

SAM-variants. Of these, layerwise-ℓ2 achieves the highest performance for most settings. We obtain
similar results for CIFAR-10 (App. Table 10) and for more network architectures (App. Table 11).

ImageNet. For ImageNet, we adopt the timm training script [53]. We train a ResNet-50 for 100
epochs on eight 2080-Ti GPUs with m = 64, leading to an overall batch-size of 512. Apart from ρ,
all hyperparameters are shared for all SAM-variants and can be found in the Appendix in Table 8. We
select the most promising SAM-ON variants and compare them against the established methods (SGD,
SAM, ASAM elementwise ℓ2). The results are shown in Table 2. We observe that for layerwise ℓ2, the
all variant achieves higher accuracy, whereas the SAM-ON models outperform their all counterparts
for elementwise ℓ2 and elementwise ℓ∞. All SAM-ON variants outperform the previously established
methods (SGD, SAM, ASAM). For reference, we also show the values reported for ESAM [20] and
GSAM [61], two SAM-variants we did not include in our study.

Table 2: ImageNet top-1 accuracy for a ResNet-50. ESAM [20] and GSAM [61] values are taken
from the respective papers.

SGD SAM ESAM GSAM elem. ℓ2 elem. ℓ∞ layer ℓ2
all all all all ON all ON all ON

77.03±0.13 77.65±0.11 77.05 77.20 77.65±0.05 77.82±0.14 77.45±0.04 77.82±0.01 78.14±0.05 77.87±0.07

Varying the batchsize. In Figure 4 (right) we report the performance of a WRN-28 on CIFAR-100
with SAM-ON and SAM-all for a range of batch-sizes and values of m, where m is the batch-size
per accelerator, as discussed in Section 3.2. Similar to the findings in [23, 2], we confirm that lower
values of m lead to better performance within each batch-size. Importantly, SAM-ON outperforms
SAM-all for all combinations of batch-size and m, illustrating that Ghost BatchNorm [28, 49] (see
discussion in Section 2) does not play a role in the success of SAM-ON.

4.2 LayerNorm and Vision Transformer

CIFAR. To study the effectiveness of SAM-ON beyond ResNet architectures and BatchNorm, we
train ViTs from scratch on CIFAR data with AdamW as the base optimizer (Figure 2). Although
ResNet architectures are known to outperform Vision Transformers when trained from scratch on
small-scale datasets like CIFAR, our aim here is not to outperform state-of-the-art, but rather to study
if the benefits of SAM-ON extend to substantially different training settings. Remarkably, we find
that the same phenomena occur: The SAM-ON variants outperform their conventional counterparts
SAM-all by a clear margin. For the elementwise-ℓ2 variants there is a strong drop in accuracy for
no-norm, whereas for the other SAM variants the optimal perturbation radius ρ shifts towards larger
values. We show that this extends to a ViT-T and CIFAR-10 as well (Table 3).

5

10 3 10 2 10 1 100 10164

65

66

67

68

69

70

71

Te
st

 A
cc

ur
ac

y
(%

)

all
ON
no-norm

ASAM, p=2.0, elem.
ASAM, p=2.0, layer
ASAM, p=inf, elem.
AdamW
SAM, p=2.0

all
ON
no-norm

Figure 2: The interplay of normalization layers with SAM for ViT training : ViT-S trained
with different SAM-variants on CIFAR-100. Like for ResNets, perturbing only normalization layers
(OnlyNorm) improves generalization performance, while omitting them in the perturbation (no-norm)
can harm training.

Table 3: SAM-ON improves over SAM-all for LayerNorm and ViTs: Shown are ViT models on
CIFAR-10 and CIFAR-100. Bold values mark the better performance between SAM-ON and SAM-all
within a SAM-variant, and underline highlights the overall best method per model.

CIFAR-10 CIFAR-100
ViT-T ViT-S ViT-T ViT-S

variant all ON all ON all ON all ON

ba
si

c
au

g.
+

A
A AdamW 89.19±0.2 90.34±0.0 63.79±0.0 64.37±0.2

SAM 88.92±0.0 92.22±0.1 90.81±0.2 92.71±0.0 64.70±0.4 69.84±0.2 66.58±0.3 69.13±0.3

el. ℓ2 90.02±0.2 92.52±0.3 92.40±0.4 93.97±0.2 65.74±0.6 71.09±0.1 66.98±0.0 70.31±0.2

el. ℓ2, orig. 90.22±0.2 92.68±0.2 92.05±0.3 94.01±0.5 65.81±0.6 71.25±0.3 67.23±0.2 70.42±0.5

el. ℓ∞ 89.82±0.3 92.66±0.2 90.76±0.6 93.68±0.2 65.11±0.3 68.11±0.7 66.55±0.1 69.19±0.1

Fisher 89.08±0.1 92.03±0.2 91.13±0.2 92.49±0.1 64.70±0.4 69.55±0.8 66.59±0.5 69.30±0.4

layer. ℓ2 89.51±0.4 93.08±0.2 91.21±0.1 94.02±0.1 65.30±0.6 69.66±0.1 67.39±0.4 70.04±0.2

ImageNet. For ImageNet, we train a ViT-S/32 from scratch with batchsize 128 on a single GPU
for 300 epochs. In Table 4 we evaluate SAM-all, SAM-ON and the vanilla variant for both AdamW
and Lion [15] as base optimizers on both ID and OOD datasets. Since Wei et al. [52] showed
that SAM-trained models show non-trivial robustness to small adversarial perturbations, we also
investigate the robustness of SAM-ON (last rows of Table 4). Both SAM-all and SAM-ON improve
strongly over the base optimizer in all setups. For AdamW, SAM-ON either outperforms SAM-all
(e.g. w.r.t. adversarial robustness) or performs on par (e.g. for ID accuracy the numbers are within
standard deviations). For Lion, SAM-ON always outperforms SAM-all, underlining that the diverse
benefits of SAM can be achieved or even surpassed by only perturbing the normalization layers. We
provide all experimental details in in Appendix A.2 and a more thorough evaluation and discussion
of the adversarial robustness of SAM-all and SAM-ON in Appendix B.4.

Table 4: SAM-ON performs well on ImageNet: Training a ViT-S/32 from scratch.

AdamW Lion
vanilla SAM-all SAM-ON vanilla SAM-all SAM-ON

ID

ImageNet 66.89±0.04 71.47±0.12 71.37±0.026 68.20±0.02 71.90±0.19 72.64±0.14

ImageNetV2 48.43±0.48 53.61±0.11 53.67±0.29 50.20±0.01 54.20±0.27 55.38 ±0.09

O
O

D

ImageNetR 25.04±0.04 31.56±0.48 32.98±0.10 25.61±0.04 32.17±0.41 33.87 ±0.47

ImageNetA 4.72±0.15 5.21±0.05 5.19±0.18 5.45±0.19 5.01±0.22 5.77 ±0.21

ImageNetSketch 13.68±0.24 18.50±0.44 19.35±0.17 14.47±0.02 18.22±0.34 20.48 ±0.12

ObjectNet 11.32±0.39 13.75±0.12 13.55±0.25 12.06±0.02 13.93±0.40 15.35 ±0.13

ad
v.

ro
b. ℓ2, ϵ = 0.25 19.67±0.47 37.53±0.69 41.16 ±0.24 22.01±0.78 38.52±0.66 43.12 ±0.97

ℓ2, ϵ = 0.50 5.47±0.18 17.71±0.61 22.72 ±0.25 6.63±0.46 19.03±0.92 24.27 ±1.34

ℓ∞, ϵ = 0.25/255 33.45±0.80 48.08±0.14 49.34 ±0.08 35.31±0.08 49.57±0.60 51.37 ±0.99

ℓ∞, ϵ = 0.5/255 14.98±0.18 29.68±0.09 32.46 ±0.15 15.86±0.13 31.68±0.62 34.23 ±1.73

6

Figure 3: Computational gains of SAM-ON over SAM-all: Test accuracy vs. normalized wall-clock
runtime for SAM and different variations of SAM-ON for a WRN-28 (left) and a ResNeXt (right) on
CIFAR-100. Only perturbing selected normalization parameters (e.g. those from block 3, or those
from block 2 and 3) can lead to further computational gains. Reported values are averaged over three
random seeds.

4.3 Computational savings

In Figure 3 we report the wall-clock time of training a WRN-28 (left) and a ResNeXt (right) with
batchsize 128 on a single A100 with PyTorch. Since the normalization parameters at the earlier layers
of the network require a gradient, potentially a full backpropagation pass has to be computed for the
ascent-step of SAM-ON, even though only a tiny fraction of all parameters is perturbed. However, as
discussed in [12] for a related setting, the gradients of the intermediate (no-norm) layers do not need
to be stored or used for updating. This leads to computational gains of SAM-ON over SAM-all as
reported in Figure 3.

In contrast, although future development of hardware for sparse operation may allow for acceleration,
Mi et al. [42] report that their sparse perturbation approach does not at present lead to reduced
wall-clock time. Their approach also suffers from additional computational cost associated with
selecting the mask, and hence is outshined by SAM-ON both in computational cost and generalization
performance (as discussed in Section 5.1).

We also show results for perturbing only the normalization layers of selected blocks (Block 1-3) of the
network, and interestingly the main benefits of SAM-ON seem to arise from the later normalization
layers, allowing for further computational savings. When perturbing only the normalization layers
from the last block (B3), the biggest computational gains can be achieved (reducing the additional cost
of SAM by more than 50%), without much loss in test accuracy. When perturbing the normalization
layers from Block 2 and 3 (B2+B3), the test accuracy even slightly improves over SAM-ON for
both models, while the runtime is still significantly lower. We have not investigated this variant of
SAM-ON thoroughly, i.e. in combination with other ASAM perturbation models and more network
architectures, but think that this is an interesting research direction for future work.

5 Towards Understanding SAM-ON

To gain a better understanding of SAM-ON, we study different hypotheses for the method’s success.
First, we investigate the role of sparsity by comparing SAM-ON to different sparsified perturbation
approaches (Section 5.1), concluding that sparsity alone is not enough to explain its success. Then,
we highlight that SAM-ON might in fact find sharper minima, while generalizing better than SAM-all
(Section 5.2). We also show that SAM-ON - similar to SAM-all - reduces the feature-rank compared
to vanilla optimizers (Section 5.2). Further, we showcase that depending on the perturbation method,
SAM-ON can induce a significant shift in the distribution of the normalization parameters (Section
5.3) and relate this to the no-norm results from Section 4. Unless stated otherwise, we use a WRN-28
with BatchNorm and the setting described in Section 4 for the ablation studies. Further ablation
studies are presented in Appendix B.

7

10 2 10 1 100 101
95.00

95.25

95.50

95.75

96.00

96.25

96.50

Te
st

 A
cc

ur
ac

y
(%

)

SGD
SAM

SSAM 50%
SSAM 99.93%

SAM-ON
SAM-rand

101 102

m

81

82

83

84

Te
st

 A
cc

ur
ac

y
(%

)

all
ON

bs=128
bs=256
bs=512

all
ON

Figure 4: Left: SAM-ON outperforms SSAM-F [42] (with different sparsity levels) and random mask
SAM-rand (same sparsity level 99.93% as SAM-ON) sparse perturbation approaches on CIFAR-10
for ResNet-18. Right: SAM-ON improves over SAM for various batch-sizes (bs) and values of m,
where smaller values of m tend to improve performance. WRN-28, CIFAR-100.

5.1 The effect of sparsified perturbations

Mi et al. [42] propose a sparsified SAM (SSAM) approach which only considers part of the parameters
for the SAM perturbation step. They find that using 50% perturbation sparsity SSAM can outperform
SAM-all, and still perform competitively with up to 99% sparsity in certain settings. This raises the
question whether the enhanced performance of SAM-ON over SAM-all is simply due to perturbing
fewer parameters. We therefore compare SAM-ON to other sparse perturbation approaches.

In order to determine the parameters which should be perturbed, one solution Mi et al. [42] propose
is to compute a binary mask via an approximation of the Fisher matrix. We call this approach
SSAM-F to avoid confusion with Fisher-SAM introduced in Section 3.2. Mi et al. [42] also propose
a dynamic mask sparse perturbation approach (SSAM-D), but do not clearly favour either method.
Since they consider SSAM-F “relatively more stable but a bit time-consuming, while [SSAM-D] is
more efficient”, we will for fair comparison focus on SSAM-F here and provide results for SSAM-D
in Appendix B.2. According to Mi et al. [42] neither approach improves wall-clock time in practice,
while we find that SAM-ON does (see Section 4.3).

We provide a comparison between SAM-ON, SSAM-F, and a random sparsity mask of the same
sparsity level as SAM-ON for a) ResNet-18 on CIFAR-10 (main setting considered in [42]) in Figure
4 (left) and b) WRN-28 on CIFAR-100 in Table 5. We find that although SSAM-F can indeed perform
on par or even outperform SAM-all at the medium to high sparsity levels recommended in [42] it is
less successful than SAM-ON. Moreover, for the sparsity levels of SAM-ON, which are above 99.9%
in both settings, a random mask performs poorly. These results suggest that sparsity is not the sole
cause for SAM-ON’s success.

Table 5: SAM-ON outperforms other sparse perturbation approaches: Although SSAM-F [42]
with different sparsity levels can outperform SAM-all on CIFAR-100 with WRN-28, it is less effective
than SAM-ON, especially when probed at very high sparsity levels.

SAM SAM-ON Random Mask SSAM-F
Sparsity 0% 99.95% 99.95% 50% 99.95%
Test Accuracy (%) 83.11±0.3 84.19±0.2 80.97±0.2 83.94±0.1 83.14±0.1

5.2 Sharpness and feature-rank of SAM-ON

The improved generalization performance of SAM-trained models is often attributed to finding flatter
minima [27, 34] – indeed this was the initial motivation behind SAM in [23]. Andriushchenko and
Flammarion [2] however cast doubt on this explanation, and argue that the benefits of SAM might
stem from a favorable implicit bias induced by the method. A recent study furthermore found that
sharpness often does not correlate well with a model’s generalization performance [4]. In this section
we therefore compare the sharpness of SAM-all to SAM-ON models (following the setup in [4], more
details provided in Appendix B.10).

8

In Table 6, we report logit-normalized worst-case adaptive ℓ∞ m-sharpness, the sharpness definition
which achieved the best correlation with generalization error for CIFAR data in the large-scale study
in [4]. We investigate a WRN-28 on CIFAR-100 trained with SGD, SAM, and ASAM-ℓ∞ both with
their respective all and ON variants.

Worst-case sharpness is measured with 20 steps of AutoPGD [16], a hyperparameter-free method
designed for accurate estimation of adversarial robustness. Instead of the input space, which is opti-
mized in adversarial robustness, the method is adapted to the weight space for sharpness computation.
In addition to the 20-step AutoPGD-sharpness, we also report 1-step sharpness, i.e. the change in loss
obtained when performing only a single gradient step, like in the perturbation step of SAM. It is to
note that except for the logit-normalization, the sharpness definition reported in Table 6 corresponds
exactly to the perturbation model that ASAM elementwise ℓ∞ uses, and hence the 1-step sharpness
reported should be fairly close the the objective that ASAM elementwise ℓ∞ actually minimizes
during training. For both sharpness definitions, we pick ρ such that we get sharpness values similar
to those that lead to good correlation with generalization in [4]. This is, for 1-step sharpness we have
to pick ρ larger than for the 20-step sharpness to get to similar loss changes.

We observe that the SAM-ON models obtain the best generalization performance, while having
significantly higher sharpness than their SAM-all counterparts, and sometimes even higher than that
of the baseline SGD-trained model. This supports the claims of [2] that although SAM-all might in
fact find flatter minima, we should be careful in attributing this as the sole reason for its improved
generalization performance. In Appendix B.10 we report more sharpness metrics and find that
SAM-ON is sharper than SAM-all for most metrics, although there exist exceptions.

A recent study by Andriushchenko et al. [3] further showed that SAM-all leads to features of lower
rank compared to vanilla optimizers. Following their setup we measure the feature rank for a WRN-28
and report our findings in Table 6 (final row). We find that SAM-ON also leads to features of lower
rank compared to SGD, but observe no significant change compared to SAM-all.

Table 6: SAM-ON models are sharper, yet generalize better. Shown is logit-normalized ℓ∞
m-sharpness from [4], averaged over three models per method for a WRN-28 on CIFAR-100, and the
feature rank like investigated in [3] (last row).

SGD SAM ASAM-el.-l∞
all ON all ON

Test Accuracy (%) 80.71±0.2 83.11±0.3 84.19±0.2 83.25±0.2 84.14±0.2

ℓ ∞
-s

ha
rp

ne
ss 20 steps, ρ = 0.003 0.071±0.000 0.048±0.001 0.090±0.005 0.048±0.001 0.078±0.004

20 steps, ρ = 0.005 0.201±0.001 0.139±0.004 0.296±0.018 0.124±0.002 0.283±0.011

20 steps, ρ = 0.007 0.433±0.002 0.309±0.011 0.585±0.018 0.255±0.005 0.580±0.020

1 step, ρ = 0.007 0.117±0.002 0.098±0.001 0.170±0.007 0.095±0.002 0.142±0.011

1 step, ρ = 0.01 0.204±0.005 0.183±0.002 0.315±0.010 0.170±0.003 0.271±0.019

1 step, ρ = 0.03 0.809±0.003 0.769±0.017 0.843±0.007 0.724±0.005 0.834±0.012

Feature Rank 4004±12 3798±17 3728 ±11 3613 ±47 3725±11

5.3 SAM-ON can change the affine parameter values

In Figure 5 we show the distribution of the scaling parameter γ and the shift parameter β (as defined
in Eq. 1) for a WRN-28 trained with SAM-ON and SAM-all. While there are only minor changes in
the distribution of β, there is a clear shift in the distribution of γ towards larger values for SAM-ON.
In Figure 9 in Appendix B.6 we study more SAM-variants and rediscover a pattern from Section
4.1: The distribution shift for γ only seems to appear for those variants, where the optimal ρ of
SAM-ON shifts towards larger values compared to SAM-all (i.e. not for ASAM elementwise-ℓ2). We
thus hypothesize that the perturbation model of ASAM elementwise-ℓ2 implicitly focuses mostly
on perturbing the normalization layers already, which is why excluding them (no-norm) leads to a
drastic performance decrease, whereas SAM-ON minimally changes the γ-distribution. In contrast,
the other SAM-variants (for which the optimal ρ-value changes) may not perturb the normalization
layers enough in SAM-all for them to be effective, which is why no-norm has little effect, while
SAM-ON leads to a distinctive shift of the γ-distribution.

9

0.2 0.1 0.0 0.1 0.2 0.3
Value

0

250

500

Distribution of

0.2 0.1 0.0 0.1 0.2 0.3
Value

0

250

500

Distribution of
SAM p=2 ON
SAM p=2 all

Figure 5: SAM-ON changes the weight distribution of the normalization layer weights of a WRN-28
towards larger values. More SAM-variants are shown in Figure 9 in the appendix.

6 Discussion and Conclusion

In recent years the method of sharpness-aware minimization (SAM) [23] has risen to prominence
due to its demonstrated effectiveness and the community’s long-standing interest in flat minima. In
this work we show that only applying SAM to the normalization layers (SAM-ON) – typically less
than 0.1% of the total parameters – can significantly enhance performance compared to regular SAM
(SAM-all). We show results on CIFAR and ImageNet for ResNet and Vision Transformers with
BatchNorm and Layernorm, respectively. Although the use of sparsified perturbations was recently
shown to benefit generalization [42], we show that the success of SAM-ON cannot be attributed
to sparsity alone: targeting the normalization layers clearly improves over other masked sparsity
approaches.

We find that while SAM-ON outperforms SAM-all in almost all settings, the optimal SAM variant
to use varies. We do not see a consistent benefit of using reparameterization-invariant perturbation
models compared to variants with fewer invariances. In particular, we find that layerwise ℓ2 in
combination with SAM-ON reaches the highest accuracy for many settings.

While SAM-ON improves generalization, it loses some of SAM’s sharpness-reducing qualities.
Although perhaps surprising given SAM’s original motivation, this finding relates naturally to the
literature. [4] find that sharpness does not always correlate well with generalization performance.
Further, [2] question if sharpness is the sole driving factor behind SAM’s success in enhancing
generalization. We lend support to this question, showing that SAM-like methods can generalize
better, without significant sharpness reduction.

In summary, we demonstrate benefits of SAM beyond reducing sharpness and highlight the special
role played by the normalization layers. More investigation into the interplay of SAM and other
aspects of training are needed to fully understand where the methods gains come from.

Limitations. Similar to the main inspirations for this work [23, 24, 42] we focus on vision data. We
provide a simple experiment in the language domain in Appendix B.5 indicating that the efficacy
of SAM-ON might be preserved for language tasks, but more extensive benchmarking, as done
by [7] is required. Further, more work is required to try to leverage the perturbation sparsity for
reduced computational cost beyond the gains obtained in this work, and to fully explore the benefits
of perturbing subsets of the normalization layers building on the findings in Section 4.3.

Acknowledgements

We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy (EXC number 2064/1, Project number 390727645),
as well as from the Carl Zeiss Foundation in the project "Certification and Foundations of Safe
Machine Learning Systems in Healthcare". We also thank the European Laboratory for Learning
and Intelligent Systems (ELLIS) for supporting Maximilian Müller. We are grateful for support from
the Canada CIFAR AI Chairs Program and US National Science Foundation award tel:1910864. In
addition, we acknowledge material support from NVIDIA and Intel in the form of computational
resources and are grateful for technical support from the Mila IDT team in maintaining the Mila
Compute Cluster.

10

References
[1] M. Abbas, Q. Xiao, L. Chen, P.-Y. Chen, and T. Chen. Sharp-MAML: Sharpness-aware

model-agnostic meta learning. ICML, 2022.

[2] M. Andriushchenko and N. Flammarion. Towards understanding sharpness-aware minimization.
ICML, 2022.

[3] M. Andriushchenko, D. Bahri, H. Mobahi, and N. Flammarion. Sharpness-aware minimization
leads to low-rank features. NeurIPS, 2023.

[4] M. Andriushchenko, F. Croce, M. Müller, M. Hein, and N. Flammarion. A modern look at the
relationship between sharpness and generalization. preprint arXiv:2302.07011, 2023.

[5] S. Arora, Z. Li, and K. Lyu. Theoretical analysis of auto rate-tuning by Batch Normalization.
ICLR, 2019.

[6] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. Advances in NeurIPS Deep
Learning Symposium, 2016.

[7] D. Bahri, H. Mobahi, and Y. Tay. Sharpness-aware minimization improves language model
generalization. ACL, 2022.

[8] K. Behdin, Q. Song, A. Gupta, A. Acharya, D. Durfee, B. Ocejo, S. Keerthi, and R. Mazumder.
mSAM: Micro-batch-averaged sharpness-aware minimization. preprint arXiv:2302.09693,
2023.

[9] P. Benz, C. Zhang, and I. S. Kweon. Batch normalization increases adversarial vulnerability
and decreases adversarial transferability: A non-robust feature perspective. ICCV, 2021.

[10] J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger. Understanding batch normalization.
NeurIPS, 2018.

[11] A. Brock, S. De, S. L. Smith, and K. Simonyan. High-performance large-scale image recognition
without normalization. ICML, 2021.

[12] B. Chen, P. Li, B. Li, C. Lin, C. Li, M. Sun, J. Yan, and W. Ouyang. BN-NAS: Neural
architecture search with Batch Normalization. ICCV, 2021.

[13] M. X. Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G. Foster, L. Jones, M. Schuster,
N. Shazeer, N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, Z. Chen, Y. Wu, and M. Hughes.
The best of both worlds: Combining recent advances in neural machine translation. ACL, 2018.

[14] X. Chen, C.-J. Hsieh, and B. Gong. When Vision Transformers outperform ResNets without
pre-training or strong data augmentations. ICLR, 2022.

[15] X. Chen, C. Liang, D. Huang, E. Real, K. Wang, Y. Liu, H. Pham, X. Dong, T. Luong, C.-J.
Hsieh, Y. Lu, and Q. V. Le. Symbolic discovery of optimization algorithms. arXiv:2302.06675,
2023.

[16] F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. ICML, 2020.

[17] N. Dimitriou and O. Arandjelovic. A new look at ghost normalization. preprint arXiv:
2007.08554, 2020.

[18] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp minima can generalize for deep nets.
ICML, 2017.

[19] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. ICLR, 2021.

[20] J. Du, H. Yan, J. Feng, J. T. Zhou, L. Zhen, R. S. M. Goh, and V. Tan. Efficient sharpness-aware
minimization for improved training of neural networks. ICLR, 2022.

[21] G. K. Dziugaite and D. M. Roy. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. Uncertainty in AI,
2017.

[22] G. K. Dziugaite, A. Drouin, B. Neal, N. Rajkumar, E. Caballero, L. Wang, I. Mitliagkas, and
D. M. Roy. In search of robust measures of generalization. NeurIPS, 2020.

11

[23] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently
improving generalization. ICLR, 2021.

[24] J. Frankle, D. J. Schwab, and A. S. Morcos. Training BatchNorm and only BatchNorm: On the
expressive power of random features in CNNs. ICLR, 2021.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR,
2016.

[26] S. Hochreiter and J. Schmidhuber. Simplifying neural nets by discovering flat minima. Advances
in Neural Information Processing Systems, 1994.

[27] S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.
[28] E. Hoffer, I. Hubara, and D. Soudry. Train longer, generalize better: closing the generalization

gap in large batch training of neural networks. NeurIPS, 2017.
[29] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional

networks. CVPR, 2017.
[30] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[31] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating deep network training by reducing
internal covariate shift. ICML, 2015.

[32] Y. Jiang*, B. Neyshabur*, H. Mobahi, D. Krishnan, and S. Bengio. Fantastic generalization
measures and where to find them. ICLR, 2020.

[33] J. Kaddour, L. Liu, R. Silva, and M. J. Kusner. When do flat minima optimizers work? NeurIPS,
2022.

[34] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch
training for deep learning: Generalization gap and sharp minima. ICLR, 2017.

[35] M. Kim, D. Li, S. X. Hu, and T. Hospedales. Fisher SAM: Information geometry and sharpness
aware minimisation. ICML, 2022.

[36] J. Kohler, H. Daneshmand, A. Lucchi, M. Zhou, K. Neymeyr, and T. Hofmann. Exponential
convergence rates for Batch Normalization: The power of length-direction decoupling in
non-convex optimization. AISTATS, 2019.

[37] J. Kwon, J. Kim, H. Park, and I. K. Choi. ASAM: Adaptive sharpness-aware minimization for
scale-invariant learning of deep neural networks. ICML, 2021.

[38] X. Lian and J. Liu. Revisit Batch Normalization: New understanding and refinement via
composition optimization. AISTATS, 2019.

[39] Y. Liu, S. Mai, X. Chen, C.-J. Hsieh, and Y. You. Towards efficient and scalable sharpness-aware
minimization. CVPR, 2022.

[40] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.
[41] K. Lyu, Z. Li, and S. Arora. Understanding the generalization benefit of normalization layers:

Sharpness reduction. NeurIPS, 2022.
[42] P. Mi, L. Shen, T. Ren, Y. Zhou, X. Sun, R. Ji, and D. Tao. Make sharpness-aware minimization

stronger: A sparsified perturbation approach. NeurIPS, 2022.
[43] T. Möllenhoff and M. E. Khan. SAM as an optimal relaxation of Bayes. ICLR, 2023.
[44] C. Na, S. V. Mehta, and E. Strubell. Train flat, then compress: Sharpness-aware minimization

learns more compressible models. EMNLP, 2022.
[45] H. Petzka, M. Kamp, L. Adilova, C. Sminchisescu, and M. Boley. Relative flatness and

generalization. NeurIPS, 2021.
[46] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization help optimiza-

tion? NeurIPS, 2018.
[47] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition, 2015.
[48] A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, and L. Beyer. How to train your

ViT? Data, augmentation, and regularization in Vision Transformers. TMLR, 2022.

12

[49] C. Summers and M. J. Dinneen. Four things everyone should know to improve batch normaliza-
tion. ICLR, 2020.

[50] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. ICLR, 2014.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. NeurIPS, 2017.

[52] Z. Wei, J. Zhu, and Y. Zhang. Sharpness-aware minimization alone can improve adversarial
robustness. ICML AdvML-Frontiers Workshop, arXiv:2305.05392, 2023.

[53] R. Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[54] C. Xie and A. Yuille. Intriguing properties of adversarial training at scale. ICLR, 2020.
[55] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep

neural networks. CVPR, 2017.
[56] J. Xu, X. Sun, Z. Zhang, G. Zhao, and J. Lin. Understanding and improving layer normalization.

NeurIPS, 2019.
[57] Z. Yao, A. Gholami, K. Keutzer, and M. Mahoney. PyHessian: Neural networks through the

lens of the Hessian. IEEE BigData, arXiv:1912.07145, 2020.
[58] M. Yazdanpanah, A. A. Rahman, M. Chaudhary, C. Desrosiers, M. Havaei, E. Belilovsky, and

S. E. Kahou. Revisiting learnable affines for Batch Norm in few-shot transfer learning. CVPR,
2022.

[59] S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, 2016.
[60] H. Zhang, Y. N. Dauphin, and T. Ma. Fixup initialization: Residual learning without normaliza-

tion. ICLR, 2019.
[61] J. Zhuang, B. Gong, L. Yuan, Y. Cui, H. Adam, N. Dvornek, S. Tatikonda, J. Duncan, and T. Liu.

Surrogate gap minimization improves sharpness-aware training. ICLR, 2022.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Appendix

This appendix is structured as follows:

• In Appendix A we provide more training details. In particular, we report the hyperparameters
used for the CIFAR experiments in A.1 and for the ImageNet experiments in A.2. In A.3
we provide more details and a formal definition of the SAM-variants used throughout this
paper.

• In Appendix B we show additional experimental results for: CIFAR in B.1, ImageNet in B.3,
and a machine translation task in B.5. In B.2 we provide additional ablation studies for sparse
perturbation SSAM approaches and in B.4 we extend the discussion on adversarial robustness.
To gain a better understanding of SAM-ON, we further investigate: the weight distribution
shift induced by SAM-ON (B.6), the effect of SAM when fixing the normalization parameters
during training (B.7), SAM’s performance when only training the normalization layers (B.8),
and ablations on weight decay and dropout (B.9). Finally, we provide an extended discussion
on the sharpness evaluation and more ablations in B.10.

• In Appendix C we provide a convergence analysis for SAM-ON.

A Training Details

A.1 CIFAR training details

For our CIFAR experiments, we consider a range of SAM-variants which differ either in the norm
(p ∈ {2,∞}) or in the definition of the normalization operator. We use SGD, the original SAM
with no normalization and p = 2, Fisher-SAM and the following ASAM-variants: elementwise-
ℓ∞, layerwise-ℓ2, and elementwise-ℓ2. For the ViT-experiments, we use AdamW instead of SGD.
For each of the ASAM-variants, we normalize both bias and weight parameters and set η = 0.
Additionally, we employ the original ASAM-algorithm, where the bias parameters are not normalized
and η = 0.01. We train all models on a single GPU for 200 epochs, and m-sharpness is not employed
(unless indicated otherwise). For ResNets, we follow [37] and adopt a learning rate of 0.1, momentum
of 0.9, weight decay of 0.0005 and use label smoothing with a factor of 0.1. We use both basic
augmentations (random cropping and flipping) and strong augmentations (basic+AutoAugment). For
ViTs we use AdamW with learning rate 0.0001, batchsize 64 and only strong augmentations, the
other settings remain unchanged. The ResNet results were computed on 2080ti-GPUs and the ViT
results on A100s. The values of ρ we considered for each method can be found in Table 7. The
ResNet-networks we considered for the CIFAR-experiments in the main paper are ResNet56 (RN56)
[25], ResNeXt-29-32x4d (RNxT) [55], and WideResNet-28-10 (WRN) [59]. We adopted the ViTs to
CIFAR by setting the image-size to 32 and patch-size to 4.

Table 7: Search-space for ρ. The values used for the the experiments in Tables 1,3 and 10 are marked
in bold.

CIFAR-10 RN CIFAR-100 RN CIFAR-10/100 ViT
SAM all 0.05, 0.1, 0.25 0.05, 0.1, 0.5, 1. 0.025, 0.05, 0.1, 0.25, 0.5
SAM ON 0.1, 0.5, 1 0.1, 0.5, 1., 5. 1., 2.5, 5., 10., 25
el. l2 all 0.5, 1, 2, 3, 5 0.5, 1, 2.5, 5., 10. 0.5, 1., 2.5, 5, 10
el. l2 ON 0.5, 1, 2, 3, 5 0.5, 1., 2.5, 5., 10. 1., 2.5, 5.,10., 25
el. l2, orig. all 0.1, 0.5, 1, 5, 10 0.5, 1, 2.5, 5 0.5, 1., 2.5, 5, 10
el. l2, orig. ON 0.1, 0.5, 1, 5, 10 0.5, 1., 2.5, 5 1., 2.5, 5.,10., 25
el. l∞ all 0.001, 0.005, 0.01, 0.05 0.001, 0.005, 0.01, 0.05 0.0005, 0.001, 0.0025, 0.005, 0.01
el. l∞ ON 0.01, 0.025, 0.05, 0.1 0.01, 0.05, 0.1, 0.5 0.025, 0.05, 0.1, 0.25, 0.5
layer l2 all 0.005, 0.01, 0.025, 0.05, 0.1 0.001, 0.01, 0.05, 0.1 0.001, 0.0025, 0.005, 0.01, 0.025
layer l2 ON 0.05, 0.1, 0.25, 0.5, 1 0.1, 0.2, 0.5, 1. 0.05, 0.1, 0.25, 0.5, 1.
Fisher all 0.05, 0.1, 0.5, 1,5 0.05, 0.1, 0.5, 1 0.05,5 0.1, 0.5, 1,5
Fisher ON 0.1, 0.5,1 ,5 , 10 0.1, 0.5,1 ,5 , 10 0.1, 0.5,1 ,5 , 10

14

A.2 ImageNet training details

Table 8 shows the hyperparameters for all variants used for ImageNet training. For the ResNet-50
with SGD, SAM and elementwise-ℓ2 we used the hyperparameters from [23] and [37]. For the
layerwise ℓ2 and elementwise-ℓ∞ we tried two ρ-values per configuration and report the results of the
better one (named ρ (reported) in the table). ρ (discarded) refers to the ρ value we probed, but found
to perform worse than the other one. For the ViT-S (additional fine-tuning experiments in Appendix
B.3), we tried at least three values of ρ per SAM-configuration and reported the best one.

Table 8: Hyperparameters for training on ImageNet. Top: ResNet-50 from scratch, center: ViT-S
from scratch, bottom: finetuning the ViT-S.

param SGD SAM elem. ℓ2 ResNet-50 elem. ℓ∞ layer ℓ2
all all all onlyNorm all onlyNorm all onlyNorm

train epochs 90
warm-up epochs 3

cool-down epochs 10
batch-size 512

augmentation inception-style
lr 0.2

lr decay Cosine
weight decay 0.0001
ρ (reported) 0.05 1 1 0.001 0.005 0.005 0.05
ρ (discarded) 0.01 0.05 0.05 0.5

Input Resolution 224× 224
m 64

GPU Type 8×2080-ti

param AdamW AdamW+SAM ViT-S scratch Lion Lion+SAM
all all onlyNorm all all onlyNorm

train epochs 300
warm-up epochs 10

cool-down epochs 0
batch-size 128

augmentation inception-style
lr 0.001

lr decay Cosine
weight decay 0.1
ρ (reported) – 1 15 – 1 10
ρ (discarded) – 0.05,0.1,0.5,2 10,20 – 0.5,2 5,20

Input Resolution 224× 224
m 128

GPU Type 1×A100

param SGD SAM elem. ℓ2 ViT-S FT elem. ℓ∞ layer ℓ2
all all onlyNorm all onlyNorm all onlyNorm all onlyNorm

train epochs 9
warm-up epochs 1

cool-down epochs 0
batch-size 896

augmentation inception-style
lr 0.017

lr decay Cosine
weight decay 0.0001
ρ (reported) – 0.01 0.1 0.1 1 10−4 10−2 10−3 10−3

ρ (discarded) 0.1 0.01 0.01 0.1 10−3 10−3 10−2 10−2

ρ (discarded) 0.001 1. 1. 10 10−5 10−1 10−4 10−1

Input Resolution 224× 224
m 128

GPU Type 7×A100

15

A.3 SAM variants

Here, we provide a more comprehensive overview of the SAM-variants used throughout the exper-
iments. To this end, we first recall the definition of the (A)SAM-perturbation (Eq. (5) in the main
paper):

ϵ2 = ρ
T 2
w∇L(w)

||Tw∇L(w)||2
for p = 2, ϵ∞ = ρTwsign

(
∇L(w)

)
for p =∞.

with the normalization operator T i
w, which is diagonal for all variants. We note that SAM-ON can be

formally defined as using the conventional (A)SAM-algorithm but setting all entries T i
w = 0 if wi

is not a normalization parameter. This leads to a change of the perturbation ϵ according to Eq. (5).
Importantly, the magnitude of ϵ is still ρ, since both the nominator and the denominator of Eq. (5)
change. We provide an overview over all (A)SAM-variants and their respective perturbation models
in Table 9.

Table 9: The definition of T i
w for the considered SAM-variants.

variant T i
w p η

SAM all 1 2 0

ON
{
1 if wi is a normalization parameter
0 else

2 0

el. ℓ2
all |wi| 2 0

ON
{
|wi| if wi is a normalization parameter
0 else

2 0

el. ℓ2, orig. all
{
|wi|+ η if wi is a weight parameter
1 + η if wi is a bias parameter

2 0.01

ON


|wi|+ η if wi is a normalization weight
1 + η if wi is a normalization bias
0 else

2 0.01

el. ℓ∞
all |wi| ∞ 0

ON
{
|wi| if wi is a normalization parameter
0 else

∞ 0

layer ℓ2
all ||Wlayer[i]||2 2 0

ON
{
||Wlayer[i]||2 if wi is a normalization parameter
0 else

2 0

Fisher all
(
1 + η (∂wiLBatch(w))

2
)−0.5

2 1

ON

{(
1 + η (∂wi

LBatch(w))
2
)−0.5

if wi is a normalization parameter

0 else
2 1

B Further Experimental Results

B.1 SAM-ON on CIFAR

We omitted the results for ResNet-like models on CIFAR-10 in the main paper. Those are thus
reported in Table 10. Due to the already very high accuracies, the differences between SAM-ON and
SAM-all are smaller, yet on average SAM-ON is still clearly the better method. We further plot all
considered SAM-variants for different values of ρ in Figure 6 for a WRN-28 and in Figure 7 for a
ViT-S on CIFAR-100. We show results for various VGG-models [47] and DenseNet-100 [30] for
CIFAR-10/100 in Table 11 and observe that SAM-ON consistently improves over SAM-all.

B.2 Additional ablation studies for sparse SAM

In this section we provide additional ablation studies for sparsified perturbation approaches as
discussed in Section 5.1. Mi et al. [42] proposed two sparsified SAM (SSAM) approaches: Fisher
SSAM (SSAM-F) and Dynamic SSAM (SSAM-D). As an extension to Figure 4 for ResNet-18 on
CIFAR-10 data in the main paper we provide an accompanying Figure 8 which includes error bars

16

Table 10: SAM-ON improves over SAM-all for BatchNorm and ResNets on CIFAR-10: Test
accuracy for ResNet-like models on CIFAR-10. Bold values mark the better performance between
SAM-ON and SAM-all within a SAM-variant, and underline highlights the overall best method per
model and augmentation

SAM variant RN-56 RNxT WRN-28
all onlyNorm all onlyNorm all onlyNorm

ba
si

c
au

g.

SGD 94.28±0.2 95.37±0.1 96.20±0.1

SAM 94.94±0.1 95.18±0.1 96.35±0.2 96.48±0.1 97.08±0.1 97.10±0.0

elem. ℓ2 94.96±0.1 94.94±0.2 96.41±0.1 96.53±0.1 96.98±0.2 97.06±0.0

elem. ℓ2, orig. 95.14±0.1 95.21±0.1 96.40±0.1 96.41±0.1 97.10±0.1 97.07±0.1

elem. ℓ∞ 94.93±0.1 94.96±0.0 96.06±0.2 96.22±0.1 96.95±0.2 97.00±0.1

Fisher 95.01±0.1 95.03±0.1 96.31±0.0 96.55±0.0 96.95±0.0 97.13±0.1

layer. ℓ2 94.95±0.2 95.07±0.1 96.07±0.3 96.46±0.1 97.02±0.0 96.96±0.1

ba
si

c
au

g.
+

A
A SGD 94.70±0.1 96.19±0.2 97.01±0.0

SAM 95.25±0.1 95.40±0.1 96.98±0.1 97.22±0.3 97.57±0.1 97.58±0.0

elem. ℓ2 95.12±0.0 94.82±0.2 97.01±0.0 97.21±0.1 97.61±0.0 97.69±0.0

elem. ℓ2, orig. 95.39±0.1 95.60±0.1 97.24±0.0 97.33±0.1 97.60±0.0 97.56±0.0

elem. ℓ∞ 95.12±0.1 95.48±0.3 96.70±0.2 96.91±0.2 97.52±0.1 97.62±0.1

Fisher 95.19±0.0 95.38±0.1 96.77±0.0 97.24±0.1 97.53±0.0 97.65±0.1

layer. ℓ2 95.43±0.3 95.28±0.1 96.80±0.1 96.88±0.1 97.60±0.0 97.48±0.1

Table 11: SAM-ON improves over SAM-all for BatchNorm and more ResNet models: Bold values
mark the better performance between SAM-ON and SAM-all within a SAM-variant, and underline
highlights the overall best method per model and augmentation

VGG-13 VGG-16 VGG-19 DenseNet-100
SAM variant all onlyNorm all onlyNorm all onlyNorm all onlyNorm

C
IF

A
R

-1
00

SGD 75.44±0.2 74.43±0.4 73.40±0.2 77.00±0.2

SAM 76.74±0.2 77.57±0.1 75.81±0.2 76.86±0.1 74.08±0.6 75.60±0.1 79.42±0.6 79.90±0.3

elem. ℓ2 76.65±0.1 77.49±0.1 75.95±0.2 76.45±0.2 74.72±0.2 75.12±0.1 78.90±0.2 79.83±0.3

elem. ℓ2, η = 0.01 77.27±0.2 77.37±0.2 76.65±0.1 76.66±0.3 75.00±0.5 75.44±0.2 79.94±0.4 80.14±0.1

elem. ℓ∞ 76.82±0.3 77.62±0.2 75.43±0.4 76.68±0.1 72.74±0.2 74.50±0.4 79.47±0.3 79.64±0.2

Fisher, η = 1. 76.76±0.2 77.68±0.4 75.85±0.2 76.99±0.1 74.03±0.2 74.96±0.3 79.68±0.2 80.38±0.3

layer. ℓ2 76.76±0.2 77.91±0.2 75.99±0.2 77.12±0.2 74.65±0.5 75.28±0.2 78.25±0.2 79.86±0.3

C
IF

A
R

-1
0

SGD 94.29±0.0 93.85±0.3 93.82±0.0 94.51±0.1

SAM 94.88±0.1 95.19±0.2 94.96±0.0 95.02±0.1 94.58±0.1 94.81±0.2 95.84±0.2 95.89±0.0

elem. ℓ2 94.97±0.1 95.08±0.0 95.01±0.1 95.02±0.1 94.68±0.0 94.99±0.1 95.76±0.2 95.86±0.2

elem. ℓ2, η = 0.01 94.95±0.0 95.13±0.1 94.87±0.1 95.12±0.1 94.66±0.1 94.87±0.2 95.92±0.3 95.85±0.1

elem. ℓ∞ 94.96±0.1 95.06±0.0 94.74±0.2 94.91±0.0 94.68±0.1 94.73±0.1 95.56±0.2 95.91±0.1

Fisher, η = 1. 95.07±0.0 95.17±0.0 94.77±0.0 95.10±0.2 94.55±0.0 94.91±0.1 95.65±0.1 96.00±0.1

layer. ℓ2 94.78±0.1 95.09±0.1 94.54±0.1 95.08±0.1 66.21±48.7 94.96±0.1 95.48±0.2 95.82±0.1

and comparisons with the dynamic sparse perturbation approach (SSAM-D) [42]. We also provide
additional results for SSAM-D for a WideResNet-28 on CIFAR-100 data in Table 12. We found
optimal performance for SSAM for 50% sparsity and ρ = 0.1 on CIFAR-10 and ρ = 0.2 on CIFAR-
100 (as also observed in [42] for slightly different training settings). We find that although both SSAM
approaches can perform on par or even outperform regular SAM, they are less effective than our
SAM-ON approach. The generalization gap increases even further when considering the same high
sparsity levels as for SAM-ON.

Table 12: Although SSAM-F and SSAM-D [42] with different sparsity levels can outperform SAM-all
on CIFAR-100 with WRN-28, they are less effective than SAM-ON.

SAM SAM-ON SAM-rand SSAM-F SSAM-D
Sparsity 0% 99.95% 99.95% 50% 99.95% 50% 99.95%
Accuracy 83.11±0.3 84.19±0.2 80.97±0.2 83.94±0.1 83.14±0.1 83.53±0.1 81.01±0.1

17

10 3 10 2 10 1 100 10180.5
81.0
81.5
82.0
82.5
83.0
83.5
84.0
84.5
85.0

Te
st

 A
cc

ur
ac

y
(%

)

all
ON

no-norm

ASAM, p=2.0, elem. eta=0.01
ASAM, p=2.0, elem.
ASAM, p=2.0, layer
ASAM, p=inf, elem.
Fisher, p=2.0 eta=1.0
SAM, p=2.0
SGD

all
ON

no-norm

Figure 6: All considered SAM-variants and their SAM-ON counterpart for a WRN-28 on CIFAR-100.

10 3 10 2 10 1 100 10164

65

66

67

68

69

70

71

Te
st

 A
cc

ur
ac

y
(%

)

all
ON

no-norm

AdamW
ASAM, p=2.0, elem.
ASAM, p=2.0, elem. eta=0.01
ASAM, p=2.0, layer
ASAM, p=inf, elem.
Fisher, p=2.0 eta=1.0
SAM, p=2.0

all
ON

no-norm

Figure 7: All considered SAM-variants and their SAM-ON counterpart for a ViT-S on CIFAR-100.

10 2 10 1 100 101

95.25

95.50

95.75

96.00

96.25

96.50

Te
st

 A
cc

ur
ac

y
(%

) SGD
SAM
SSAM-F 50%
SSAM-D 50%
SSAM-F 99.93%
SSAM-D 99.93%
SAM-ON
SAM-rand

Figure 8: SAM-ON outperforms SSAM-F and SSAM-D [42] (with different sparsity levels) and
random mask SAM-rand (same sparsity level 99.93% as SAM-ON) sparse perturbation approaches on
CIFAR-10 for ResNet-18.

B.3 Finetuning from ImageNet-21k

Since ViTs are commonly trained on large-scale datasets and then fine-tuned, we investigate this
scenario for SAM-ON. In particular, we consider a ViT-S pretrained on ImageNet-21k from [48].
We fine-tune for 9 epochs with SGD for a range of SAM-variants with their respective SAM-ON
counterpart. For each setup, we probe three values of ρ and report the best result in Table 13. We find
in this setting that SAM-ON performs on par with SAM-all although there are small differences across
SAM variants: for layerwise-ℓ2 SAM-ON performs slightly worse, whereas for all other variants
SAM-ON performs equally well or slightly better than SAM-all. In all cases SAM-ON outperforms
plain SGD.

Table 13: Results for ImageNet-1k fine-tuning of a ViT-S-224 from a ImageNet-21k model.

SGD SAM ASAM elem. ℓ2 ASAM layer. ℓ2 ASAM elem. ℓ∞
all ON all ON all ON all ON

81.62 81.75 81.75 81.73 81.75 81.79 81.75 81.84 81.84

18

B.4 Adversarial robustness

Here, we provide additional results and extend the discussion on adversarial robustness from Sec-
tion 4.2. In a study by Wei et al. [52] SAM-trained models showed non-trivial robustness to small
adversarial perturbations [50]. Since there are several works highlighting the role of normalization
layers for adversarial robustness [9, 54], it is interesting to investigate whether the robustness proper-
ties of SAM can be preserved when training with SAM-ON instead of SAM-all. In Table 15 we report
the adversarial robustness of the ViT-S trained from scratch on ImageNet (as reported in Section 4.2
evaluated with the two white-box attacks from APGD, but for more radii). The SAM-ON models are
not only better than the base optimizer, but consistently outperform the SAM-all models by a small
margin. For a WRN-28-10 on CIFAR-100 the differences are less pronounced and often within the
standard deviation (reported over 3 seeds in Table 14). SAM-ON also improves over SAM-all, but
for the ASAM-elementwise-ℓ∞ the all-variant is slightly better than the ON-variant. Overall, we find
that in order to get SAM-like improvements for adversarial robustness (as shown in [52]) it is enough
to only perturb the normalization layers in SAM, illustrating again their special role.

Table 14: Adversarial robustness CIFAR-100: Reported is robust accuracy (in %) for a WRN-28
trained from scratch on CIFAR-100. Adversarial robustness is evaluated with the two whitebox
APGD attacks from autoattack [16].

SGD SAM ASAM-el.-l∞
threat model ϵ all ON all ON

ℓ2 0.10 18.14±0.11 28.14±1.0931.28 ±0.50 30.33±0.80 30.16±0.26

ℓ2 0.20 2.33±0.11 5.39±0.34 6.62 ±0.07 6.63 ±0.12 6.10±0.18

ℓ∞ 1/255 10.29±0.04 17.96±1.0819.56 ±0.33 20.69 ±0.8118.63±0.30

ℓ∞ 2/255 0.67±0.01 1.96±0.17 2.16 ±0.07 2.62 ±0.01 2.05±0.17

Clean acc. 80.7±0.2 83.1±0.3 84.2±0.2 83.3±0.2 84.1±0.2

Table 15: Adversarial robustness ImageNet: Reported is robust accuracy (in %) for a ViT-S trained
from scratch on ImageNet, as reported in Table 4. Adversarial robustness is evaluated with the two
whitebox APGD attacks from autoattack [16].

AdamW Lion
ϵ vanilla SAM-all SAM-ON vanilla SAM-all SAM-ON

ℓ2 0.25 19.67±0.47 37.53±0.69 41.16 ±0.24 22.01±0.78 38.52±0.66 43.12 ±0.97

ℓ2 0.50 5.47±0.18 17.71±0.61 22.72 ±0.25 6.63±0.46 19.03±0.92 24.27 ±1.34

ℓ2 1.00 0.43±0.09 3.34±0.36 5.58 ±0.19 0.57±0.07 3.98±0.28 6.64 ±0.69

ℓ∞ 0.25/255 33.45±0.80 48.08±0.14 49.34 ±0.08 35.31±0.08 49.57±0.60 51.37 ±0.99

ℓ∞ 0.5/255 14.98±0.18 29.68±0.09 32.46 ±0.15 15.86±0.13 31.68±0.62 34.23 ±1.73

ℓ∞ 1/255 2.61±0.16 8.64±0.01 10.82 ±0.56 2.93±0.29 10.02±0.56 12.03 ±1.30

Clean acc. 66.89±0.04 71.47±0.12 71.37±0.026 68.20±0.02 71.90±0.19 72.64±0.14

B.5 Machine translation task

To probe the effectiveness of SAM-ON outside the vision domain, we apply it to the IWSLT’14
DE-EN machine translation task, following the setup of Kwon et al. [37]. We report the resulting
Bleu scores in Table 16: SAM-all and SAM-ON perform similar (within standard deviations reported
over 3 random seeds), both improving over the vanilla optimizer. While being very limited in its
scope, this experiment is a first hint that SAM-ON might also be effective outside the vision domain.
Proper evaluations, as for instance done in [7], are required to confirm this for large-scale settings.

Table 16: IWSLT-DE-EN Bleu scores. Reported over 3 random seeds.

vanilla SAM-all SAM-ON
34.56±0.11 34.83±0.10 34.95±0.16

19

B.6 Weight distribution after training

In order to get a better understanding of the impact of SAM-ON on γ and β (as defined in Eq. 1),
we train a WideResNet-28-10 with different SAM-variants and both SAM-ON and all. We show
the distribution of |wi|, i.e. the parameter magnitudes, at the end of training for different layer
types in Figure 9. Different to the discussion in Section 5.3, we show the y-axis on log-scale, in
order to inspect more nuanced differences. For elementwise ℓ2 there is no strong change in the
distribution of the BatchNorm parameters between all and SAM-ON. For elementwise ℓ∞, layerwise
ℓ2 and SAM, however, the magnitude of the BatchNorm parameters shifts clearly towards larger
values, especially for the weight parameters. We note that this resembles a pattern we observed when
comparing the optimal ρ-value for all and SAM-ON in Table 7: The optimal ρ of elementwise ℓ2
did not change much for ResNet architectures, whereas for the other considered methods, it shifted
towards larger values for SAM-ON. Additionally and in contrast to the other methods, the elementwise
ℓ2 variant showed a strong performance decrease in no-norm (Figure 1), indicating that it implicitly
focuses on perturbing the BatchNorm layers already. We note that larger BatchNorm parameters do
not necessarily indicate a functionally different network, since there are many reparameterization
invariances in ReLU networks, some of which ASAM tries to leverage in its perturbation definition
Eq. (4). Nevertheless, the scale of the network still has an impact on the training dynamics, since
other methods like e.g. weight decay depend on it. We discuss the impact of weight decay further in
Appendix B.9.

B.7 Removing the affine parameters

Frankle et al. [24] found for SGD that fixing the normalization parameters typically decreases the
generalization performance of networks. As an ablation, we therefore study the effect of SAM when
the normalization weights are non-trainable. This is, we set γ = 1 and β = 0 and train the remaining
parameters with SAM. The results are shown for a WRN-28 in Figure 10, where it can be seen that
fixing the normalization parameters (fix-norm) does not lead to a decrease in the performance of
SAM. We thus hypothesize that in certain settings, SAM might not leverage the expressive power of
the normalization layers, which might contribute to the improved performance of SAM-ON.

B.8 Training BatchNorm and only BatchNorm

The affine parameters of the normalization layers are relatively understudied in the literature. Recently,
Frankle et al. [24] were able to obtain surprisingly high performance for ResNet architectures by only
training the BatchNorm layers (freezing all other parameters), illustrating their expressive power. We
study the effect of SAM in this setting (i.e. when all parameters except for the BatchNorm layers are
frozen) for a ResNet-101 and a WRN-28 on CIFAR-10 and find that SAM still aids generalization in
this setting (Table 17).

Table 17: Effect of SAM when training only BatchNorm layers, for networks trained on CIFAR-10.

Model SGD SAM ρ = 0.01 SAM ρ = 0.05
ResNet-101 78.75 78.63 79.27
WRN-28 63.49 64.48 62.70

B.9 Weight decay and dropout

Here, we explore potential connections of SAM-ON with weight decay and dropout. Since weight
decay is sometimes applied to all network parameters, and sometimes normalization layers are
omitted, it is worth investigating if the benefits of SAM-ON can be attributed to its interaction with
weight decay. To this end, we train a WRN-28 with SGD, SAM-all and SAM-ON, and apply weight
decay to either all parameters, all except the normalization layers, or not at all (Figure 11, right). For
each setting SAM-ON outperforms SAM, outlining that its success should not be attributed to the
interaction with weight decay.

We further test if SAM-ON-like performance can be achieved by simply applying stronger regulariza-
tion and stochasticity to the normalization parameters. To this end, we apply dropout solely on the
normalization layers (Figure 11, left) and find that this is not the case.

20

0.0 0.5 1.0

101

103

SG
D

Distribution of

0.0 0.5 1.0

101

103
Distribution of

0.0 0.5 1.0

102

104

Distribution of FC weights

0.0 0.5 1.0

101

103

SA
M

0.0 0.5 1.0

101

103

0.0 0.5 1.0

101

103

 OnlyNorm
 all

0.0 0.5 1.0

101

103

el
em

en
tw

ise
 p

=2

0.0 0.5 1.0

101

103

0.0 0.5 1.0

102

104
 all
 OnlyNorm

0.0 0.5 1.0

101

103

el
em

en
tw

ise
 p

=

0.0 0.5 1.0

101

103

0.0 0.5 1.0

101

103

 all
 OnlyNorm

0.0 0.5 1.0
i

101

103

la
ye

rw
ise

 p
=2

0.0 0.5 1.0
i

101

103

0.0 0.5 1.0
wi

101

103

 OnlyNorm
 all

Figure 9: SAM-ON leads to a shift in the distribution of γ.

10 2 10 1 10081.5

82.0

82.5

83.0

83.5

84.0

Te
st

 A
cc

ur
ac

y
(%

)

fix-norm, SAM, p=2.0
SAM, p=2.0 all
SAM, p=2.0 OnlyNorm

Figure 10: When training with SAM, fixing γ = 1, β = 0 (fix-norm) barely changes the performance
of the network. WRN-28, CIFAR-100.

21

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
 / dropout rate

80

81

82

83

84

Te
st

 A
cc

ur
ac

y
(%

)

WRN28-10 CIFAR100 - Dropout on Normalization layers

SAM all
SAM ON
SGD dropout-ON via params
SGD dropout-ON via activations

10 1 100 101
77
78
79
80
81
82
83
84
85

Te
st

 A
cc

ur
ac

y
(%

)

WRN28-10 CIFAR100 - Weight decay

SAM all
SAM ON
SGD
no wd norm, SAM all
no wd norm, SAM ON
no wd norm, SGD
no wd, SAM all
no wd, SAM ON
no wd, SGD

Figure 11: Left: Applying dropout only to the normalization layers (blue/red) performs worse than
SAM-ON. Right: SAM-ON improves over SAM-all irrespective of whether weight decay is applied to
all parameters (green), all except the normalization layers (blue) or not at all (yellow).

B.10 Details on sharpness evaluation

For the following discussion, we note that the term generalization is sometimes used as the difference
between train and test error, while in other cases people use it as a synonym for test error. Since in
CIFAR settings the models achieve train error close to zero, the two definitions become equivalent.

Many studies have attempted to better understand the possible connection between the general-
ization of deep neural networks and the flatness of the loss-surface [26, 32, 22, 34, 18]. Recently,
Andriushchenko et al. [4] conducted a large-scale study for a range of models, datasets, and sharpness-
definitions, finding that “while there definitely exist restricted settings where correlation between
sharpness and generalization is significantly positive (e.g., for ResNets on CIFAR-10 with a specific
combination of augmentations and mixup) it is not true anymore when we compare all models jointly”
and concluding “that one should avoid blanket statements like flat minima generalize better”. In
order to evaluate sharpness, we therefore adopt their setup and choose the best-performing sharpness
measure for CIFAR from their study, which is logit-normalized elementwise-adaptive worst-case-ℓ∞-
m-sharpness. This is, m-sharpness smw is defined as the largest possible change in loss within the
adaptive perturbation model defined in 4,

smw = Ex,y∼Dm
max

||T−1
w ϵ||p≤ρ

L(w + ϵ)− L(w) (6)

where T i
w = |wi|, p =∞ and Dm returns data batches of size m. ρ here denotes the size of the ball

over which sharpness is evaluated and is not to be confused with the ρ from the SAM-algorithm.
Like for ASAM [37], the motivation behind adaptive sharpness measures is to make them invariant
to reparameterizations of the network. Further, the logit-outputs of the network are normalized
with respect to their ℓ2-norm in order to mitigate the scale-sensitivity of classification losses. In
practice, Andriushchenko et al. [4] compute smw over a subset of the train set of size 1024 and use
m = 128, i.e. average 8 batches. We use a subset of size 2048 in order to obtain more reliable
sharpness estimates, and adopt m = 128. The maximization in (6) is performed with AutoPGD [16],
a hyperparameter-free method designed for accurate estimation of adversarial robustness. It is to
note that except for the logit-normalization, the sharpness definition reported in Table 6 corresponds
exactly to the perturbation model that ASAM elementwise ℓ∞ uses, and hence the 1-step sharpness
reported should be fairly close the the objective that ASAM elementwise ℓ∞ actually minimizes
during training. While ASAM elementwise ℓ∞ yields slightly smaller sharpness values than the
conventional SAM algorithm, the differences are rather small when compared to the significantly
sharper SAM-ON models. For the results in Table 6 in the main paper we tuned the sharpness radius
ρ such that we obtain sharpness values similar to those reported to yield the highest correlation
in Andriushchenko et al. [4]. In Table 18 we report sharpness values for a ResNeXt-model, in
addition to the WRN-28 from the main paper. In all cases the SAM-ON models are sharper than the
SAM-all models yet generalize better. In Table 19 we further report other sharpness measures without
logit-normalization for a WRN-28. SAM-ON is sharper than SAM-all with respect to most metrics,
although there exist some exceptions. It should however be stressed that many of those metrics did
not show good correlation with generalization in the study by Andriushchenko et al. [4].

22

Table 18: Sharpness evaluation of both a WRN-28 and a ResNeXt. SAM-ON is sharper than SAM-all
in all cases. Shown is 20-step logit-normalized ℓ∞ sharpness from [2], averaged over three models
per method. Dataset considered is CIFAR-100.

SGD SAM ASAM-el.-ℓ∞
all ON all ON

W
R

N
-2

8 Test Accuracy (%) 80.71±0.2 83.11±0.3 84.19±0.2 83.25±0.2 84.14±0.2

ℓ∞-sharpness, ρ = 0.003 0.071±0.000 0.048±0.001 0.090±0.005 0.048±0.001 0.078±0.004

ℓ∞-sharpness, ρ = 0.005 0.201±0.001 0.139±0.004 0.296±0.018 0.124±0.002 0.283±0.011

ℓ∞-sharpness, ρ = 0.007 0.433±0.002 0.309±0.011 0.585±0.018 0.255±0.005 0.580±0.020

R
es

N
eX

t Test Accuracy (%) 80.16 ±0.3 81.79 ±0.4 82.22 ±0.2 81.02 ±0.6 82.38 ±0.3

ℓ∞-sharpness, ρ = 0.001 0.036±0.001 0.029±0.000 0.034±0.000 0.026±0.002 0.034±0.001

ℓ∞-sharpness, ρ = 0.003 0.164±0.005 0.117±0.004 0.140±0.002 0.099±0.010 0.147±0.001

ℓ∞-sharpness, ρ = 0.005 0.383±0.011 0.252±0.008 0.291±0.005 0.203±0.021 0.312±0.001

Table 19: Additional sharpness measures. WRN-28 (no logitnorm).

SGD SAM ASAM-el.-ℓ∞
adaptive all ON all ON

Test Accuracy (%) 80.71±0.2 83.11±0.3 84.19±0.2 83.25±0.2 84.14±0.2

ℓ2 avg, ρ = 0.005 False 1.358±0.049 0.515 ±0.020 2.372±0.071 0.569 ±0.012 2.141±0.045

ℓ2 avg, ρ = 0.1 True 0.042±0.001 0.019 ±0.001 0.022±0.001 0.040±0.001 0.019 ±0.001

ℓ∞ avg, ρ = 0.01 False 2.643±0.097 1.264 ±0.028 3.455±0.050 1.304 ±0.007 3.259±0.031

ℓ∞ avg, ρ = 0.2 True 0.078±0.001 0.035±0.001 0.034±0.004 0.068±0.003 0.031 ±0.001

ℓ2-worst, ρ = 0.05 False 0.501±0.048 0.655±0.277 0.701±0.057 0.768±0.141 0.313 ±0.044

ℓ2-worst, ρ = 0.25 True 0.065±0.008 0.033±0.004 0.037±0.017 0.056±0.006 0.062±0.001

ℓ∞-worst, ρ = 1e− 05 False 0.149±0.003 0.055 ±0.002 0.144±0.005 0.050 ±0.002 0.123±0.007

ℓ∞-worst, ρ = 0.004 True 0.537±0.023 0.262 ±0.009 0.600±0.053 0.255 ±0.011 0.505±0.027

C Convergence Analysis

We provide in this section a convergence analysis for SAM-ON in the non-convex setting. Using
standard assumptions we obtain a theorem which resembles findings for closely related methods such
as found in [2, 42].

Our assumptions:

Assumption C.1. We assume function f : Rn → R to be L-smooth: there exists L > 0 such that

∥∇f(v)−∇f(w)∥2 ≤ L∥v − w∥2, ∀v, w ∈ Rn. (7)

Assumption C.2. There exists M > 0 for any sample xi such that

∥∇fxi
(w)∥22 ≤M, ∀w ∈ Rn. (8)

Remark C.3. If Assumption C.1 holds (L-smoothness), then ∀v, w ∈ Rn:

|f(v)− (f(w) +∇f(w)T (v − w))| ≤ L

2
∥v − w∥22. (9)

This well-known result can be derived using the fundamental theorem of calculus and Cauchy-
Schwartz.

Remark C.4. Assumption C.2 guarantees that the variance of the stochastic gradient is less than M .

SAM-ON. In the following we shall denote the true gradient as ∇f(w) and the noisy observation
gradient as g(w). The gradient of the loss of the ith training example is denoted as gxi(w). We
partition the neural network parameters layer-wise as w = {wN , wA}, with wN ∈ RnN , wA ∈ RnA ,
n = nN + nA, where wN represent the normalization layer parameters and wA all other layers. The

23

iteration for wN is:

w
t+1/2
N = wt

N + ρ
gN,xi

(wt)

∥gN,xi
(wt)∥

wt+1
N = wt

N − h gN,xi

(
wt+1/2

)
(10)

and for wA is:

w
t+1/2
A = wt

A

wt+1
A = wt

A − h gA,xi

(
wt+1/2

)
. (11)

Theorem C.5. Assuming C.1 and C.2, h ≤ 1/L, we obtain:

1

T

T−1∑
t=0

E
[
∥∇f(wt)∥2

]
≤ 2(f(w0)− f(w∗))

hT
+ 2LhM + L2ρ2(1 + Lh), (12)

with w∗ the optimal solution to f(w).

Proof. From Assumption C.1 and thus Remark C.3 it follows that:

f(wt+1) ≤ f(wt) +∇f(wt) · (wt+1 − wt) +
L

2
∥wt+1 − wt∥2 (13)

≤ f(wt)− h∇f(wt) · gxi

(
wt+1/2

)
+

h2L

2

∥∥∥gxi

(
wt+1/2

)∥∥∥2 (14)

= f(wt)− h∇f(wt) · gxi

(
wt+1/2

)
+

h2L

2

(
∥∇f(wt)− gxi(w

t+1/2)∥2 − ∥∇f(wt)∥2 + 2
(
∇f(wt) · gxi(w

t+1/2)
))

= f(wt)− Lh2

2
∥∇f(wt)∥2 + Lh2

2
∥∇f(wt)− gxi

(wt+1/2)∥2

− (1− Lh)h
(
∇f(wt) · gxi

(wt+1/2)
)

(15)

≤ f(wt)− Lh2

2
∥∇f(wt)∥2 + Lh2∥∇f(wt)− gxi

(wt)∥2

+ Lh2∥gxi
(wt)− gxi

(wt+1/2)∥2 − (1− Lh)h
(
∇f(wt) · gxi

(wt+1/2)
)
. (16)

Taking the double expectation gives (because unbiased gradient and Assumption C.2 and Remark
C.4):

E[f(wt+1)] ≤ E[f(wt)]− Lh2

2
E∥∇f(wt)∥2 + Lh2M

+ Lh2∥g(wt)− g(wt+1/2)∥2︸ ︷︷ ︸
A

− (1− Lh)hE
[
∇f(wt) · g(wt+1/2)

]
︸ ︷︷ ︸

B

. (17)

For term A we obtain using Assumption C.1:

A ≤ L3h2∥wt − wt+1/2∥2 = L3h2ρ2. (18)

For term B we obtain:

B = E
[
{∇fN (wt),∇fA(wt)} · {gN (wt+1/2), gA(w

t+1/2)}
]

(19)

= E[∇fA(wt) · (gA(wt+1/2)− gA(w
t) + gA(w

t))]

+ E[∇fN (wt) · (gN (wt+1/2)− gN (wt) + gN (wt))] (20)

= E
[
∥∇f(wt)∥2

]
+ E[∇fA(wt) · (gA(wt+1/2)− gA(w

t))] + E[∇fN (wt) · (gN (wt+1/2)− gN (wt))]︸ ︷︷ ︸
C

. (21)

24

Using xy ≤ 1
2∥x∥

2
2 +

1
2∥y∥

2
2 and Assumption C.1 we get for C:

|C| ≤ 1

2
E
[
∥∇f(wt)∥2

]
+

L2

2
∥wt+1/2 − wt∥2 =

1

2
E
[
∥∇f(wt)∥2

]
+

L2ρ2

2
. (22)

Plugging this into (17) gives:

E[f(wt+1)] ≤ E[f(wt)]− Lh2

2
E∥∇f(wt)∥2 + Lh2M + L3h2ρ2 − (1− Lh)hE∥∇f(wt)∥2

+ (1− Lh)h

(
1

2
E∥∇f(wt)∥2 + L2ρ2

2

)
(23)

≤ E[f(wt)]− h

2
E∥∇f(wt)∥2 + Lh2M +

1

2
hL2ρ2(1 + Lh). (24)

In T iterations we obtain using a telescoping sum:

f(w∗)− f(w0) ≤ E[f(wT)]− f(w0)

≤ −h

2

T−1∑
t=0

E
[
∥∇f(wt)∥2

]
+ Lh2MT +

1

2
hL2ρ2(1 + Lh)T. (25)

This gives Theorem C.5.

25

	Introduction
	Related Work
	Background: SAM and Normalization Layers
	BatchNorm and LayerNorm
	SAM and its variants

	SAM-ON: Perturbing Only the Normalization Layers
	BatchNorm and ResNet
	LayerNorm and Vision Transformer
	Computational savings

	Towards Understanding SAM-ON
	The effect of sparsified perturbations
	Sharpness and feature-rank of SAM-ON
	SAM-ON can change the affine parameter values

	Discussion and Conclusion
	Training Details
	CIFAR training details
	ImageNet training details
	SAM variants

	Further Experimental Results
	SAM-ON on CIFAR
	Additional ablation studies for sparse SAM
	Finetuning from ImageNet-21k
	Adversarial robustness
	Machine translation task
	Weight distribution after training
	Removing the affine parameters
	Training BatchNorm and only BatchNorm
	Weight decay and dropout
	Details on sharpness evaluation

	Convergence Analysis

