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Abstract—This paper proposes a new state-constrained adap-
tive optimal control strategy for unmanned sailboat heading
angle tracking considering the motion constraints. To improve the
tracking accuracy, a combination of backstepping and adaptive
dynamic programming (ADP) is employed. Thus, the issue of
virtual control rate derivatives in conventional backstepping
control is resolved with satisfactory precision. Firstly, the mo-
tion constraints are considered by using the Barrier Lyapunov
function (BLF), and the neural networks (NNs) is employed to
approximate the model uncertainties and disturbances. Secondly,
an adaptive backstepping feedforward controller is proposed,
transforming the sailboat’s affine nonlinear system tracking
problem into a regulation problem. Thirdly, according to the ADP
theory, critic NNs are constructed to approximate the analytical
solution of the Hamilton-Jacobi-Bellman (HJB) equation, and the
optimal feedback control is obtained by online learning. Finally,
simulation results demonstrate the effectiveness and optimality
of the proposed controller.

Index Terms—Optimal control, Adaptive dynamic program-
ming (ADP), barrier Lyapunov function (BLF), Neural networks
(NNs), Unmanned sailboat

I. INTRODUCTION

In the past few decades, surface and underwater intelligent
vehicles have played important roles in sea patrols, resource
exploration, and rescue. However, due to the consumption of
fuel, electricity, and other energy sources, unmanned ships
and submarines require a large amount of power support to
complete long-distance tasks, which also leads to huge cost
problems in [1]–[6]. Since unmanned sailboats can use sails
as power, have low costs, and can transmit data in real-time
through their sensors, research on unmanned sailboats has
gradually entered the interest of scholars. However, due to the
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complex marine environment, the disturbances of wind and
waves can easily generate obstructive forces on the sails and
keel, making the sails control difficult. Therefore, the authors
of [7] proposed a path tracking method for unmanned sailboats
that combines logic virtual ship (LVS) guidance law and
dynamic event-triggered control. In [8], a path tracking control
scheme is proposed for unmanned sailboats that combined
backstepping and dynamic surface control technology. In order
to reduce the sideslip angle error during sailing, the authors of
[9] proposed double finite-time observers-based line-of-sight
guidance (DFLOS) and adaptive finite-time control (DFLOS-
AFC) strategies. However, they did not consider the issue of
state constraints. When subjected to significant interference,
to return the sailboat to the reference heading, a larger rudder
angle is required, which will damage the actuator as it cannot
accept significant deflection in a short period. Therefore, while
ensuring the accuracy of sailboat heading control, it is also
necessary to ensure that the turning speed of the boat heading
satisfies the prescribed constraints.

In order to solve the problem of unmanned sailboat head-
ing angle tracking accuracy, many scholars have conducted
research on it. In [10], a control strategy of adaptive echo
state networks and backstepping is proposed to control the
steering angle of the rudder. The authors of [11] designed
a nonlinear heading controller of velocity vector direction to
track the reference heading angle. In [12], the L1 adaptive
control theory is proposed to complete heading control and
ensure the stability of the required heading angle. However,
most papers focused on the heading control of sailboats using
backstepping or sign functions, which results in low tracking
accuracy and cannot achieve optimal control effects.

The key problem of the nonlinear optimal control is that
the analytical solution of the Hamilton-Jacobi-Bellman (HJB)
equation is difficult to solve. In order to obtain the analytical
solution, the authors of [13] proposed the ADP theory, which



approximates the solution of the equation online. However, the
problem of slow approximation speed and multiple iterations
has led to an explosion in computational complexity. Recently,
with the rapid development of NNs, their approximation
performance and speed for unknown nonlinear functions have
become increasingly excellent. Therefore, the research com-
bining ADP and NNs has solved the above problems. In [14], a
new event-triggered optimal trajectory tracking control method
based on goal representation heuristic dynamic programming
(GrHDP) for underactuated ships is proposed. In [15], they
proposed a model free dual heuristic dynamic programming
(DHP) method for unmanned aerial vehicle attitude control.
The authors of [16] applied ADP theory to the path planning
problem of mobile robots. However, to the best of our knowl-
edge, there is limited research on applying ADP theory to the
heading control of unmanned sailboats.

Taking inspiration from the above analysis, we introduce
the LBF function to solve the state constraint problem. In
the control design of heading tracking, while introducing the
backstepping method, the ADP theory is also introduced to
ensure the optimal tracking accuracy. We constructed an eval-
uation NN to approximate the analytical solution of the HJB
equation and obtained the optimal feedback control through
online learning. The main contributions are concluded below:
• Compared with previous papers of [7]–[9], we proposed

a LBF-based method to overcome the issues of the
motion constraints caused by the turning rate limitation
of unmanned sailboats.

• By using the ADP optimal feedback control strategy,
our designed control method achieves optimal tracking
accuracy in heading control compared to [9]–[12].

• According to the construction of the critic network, a
training speed acceleration method is developed using
online learning methods.

The remaining of this paper is organized as follows. Section
II elaborates on the heading angle control model of unmanned
sailboats and lemma. Section III designs the backstepping
feedforward controller and the optimal feedback controller.
Section IV provides simulation verification of the proposed
strategy superiority. Section V gives some conclusions.

II. MATHEMATICAL MODEL AND PRELIMINARIES

The sailboat is divided into four parts: the sail, rudder, keel,
and hull. Combined with the theory of gas fluid dynamics,
force analysis is conducted on each part, ignoring the undulat-
ing and pitching motion of the sailboat to establish a 3-DOF
mathematical model of sailboat motion. The sailboat model
considering external interference and control input rudder
angle in this paper is{

ψ̇ = r

ṙ = fr(ψ, r, δs, u, v, τwr) + grτr
(1)

where ψ ∈ RM and r ∈ RM are system state variables,
respectively; u ∈ RM is the forward velocity; v ∈ RM is the
lateral velocity; δs ∈ RM is the sail angle; τwr is the external

disturbance; fr(·) is the nonlinear function of the unknown
model of a sailboat; gr is the unknown control gain; τr is the
control input of the system.

Assumption 1 [17]: Due to the fact that unmanned sailboats
navigate in limited space, there exists a normal number that
satisfies the heading angle and heading angular speed to be
less than or equal to this normal number. That is, ψ ≤ kψ and
r ≤ kr.

Lemma 1 [10]: Due to the outstanding ability of NNs in
function approximation, they are often used to approximate
nonlinear functions. Therefore, NNs can be used to approxi-
mate unknown functions as follows:

F (x) = WTσ(x) + ε(x) (2)

where W = (w1, w2, ..., wn)T denotes the desired weight of
the NNs and ε ≤ ε denotes the approximating error.

III. CONTROL DESIGN

A. Feedforward controller design

In this section, the backstepping method based on an
adaptive NNs framework is adopted to transform system (1)
into an affine nonlinear system.

According to the system (1), define the error system func-
tion as {

ψe = ψ − ψd
re = r − rd

(3)

where ψd and rd are the reference heading angle and yaw
speed, respectively. Differentiating ψe along with (1), it has:

ψ̇e = ψ̇ − ψ̇d = r − ψ̇d = (re + rd)− ψ̇d (4)

where rd = rαd + r∗d is the virtual control input of yaw speed.
rαd denotes the feedforward virtual yaw speed input and r∗d
denotes the feedback virtual yaw speed input. Therefore, we
can get

ψ̇e = re + rαd + r∗d − ψ̇d (5)

To construct the desired feedforward yaw speed virtual
control input, consider the BLF as

V1 =
1

2
log

(
k2
ψ

k2
ψ − ψ2

e

)
(6)

where kψ is a positive value of the state constraint. Calculate
the derivate of V1, we have

V̇1 =
ψe

k2
ψ − ψ2

e

(re + rαd + r∗d − ψ̇d) (7)

Therefore, the feedforward virtual yaw speed input rαd can be
designed as

rαd = −(k2
ψ − ψ2

e)k1ψe + ψ̇d (8)

where k1 > 0 is a tuning parameters. Substituting (8) into (7),
we have

V̇1 = −k1ψ
2
e +

ψe
k2
ψ − ψ2

e

(re + r∗d) (9)



Taking the derivative of the second equation of (3) yields

ṙe = fr(·) + fr(ed)− fr(ed) + grτr − ṙd (10)

where ed = [ψd, rd]
T. The unknown model uncertainty func-

tion fr(·) and ṙd can be transferred by the following function

F2(z2d) = fr(ed)− ṙd (11)

where z2d = [eT
d , ψe, re]

T. According to the Lemma 1, the
above (11) can be approximated by NNs as follows:

F2(z2d) = (ŴT
2 + W̃T

2 )σ2(z2d) + ε2(z2d) (12)

where W̃T
2 = W2−Ŵ2 is the NNs approximate error and Ŵ2

is the estimation of optimal weight vector W2. Through (11)
and (12), fr(·)− fr(ed) can be approximated as follows:

fr(·)− fr(ed) =F2(z2)− F2(z2d)

=p(e) + W̃T
2 [σ2(z2)− σ2(z2d)] + ε2(z2)

− ε2(z2d)
(13)

where p(e) = ŴT
2 σ2(z2) − ŴT

2 σ2(z2d), e = [ψe, re]
T and

F2(z2) = fr(·)− ṙd is a function of rd and ṙd. The input z2

is chosen as (eT
d , ψ, r, δs, u, v)T. According to (12) and (13),

(10) can be written as

ṙe =p(e) + ŴT
2 σ2(z2d) + W̃T

2 σ2(z2) + ε2(z2)

+ grτ
α
r + grτ

∗
r

(14)

To construct the feedforward virtual control input ταr , consider
the BLF as

V2 = V1 +
1

2
log

(
k2
r

k2
r − r2

e

)
+

1

2
W̃T

2 W̃2 (15)

where kr is a positive value of the motion constraint. Calculate
the derivate of V2, we have

V̇2 =− k1ψ
2
e +

ψe
k2
ψ − ψ2

e

(re + r∗d) +
re

k2
r − r2

e

(
p(e)

+ ŴT
2 σ2(z2d) + W̃T

2 σ2(z2) + ε2(z2) + grτ
α
r

+ grτ
∗
r

)
− W̃T

2
˙̂
W2

(16)

According to the Young’s inequality, we can get that

re
k2
r − r2

e

ε2(z2) ≤ re
k2
r − r2

e

ε̄2 ≤
1

2

r2
e

(k2
r − r2

e)
2

+
1

2
ε̄2

2 (17)

Substituting (17) into (16), we have

V̇2 =− k1ψ
2
e +

1

2
ε̄2

2 − W̃T
2

˙̂
W2 +

ψere
k2
ψ − ψ2

e

+
ψer
∗
d

k2
ψ − ψ2

e

+
re

k2
r − r2

e

(
p(e) + ŴT

2 σ2(z2d) + W̃T
2 σ2(z2)

+ ε2(z2) + grτ
α
r + grτ

∗
r

)
(18)

Therefore, the feedforward control input ταr can be designed
as

ταr = − 1

gr

[
(k2
r − r2

e)k2re +
(k2
r − r2

e)ψe
k2
ψ − ψ2

e

+ ŴT
2 σ2(z2d)

]
(19)

where k2 > 0 is a tuning parameters. The NNs weight vector
adaptation law Ŵ2 can be designed as

˙̂
W2 =

re
k2
r − r2

e

σ2(z2)− β2Ŵ2 (20)

where β2 > 0 is also a tuning parameters. Substituting (19)
and (20) into (18), we have

V̇2 ≤− k1ψ
2
e − k2r

2
e +

1

2
ε̄2

2 + β2W̃
T
2 Ŵ2 +

p(e)re
k2
r − r2

e

+
regr

k2
r − r2

e

τ∗r +
ψer
∗
d

k2
ψ − ψ2

e

(21)

According to the Young’s inequality, we can get that

W̃T
2 Ŵ2 = W̃T

2 (W2 − W̃2) = W̃T
2 W2 − W̃T

2 W̃2

≤ 1

2
W̃T

2 W̃2 +
1

2
WT

2 W2 − W̃T
2 W̃2

=
1

2
WT

2 W2 −
1

2
W̃T

2 W̃2

(22)

Therefore, the above (22) can be written as

V̇2 ≤− k‖E‖2 +
1

2
ε̄2

2 +
1

2
β2W

T
2 W2 −

1

2
W̃T

2 W̃2

+
p(e)re
k2
r − r2

e

+
regr

k2
r − r2

e

τ∗r +
ψer
∗
d

k2
ψ − ψ2

e

(23)

where E = [ψe, re]T, k = min(k1, k2).
In previous research, the feedforward controller ταr was

calculated based on the derivative of the virtual controller
ṙαd . However, in practical applications, it is not easy to get
analytical solutions for ṙαd . Our proposed control method
denotes rd = rαd + r∗d, which is determined by both rαd
and r∗d and they are obtained through NNs weights and the
system’s state. Therefore, we approximate the derivative of
the virtual controller using NNs in (11). With this approach,
the feedforward controller rαd and ταr can be obtained directly
from the current system without the need for the derivative of
the virtual controller used in previous studies. Consequently,
compared to previous work, the method we propose is more
feasible to implement in practical applications.

Rewriting (23) as follow:

V̇2 ≤− k‖E‖2 +
1

2
ε̄2

2 +
1

2
β2W

T
2 W2 −

1

2
W̃T

2 W̃2

+
ET

ẼT

([
0
p(e)

]
+

[
1 0
0 gr

] [
r∗d
τ∗r

]) (24)

where Ẽ = [k2
ψ−ψ2

e , k
2
r −r2

e ]
T. The feedforward controller is

expressed as Uα = [rαd , τ
α
r ]. The feedback optimal controller

U∗ = [r∗d, τ
∗
r ] will be designed in the subsection. Therefore,

they constitute the controller of the entire system.



B. Feedback optimal controller design

According to (24), the design of an individual feedforward
controller for Uα cannot guarantee the stability of the entire
closed-loop system. Therefore, to ensure the stability of the
last term in (24), a feedback optimal controller is designed
based on ADP theory. With this design, not only the tracking
ability of the system can be optimized, but also the system’s
stability can be ensured.

The last term in (24) can be written as:

Ė =

[
0
p(e)

]
+

[
1 0
0 gr

]
U∗ (25)

Further, it can be obtained that

Ė = P (E) +GÛ (26)

where E = [ψe, re]
T are the heading angle error and yaw

speed error, P (E) = [0, p(e)]T, G = diag[1, gr]
T.

According to the ADP theory, the performance index func-
tion can be define as

J(E) =

∫ ∞
t

ETQE + ÛTRÛdτ (27)

where Q ∈ R2×2 and R ∈ R2×2 are positive definite matrices.
The Hamiltonian function of the performance index function

can be defined as

H(E, Û ,∇J(E)) =ETQE + ÛTRÛ

+∇J(E)
T
(
P (E) +GÛ

) (28)

where ∇J(E) = ∂J(E)
∂E denotes the derivative of J(E) with

regard to E. In order to solve the HJB equation, the feedback
optimal control U∗ can be designed as

U∗(E) = −1

2
R−1GT∇J∗(E) (29)

From (28), the optimal performance index function J∗(E)
can be obtained by

min
Û(E)

H
(
E, Û ,∇J∗(E)

)
= 0 (30)

Substituting the above (30) into (28), the HJB equation can
be rewritten as follow:

ETQE +
(
∇J∗(E)

)T
P (E)− 1

4

((
∇J∗(E)

)T
GR−1GT∇J∗(E)

)
= 0

(31)

It is obvious that the above equation is a nonlinear partial
differential equation, so it is difficult to obtain its analytical
solution. Therefore, to address this issue, the ADP theory is
adopted. By constructing a single-layer NN to approximate the
following optimal performance index function as

J∗(E) = WT
c σ(E) + εc(E) (32)

where Wc denotes the optimal weight vector of critic NNs,
σ(·) is the activation function, εc(E) is the critic NNs ap-
proximation error.

The gradient of the optimal performance index function
J∗(E) with regard to E can be defined as

∇J∗(E) =
(
∇σ(E)

)T
Wc +∇εc(E) (33)

From (33) and (32), (29) can be rewritten as

U∗(E) = −1

2
R−1GT

(
∇σ(E)

)T
Wc −

1

2
R−1GT∇εc(E)

(34)

Therefore, the HJB equation can be further designed as

H(E,U∗,Wc) =ETQE +WT
c ∇σ(E)P (E) + εHJB

− 1

4

(
WT
c ∇σ(E)GR−1GT

(
∇σ(E)

)T
Wc

)
=0

(35)

where εHJB is the error.
By using NNs to estimate the desired weights of perfor-

mance index function as follow:

Ĵ(E) = ŴT
c σ(E) (36)

where Ŵc and Ĵ(E) are estimations of Wc and J(E), respec-
tively. Let weight estimation error as W̃c = Wc − Ŵc, the
estimate of optimal control U∗ can be designed as

Ū(E) = −1

2
R−1GT

(
∇σ(E)

)T
Ŵc (37)

Then, the HJB equation can be approximated as

H(E, Ū ,Wc) =ETQE +WT
c ∇σ(E)P (E)

− 1

4

(
ŴT
c ∇σ(E)GR−1GT

(
∇σ(E)

)T
Ŵc

)
= ec

(38)

The objective error function of critic NNs is defined as

Ec =
1

2
e2
c (39)

From the [18], we can design a appropriate critic NNs
updating law, which can guarantee that Ŵc converges to Wc

and also minimize the objective error function (39).

˙̂
Wc =− kc

Γ

(1 + ΓTΓ)2
ec +

kc
2

∆∇σ(E)G∇V (E)

+ kc

[
1

4

Γ

(1 + ΓTΓ)2
ŴT
c ∇σ(E)G

(
∇σ(E)

)T
Ŵc

]
+ kc

[
K1ζ

TŴc −K2Ŵc

]
(40)

where kc > 0 is the tuning parameter, Γ = ∇σ(E)(P (E) +
GŪ), ζ = Γ

1+ΓTΓ , K1 and K2 are the tuning parameter. ∆ is
designed as

∆ =

{
0,
(
∇V (E)

)T(
P (E) +GŪ

)
< 0

1, else
(41)



where V (E) is a Lyapunov function. From this, we can obtain

V̇ (E) =
(
∇V (E)

)T
Ė =

(
∇V (E)

)T(
P (E) +GU∗

)
= −

(
∇V (E)

)T
S∇V (E) ≤ 0

(42)

where S is a positive definite matrix. Specifically, V (E)
is a function of the state variable E and can be chosen
appropriately, for example, V (E) = ETE.

Remark 1: The weight ˙̂
Wc update process consists of

the following four components: The first component employs
gradient descent for design. The second component ensures the
boundedness of the weights. The third and fourth components
guarantee the stability of the weights. Through this design, the
proposed control strategy achieves a higher tracking accuracy
while ensuring the rapid and stable update of the neural
network weights.

IV. SIMULATION

The model parameters of the unmanned sailboat are selected
from [10]. In order to facilitate simulation analysis without
losing generality, the reference heading is set as ψd = sin(t).
Select control parameters as kψ = 1.2, kr = 1.5, k1 = 3, k2 =
6, kc = 3.8, β2 = 4, K1 = 0.0001I, K2 = 0.00001I, Q = I,
R = 0.25I. The time step is set as 0.05. The initial states are
defined as ψ(0) = 0.05 and r(0) = 0. The activation function
of the critic network is chosen as σ(E) = [e1, e

2
1, e2, e

2
2, e1e2],

the network weights are selected randomly in [0, 1]. Simulate
real ocean and wind disturbances by using first-order Markov
perturbations.

To verify the superiority of the proposed strategy, we will
compare the “LSBG” strategy of [10]. Fig. 1 shows the real-
time curve of heading angle tracking, and the results show that
the designed optimal control method can track the reference
signal with smaller errors and within state constraints. The
heading angular velocity tracking and its state constraints are
shown in Fig. 2. Fig. 3 and Fig. 4 illustrate the error curves of
heading angle and heading angular velocity, indicating that
the proposed strategy achieves better tracking performance
than the “LSBG” strategy. Fig. 5 displays the control inputs
for control input τr under “LSBG” strategy, backstepping
feedforward control, optimal feedback control, and system
control under the proposed strategy, respectively. Fig. 6 shows
the update curve of the evaluation network weights, it is
obvious that the speed of online learning has reached stability
in a very short time. From the above analysis, the proposed
strategy can not only ensure better tracking accuracy, but also
avoid system state violations of constraints.

V. CONCLUSION

In this paper, the optimal control method based on ADP is
proposed for the tracking control of unmanned sailboats with
heading turning constraints. The proposed LBF-based method
solves the problem of state constraints. The feedforward
backstepping controller and the feedback optimal controller
were designed using the backstepping method and ADP theory,
respectively. The learning ability of critic NNs has been

Fig. 1. Comparison of heading angle tracking under different strategies.

Fig. 2. Comparison of heading angle speed tracking under different strategies.

Fig. 3. Comparison of heading angle error under different strategies.



Fig. 4. Comparison of heading angle speed error under different strategies.

Fig. 5. Control input τr under “LSBG” strategy, feedforward control input
ταr , feedback control input τ∗r and optimal control input τr .

accelerated through online learning strategies. Finally, the
simulation verified the optimality of the proposed strategy. In
the future, we will apply this method to the path-tracking task
of unmanned sailboats in pratice.
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