
Multi-Agent Trajectory Prediction by Combining
Egocentric and Allocentric Views

Xiaosong Jia1, Liting Sun2, Hang Zhao3, Masayoshi Tomizuka2, and Wei Zhan2

1Shanghai Jiao Tong University - jiaxiaosong1997@gmail.com
2University of California, Berkeley - {litingsun,wzhan}@berkeley.edu, tomizuka@me.berkeley.edu

3Tsinghua University - zhaohang0124@gmail.com

Abstract: Trajectory prediction of road participants such as vehicles and pedes-
trians is crucial for autonomous driving. Recently, graph neural network (GNN) is
widely adopted to capture the social interactions among the agents. Many GNN-
based models formulate the prediction task as a single-agent prediction problem
where multiple inference is needed for multi-agent prediction (which is common
in practice), which leads to fundamental inconsistency in terms of homotopy as
well as inefficiency for the memory and time. Moreover, even for models that
do perform joint prediction, typically one centric agent is selected and all other
agents’ information is normalized based on that. Such centric-only normalization
leads to asymmetric encoding of different agents in GNN, which might harm its
performance. In this work, we propose a efficient multi-agent prediction frame-
work that can predict all agents’ trajectories jointly by normalizing and processing
all agents’ information symmetrically and homogeneously with combined egocen-
tirc and allocentric views. Experiments are conducted on two interaction-rich be-
havior datasets: INTERACTION (vehicles) and TrajNet++ (pedestrian). The re-
sults show that the proposed framework can significantly boost the inference speed
of the GNN-based model for multi-agent prediction and achieve better perfor-
mance. In the INTERACTION dataset’s challenge, the proposed model achieved
the 1st place in the regular track and generalization track.

Keywords: Autonomous Driving, Joint Trajectory Prediction, Multi-Agent Inter-
action

1 Introduction

Trajectory prediction of road participants like vehicles and pedestrians is of great significance for
planning and decision making of autonomous vehicles. Recently, lots of research efforts have been
devoted to capture the social interactions among the agents with feature pooling [1, 2] or graph neu-
ral network [3, 4, 5]. However, most of the state-of-the-art (SOTA) models [5, 6, 7] formulate the
problem as single-agent prediction, i.e., the models try to learn the marginal distribution of what
a target agent may act in the future given the historical observations of all agents’ trajectories in
the scene. In cases of multiple agent prediction, a straightforward way is to run inference multiple
times [8], that is, onece for each agent. Under such circumstances, the “joint” prediction results
might not be consistent in terms of homotopy, not to mention the low efficiency in terms of memory
and time. There are also models which perform joint prediction for multiple agents [9, 10]. How-
ever, such work adopts a uniform coordinate for all modeled agents, i.e., a centric agent is selected
and all coordinates are normalized based on the centric agent. Therefore, only the selected agent is

5th Conference on Robot Learning (CoRL 2021), London, UK.



How far are other cars
from me？

How fast are they? What should I do?

Relative Thinking 1st Order
Egocentric View

If I were car 2, what
would I do?

1st Order
Allocentric View

If I were car 3,
what would I do?

After thinking what car 2 and 3
may do, what should I do?

2nd Order
Egocentric ViewObservation

Figure 1: Illustration of the intuition for each stage of the proposed model - the thinking process
of interacting agents. Here, we only show the first agent’s (blue) thinking process since the other
two are symmetrical. First, a human driver understands the world by estimating the relative dis-
tance and speed of other agents (Relative Thinking), which corresponds to the normalization stage
of the proposed model. Then each agent considers how it should react (Egocentric View), which
corresponds to the stage of updating the node features by aggregating neighbors’ information in the
proposed model. After that, an agent put itself in someone else’s shoes for all neighbors (Allocentric
View), which corresponds to the update of edge features by accessing source node’s information in
the proposed model. After alternatively repeating the Egocentric View stage and Allocentric View
stage for several rounds, all agents make the decision according to the interacting situations.

providing egocentric views, while all other agents are in allocentric views.1 The disadvantage of all
data in a single egocentric view is two-fold. First, not all agents are treated in an unbiased way due to
the lack of egocentric views from other agents, like missing the view of “putting in someone else’s
shoes”. Second, the egocentric view of one agent makes the spatial relations between two other
agents heterogeneous from the spatial relations between ego agent and other agents. The different
distributions of input node feature might harm the GNN-based models’ performance since it usually
shares parameter for the aggregation and fusion function for all nodes.

In this work, we aim to design an efficient GNN-based multi-agent joint prediction model. Our key
insight is that all agents should be treated symmetrically in the graph, providing both egocentric
and allocentric views. Moreover, we decouple the update of the node and edge feature to improve
the efficiency of the network. As a result, we propose to use the “Node update” step to collect
and summarize other agents’ information in a egocentric view, and then the “Edge update” step to
collect information in allocentric views from each neighbor. Via such a combined egocentric-and-
allocentric views, it is guaranteed that the graph model handles all agents homogeneously which
will encourage the shared parameters to learn to extract the underlying interactions among agents.
We illustrate the intuition behind the proposed model in Fig. 1

We conducted experiments on two interaction-rich datasets: INTERACTION (vehicles) [12] and
TrajNet++ (pedestrian) [13]. The results show that compared to running multiple single prediction
models, the efficiency is boosted 1.7-4.5 times higher while achieving better accuracy. In the IN-

1Egocentric and allocentric are terms usually used in the psychology and cognition area. According to [11],
a study on human spatial cognition and animal navigation, they define the egocentric spatial coding system as
the location of objects in space relative to the ego body and the allocentric spatial coding system as the location
of one object is defined with respect to other objects. In this paper, we refer this two concepts. As for the
coordinate system transformation, we set the reference’s coordinate as the origin and yaw angle aligned with
the negative x-axis.

2



TERACTION dataset’s challenge, the model achieved the 1st place in the regular track and general-
ization track 2 We have also conducted experiments on three efficient variants of the multi-inference
single-prediction model under different view settings and the results show that the proposed model
outperforms those variants, which demonstrates the advantage of combining the egocentric and al-
locentric views.

2 Related Works
Plenty of works have been done to capture the complex social interactions among multiple agents.
There are pooling-based methods [1, 2] which use the mean/max/sum of all agents’ hidden vectors
to obtain a single vector to represent the social context. Social LSTM [1] utilized the social con-
text of each time step as a part of the input for its next time step to the LSTM. Social GAN [2]
obtained the social context by the pooling of output from the encoder RNN at the last time-step
and fed the social context with each agents’ hidden vector to the decoder to generate their future
trajectories. Though pooling is fast, it loses too much information and lacks of expressive ability
to output a specific context for each agent. There are also methods which renders the entire scene
including the agents and HD Map onto images and captures the interactions implicitly by CNN.
Hong et al. [14] adopted pure CNN to process the scene while Multipath [6] further set anchors to
output multi-modal prediction and IntentNet [15] set a different motion predictor for different pre-
defined intents. PRECOG [9] proposed a flow-based generative models conditioned on goals with
CNN to process context. However, as pointed [4], those CNN-based methods’ performances are
significantly influenced by the receptive field, feature cropping strategy, and image resolution and it
is very computationally expensive and inefficient compared to directly process the coordinate data.
TPCN [7] conducted trajectory prediction from point-cloud perspective which is an interesting ex-
ploration across fields. Recently, GNN-based [3, 16, 17, 4, 18, 6, 19, 5] has gained great success and
dominated most of the trajectory prediction datasets. Many of them [16, 6, 19, 5] set an ego agent
and used it to normalize data. In the concurrently released Waymo Open Motion Dataset’s paper [8],
they implemented TNT [6] by the forward-N-times way to do multi-agent prediction. In ILVM[20],
they proposed an end-to-end joint prediction framework, in which they first used CNN to extract
features from LiDAR point clouds and raster map, used GNN to capture interactions, and used a
novel one stage parallel sampling to do joint prediction. As for normalization, they used Rotated
Region of Interest Align[21], which is specificlly designed for LiDAR point clouds/images to align.
In the concurrent work Scene Transformer[22], they used Transformer for both spatial and temporal
dimension, adopted mask strategies and done joint prediction. They normalized data simply by the
ego agent.

3 Problem Formulation

Suppose there are N agents in the same scene (they could be either vehicles or pedestrians), and
our prediction task is to learn the joint distribution of their future trajectories conditioned on their
historical states. Let us assume that the current time step is t = 0. For each agent i = {1, · · · , N},
we have an observation of his/her states (such as coordinate, velocity, yaw angle, ...) from t = −L to
t = −1. We denote the joint observation as X = {X1, X2, ..., XN}where Xi = {x−Li , ...,x0

i }. Let
us also define the future coordinates for all N agents from t = 1 to t = T as Y = {Y1, Y2, ..., YN}
where Yi = {y1

i , ...,y
T
i }. Then, the joint prediction model is designed to learn the following

conditional distribution:
p(Y1, Y2, ..., YN |X1, X2, ...XN ) (1)

On the other hand, the single-prediction model is approximating a marginal distribution defined as
follows:

p(Yi|X1, X2, ...XN ) where agent i is the ego agent. (2)
In the cases of multiple-agent prediction, essentially, multiple-inference is using multiple marginal
distributions to approximate the joint distribution by implicitly assuming the multiple marginal dis-
tributions are conditionally independent [8]:

p(Y1, Y2, ..., YN |X1, X2, ...XN ) =

N∏
i=1

p(Yi|X1, X2, ...XN ) (3)

2The generalization track is testing the model’s performance on new maps/scenarios which have never been
seen in the training time.

3



Raw Trajectory

n1-centricNormalization

Normalized Data

Aggregation Layer 1

Prediction Layer

Only Forward

n2-centric n3-centric

Edge MLP 1

Trajectory 1 Trajectory 2 Trajectory 3

Aggregation Layer 2

Edge MLP 2

Figure 2: The structure of the proposed model: we use 3 agents as an example. n1, n2, n3 means
raw data. The superscript ′ means the data after normalization. eij means the normalized data of
agent i by the origin and orientation of agent j. First, all agents are encoded in their egocentric
views in the normalization step; second, the node features (Aggregation Layer) are updated by the
egocentric information separately for different agents; and finally, the edge features (Edge MLP) are
updated using allocentric views, summarizing local information from all agents.3

Unfortunately, such assumption is not true in practice, particularly when there are intensive interac-
tions among the N agents.

4 The Model

An overview of the model is shown in Fig. 2. The model has the following three key modules:

View Transformation (Normalization Layer): All agents are encoded symmetrically in the
graph. In the normalization layer, we set each agent in his/her own egocentric view instead of
selecting one centric agent and normalize all other agents based on it. Specifically, for the coor-
dinate system of each node (agent) and its in-edges’ (neighbors), we use the agents’ coordinate at
t0 (w.r.o.g) as the origin and let the yaw angle be aligned with the negative x-axis. Since the input
node and edge features are temporal sequences, we use a temporal sequence encoder (ResNet-18 1D
version+MLP) to encode the sequence into a feature vector.

Node update (Aggregation Layer): Update each node feature according to their in-edges‘ fea-
tures to incorporate neighbor’s information h′i = f({hji, j ∈ Neighbor(i)}) where h′i is the updated
node feature of agent i, hji is the feature of in-edge from agent j to i, f is the aggregate func-
tion and it is multi-head attention in Transformer. The Transformer is proposed in [23] which is a
permutation-invariant operator and could capture the relations among a set of elements. Since all
agents in the same scene are permutation-invariant, we directly adopts it. Due to the limited space
and it is not our main contribution, for more details about Transformer, please refer to [23]. Note
that for conciseness we added self-loop for each node which means each nodes’ neighbors include
itself. Since the input node feature and input in-edge features of each agent are both normalized in
each agent’ coordinate system, it is in the egocentric view.

3Note that the Edge MLP in the last layer could be removed to reduce computation (in this case - Edge
MLP 2)

4



Edge update (Edge MLP): Update each edge by their source node’s feature to obtain updated
neighbors’ information h′ji = g(hji, h

′
j) where we denote the concatenation+FeedForwardNet in

Transformer as g. Since the new information is coming from the source node - the neighbor in the
neighbor’s view, it is in the allocentric view.

We would like to emphasize the benefit of decoupling the node update step and the edge update
step. By decoupling, the node serve as the storage for the interaction information between each
agent and its neighbors in the egocentric view. Via such design, the edge feature can be efficiently
updated to collect and summarize the allocentric information. Hence, such a combined egocentric-
and-allocentric encoding and feature updating can help to 1) achieve an unbiased encoding of all
agents for joint prediction, and 2) improve the efficiency of the computing process.

5 Experiements

5.1 Metrics

As for the metric, we adopt the widely used ADE and FDE. They are defined as: Average Dis-
placement Error (ADE) represents the euclidean distance averaged over time and agents between
the ground truth and the prediction. It is then averaged over all cases. The ADE of a single case is
calculated as:

ADE =
1

NT

∑
n,t

√
(x̂n,t − xn,t)2 + (ŷn,t − yn,t)2 (4)

where N is the number of target agents in the case, T ist the prediction horizon, x̂ and ŷ represent
the groud truth coordinate, x and y represent the predicted coordinate. The unit is meter.

Final Displacement Error (FDE) represents the euclidean distance averaged over agents between the
ground truth and the prediction at the last predicted time-step. It is then averaged over all cases. The
FDE of a single case is calculated as:

FDE =
1

N

∑
n

√
(x̂n,T − xn,T )2 + (ŷn,T − yn,T )2 (5)

where N is the number of target agents in the case, T ist the prediction horizon, x̂ and ŷ represent
the groud truth coordinate, x and y represent the predicted coordinate. The unit is meter.

5.2 Results

We tested the performance of the proposed model against several SOTA models on two interaction-
rich dataset: the INTERACTION dataset and the TrajNet++. Please refer to for experimental setting
details.

In INTERACTION dataset [12], we compared with DESIRE [24], MultiPath [25], TNT [6], and
ReCog [26]. The former three are compared in [6]. We also listed the results of the top-rank methods
on the leader board of the INTERACTION dataset. As we can see Tab. 1, our method outperforms
the baseline methods, especially on the generalization ability track. We achieved the 1st place on
both the regular test track and generalization ability track of the INTERACTION dataset.

In the TrajNet++ [13], existing results in this dataset are all measured only by the performance on
the pre-defined ‘interesting‘ primary pedestrian ignoring other agents. Thus, for fair comparisons,
we re-implemented the two top-ranked methods under our multi-agent prediction setting: 1. So-
cialLSTM [1], a typical pooling-based method and the top-ranked method on TrajNet++’s leader
board, is a good comparison for our GNN-based method. 2. D-LSTM [13], which was proposed in
the TrajNet++ dataset paper and achieved SOTA performance in their paper, captures social interac-
tions by concatenating top-4 nearest neighbors’ hidden states. Note that [13] stated in their paper
that predicting pedestrian trajectories other than the primary pedestrian’s would dampen their results
which aligns well with ourfollowing for the single-view model. On the other hand, the GNN-based
methods should be further improved to tackle high-density data like CFF dataset, which can be han-
dled by pooling-based or top-k-neighbor-concatenation-based method due to the low computational
complexity.

5



Table 1: Comparison with SOTA methods on the INTERACTION Dataset. - means the results are
not publicly available. * means the model is trained by smaller gap between snippets which means
more data, which is proposed by the challenge winner ReCog [26]. . The unit of ADE and FDE are
both meters. ↓ means the lower the better.

Val ADE/FDE↓ Test ADE/FDEred↓ Generalization ADE/FDE ↓
DESIRE [24] 0.32/0.88 - -
MultiPath [25] 0.30/0.99 - -

TNT [6] 0.21/0.67 - -
MIFNet - 0.1973/0.6641 0.5339/1.4248 (2nd)

ReCog* [26] 0.1919/0.6462 0.1878/0.6381 (3rd) 0.5539/1.9187
Mix - 0.1826(1st)/0.6423 (2nd) -
Ours 0.1723/0.5988 0.1903/0.6563 0.3394/1.1983

Ours* 0.1700/0.5927 0.1840(2nd)/0.6344 (1st) 0.3263/1.1426 (1st)

Table 2: Comparison with top-ranked methods on the TrajNet++ dataset under our multi-agent
prediction setting. The unit of ADE and FDE are both meters. ↓ means the lower the better.

Val ADE/FDE ↓
Social LSTM [1] 0.2848/0.5604

D-LSTM [13] 0.2915/0.5738
Ours 0.2079/0.4270

6 Comparison with Variants of the Proposed Model
In this section, we compare the the proposed model against forwarding the single-prediction models
N times (FNT) and its three variants in temrs of running speed and performance. By theoretical
analysis and experimental results, we will show that the proposed model could achieve the best
efficiency and accuracy among several settings of GNN for the multi-agent prediction.
6.1 Baseline - forwarding N times (FNT)

For a fully connected graphs with N agents, there are N(N−1)
2 edges, which means each GNN layer

has N(N−1)
2 message passing and N updating. Thus, the computational complexity of L layers of

GNN in one forward is L ∗ (O(N(N−1)
2 ) + O(N)) = O(N2) since L is a hyperparameter and we

could treat it as a constant. As a result, in Equ. 6, we derive the computational complexity of FNT
with GNN-based model on the fully-connected graph.

O(N)︸ ︷︷ ︸
Number of Forwards

∗ O(N2)︸ ︷︷ ︸
Complexity of GNN on Fully Connected Graph

= O(N3) (6)

In contrast, as shown in Fig. 2, for the proposed model, the computational complexity of the two
consecutive steps (Aggregation Layer and Edge MLP) both are O(N2) which makes the overall
complexity O(N2).

Represent FNT by a single graph: The incorporation of neighbors’ information in GNN essen-
tially is: each target node obtains source nodes’ information through their in-edges. Thus, FNT is
equivalent to: each agent transforms its own states and others’ states into its ego-centric coordinate
system by normalization. Its own transformed states could be seen as a node while others’ trans-
formed states could be seen as its in-edges. Then, for each agent, it maintains and updates both
its node feature and in-edge features in GNN. Finally, it uses its node feature to do the trajectory
prediction. Fig. 3a gives the illustration of above description.

Here, we conduct comparison experiments between FNT and the proposed methods. Experiments
results are in Tab. 3. As we can see, compared to FNT, our method could significantly reduce the
computational time while achieving better results.

Table 3: Comparison between the proposed method and forward-N-times method. The unit of ADE
and FDE are both the meter. The unit of Train/Val time is the second. ↓ means the lower the better.

INTERACTION TrajNet++
Val ADE/FDE↓ Train/Val Time ↓ Val ADE/FDE ↓ Train/Val Time ↓ #Parameters

FNT 0.1840/0.6231 1261s/50s 0.2328/0.4659 762s/23s 579991
Ours 0.1723/0.5988 713S/27s 0.2079/0.4270 175s/10s 678807

6



Raw Trajectory

n1-centricNormalization

Normalized Data

GNN Layer 1

Prediction Layer

Forward 1 Forward 2

n2-centric n2-centric

Forward 3

GNN Layer 2

Trajectory 1 Trajectory 2 Trajectory 3

(a) Illustration of computational pro-
cess of forward-N-times (FNT).

Raw Trajectory

n1-centricNormalization

Normalized Data

GNN Layer 1

Prediction Layer

Forward 1 Forward 2

n2-centric n2-centric

Forward 3

Trajectory 1 Trajectory 2 Trajectory 3

(b) Illustration of computational
process of one-layer GNN (OL).

Raw Trajectory

preset-centricNormalization

Normalized Data

GNN Layer 1

Prediction Layer

Only Forward

GNN Layer 2

Trajectory 1 Trajectory 2 Trajectory 3

(c) Illustration of computational
process of average of all agents
(AA) and randomly selection
(RA).

Figure 3:

6.2 Variant I - stop maintaining the edge feature
After finding out the abundance, we explore some other variants which could reduce the computa-
tional complexity of multi-agent prediction to O(n2) like the the proposed model and evaluate their
precision.

Since the abundance is on the edges, the first intuitive variant is: how about we stopping main-
taining the edge feature and only update the node feature? In this variant, there is no multi-hop
or multi-order information included. For example, for agent 1, it could not obtain the interaction
information between agent 2 and 3. Thus, this variant is equivalent to the one-layer GNN which
only updates the node. We denote it as OL (one-layer). The illustration is in Fig. 3b. From the
figure, we can obtain the computational complexity of OL in Equ. 7.

O(N)︸ ︷︷ ︸
Number of Forwards

∗ O(N)︸ ︷︷ ︸
Ego Agnet Uses Its Neighbors’ Features

= O(N2) (7)

However, there might be two problems in one-layer GNN: 1: limited expressive power and hard
to capture complex interactions. 2: for non-fully connected graph, lack of multi-hop neighbors’
information.

Validation Experiments Here, we compare the results of GNN with one layer and two layers to
evaluate the OL’s influence on the models’ performance. We compare the following settings:

• FNT: 2 layers GNN + fully-connected graph
• OL: 1 layer GNN + fully-connected graph
• FNT-Graph: 2 layers GNN + connected by distance threshold graph
• OL-Graph: 1 layer GNN + connected by distance threshold graph

For more experiment details, please refer to Appendix.

The results are in Tab. 4. We can draw the conclusions that 1. using fully-connected graph could
obtain better results. Thus, we use fully-connected graph for the rest of experiments in the paper. 2.
OL consistently performs worse than FNT.

In conclusion, though not maintaining the edge feature could reduce the computational com-
plexity, it loses much expressive power and high-order information which makes it impractical.

6.3 Variant II - forwarding only once
Another option to reduce the computation is to only forward once, which means the model uses
all nodes in the graph to do prediction instead of just using the ego node. As a result, the total
computational complexity is reduced to the computational complexity of GNN - O(N2).

7



Table 4: Validation experiments for the one-layer GNN(OL) refinement. The unit of ADE and FDE
are both the meter. The unit of Train/Val time is the second. ↓ means the lower the better.

ADE/FDE INTERACTION Val ↓ TrajNet++ Val ↓ #Parameters
FNT 0.1840/0.6231 0.2328/0.4659 579991
OL 0.1908/0.6379 0.2337/0.4753 481303

FNT-Graph 0.1909/0.6704 0.2334/0.4693 579991
OL-Graph 0.1991/0.6864 0.2343/0.4805 481303

Table 5: Validation experiments for the Average of Agents(AA) and Random Agent (RA) plan. The
unit of ADE and FDE are both the meter. The unit of Train/Val time is the second. ↓ means the
lower the better.

INTERACTION TrajNet++
Val ADE/FDE ↓ Train/Val Time ↓ Val ADE/FDE ↓ Train/Val Time ↓ #Parameters

FNT 0.1840/0.6231 1261s/50s 0.2328/0.4659 762s/23s 579991
RA 0.1938/0.6474 1308s/51s 0.2483/0.4833 776s/24s 579991
AA 0.2187/0.7189 642s/21s 0.2382/0.4762 141s/6s 579991

However, another problem arises: how to normalize data without setting an ego agent? The
following are two intuitive variants:

• Average of Agents (AA): we take the average coordinate and yaw angle of all agents at t0
as the origin and the orientation of the positive x-axis respectively.

• Random Agent (RA): we randomly select an agent as the ego agent to do the normalization.
Note that though it is faster in inference in theory, in training/validation, we still need to
input all possible ego vehicle choices, which means no speed up. In fact, compared to FNT,
it is equivalent to adding an auxiliary task of trajectory prediction for non-ego agents.

The illustration of AA/RA is in Fig. 3c. We compare the performance of RA and AA to the original
forward-N-times (FNT) in Tab. 5. We also record the Train/Val time which is measured by the time
to run one epoch on the train/val set on one RTX 2080 Ti with all GPU memory.

From the results, we can conclude that: 1. Forward only one time could significantly reduce the
computational time. 2. However, the two alternative normalization methods dampen the perfor-
mance. 3. AA performs the worst. We conjecture that AA is too sensitive since it is influenced by
all agents in the scene and it cannot effectively reduce the input and output space. 4. TrajNet++
(pedestrian) dataset was less influenced. We conjecture that it is due to the smaller range of scenes
for pedestrians.

In conclusion, forward only once is effective for decreasing the computational complexity while
a more stable normalization strategy is needed to maintain the performance. Thus, as demon-
strated before, in the proposed model, all agents to be treated symmetrically and homogeneously is
significant for the performance of the model.

7 Conclusion

In this paper, we presented a multi-agent prediction model which combines the egocentric and al-
locentric views. It achieves SOTA performances on the two interaction-rich behavior datasets: IN-
TERACTION (vehicles) and TrajNet++ (pedestrian). In the INTERACTION dataset’s challenge, the
model is ranked in the first place in both the regular track and generalization track. Besides, com-
pared to the common multi-inference single-prediction model with similar architecture, the model
could increase the running speed by 1.7-4.5 times.

In this paper, the Transformer and the Edge MLP only are chosen as a implementation to show
the effectiveness of combining the egocentric and allocentric views. For future work, more specific
designed structure could be explored. For example, to further reduce the computational complexity,
some efficient variants of the Transformer could be explored. To better capture the relations of the
two views, more complicated structure could be tried instead of the Edge MLP (maybe another
Transformer). Additionally, we might extend it to incorporate the map information and do multi-
modal prediction.

8



References
[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. Social lstm:

Human trajectory prediction in crowded spaces. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[2] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi. Social gan: Socially acceptable
trajectories with generative adversarial networks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2255–2264, 2018. doi:10.1109/CVPR.2018.00240.

[3] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14424–14432,
2020.

[4] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid. Vectornet: Encoding
hd maps and agent dynamics from vectorized representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11525–11533, 2020.

[5] W. Zeng, M. Liang, R. Liao, and R. Urtasun. Lanercnn: Distributed representations for graph-
centric motion forecasting. arXiv preprint arXiv:2101.06653, 2021.

[6] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen, Y. Chai, C. Schmid,
C. Li, and D. Anguelov. TNT: target-driven trajectory prediction. CoRR, abs/2008.08294,
2020. URL https://arxiv.org/abs/2008.08294.

[7] M. Ye, T. Cao, and Q. Chen. Tpcn: Temporal point cloud networks for motion forecasting.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11318–11327, June 2021.

[8] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. Qi, Y. Zhou,
et al. Large scale interactive motion forecasting for autonomous driving: The waymo open
motion dataset. arXiv preprint arXiv:2104.10133, 2021.

[9] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine. Precog: Prediction conditioned on goals
in visual multi-agent settings. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2821–2830, 2019.

[10] Y. C. Tang and R. Salakhutdinov. Multiple futures prediction. 2019.

[11] R. L. Klatzky. Allocentric and egocentric spatial representations: Definitions, distinctions, and
interconnections. In Spatial cognition, pages 1–17. Springer, 1998.

[12] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kümmerle, H. Königshof,
C. Stiller, A. de La Fortelle, and M. Tomizuka. INTERACTION Dataset: An INTERnational,
Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic
Maps. arXiv:1910.03088 [cs, eess], 2019.

[13] P. Kothari, S. Kreiss, and A. Alahi. Human trajectory forecasting in crowds: A deep learning
perspective. IEEE Transactions on Intelligent Transportation Systems, 2021.

[14] J. Hong, B. Sapp, and J. Philbin. Rules of the road: Predicting driving behavior with a con-
volutional model of semantic interactions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8454–8462, 2019.

[15] S. Casas, W. Luo, and R. Urtasun. Intentnet: Learning to predict intention from raw sensor
data. In Conference on Robot Learning, pages 947–956. PMLR, 2018.

[16] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Multi-agent genera-
tive trajectory forecasting with heterogeneous data for control. ArXiv, abs/2001.03093, 2020.

[17] J. Li, H. Ma, Z. Zhang, and M. Tomizuka. Social-wagdat: Interaction-aware trajectory pre-
diction via wasserstein graph double-attention network. CoRR, abs/2002.06241, 2020. URL
https://arxiv.org/abs/2002.06241.

9

http://dx.doi.org/10.1109/CVPR.2018.00240
https://arxiv.org/abs/2008.08294
https://arxiv.org/abs/2002.06241


[18] V. Kosaraju, A. Sadeghian, R. Martin-Martin, I. Reid, H. Rezatofighi, and S. Savarese.
Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention net-
works. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlche Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf.

[19] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph
representations for motion forecasting. In European Conference on Computer Vision, pages
541–556. Springer, 2020.

[20] S. Casas, C. Gulino, S. Suo, K. Luo, R. Liao, and R. Urtasun. Implicit latent variable model
for scene-consistent motion forecasting. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pages 624–641.
Springer, 2020.

[21] J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, Y. Zheng, and X. Xue. Arbitrary-oriented scene
text detection via rotation proposals. IEEE Transactions on Multimedia, 20(11):3111–3122,
2018.

[22] J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs, A. Bewley,
C. Liu, A. Venugopal, et al. Scene transformer: A unified multi-task model for behavior
prediction and planning. arXiv preprint arXiv:2106.08417, 2021.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In NIPS, 2017.

[24] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker. Desire: Distant future
prediction in dynamic scenes with interacting agents. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 336–345, 2017.

[25] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov. Multipath: Multiple probabilistic anchor
trajectory hypotheses for behavior prediction. In L. P. Kaelbling, D. Kragic, and K. Sugiura,
editors, Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of
Machine Learning Research, pages 86–99. PMLR, 30 Oct–01 Nov 2020. URL http://
proceedings.mlr.press/v100/chai20a.html.

[26] A. Scibior, V. Lioutas, D. Reda, P. Bateni, and F. Wood. Imagining the road ahead: Multi-agent
trajectory prediction via differentiable simulation. arXiv preprint arXiv:2104.11212, 2021.

10

https://proceedings.neurips.cc/paper/2019/file/d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf
http://proceedings.mlr.press/v100/chai20a.html
http://proceedings.mlr.press/v100/chai20a.html

	Introduction
	Related Works
	Problem Formulation
	The Model
	Experiements
	Metrics
	Results

	Comparison with Variants of the Proposed Model
	Baseline - forwarding N times (FNT)
	Variant I - stop maintaining the edge feature
	Variant II - forwarding only once

	Conclusion

