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Abstract

We present algorithms that create coresets in an online setting for clustering problems based
on a wide subset of Bregman divergences. Notably, our coresets have a small additive error,
similar in magnitude to the gap between expected and empirical loss Bachem et al. (2017a),
and take update time O(d) for every incoming point where d is the dimension of the point.
Our first algorithm gives online coresets of size Õ(poly(k, d, ϵ, µ)) for k-clusterings according
to any µ-similar Bregman divergence. We further extend this algorithm to show the existence
of non-parametric coresets, where the coreset size is independent of k, the number of clusters,
for the same subclass of Bregman divergences. Our non-parametric coresets also function as
coresets for non-parametric versions of the Bregman clustering like DP-Means. While these
coresets provide additive error guarantees, they are significantly smaller for high dimensional
data than the (relative-error) coresets obtained in Bachem et al. (2015) for DP-Means— for
the input of size n our coresets grow as O(log n) while being independent of d as opposed
to O(dd) for points in Rd Bachem et al. (2015). We also present experiments to compare
the performance of our algorithms with other sampling techniques.

1 Introduction

Clustering is a frequently used operation in data processing. A canonical definition of the clustering problem
is via the k-median, in which k possible centers need to be proposed such that the sum of distances of
every point to its closest center is minimized. There has been a plethora of work, both theoretical and
practical, devoted to finding efficient and provable clustering algorithms in this k-median setting. Most of
this literature is devoted towards dissimilarity measures that are algorithmically easier to handle e.g. the
various ℓp norms, especially Euclidean.

A mathematically elegant family of dissimilarity measures that have found wide use in statistics are the Breg-
man divergences which include the squared Euclidean distance, the Mahalanobis distance, Kullbeck-Leibler
divergence, Itakuro-Saito dissimilarity and many others. While being mathematically satisfying, the chief
drawback of working with Bregman divergences for clustering is algorithmic— most of these divergences
do not satisfy either symmetry or triangle inequality conditions. Hence, developing efficient clustering al-
gorithms for these divergences has been a much harder problem to tackle. Banerjee et al. (2005) did a
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systematic study of the k-median clustering problem under Bregman divergences, and proposed algorithms
that are generalizations of Lloyd’s iterative algorithm for the Euclidean k-means problem. However, scalabil-
ity remains a major issue. Given that there are no theoretical bounds on the quality of the solution obtained
via the Lloyd’s algorithm in the general Bregman setting, a decent solution is often achieved via running
enough iterations as well as by searching over multiple initializations. This is clearly expensive when the
number of data points is large. This problem is further aggravated when the dimension of the input points
is also high and the number of clusters is not known.

Coresets, small summaries of data to enable efficient optimization, have been successfully used in many prob-
lems in computational geometry and more recently in machine learning. A coreset is a judiciously selected
(and reweighted) set of points, often from the input points themselves, such that solving the optimization
problem on the coreset gives a guaranteed approximation to the solution of the optimization problem on the
full data (Lucic et al., 2016).

In this work we explore two specific goals in creating coresets for Bregman divergence based clustering. First,
we wish to create the coresets in an online setting, i.e. the decision about each point should be taken when
the point is first consumed by the algorithm from an online stream. Secondly, we show the existence of a
single coreset that works for all values of k, the number of clusters. We further give an algorithmic version of
it under certain assumption. It is not apriori clear that either of these goals are achievable. Coreset creation
strategies, e.g. (Lucic et al., 2016), often require a rough approximation in order to construct the importance
sampling distribution. This route would seem to preclude taking online decisions.

Yet another issue is the dependence of the coreset size on the number of clusters— k, the number of clusters
can be large, and more importantly, it can be unknown, to be determined only after exploratory analysis
with clustering. When the number of clusters is unknown, even the existence of a coreset of sublinear size
is unclear. Recent work by Huang & Vishnoi (2020) shows that for relative error coresets for Euclidean
k-means, a linear dependence of coreset size on k is both sufficient and inevitable.

In this work, we tackle these questions for Bregman divergences. We develop coresets with small additive
error guarantees. Such results have also been obtained in the Euclidean setting by Bachem et al. (2018a),
and in the online subspace embedding setting by Cohen et al. (2016). We next show that in the case of
non-parametric clustering, there exists a coreset whose size is independent of k, the parameter representing
number of cluster centers. We utilize the sensitivity framework of Feldman & Langberg (2011) jointly with
the barrier functions method of Batson et al. (2012) in order to achieve this. Using an empirical notion of
sensitivity (Baykal et al., 2018) we present an algorithmic version of this result under certain assumptions.
To the best of our knowledge this is the first non-parametric coreset for clustering. A non-parametric coreset
will be useful in problems such as DP-Means clustering (Bachem et al., 2015) and extreme clustering (Kobren
et al., 2017), where number of clusters may not be known apriori. We now formally describe the setup and
list our contributions.

Given A ∈ Rn×d where rows are input points in Rd. Let φ be the mean of A, i.e., φ =
∑

i≤n(ai/n). For a
query Q ⊂ Rd the clustering cost on A with respect to Q is defined as,

fQ(A) =
∑
i≤n

min
q∈Q

fq(ai).

where fq(ai) is a chosen µ-similar Bregman divergence (Definition 2.2). We present algorithms which return
coreset C and set of corresponding weights Ω such that, ∀X ⊂ Rd, |X| = k,

|fX(C, Ω) − fX(A)| ≤ ϵ(fX(A) + fφ(A)) (1)

where, fX(C, Ω) is the weighted cost on points C, i.e., fX(C, Ω) =
∑

ci∈C ωifX(ci). The weight ωi ∈ Ω
corresponds to the point ci ∈ C. For points coming in streaming fashion we use Ai ∈ Ri×d to represent
the first i points that have arrived. Let φi denote the mean point of Ai, i.e., φi =

∑
j≤i(aj/i). Notice that

the additive term fφ(A) can be understood in the following manner—when f(·) is the squared Euclidean
metric, then fφ(A) =

∑
i ∥ai − φ∥2

2 = n × avgi,j∥ai − aj∥2
2.

Our main contributions are as follows,
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• We present an online algorithm called BregmanFilter (Algorithm (1)) which ensures property
equation 1 for any X ∈ Rk×d with at least 0.99 probability. BregmanFilter takes O(d) both
in update time and working space to return a coreset (C, Ω) for A. The expected size of the
coreset is O

(
dk log k

ϵ2µ2

(
log n + log

(
fφ(A)

)
− log

(
fφ2(a2)

)))
(Theorem 4.6). For the special case of k-

means clustering, this implies a online coreset of size O
(

dk log k
ϵ2

(
log n+log

(
fφ(A)

)
− log

(
fφ2(a2)

)))
(Corollary 4.2) .

• In a non-parametric clustering problem, the number of clusters are unknown. We first show the exis-
tence of coreset for non-parametric clustering based on Bregman divergence. Under a mild assump-
tion on the data we also present an algorithmic version,NonParametricFilter (Algorithm (2)),
which creates a coreset (C, Ω) based on importance sampling for clustering that ensures equation 1,
∀X ∈ Ri×d where 1 ≤ i ≤ n. The coreset has O

(
1

ϵ2µ2

(
log n + log

(
fφ(A)

)
− log

(
fφ2(a2)

)))
ex-

pected points (Theorem 5.1). This coreset can be used for DP-Means clustering (Theorem 5.12). For
d log(d) > log(log(n)), the expected coreset size is smaller than O(ddk∗ϵ−2), the current best known
coreset size for DP-means obtained by Bachem et al. (2015), where k∗ is the optimal number of cen-
ters for DP-Means clustering. Further for the special case of k-means clustering, the non-parametric
coreset (C, Ω) for A will have an expected size of O

(
1
ϵ2

(
log n+log

(
fφ(A)

)
− log

(
fφ2(a2)

)))
(Corol-

lary 5.2).

• We present experimental results and compare the performance of our coresets with other known
coreset building techniques. The comparison is done on real-world datasets to support our theoretical
claims.

For Ai, the BregmanFilter maintains an online coreset Ci with corresponding weights Ωi. The coreset
is online in the sense that for every incoming point ai the algorithm either samples or discards the point
before getting the next point. With this we can also ensure an online guarantee, i.e., |fX(Ci) − fX(Ai)| ≤
ϵ(fX(Ai)+fφi

(Ai)), with constant probability ∀i ∈ [n], by taking a union bound over all i. Note that this is
a stronger guarantee and in this case the expected sample size has an excess multiplicative factor of O(log n).

Outline: In section 2 we present all the notations and definitions that we use in the rest of the paper. In
section 3 we discuss the previous works related to the results in this paper. In section 4 we present our first
result, which is an online algorithm for building coresets clustering based on µ-similar Bregman divergences.
In the next section 5 we discuss coreset results for non-parametric clustering for same class of divergences.
In section 6 we show a bound on the uniform deviation for the same class of divergences. Finally we present
some experimental results in section 7 on real datasets.

2 Preliminary

Here we define the notation and the common terms that we use in rest of the paper. The set of the first n
natural number is represented by [n]. A bold lower case letter denotes a vector or a point for e.g. a, and a
bold upper case letter denotes a matrix or set of points as defined by the context for e.g. A. Unless it is
stated otherwise, the matrix A is used to represent n points each in Rd. ai denotes the ith row of matrix A
and aj denotes its jth column. We use the notation Ai to denote the matrix or a set, formed by the first i
rows or points of A seen till a time in the streaming setting. Given A, the smallest and the largest absolute
values are defined as ∥A∥min = mini,j |ai,j | and ∥A∥max = maxi,j |ai,j |.

In a clustering problem, depending on the type of the input points a function is used from a wide range of
divergence measure called Bregman divergence.
Definition 2.1. Bregman divergence: For any strictly convex, differentiable function Φ : Z → R, the
Bregman divergence with respect to Φ, ∀x, y ∈ Z is,

dΦ(y, x) = Φ(y) − Φ(x) − ∇Φ(x)T (y − x)
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We also denote fx(y) = dΦ(y, x). Throughout the paper for some set of centers X in Rd and point a ∈ Rd

we consider fX(a) as a cost function based on Bregman divergence. Such X are also called query set. We
define it as fX(a) = minx∈X fx(a) = minx∈X dΦ(a, x), where dΦ(·) is some Bregman divergence as defined
above. If the set of points in A have corresponding weights {wa} then ∀a ∈ A we define fx(a) = wadΦ(a, x).

Unlike squared euclidean distance, not all Bregman divergences follow metric properties. However there is a
wide sub class called µ-similar Bregman divergence which can relate to distance measure that follows metric
properties.
Definition 2.2. A Bregman divergence dΦ on domain Z is called a µ-similar Bregman divergence for some
µ > 0 iff there exists a positive definite matrix M such that, for each x, y ∈ Z

µdM(y, x) ≤ dΦ(y, x) ≤ dM(y, x)

where dM(y, x) = (y − x)T M(y − x) is the squared Mahalanobis distance.

Going forward, we also denote fM
x (a) = dM(a, x), and hence, we have µfM

x (a) ≤ fx(a) ≤ fM
x (a), ∀x and

∀a ∈ A. Due to this we say fx(·) and fM
x (·) are µ-similar. For Euclidean k-means clustering M is just

an identity matrix and µ = 1. It is known that a large set of Bregman divergences is µ-similar, including
KL-divergence, Itakura-Saito, Relative Entropy, Harmonic etc (Ackermann & Blömer, 2009). In Table 1, we
list the most common µ-similar Bregman divergences, their corresponding M and the µ. In each case the λ
and ν refer to the minimum and maximum values of all coordinates over all points, i.e. the input is a subset
of [λ, ν]d.

Table 1: µ-similar Bregman divergences (Lucic et al., 2016).
Divergence Domain µ M
Squared-Euclidean Rd 1 Id

MahalanobisN Rd 1 N
Exponential-Loss [λ, ν]d ⊂ Rd

+ e−(ν−λ) eν

2 Id

Kullback-Leibler [λ, ν]d ⊂ Rd
+

λ
ν

1
2λ Id

Itakura-Saito [λ, ν]d ⊂ Rd
+

λ2

ν2
1

2λ2 Id

Harmonicα (α > 0) [λ, ν]d ⊂ Rd
+

λα+2

να+2
α(1−α)
2λα+2 Id

Norm-Likeα (α > 2) [λ, ν]d ⊂ Rd
+

λα−2

να−2
α(1−α)

2 να−2Id

Hellinger-Loss [−ν, ν]d ⊂ (−1, 1)d 2(1 − ν2)3/2 2(1 − ν)−3/2Id
∗Mahalanobis distance is also a µ-similar Bregman divergence with µ = 1 and M is the

inverse of the covariance matrix.

There are two types of clustering, hard and soft clustering for Bregman divergence (Banerjee et al., 2005).
In this work, by the term clustering, we only refer to the hard clustering problem.

Coresets: A coreset Har-Peled & Mazumdar (2004); Agarwal et al. (2005); Badoiu & Clarkson (2003) acts
as a small proxy for the original data in the sense that it can be used in place of the original data for a
given optimization problem in order to obtain a provably accurate approximate solution to the problem. Let
ϵ > 0. For a non-negative cost function, say fX(a), where X is a query and a ∈ A, a set of subsampled and
appropriately reweighted points (C, Ω) is an ϵ-coreset if ∀X,

|
∑
a∈A

fX(a) −
∑

(ã,ωã)∈(C,Ω)

ωãfX(ã)| ≤ ϵ
∑
a∈A

fX(a).

Typically, the samples that we will construct will satisfy this condition with a desired probability.

While coresets are typically defined for relative errors, additive error coresets can also be defined similarly.

For ϵ, γ > 0, (C, Ω) is an additive (ϵ, γ) coreset of A if C contains points from A with corresponding weights
in Ω, and ∀X, |

∑
a∈A fX(a) −

∑
(ã,ωã)∈(C,Ω) ωãfX(ã)| ≤ ϵ

∑
a∈A fX(a) + γ. The coresets that are presented

here satisfy such additive guarantees. For ease of representation, sometime we will just use fX(C) instead
of
∑

(ã,ωã)∈(C,Ω) ωãfX(ã) and fX(A) instead of
∑

a∈A fX(a).
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Sensitivity Score: Given an input and an optimization function, a sensitivity score for each input point
measures the importance of the point for that optimization function. For a dataset A, a query space X that
denotes candidate solutions to an optimization problem, and a cost function fX(·), Langberg & Schulman
(2010) define sensitivity scores as follows— the sensitivity of a point a is defined as sa = supX∈X

fX(a)∑
a′∈A

fX(a′)
.

Note that for all points a, sa ∈ [0, 1], and can be treated as a probability score. The sensitivity based
coresets Langberg & Schulman (2010) are created by sampling points according to these probabilities (or
their upper bounds).

While the above definition is standard, we also define the following variant of sensitivity scores as a useful
tool in our results.

Empirical Sensitivity Score: In certain cases, for the query space X , it will be challenging to compute
a reasonable upper bound to the sensitivity scores. In such cases, we will use empirical sensitivity scores
sa = maxX∈Y

fX(a)∑
a′∈A

fX(a′)
where Y is a finite set of queries such that Y ⊂ X .

Online Sensitivity Scores: For inputs coming in a streaming fashion, i.e., the point ai arriving at the
ith instance and so far the algorithm has received Ai−1; now for a query space X and a cost function fX(·)
we define the online sensitivity score for every such point ai as, sai

= supX∈X
fX(ai)∑

j≤i
fX(aj)

.

We focus on creating coresets for clustering. Our first results are on k-median clustering, where the query
space X satisfies X ⊆ Rk×d 1. One can also define a clustering problem when the number of clusters are
unknown. We call this as Non-Parametric Clustering. We define (C, Ω) to be an (ϵ, γ)-additive error coreset
for non-parametric clustering if its size is independent of k (number of centres) and ensures |fX(C)−fX(A)| ≤
ϵfX(A) + γ for all k ≤ n and for all query X ∈ Rk×d.

DP-Means: The DP-Means problem, studied in Kulis & Jordan (2012), formalizes the clustering problem
when the number of clusters is unknown. It can be considered to be a specific case of the well-known facility
location problem. Given a dataset A ∈ Rn×d and a parameter λ > 0, the goal of the problem is to find a
k ∈ (0, n] and an X ∈ Rk×d that minimizes the costDP (A, X), which is defined as follows,

costDP (A, X, k) =
∑
i≤n

min
x∈X

∥ai − x∥2 + λk.

In this paper we consider an obvious extension of the cost function that depends on the Bregman divergences.
Given a dataset A ∈ Rn×d and a parameter λ, the goal of the problem is to find X ∈ Rk×d that minimizes
the costDP (A, X), defined as follows,

costDP (A, X) = fX(A) + λk.

Uniform Deviation: Given a distribution D, input set A = {ai, . . . , am} where each ai is an independent
and identically distributed sample from D, a query X and a function fX(.), the uniform deviation is defined
as ∣∣∣∣Ea∈DfX(a) − 1

m
fX(A)

∣∣∣∣ .
Definition 2.3 (Pseudo-dimension Haussler (1992)). For a function family F mapping from an arbitrary
input space X to R≥0 and a distribution P on X , the pseudo-dimension of F , denoted by Pdim(F), is the
largest d such there is a sequence x1, . . . , xd of domain elements from X and a sequence r1, . . . , rd of reals
such that for each b1, . . . , bd ∈ {above, below}, there is an f ∈ F such that for all i = 1, . . . , d, we have
f(xi) ≥ ri if and only if bi = above.

1Certain Bregman divergences have non-negativity constraints on the input.
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3 Related Work

The initial coresets were used for making the computational geometric algorithms more efficient Badoiu
& Clarkson (2003), as well as to improve the running times for various clustering problems Har-Peled
& Mazumdar (2004); Agarwal et al. (2005). Since then there has been a significant amount of work on
coresets. Interested readers can look at (Woodruff et al., 2014; Bachem et al., 2017b) and the references
therein. Using sensitivities to construct coresets was introduced in (Langberg & Schulman, 2010) and further
generalized by (Feldman & Langberg, 2011). Coresets for clustering problems such as k-means clustering has
been extensively studied (Har-Peled & Mazumdar, 2004; Cohen et al., 2015; Braverman et al., 2016; Feldman
et al., 2016; Bachem et al., 2018a;b; Barger & Feldman, 2020; Feldman et al., 2020). In (Cohen et al., 2015)
the authors reduce the k-means problem to a constrained low rank approximation problem. They show that
a constant factor approximation can be achieved by just O(ϵ−2 log k) size coreset and for (1 ± ϵ) relative
error approximation they get coreset of size O(kϵ−2). In (Barger & Feldman, 2020; Feldman et al., 2016),
the authors discuss a deterministic algorithm for creating coresets for clustering problem which ensures a
relative error approximation. The streaming version of (Barger & Feldman, 2020) returns a coreset of size
O(kϵ−2

ϵ−2 log n) which ensures a (1 ± ϵ log n) relative error approximation. Feldman et al. (2016) reduce the
problem of k-means clustering to ℓ2 frequent item approximation. The streaming version of the algorithm
returns a coreset of size O(k2ϵ−2 log2 n). In (Bachem et al., 2018b), the authors give an algorithm which
returns a one shot coreset for all ℓp k-clustering problem, where p ∈ [1, pmax]. Their algorithm creates a grid
over the range [1, pmax] and based on the sensitivity at each grid point the coreset is built. It returns a coreset
of size Õ(16pmaxdk2) for which it takes Õ(ndk) ensuring (1± ϵ) relative error approximation. In (Boutsidis &
Magdon-Ismail, 2013; Cohen et al., 2015), authors show that one can use spectral approximation technique
(Batson et al., 2012) for deterministic feature selection for k-means problem. In (Bachem et al., 2018a),
the authors give an algorithm to create a coreset which only takes O(nd) time and returns a coreset of size
O(dkϵ−2 log k) at a cost of small additive error approximation. Their algorithm can further be extended for
clustering based Bregman divergences which are µ-similar to squared Mahalanobis distance. In (Lucic et al.,
2016) the authors give algorithm to create such coresets for both hard and soft clustering based on µ-similar
Bregman Divergence. In this paper we present an online algorithm which is returns just a Õ(dkϵ−2 log k)
size coreset with similar guarantees.

There are several online algorithms for k-means clustering (Liberty et al., 2016; Lattanzi & Vassilvitskii,
2017; Bhaskara & Rwanpathirana, 2020). These algorithms do not create coresets, rather focus on giving
online algorithms for the clustering problem. In (Liberty et al., 2016) the authors give an online algorithm
that maintains a set of centers such that the k-means cost on these centers is Õ(W ∗) where W ∗ is the optimal
k-means cost. Lattanzi et.al., Lattanzi & Vassilvitskii (2017) improve this result and give a robust algorithm
that can also handle outliers in the dataset. We further explore the relation of these algorithms with our
online coresets empirically in the experimental section.

The coreset building methods can also be analyzed from the point of view of generalization of the resulting
clustering. There are several results on uniform bound deviation for k-means clustering problem (Biau et al.,
2008; Bachem et al., 2017a). The result in Biau et al. (2008) shows that the difference between the optimal
empirical loss and the optimal clustering loss (i.e., the expected excess risk) can be bounded in terms of
the radius of the input data and inverse of the input size. As our main contribution in this paper is about
building strong coresets, we extend the results in Bachem et al. (2017a), which ensure that the difference
between empirical loss and clustering loss for all possible queries are bounded.

We use Theorem 3.2 from Chhaya et.al., Chhaya et al. (2020b), where the authors show that the coreset built
using sensitivity framework has a sampling complexity that only depends on O(S) instead of O(S log(S)) in
(Braverman et al., 2016), where S is the sum of sensitivity scores. Our coreset size for clustering based on
µ-similar Bregman divergence only has a dependence of O(1/µ), unlike in (Lucic et al., 2016; Bachem et al.,
2018a) where the dependence is O(1/µ2).
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Algorithm 1 BregmanFilter
Require: Streaming points ai, i = 1, 2, . . . , n; r > 0
Ensure: (C, Ω)

C0 = Ω0 = φ0 = ∅; S = 0
λ = ∥a1∥min; ν = ∥a1∥max
while i ≤ n do

λ = min{λ, ∥ai∥min}; ν = max{ν, ∥ai∥max}
Update µi = λ/ν; Update Mi based on (Table 1)
φi = ((i − 1)φi−1 + ai)/i; S = S + fMi

φi
(ai)

if i = 1 then
pi = 1

else
li = 2f

Mi
φi

(ai)
µiS + 8

µi(i−1) ; pi = min{1, rli}
end if

(ci, ωi) =
{

(ai, 1/pi) w. p. pi

(∅, 0) else
(Ci, Ωi) = (Ci−1, Ωi−1) ∪ (ci, ωi)

end while
Return (C, Ω)

4 Online Coresets for Clustering

We consider that the input points are coming in a streaming manner, i.e., each point on arrival is either
selected to be in the coreset or discarded. We present our first algorithm called BregmanFilter. It creates a
coreset in an online manner for clustering based on Bregman divergences. The coreset is built via importance
sampling, which is based on sensitivity framework, i.e., we use sensitivity scores to define the sampling
probability of each point. The algorithm starts with the knowledge of Bregman divergence dΦ. It is important
to note that for a fixed dΦ if the domain of the input changes, then both the parameters M and µ also change
(Ackermann & Blömer, 2009; Lucic et al., 2016) (table 1). This is exactly what happens in our case, because
we only have access to the stream of input. These parameters are important because they are used to
compute an upper bound on the sensitivity scores of every points.

Overview: Under a fixed µ-similar Bregman divergence, the input to the algorithm is a stream of points
and an user defined parameter r that depends on ϵ and the VC dimension of query space of the problem,
such that it returns (C, Ω) which is an ϵ coreset. Here on arrival of every input point say ai, the algorithm
first updates the smallest and largest absolute values as λ and ν, such that λ = ∥Ai∥min and ν = ∥Ai∥max.
It also updates the mean φi. Next it computes both the Mahalanobis matrix Mi as well as µi. Fortunately,
computing Mi and µi requires maintaining only two simple statistic of the data (Table 1). Using these
terms it computes an upper bound for the sensitivity score, which is then used to decide whether ai should
be stored in the coreset. If selected, the point ai is stored with an appropriate weight ωi. At the end of
the stream we get (C, Ω). Note that this algorithm is online in nature because for every point its sampling
decision is taken before looking at the next incoming point. We present BregmanFilter as algorithm 1.

Now we present some supporting lemmas based on which we show the correctness and the corresponding
guarantees of the algorithm. Note that for Ai formed by first i data points. The algorithm BregmanFilter
maintains Mi and µi (as per Table 1) such that, µif

Mi
x (aj) ≤ fx(aj) ≤ fMi

x (aj), ∀x and ∀aj ∈ Ai. Using
this we show a useful observation that is immediate, based on M and µ defined in Table 1.
Lemma 4.1. For all Bregman divergences in Table 1, for j ≤ i, µj ≥ µi and Mj ⪯ Mi.

Proof. At any ith point we have λ = ∥Ai∥min and ν = ∥Ai∥max, i.e., the smallest and largest absolute values
in Ai. Further we have ∥Aj∥min ≥ ∥Ai∥min and ∥Aj∥max ≤ ∥Ai∥max for j ≤ i. By using the formula for M
for all Bregman divergences given in Table 1 we have Mj ⪯ Mi and µj ≥ µi to be always true for j ≤ i.
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For any Bergman divergence the mean of a set of points always minimizes the sum of Bergman divergences
between the set of points and any other point. Now recall that for all i ∈ [n], we use φi to represent the
mean of the first i points, i.e., φi =

∑
j≤i aj/i. Hence we have the following important observation.

Lemma 4.2. For points arriving in streaming manner, ∀i > j we have, fφi(Ai) ≥ fφj (Aj).

Proof. We have,

fφi(Ai) =
∑
r≤j

fφi(ar) +
∑

j<r≤i

fφi(ar)
(i)
≥
∑
r≤j

fφj (ar) +
∑

j<r≤i

fφi(ar) ≥ fφj (Aj).

In (i) we use the fact that φj minimizes the sum of Bregman divergence between any point and first j
points.

Due to lemma 4.1 and lemma 4.2, we have the following lemma which is then used to upper bound the online
sensitivity scores with li as defined in BregmanFilter.
Lemma 4.3. For a fixed µ-similar Bregman divergence with streaming inputs, let φi =

∑
j≤i(aj/i) and Mi

is the p.s.d. Mahalanobis matrix for Ai (as Table 1). If j ≤ i, then fMi
φi

(Ai) ≥
∑

j≤i f
Mj
φj (aj)

Proof.

fMi
φi

(Ai) =
∑
j≤i

(aj − φi)T Mi(aj − φi)

(i)
≥ (aj − φi)T Mi(aj − φi) +

∑
j≤i−1

(aj − φi)T Mi−1(aj − φi)

≥ (aj − φi)T Mi(aj − φi) +
∑

j≤i−1
(aj − φi)T Mj(aj − φi)

(ii)
≥ (aj − φi)T Mi(aj − φi) +

∑
j≤i−1

(aj − φi−1)T Mj(aj − φi−1)

≥ (aj − φi)T Mi(aj − φi) +
∑

j≤i−1
(aj − φj)T Mj(aj − φj)

=
∑
j≤i

fMj
φj

(aj)

In (i) we used the property that Mi−1 ⪯ Mi. In (ii) we used the fact that for Ai−1, its mean φi−1 minimizes
the cost.

As we use li for building our coreset, the expected coreset size depends on the sum of li’s. In the next lemma
we prove that the scores li’s defined in BregmanFilter upper bound the online sensitivity scores of ai, i.e.,
supX∈Rk×d

fX(ai)
fX(Ai−1)+fφi

(Ai) and we also show that the sum of li’s is also bounded.

Lemma 4.4. For every incoming points ai the li as defined in BregmanFilter, upper bounds the online
sensitivity score. I.e., ∀i ∈ [n],

sup
X∈Rk×d

fX(ai)
fX(Ai−1) + fφi(Ai)

≤ li (2)

Furthermore, ∑
i≤n

li ≤
(

8 log n + 4 log
(
fM

φ (A)
)

− 4 log
(
fM2

φ2
(a2)

))
/µ.
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Proof. At step i, let (µi, Mi) be the parameters such that, ∀ai ∈ A and ∀X, µif
Mi
x (aj) ≤ fx(aj) ≤ fMi

x (aj)

and φi =
∑

j≤i
aj

i . Now for any query X ∈ Rk×d, each point aj ∈ Ai−1 has some closest point xl ∈ X. Now
for such pair {aj , xl}, using the property (∥a+b∥)2 ≤ 2(∥a∥2+∥b∥2) we have fMi

xl
(φi) ≤ 2fMi

xl
(aj)+2fMi

φi
(aj).

So by taking into account for all the points in Ai−1 we get (i−1)fMi

X (φi) ≤ 2
∑

aj∈Ai−1
(fMi

X (aj)+fMi
φi

(aj)) =
2fMi

X (Ai−1)+2fMi
φi

(Ai−1). We use this triangle inequality in the following analysis, which holds ∀X ∈ Rk×d,

fX(ai)
fX(Ai−1) + fφi

(Ai)
(i)
≤ fMi

X (ai)
fX(Ai−1) + fφi

(Ai)

≤
2fMi

φi
(ai) + 2fMi

X (φi)
fX(Ai−1) + fφi

(Ai)

≤
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1) + 4
i−1 fMi

X (Ai−1)
fX(Ai−1) + fφi(Ai)

(ii)
≤

2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1) + 4

i−1 fMi

X (Ai−1)
µi(fMi

X (Ai−1) + fMi
φi (Ai))

=
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1)
µi(fMi

X (Ai−1) + fMi
φi (Ai))

+
4

i−1 fMi

X (Ai−1)
µi(fMi

X (Ai−1) + fMi
φi (Ai))

≤
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1)
µi(fMi

X (Ai−1) + fMi
φi (Ai))

+ 4
µi(i − 1)

≤
2fMi

φi
(ai)

µif
Mi
φi (Ai)

+
4

i−1 fMi
φi

(Ai−1)
µif

Mi
φi (Ai)

+ 4
µi(i − 1)

(iii)
≤

2fMi
φi

(ai)
µif

Mi
φi (Ai)

+ 8
µi(i − 1)

≤
2fMi

φi
(ai)

µi

∑
j≤i f

Mj
φj (aj)

+ 8
µi(i − 1)

The inequality (i) is due to µi similarity, i.e., fX(ai) ≤ fMi

X (ai). Next couple of inequalities are by applying
triangle inequality on the numerator. In the (ii) inequality we use the µi similarity to get a lower bound on
the denominator term. We get (iii) inequality by upper bounding the second and third term by 4/(µi(i−1)).
By the property of Bregman divergence we know that φi−1 = arg minx fx(Ai−1) and, so we have fφi

(Ai) =
fφi

(Ai−1) + fφi
(ai) ≥ fφi−1(Ai−1) + fφi

(ai). So by induction we get fφi
(Ai) ≥

∑
j≤i fφj

(ai).

As, fMi
φi

(Ai) ≥
∑

j≤i f
Mj
φj (aj) which can be maintained as a running sum hence ∀i, the score li can be

computed in just one pass.

Next, in order to upper bound
∑

i≤n li, consider the denominator term of li as follows,∑
j≤i

fMj
φj

(aj) =
∑

j≤i−1
fMj

φj
(aj) + fMi

φi
(ai)

=
∑

j≤i−1
fMj

φj
(aj)

(
1 +

fMi
φi

(ai)∑
j≤i−1 f

Mj
φj (aj)

)

≥
∑

j≤i−1
fMj

φj
(aj)

(
1 +

fMi
φi

(ai)∑
j≤i f

Mj
φj (aj)

)
=

∑
j≤i−1

fMj
φj

(aj)(1 + qi)

(i)
≥ exp(qi/2)

∑
j≤i−1

fMj
φj

(aj)

9



Published in Transactions on Machine Learning Research (07/2022)

exp(qi/2) ≤
∑

j≤i f
Mj
φj (aj)∑

j≤i−1 f
Mj
φj (aj)

where for inequality (i) we used that qi = f
Mi
φi

(ai)∑
j≤i

f
Mj
φj

(aj)
≤ 1 and hence we have (1 + qi) ≥ exp(qi/2). Now as

we know that
∑

j≤i f
Mj
φj (aj) ≥

∑
j≤i−1 f

Mj
φj (aj) hence the following product results into a telescopic product

and we get,

∏
2≤i≤n

exp(qi/2) ≤
∑

j≤n f
Mj
φj (aj)

fM2
φ2 (a2)

So by taking logarithm of both sides we get
∑

2≤i≤n qi ≤ 2 log
(
fM

φ (A)
)

− 2 log
(
fM2

φ2
(a2)

)
. Further incor-

porating the terms 8
µi(i−1) we have li = 2qi

µi
+ 8

µi(i−1) . Hence,
∑

2≤i≤n li ≤ 4µ−1(log n + log
(
fM

φ (A)
)

−
log
(
fM2

φ2
(a2)

)
). Where µ = µn ≤ µi and M ⪰ Mn ⪰ Mi for all i ≤ n.

Note that the upper bounds and the sum are independent of k (#clusters). Now in the next Lemma we
show that by sampling enough points based on li, we get equation 1.

Lemma 4.5. In BregmanFilter, setting r = O
(

dk(log k) log(1/ϵ)
ϵ2

)
, the returned coreset (C, Ω) satisfies the

following guarantee with at least 0.99 probability ∀X ∈ Rk×d

|fX(C, Ω) − fX(A)| ≤ ϵ(fX(A) + fφ(A)) (3)

We proof this lemma by applying Bernstein’s inequality on the following random variables

wi =
{

(1/pi − 1)fX(ai) with probability pi

−fX(ai) with probability (1 − pi).

A detailed proof is discussed in the appendix (A.1.1).

Now using the Lemmas 4.4 and 4.5, we have the following main theorem of this section.
Theorem 4.6. For points coming in streaming fashion, BregmanFilter returns a coreset (C, Ω) for the
clustering based on Bregman divergence such that for all X ∈ Rk×d, with at least 0.99 probability it ensures
the following guarantee.

|fX(C, Ω) − fX(A)| ≤ ϵ(fX(A) + fφ(A))

Such a coreset has O
(

dk(log k) log(1/ϵ)
µϵ2

(
log n + log

(
fM

φ (A)
)

− log
(
fM2

φ2
(a2)

)))
expected samples.

BregmanFilter takes O(d) update time and uses O(d) working space.

The expected sample size of the coreset (C, Ω) returned by BregmanFilter is bounded by r
∑

i≤n li. Using
Lemma 4.4 and Lemma 4.5 we obtain the expected sample size to be O

(
dk(log k) log(1/ϵ)

µϵ2

(
log n+log

(
fM

φ (A)
)
−

log
(
fM2

φ2
(a2)

)))
. Further, by using the µ-similarity expected sample size is also O

(
dk(log k) log(1/ϵ)

µ2ϵ2

(
log n +

log
(
fφ(A)

)
− log

(
fφ2(a2)

)))
.

The algorithm requires a working space of O(d) which is to maintain the mean(centre) φi, µi, Mi(sparse
matrix) and the running sum S. Further for every incoming point BregmanFilter only needs to compute the
distance between the point and the current mean hence the update time is just O(d). So the running time of
the entire algorithm is O(nd), which is why it is easy to scale for large n. Note that although Theorem 4.6
gives the guarantees at the last instance, but using the same analysis technique one can ensure an equivalent
guarantee at every ith instance by taking an union bound– this requires an extra multiplicative factor of
log(n) in the sample size. By doing so, (Ci, Ωi) satisfies the following for Ai, ∀i ∈ [n] and ∀X ∈ Rk×d with
at least 0.99 probability,
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|fX(Ci, Ωi) − fX(Ai)| ≤ ϵ(fX(Ai) + fφi(Ai)) (4)

Note that BregmanFilter returns a smaller coreset C compare to offline coresets Bachem et al. (2018b);
Lucic et al. (2016) but at a cost of additive factor approximation that depends on the structure of the
data. Further unlike Bachem et al. (2018a); Lucic et al. (2016) our sampling complexity only depends on
1/µ. BregmanFilter can be easily generalized to create coresets for weighted clustering where each point ai

has some weight wi such that fX(ai) = wi minx∈X dΦ(ai, x). While sampling point (say ai) the algorithm
BregmanFilter sets ci = ai and ωi = wi/pi with probability pi.

Notice that the additive term (second term) in the guarantee of Theorem 4.6 depends on the variance of the
input data. So it can be significantly large compare to the relative term (first term). One way to address this
issue is to use an user defined parameter τ ∈ (0, 1) to reduce the effect of additive term. In the algorithm
BregmanFilter, one needs to update li = 2f

Mi
φi

(ai)
µiτS + 4

µi(i−1) ( 1
τ + 1). In the following corollary we state our

guarantee.
Corollary 4.1. For points coming in streaming fashion and with the above change in BregmanFilter, the
algorithm returns a coreset (C, Ω) for the clustering based on Bregman divergence such that for all X ∈ Rk×d,
with at least 0.99 probability it ensures the following guarantee.

|fX(C, Ω) − fX(A)| ≤ ϵfX(A) + ϵ′fφ(A)

where ϵ′ = ϵ · τ . Such a coreset has O
(

dk(log k) log(1/ϵ)
µϵ2

(
log n + log

(
fM

φ (A)
)

−log
(

f
M2
φ2 (a2)

)
τ

))
expected samples.

It takes O(d) update time and uses O(d) working space.

The proof is similar to the proof of Theorem 4.6. Here, an important change in the analysis is that instead
of equation 2 we use following sensitivity function,

sup
X∈Rk×d

fX(ai)
fX(Ai−1) + τfφi

(Ai)
. (5)

In the appendix we first present the upper on these scores followed by the proof of the above corollary. Note
that with an increase in the coreset size by a factor of 1

τ one can improve the additive error guarantee by a
factor of τ .

4.1 Online Coresets for k-means Clustering

In k-means clustering, most commonly used Bregman divergence measure is the squared euclidean distance.
Now for squared euclidean distance we know that, Mi = Id and µi = 1, ∀i ∈ [n]. So in this case the algorithm
BregmanFilter does not need to maintain Mi and µi. In the following corollary we state the guarantee of
BregmanFilter for k-means clustering.
Corollary 4.2. Let A ∈ Rn×d such that the points are coming in streaming manner and fed to
BregmanFilter, it returns a coreset (C, Ω) which ensures the guarantee equation 1 ∀X ∈ Rk×d with prob-
ability at least 0.99 for the k-means problem. Such a coreset has O

(dk(log k) log(1/ϵ)
ϵ2

(
log n + log

(
fφ(A)

)
−

log
(
fφ2(a2)

)))
expected samples. The update time is O(d) time and uses O(d) as working space.

Proof. The proof follows by combining Lemma 4.4 and Lemma 4.5. As k-means clustering has Mi = Id and
µi = 1 for all i ≤ n, the upper bound on the sensitivity scores is just,

li = fφi(ai)∑
j≤i fφj

(aj) + 8
i − 1

It can be verified by a similar analysis as in the proof of Lemma 4.4. The proof of the second part of Lemma
4.4 and Lemma 4.5 will follow as it is. Further note that k-means is a hard clustering hence the ϵ-net
size is O(ϵ−dk log k). Hence the expected size of C returned by BregmanFilter is O

(
dk(log k) log(1/ϵ)

ϵ2

(
log n +

log
(
fφ(A)

)
− log

(
fφ2(a2)

)))
. Further, similar to other µ-similar Bregman divergences, here in this case

also the update time is O(d) and uses a working space of O(d).

11



Published in Transactions on Machine Learning Research (07/2022)

5 Coresets for Non-Parametric Clustering

For data coming in an streaming fashion, it is extremely challenging to anticipate the value of k with having
some domain knowledge. For such an input one requires to solve a non-parametric clustering problem, i.e.,
the problem is find a clustering as well as a value of k.

Our previous algorithm BregmanFilter requires such k and the size of the coreset returned by it depends
on such k (#clusters). It is mainly due to the union bound we need to take over a set in the query space
(ϵ-net). Here we explore the possibility of building a coreset non-parametric clustering problem. Naturally
the size of such coresets are independent of any k. However, it ensures a provable guarantee for any query
X with at most n centers.

Even showing the existence of such a coreset is not obvious. It is not difficult to realize that it is impossible
to get a sublinear sized coreset for non-parametric clustering which ensures a relative error approximation.
The following example illustrates this. Let A be set of n points and let C be a set of size m with weights Ω,
where m = o(n). Now for (C, Ω) to be a relative error coreset for non-parametric clustering, it must ensure
the following for all X with at most n rows,

|fX(C, Ω) − fX(A)| ≤ ϵfX(A).

However, notice that no matter what the set C is, the above claim is false when X = C. This is because for
such a query X the total cost fX(C, Ω) = 0, whereas fX(A) ̸= 0 since m = o(n).

5.1 Existence of sublinear sized coresets for non-parametric clustering

In this subsection, we show the existence of coreset for non-parametric clustering that ensures an additive
error approximation guarantee. The proof for this will proceed via the probabilistic method– we will design a
set of sampling probabilities that will be used to show the existence of the claimed coreset. The main novelty
here is that the sampling scores are not the usual sensitivity scores Feldman & Langberg (2011), which are
defined for all the data points all at once. In contrast, we define the scores iteratively— for every step i, we
define a score for the ith point, and this score depends on the coreset maintained by the algorithm till this
step, i.e., these scores are also random variables themselves. We will then show a bound on the expected
sample size.

At each step i we define two sensitivity scores called barrier sensitivity scores. We start by defining barrier
sensitivity scores.
Definition 5.1 (Barrier Sensitivity Scores). Let Ai−1 be the set first set of (i−1) points and φi =

∑
j≤i aj/i

be the mean of Ai. Let (Ci−1, Ωi−1) be a weighted subsample of Ai−1. At step i, the upper barrier sensitivity
su

i = supX ru
i (X) and the lower barrier sensitivity sl

i = supX rl
i(X), where:

ru
i (X) = fX(ai)

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi
(Ai)

(6)

rl
i(X) = fX(ai)

fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) + ϵfφi
(Ai)

(7)

here sup is over all X with at most n centers.

Note that unlike the regular sensitivity scores, the above scores are neither guaranteed to be non-negative
nor bounded by 1, if the sets Ci−1 and weights Ωi−1 are arbitrary. Our algorithm will, however, maintain
an invariant (which is effectively the “coreset-property” of (Ci−1, Ωi−1)) that guarantees the non-negativity
of the scores.

We will sample points based on the upper bounds on the above barrier sensitivity, and show that the resulting
set is a coreset for non-parametric clustering. A similar technique has been used in (Cohen et al., 2016) to
build coresets for spectral approximation for matrices. In case of general cost functions, especially Bregman
divergences, getting nontrivial upper bounds (i.e., bounds less than 1) on su

i and sl
i is very challenging.
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In order to show the existence result, we assume that we have access to an oracle that returns a upper
bound on these sensitivity scores. Utilizing these upper bounds, we show the existence of coreset for the
non-parametric clustering problem. We later show that under some assumption we can get an upper bound
on these scores and thereby getting an algorithm that returns a desired coreset the problem.

5.1.1 Algorithm Overview:

For every point ai, we assume that the oracle returns s̃u
i and s̃l

i such that s̃u
i ≥ su

i and s̃l
i ≥ sl

i. Define pi

and ωi as follows– pi = min{1, cus̃u
i + cls̃l

i}, where cu = 2
ϵ + 1 and cl = 2

ϵ − 1. Define ωi = 1
pi

. We sample ai

to be in the coreset with probability pi and give it a weight ωi if included. Such a sampled set of points are
going to ensure the guarantee in the following theorem.
Theorem 5.1. Let A ∈ Rn×d, for every Bregman divergence dΦ as in table (1) the above sampling technique
returns a coreset (C, Ω) such that ∀X with at most n centers it ensures.∣∣fX(C, Ω) − fX(A)

∣∣ ≤ ϵ(fX(A) + fφ(A)). (8)

The expected size of such a coreset is O
(

1
µϵ2

(
log n + log

(
fM

φ (A)
)

− log
(
fM2

φ2
(a2)

)))
.

Note that the above guarantee equation 8 is deterministic, but the coreset size is a random variable. To
prove the above theorem we use the following supporting lemmas. We first show that for each point ai,
if s̃u

i and s̃l
i upper bound the sensitivity scores su

i and sl
i, then the sampled coreset would guarantee that

equation 4 holds for all X with at most n centers.
Lemma 5.2. Suppose the oracle returns s̃u

i and s̃l
i such that, ∀i ∈ [n].

sup
X

fX(ai)
(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi

(Ai)
≤ s̃u

i

sup
X

fX(ai)
fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) + ϵfφi(Ai)

≤ s̃l
i

Let ϵ > 0. The sampling probability for first point is p1 = 1, and for the ith point is pi = min{s̃i, 1} where
s̃i = cus̃u

i + cls̃l
i, such that cu = 2

ϵ + 1 and cl = 2
ϵ − 1.

It maintains,

(Ci, Ωi) =
{

(Ci−1, Ωi−1) ∪ (ai,
1
pi

) if sampled,

(Ci−1, Ωi−1), else.

such that ∀X with at most n centers it guarantees∣∣∣fX(Ci, Ωi) − fX(Ai)
∣∣∣ ≤ ϵ(fX(Ai) + fφi(Ai)).

Proof. We show this by induction. At i = 1 this is true, as we have p1 = 1. So we get,

(1 − ϵ)fX(a1) ≤ fX(c1, ω1) ≤ (1 + ϵ)fX(a1) (9)

where c1 = a1 and ω1 = 1. Now consider that at i − 1 the tuple (Ci−1, Ωi−1) ensures

|fX(Ai−1) − fX(Ci−1, Ωi−1)| ≤ ϵ(fX(Ai−1) + fφi−1(Ai−1)) (10)

We show that (Ci, Ωi) also holds a similar guarantee for Ai. Recall that we need to show that upon creating
the sampling probability (and weight) by using an upper bound on the barrier sensitivity scores, no matter
whether the random process samples the point ai or not, the tuple (Ci, Ωi) will ensure the desired guarantee.
Recall that the sampling probability pi = min{1, cus̃u

i + cls̃l
i}. We first take the case when pi = 1, and hence

ci = ai and ωi = 1. So we have,

|fX(Ai−1) − fX(Ci−1, Ωi−1)| ≤ ϵ(fX(Ai−1) + fφi−1(Ai−1))
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|fX(Ai) − fX(Ci, Ωi)|
(i)
≤ ϵ(fX(Ai−1) + fφi−1(Ai−1))

|fX(Ai) − fX(Ci, Ωi)|
(ii)
≤ ϵ(fX(Ai) + fφi(Ai))

Here, (i) is true because fX(ai) = fX(ci, ωi). In (ii) we only increase the RHS, because fφi
(Ai) ≥

fφi−1(Ai−1) (Observation 4.2) and fX(ai) ≥ 0. So, finally we have,

(1 − ϵ)fX(Ai) − ϵfφi
(Ai) ≤ fX(Ci, Ωi) ≤ (1 + ϵ)fX(Ai) + ϵfφi

(Ai)

Next when pi < 1 then for the upper bound we use the upper barrier sensitivity definition i.e., su
i ,

pi ≥ s̃u
i ≥ su

i

Using the definition of su
i , we have that ∀X,

pi

(i)
≥ fX(ai)

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi
(Ai)

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi
(Ai) ≥ fX(ai)

pi

(1 + ϵ)fX(Ai−1) + ϵfφi
(Ai) ≥ fX(Ci−1, Ωi−1) + fX(ai)

pi

Now, if ai is actually sampled, fX(Ci−1, Ωi−1) + fX(ai)
pi

= fX(Ci, Ωi), and hence,

(1 + ϵ)fX(Ai−1) + ϵfφi
(Ai) ≥ fX(Ci, Ωi)

(1 + ϵ)fX(Ai) + ϵfφi
(Ai) ≥ fX(Ci, Ωi)

This shows that the upper bound claim is true with ai is sampled in (Ci, Ωi). In case that pi < 1 and ai is
not actually sampled, we have fX(Ci, Ωi) = fX(Ci−1, Ωi−1)and hence follows immediately from above. So,
when pi < 1, irrespective of ai being sampled in (Ci, Ωi) or not, the desired upper bound claim for Ai holds.

For the lower bound we use the lower barrier sensitivity definition i.e., sl
i in a similar manner–

1 > s̃l
i

1 > sl
i

1 ≥ fX(ai)
fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) + ϵfφi

(Ai)
fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) + ϵfφi(Ai) ≥ fX(ai)

fX(Ci−1, Ωi−1) ≥ (1 − ϵ)fX(Ai−1) − ϵfφi(Ai) + fX(ai)
fX(Ci−1, Ωi−1) ≥ (1 − ϵ)fX(Ai) − ϵfφi(Ai)

When the point ai is not sampled in (Ci, Ωi) we have (Ci−1, Ωi−1) = (Ci, Ωi) and hence we have our
inductive step. If ai does get sampled than fX(Ci, Ωi) ≥ fX(Ci−1, Ωi−1). Hence in both the cases we have
that

fX(Ci, Ωi) ≥ (1 − ϵ)fX(Ai) − ϵfφi
(Ai)

This completes the proof of both the lower and upper bound for the ith step.

There are two important points to note from the above lemma.

• Since, the oracle is giving an upper bound on the barrier sensitivity scores, so the coreset guarantees
are deterministic. That is when, pi < 1 then irrespective of ai being sampled in the (Ci, Ωi) or not,
it always ensures the guarantee. It implies that if we run this process multiple times on the same
data stream, then each time we get a different coreset but each coreset ensures the desired guarantee
with probability 1.
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• Due to the barrier sensitivity score based sampling, the coreset guarantee holds ∀X, and we do
not require the knowledge of pseudo dimension of the query space. This intuition is similar to the
deterministic spectral sparsification claim in (Batson et al., 2012).

Next we need to analyze the expected sample size. Note that, unlike the the online sensitivity scores in
BregmanFilter, the barrier sensitivity scores themselves are random variables, and depend both on the
order of the input stream as well as the previous sampling decisions while maintaining (Ci−1, Ωi−1). Next,
we show that the expectation of these scores can be bounded, hence giving a bound on the expected coreset
size. We first present a supporting lemma.
Lemma 5.3. Given non-negative scalars q, r, s, u, v and w, where q, r, s and w are positive, we define a
random variable t as,

t =
{

q − u · r with probability p,

q − v · r with probability (1 − p).
If r

q+w = 1 then we get,

E
[

s

t + w
− s

q + w

]
= pu + (1 − p)v − uv

(1 − u)(1 − v)

(
s

q + w

)
The proof is discussed in the appendix (A.2.1). Let Πi−1 ∈ {0, 1}i−1 be the sampling decisions (0 and 1 indi-
cating the not-sampled/sampled decision respectively) that the algorithm made while creating (Ci−1, Ωi−1),
based on which the sampling probability of the next point ai is being computed. The i coordinates of Πi

will be denoted as π1, . . . , πi.

Before bounding the expected barrier sensitivity scores we first show that the at any step i, the upper bound
on the expected sensitivity barrier score is independent of the sampling choice made by the algorithm in the
previous step for the point ai−1. Recall, cu = 2

ϵ + 1 and cu = 2
ϵ − 1, for which we show a helpful lemma.

Lemma 5.4. For any step j ≥ 1,

fX(ai)
pj+1((ϵ/2)fX(Ai−1) + (1 + ϵ/2)fX(Aj) − fX(Cj , Ωj)) ≤ 1

cu

fX(ai)
pj+1(fX(Cj , Ωj)) − (ϵ/2)fX(Ai−1) − (1 − ϵ/2)fX(Aj) ≤ 1

cl
.

Again the proof is delegated to the appendix (A.2.2). Next we show the following lemma which provides a
bound on the expected barrier sensitivity score. The detailed proof is discussed in the appendix (A.2.3).
Lemma 5.5. For points that are coming in a stream, let i ≥ j + 1, and let πj+1 denote the sampling choice
that the algorithm has made at (j + 1)th step. Then we have,

Eπj+1

[
fX(ai)

γu
i−1,j+1 + ϵfφi

(Ai)

]
≤ fX(ai)

γu
i−1,j + ϵfφi

(Ai)

Eπj+1

[
fX(ai)

γl
i−1,j+1 + ϵfφi

(Ai)

]
≤ fX(ai)

γl
i−1,j + ϵfφi

(Ai)

In the following lemma we bound the expected barrier sensitivity score with a term independent of any
sampling choice made by the algorithm until then. Finally, it yields the expected sample size.
Lemma 5.6. Let A be a set of n points each in Rd. For point ai and for all X ∈ Rk×d we have following
bound ∀i ∈ [n],

EΠi−1

[
fX(ai)

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi
(Ai)

]
≤

2fMi
φi

(ai)
µiϵ
∑

j≤i f
Mj
φj (aj)

+ 12
µiϵ(i − 1)

EΠi−1

[
fX(ai)

fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) + ϵfφi
(Ai)

]
≤

2fMi
φi

(ai)
µiϵ
∑

j≤i f
Mj
φj (aj)

+ 12
µiϵ(i − 1)
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Proof. Due to lemma 5.5 we show that expected sensitivity score for any ai is independent of the sampling
choice made by the algorithm for ai−1 point. We show the result for the upper barrier sensitivity score. The
analysis for the lower barrier sensitivity score is very similar which can be found in the appendix A.2.4.

Let (1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) = fX(Au
i−1) where fX(Au

i−1) =
∑

j≤i−1 fX(au
j ). Here each term

fX(au
j ) = (1 + ϵ − p−1

j )fX(aj) if aj is present in Ci−1 else fX(au
j ) = (1 + ϵ)fX(aj). Now the expected upper

bound on the upper barrier sensitivity score can be bounded as follows.

EΠi−1

[
fX(ai)

fX(Au
i−1) + ϵfφi(Ai)

]
(i)
≤ EΠi−1

[
fMi

X (ai)
fX(Au

i−1) + ϵfφi(Ai)

]
(ii)
≤ Eπi−1

[[2fMi
φi

(ai) + 4
i−1

∑
aj∈Ai−1

[fMi
φi

(aj) + fMi

X (aj)]
]

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi
(Ai)

∣∣∣Πi−2

]

= Eπi−1

[ [
2fMi

φi
(ai) + 4

i−1
∑

aj∈Ai−1
fMi

φi
(aj)

]
(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi(Ai)

∣∣∣Πi−2

]
+ Eπi−1

[ 4
i−1 fMi

X (Ai−1)
(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi(Ai)

∣∣∣Πi−2

]
(iii)= Eπi−1

[2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

γu
i−1,i−1 + ϵfφi

(Ai)

∣∣∣Πi−2

]
+ Eπi−1

[ 4
i−1 fMi

X (Ai−1)
γu

i−1,i−1 + ϵfφi(Ai)

∣∣∣Πi−2

]
(iv)
≤ Eπi−2

[2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

γu
i−1,i−2 + ϵfφi

(Ai)

∣∣∣Πi−3

]
+ Eπi−2

[ 4
i−1 fMi

X (Ai−1)
γu

i−1,i−2 + ϵfφi
(Ai)

∣∣∣Πi−3

]
(v)
≤ Eπ0

[2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

γu
i−1,0 + ϵfφi(Ai)

]
+ Eπ0

[ 4
i−1 fMi

X (Ai−1)
γu

i−1,0 + ϵfφi(Ai)

]

=
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1)
ϵ/2fX(Ai−1) + ϵfφi(Ai)

+
4

(i−1) fMi

X (Ai−1)
ϵ/2fX(Ai−1) + ϵfφi(Ai)

(vi)
≤

2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

µiϵ(0.5fMi

X (Ai−1) + fMi
φi (Ai))

+
4

(i−1) fMi

X (Ai−1)
µiϵ(0.5fMi

X (Ai−1) + fMi
φi (Ai))

≤
2fMi

φi
(ai)

µiϵf
Mi
φi (Ai)

+
4fMi

φi
(Ai−1)

µiϵ(i − 1)fMi
φi (Ai)

+ 8fMi

X (Ai−1)
µiϵ(i − 1)fMi

X (Ai−1)
(vii)
≤

2fMi
φi

(ai)
µiϵf

Mi
φi (Ai)

+ 4
µiϵ(i − 1) + 8

µiϵ(i − 1)

≤
2fMi

φi
(ai)

µiϵ
∑

j≤i f
Mj
φj (aj)

+ 12
µiϵ(i − 1)

The inequality (i) is by upper bounding Bregman divergence by squared Mahalanobis distance. The inequal-
ity (ii) is due to applying triangle inequality on the numerator, (a2 + b2) ≤ 2(a2 + b2). The (iii) equality is
by replacing the denominator with the above definition. The (iv) inequality is by applying the supporting
Lemma 5.3. By recursively applying Lemma 5.3 we get the inequality (v) which is independent of the ran-
dom choices made by the algorithm. The inequality (vi) is by using the lower bound on the denominator.
The inequality (vii) an upper bound on the second and the third term. In the final inequality we use the
fact that for any µ similar Bregman divergence from Ackermann & Blömer (2009); Lucic et al. (2016) we
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have Mj ⪯ Mi for j ≤ i (Lemma 4.1). Further by the property of Bregman divergence we know that
fφi

(Ai−1) ≥ fφi−1(Ai−1). Hence we have fMi
φi

(Ai) ≥
∑

j≤i f
Mj
φj (aj). Notice that the above analysis is also

true for all X. Hence we have this upper bound for all X with at most n centers. So we have the,

EΠi−1

[
fX(ai)

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + fφi(Ai)

]
≤ 2fφi

(ai)
ϵ
∑

j≤i fφj (aj) + 12
ϵ(i − 1)

Note that the analysis holds for all X. Hence we get the expected upper bound on both the barrier sensitivity
scores. Further, these upper bounds are independent of k, which is number of centers in X or any bicreteria
approximation that usually depends on k. Now as the oracle returns a tight upper bound on the sensitivity
scores which is used to compute the sampling probability of a streaming point, so we can comment about
the expected sample size by bounding the sum of upper bounds of barrier sensitivity scores.

Lemma 5.7. The algorithm returns (C, Ω) such that the expected size of C is O
(

1
µϵ2

(
log n+log

(
fM

φ (A)
)

−

log
(
fM2

φ2
(a2)

)))
.

The detailed proof is discussed in the appendix (A.2.5). Now we are ready to prove our main theorem.

Proof. of Theorem 5.1. Using lemma 5.2 and 5.6 we can now show that the any coreset created by the
algorithm satisfies the guarantees in Theorem 5.1. Since the coreset guarantees hold deterministically, there
must exist a coreset with size less than the expected bound that satisfies the guarantees. This completes the
existential guarantee stated by Theorem 5.1.

5.2 Coreset algorithm for non-parametric clustering based on empirical sensitivity

Now as it is not known how to get an oracle that upper bounds the barrier sensitivity scores, we present
a heuristic which works well in practice. We estimate the sensitivity scores using sampling, and call these
empirical sensitivity scores.

We first give an example to show that the sampling probabilities in the online setting need to be upper
bounds to the barrier sensitivity scores.
Example 5.1. Fix any ϵ ∈ (0, 1). Consider a simple setup where the first point is a ∈ Rd. Now the algorithm
samples the point in the coreset with probability 1.

Suppose the second point is b ∈ Rd and suppose that the upper barrier sensitivity for it, achieved by the query
X∗, equals s. That is,

s = sup
X

ru
2 (X) = ru

2 (X∗)

Now, suppose we sample b with some probability p < s. Thus,

p < ru
2 (X∗) = fX∗(b)

(1 + ϵ)fX∗(a) − fX∗(a) + ϵ(fφ(a) + fφ(b))

ϵfX∗(a) + ϵ(fφ(a) + fφ(b)) <
fX∗(b)

p

ϵfX∗(a) + ϵ(fφ(a) + fφ(b)) < fX∗(a) + fX∗(b)
p

.,

which violates the coreset property. Hence, when we sample the second point, which happens with probability
p, we do not have a coreset with the desired guarantee.

We next present an example which shows the difficulty of estimating the barrier sensitivity scores by sampling
queries. This will motivate us to make some assumptions about our data.
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Example 5.2. For a fixed point ai and a query space, let ru
i (X) be a random variable defined as equation 6,

where X is chosen randomly from the query space. Consider that we do not have access to the sensitivity
score si = supX ru

i (X). Our proposed algorithm is to sample a random set of queries Y uniformly at random
such that the maximum value of ru

i (·) in Y well approximates si.

Define the empirical upper sensitivity score to be s̃i = maxX∈Y ru
i (X). Note that if X∗ belongs to Y, then

s̃i = si, but this is a very low probability event in general. Consider the set B = {X | ru
i (X) ≥ si/K} for

some K > 1. If the sampled queries do not contain any element in B, then s̃i < si/K. Thus the probability
that this sampling based algorithm obtains an estimate s̃i that satisfies s̃i ≥ si/K is exactly the same as the
probability mass of the set B. Note that the first example shows that with si = 1, if s̃i < 1/K, then using
Ks̃i as sampling probabilities, we fail to have a coreset.

From this we conclude that, in order to use an empirically obtained upper bounds on the sensitivity scores
(called empirical sensitivity scores), we need additional assumptions to show that we get a valid coreset with
desired guarantees. We now state the assumption, originally in (Baykal et al., 2018).

Let X represent the query space where each query X ∈ X has at most n centers. Now, for each point ai and
X , we consider the following two random variables, ru

i (X) and rl
i(X) defined as follows,

ru
i (X) = fX(ai)

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi
(Ai)

rl
i(X) = fX(ai)

fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) + ϵfφi
(Ai)

,

where the randomness is over X ∈ X . We assume that the CDF of both ru
i (·) and rl

i(·) are bounded. The
assumption stated below is for ru

i (·). A similar assumption is also considered for rl
i(·).

Assumption 5.1. There is a pair of universal constants K and K ′ such that for each i ∈ [n], the CDF of
the random variable ru

i (X) for X ∈ X denoted by Gi() satisfies,

Gi(x∗/K) ≤ exp(−1/K ′)

where x∗ = min{y ∈ [0, 1] : Gi(y) = 1}.

Further, we consider the above assumption is true for all ai ∈ A. Now the following two lemmas are similar
to lemma 6 and 7 in (Baykal et al., 2018), using which we get the upper bounds on the sensitivity scores.
Here we state them for completeness. Lemma 5.8 is stated for all i ≤ n.
Lemma 5.8. Let K, K ′ > 0 be universal constants and let X be the query space as defined above with CDF
Gi(·) satisfying the assumption 5.1. Let Y = {X1, X2, . . . , Xm} be a set of m i.i.d. samples each drawn from
X . Let Xm+1 be an i.i.d. sample from X then,

P
(
K max

X∈Y
ru

i (X) ≤ ru
i (Xm+1)

)
≤ exp(−m/K ′)P

(
K max

X∈Y
rl

i(X) ≤ rl
i(Xm+1)

)
≤ exp(−m/K ′)

Proof. Let Xmax = arg maxX∈Yj
ru

i (X), then

P(K max
X∈Y

ru
i (X) ≤ ru

i (Xm+1)) =
∫ x∗

0
P(ru

i (Xmax) ≤ y/K|ru
i (Xm+1) = y)dP(y)

(i)=
∫ x∗

0
P(ru

i (Xmax) ≤ y/K)mdP(y)

≤
∫ x∗

0
Gi(y/K)mdP(y)

(ii)
≤ Gi(x∗/K)m

∫ x∗

0
dP(y)

= Gi(x∗/K)m

≤ exp(−m/K ′)

Here (i) is because {X1, X2, . . . , Xm} are i.i.d. from Y. Further (ii) is due to the assumption 5.1.
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Algorithm 2 NonParametricFilter
Require: ai, i = 1, . . . n; t > 1; ϵ ∈ (0, 1); Y = {X1, X2, . . . , XO(log(n/δ))}
Ensure: (C, Ω)

cu = 2/ϵ + 1; cl = 2/ϵ − 1; φ0 = ∅; S = 0; C1
0 = . . . = Ωt

0 = ∅
λ = ∥a1∥min; ν = ∥a1∥max
while i ≤ n do

λ = min{λ, ∥ai∥min}; ν = max{ν, ∥ai∥max}
Update Mi; µi = λ/ν
φi = ((i − 1)φi−1 + ai)/i; S = S + fMi

φi
(ai)

if i = 1 then
pi = 1

else
r̃u

i = maxX∈Y ru
i (X)

r̃l
i = maxX∈Y rl

i(X)
pi = min{1, (cur̃u

i + clr̃l
i}

end if

(ci, ωi) =
{

(ai, 1/(pi)) if ai is sampled
(∅, 0) else

(Ci, Ωi) = (Ci−1, Ωi−1) ∪ (ci, ωi)
end while
Return (C, Ω)

Similarly, it is also proved for rl
i(). Let there is a finite set Y ⊂ X from which we get empirical sensitivity

scores r̃u
i = maxX∈Y ru

i (X) and r̃l
i = maxX∈Y rl

i(X). Our algorithm uses these scores. Now with the following
lemma we establish that empirical sensitivity scores are good approximations to the true sensitivity scores
su

i and sl
i. It is also used to decide the size of the finite set Y.

Lemma 5.9. Let δ ∈ (0, 1), consider the set Y ⊂ X of size |Y| ≥ ⌈K ′ log(n/δ)⌉, then

PX∈X
(
∃i ∈ [n] : Kr̃u

i ≤ ru
i (X)

)
≤ δ

PX∈X
(
∃i ∈ [n] : Kr̃l

i ≤ rl
i(X)

)
≤ δ

Proof. The proof follows from lemma 5.8. Let the event Ei be the event that K · maxX′∈Y ru
i (X′) ≤ ru

i (X).
Now,

P(Ei) = PX∈X (K max
X′∈Y

ru
i (X′) ≤ ru

i (X)) ≤ exp(−|Y|/K ′)

Hence, by taking union bound over all i ∈ [n], we have that P[¬(∪iEi)] ≥ 1 − n exp(−|Y|/K ′). By choosing
|Y| ≥ ⌈K ′ log(n/δ)⌉, we get that P[¬(∪iEi)] ≥ 1 − δ. Hence with probability at least 1 − δ, the score r̃u

i

upper bounds the true score. We can show a similar claim for r̃l
i.

So with high probability we have an upper bound on (su
i , sl

i) using empirical sensitivity scores (r̃u
i , r̃l

i). Al-
though the above two lemmas are stated for upper barrier sensitivity scores, they are also true for lower
barrier sensitivity scores. Now we present our second algorithm (2) called NonParametricFilter, which
returns a coreset for non-parametric clustering via Bregman divergence. Note that without the above as-
sumption 5.1 our algorithm acts as a heuristic. The algorithm requires the query set Y which has O(log(n/δ))
queries.

The coreset from the above algorithm ensures the guarantee.
Theorem 5.10. Let A ∈ Rn×d, for every Bregman divergence dΦ as in table (1) NonParametricFilter re-
turns a coreset (C, Ω) for non parametric clustering based on dΦ such that ∀X with at most n centres in Rd

it ensures equation 1 with at least 1 − δ probability.∣∣fX(C) − fX(A)
∣∣ ≤ ϵ(fX(A) + fφ(A)). (11)
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The size of such a coreset is O
(

1
µϵ2

(
log n + log

(
fM

φ (A)
)

− log
(
fM2

φ2
(a2)

)))
expected samples.

Proof. This is proved by combining the claims of Theorem 5.1 and Lemma 5.9.

Again the additive error factor can be further improved using an user defined parameter τ ∈ (0, 1). In the
barrier sensitivity scores equation 6 and equation 7 we multiply τ with the additive term, i.e., ϵfφi(Ai) is
replaced with τϵfφi

(Ai). We get the following corollary.
Corollary 5.1. Let A ∈ Rn×d, for every Bregman divergence dΦ as in table (1) NonParametricFilter re-
turns a coreset (C, Ω) for non parametric clustering based on dΦ such that ∀X with at most n centres in Rd

it ensures equation 1 with at least 1 − δ probability.∣∣fX(C) − fX(A)
∣∣ ≤ ϵfX(A) + ϵ′fφ(A), (12)

where ϵ′ = ϵ · τ . The size of such a coreset is O
(

1
µϵ2

(
log n + log

(
fM

φ (A)
)

−log
(

f
M2
φ2 (a2)

)
τ

))
expected samples.

This can be proved by a similar analysis as of Corollary 4.1.

5.2.1 Non-Parametric Clustering via Squared Euclidean Distance

As NonParametricFilter returns a coreset for non-parametric clustering, hence it can also be used for
k-means clustering. In this case our algorithm (2) returns a coreset (C, Ω), for squared euclidean Bregman
divergence. The algorithm simply uses Id as Mi and 1 as µi. In the following corollary we state the
guarantees that NonParametricFilter ensures for k-means clustering that follows from Theorem 5.1.
Corollary 5.2. Let A ∈ Rn×d be the points fed to NonParametricFilter for the k-means problem. It
returns a coreset (C, Ω) which ensures the guarantee equation 1 for any X with at most n centers. The
coresets has O

(
1
ϵ2

(
log n + log

(
fφ(A)

)
− log

(
fφ2(a2)

)))
expected samples.

This directly follows from Theorem 5.1, and discussed in the appendix A.2.6.

5.2.2 Coresets for DP-Means Clustering

DP-Means clustering is a non-parametric clustering. Here we discuss how NonParametricFilter can also
be used to approximate DP-Means clustering Bachem et al. (2015). The problem was originally defined for
squared euclidean distances which has a valid generalization in other Bregman divergences. For an input A,
query X with at most n cost of DP-Means cost is defined as follows,

costDP (A, X) = fX(A) + λ|X|.

Here fX(A) is the cost on the entire A based on some Bregman divergences introduced earlier. It is not
difficult to see that the coreset from NonParametricFilter ensures an additive error approximation for this
definition of DP-Means clustering based on µ-similar Bregman divergence. Now we claim that by allowing a
small additive error approximation our coreset size significantly improves upon the coresets for relative error
approximation for DP-Means clustering Bachem et al. (2015), as in practice O(dd) ≫ O(log n). We first the
state the following result.
Lemma 5.11. The coreset (C, Ω) from NonParametricFilter ensures the following for all X with at most
n centers in Rd,

|costDP (C, X) − costDP (A, X)| ≤ ϵ(fX(A) + fφ(A))

Proof. Notice that if one applies DP-Means on the coreset from NonParametricFilter we get the following,∣∣costDP (C, X) − costDP (A, X)
∣∣ =

∣∣fX(C) − fX(A)
∣∣ ≤ ϵ(fX(A) + fφ(A))

The last inequality is by Theorem 5.1.
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Now due to Lemma 5.11 we have the following Theorem.
Theorem 5.12. For ϵ ∈ (0, 1) the coreset (C, Ω) ensures, costDP (A, XC) ≤ costDP (A, XA) + ϵ(fXC(A) +
fXA(A)+2fφ(A)). with high probability, where XC and XA are the optimal cluster centers for the DP-Means
clustering on (C, Ω) and A. The expected size of the coreset is O

(
1

µϵ2

(
log n+log

(
fM

φ (A)
)
−log

(
fM2

φ2
(a2)

)))
.

Proof. Let XC and XA are the optimal centers for DP-Means clustering on C and A respectively. Now we
know that,

costDP (A, XC) − ϵ(fXC(A) + fφ(A)) ≤ costDP (C, XC)
≤ costDP (C, XA)
≤ costDP (A, XA) + ϵ(fXA(A) + fφ(A))

costDP (A, XC) ≤ costDP (A, XA) + ϵ(fXC(A) + fXA(A) + 2fφ(A)).

6 Uniform Deviation

Our first result showed an additive error coreset for Bregman clustering. It is a natural question to ask
whether an additive error that is a function of fφ(A) is useful. In this section we provide evidence that when
looking at Bregman clustering from the generalization perspective, the generalization error obtained is also
a function of fφ(A). This implies that clustering by using coresets of the training data (rather than the full
data) does not increase the generalization gap.

For a given distribution of input sets and a learnt model, the uniform deviation is the difference between
the expected loss and the average empirical loss over a set of samples from the distribution of inputs. It is
used to understand the generalization error by a trained model. In this section we show that for clustering
based on any µ-similar Bregman divergence the uniform deviation is bounded. For a distribution D over an
input space in Rd and some µ-similar Bregman divergence (Table 1), let ξ = Ea∈D[a] and σ2 = Ea∈D[fξ(a)].
Bachem et al. (2017a) showed that for k-means clustering using Euclidean distance, if Ea∈D[fξ(a)2]

σ4 ≤ t < ∞,
then with sufficiently large number of samples A = {a1, . . . , am} where each ai is an i.i.d. sample from D
and m = Ω

(
tkd log k

ϵ2

)
we get the following ∀X ∈ Rk×d with a constant probability,

∣∣∣∣∣ 1
m

m∑
i=1

fX(ai) − E[fX(a)]
∣∣∣∣∣ ≤ ϵ(σ2 + E[fX(a)]) (13)

This essentially implies that there is an additive error approximation on the generalization error by a model
trained on a large input set. We show that a similar result is also true for other µ-similar Bregman divergence.
The additive term (ϵ · σ2) in the generalization error is very similar to the additive term (ϵ · fφ(A)) in our
coresets guarantees equation 1.

Given the D, the randomness is always over the samples from D. So we use E[·] instead of Ea∈D[·]. We
consider that for any µ-similar Bregman divergence we know the parameters M and µ (1) for D such that
for all a ∼ D and x ∈ Rd, µfM

x (a) ≤ fx(a) ≤ fM
x (a). We also consider the following assumption is true.

E
[
fM

ξ (a)2
]

µ2σ4
M

+ 1
µ2 < ∞ (14)

Here, ξ = E[a], σ2
M = E[(a − ξ)T M(a − ξ)] and for all a ∼ D, fM

ξ (a) = (a − ξ)T M(a − ξ). Consider
A = {a1, . . . , am} be m independent samples from D.

We analyze a family of functions G mapping from an input space Rd to R≥0 that captures a measure between
the cost of a point a ∼ D and a statistical cost of D. We first state the following lemma, whose proof is
discussed in the appendix A.3.1.
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Lemma 6.1. Let k ∈ N. Let D be a distribution on Rd with µ and σ2 same as defined above. For a µ-similar
Bregman divergence, for any point a ∼ D, and any X ∈ Rk×d we define gX(a) as,

gX(a) = fX(a)
σ2 + E[fX(a)] . (15)

Let s(a) = 2fξ(a)
µσ2

M
+ 8

µ . Then we have gX(a) ≤ s(a) for all X ∈ Rk×d and E[s(a)2] = O(t).

For the family of function G = {gX(·) | X ∈ Rk×d}, let Pdim(G) ≤ ρ < ∞. Now due to above lemma we can
use the main framework of Bachem et al. (2017a) which is stated as follows,
Theorem 6.2. Let ϵ ∈ (0, 1) and G be a family of functions from a to R≥0, where a ∼ D. Let ρ be such
that Pdim(G) ≤ ρ < ∞ and t be such that E[s(a)] = O(t). For every a and X ∈ Rk×d, let s(a) be a function
such that, supX gX(a) ≤ s(a). Let a1, . . . , a2m be 2m i.i.d. samples from D where m = O

(
tρ
ϵ2

)
such that

4E[fM
ξ (a)2]

µ2σ4
M

+ 96
µ2 ≤ t and P( 1

2m

∑2m
i=1 s(ai)2 > t) ≤ 1/4. Then for all X ∈ Rk×d with at least 0.99 probability

we have, ∣∣∣∣∣ 1
m

m∑
i=1

fX(ai) − E[fX(a)]
∣∣∣∣∣ ≤ ϵ(σ2 + E[fX(a)]) (16)

The proof of can be found in the appendix A.3.2.

7 Experiments

We now show the empirical performance of BregFilter (our BregmanFilter) as well as a heuristic version
of NonParametricFilter (NP-Filter). Since there are no existing online baselines for this problem, we
compare it against the offline coreset algorithms on real datasets. It is important to note that theoretically
our coreset can never perform better than the offline coreset algorithm. Intuitively this simply is because an
offline algorithm has more knowledge from the complete data before deciding the sampling probability. Here
we investigate whether the performance of the BregFilter and the NP-Filter matches the performance of
the offline algorithms. We compare against the following coreset algorithms:

1) TwoPass: It is a two pass algorithm similar to BregmanFilter. Here the algorithm knows φ from one
pass and in the second pass it computes the sampling probability by using φ instead of φi for all i ∈ [n].

2) LWCS: It is the offline lightweight coreset algorithm as stated in Bachem et al. (2015).

3) RelCoreset: It is an Offline sampling method that uses bi-criteria approximation Lucic et al. (2016). The
resultant coreset ensures relative error approximation.

4) Leverage: It is just a heuristic online sampling algorithm. Here we do Online leverage score sampling
method as in Chhaya et al. (2020a). Note that leverage score sampling is only guaranteed to preserve the
rank of the matrix, not the cluster structure.

5) Online-K-Means: This is also a heuristic online sampling algorithm. We run the Algorithm-3 in Liberty
et al. (2016) which returns Õ(k) for k centers. We consider the returned set as our subset of data and
compare its performance with our coreset. In order to make this subset meaningful for the comparison we
reweigh the selected points with inverse of the sampling probability (just like other sampling techniques).
Notice that while the Õ(k) points returned by the algorithm have a bicriteria approximation guarantee, there
is no theoretical guarantee that is available after doing a k-clustering of these points.

Please note that except for Leverage and Online-K-Means, none of the other sampling method qualify as a
baseline for comparison with our method BregFilter. Further, note that even though any offline sampling
method can be treated as a streaming sampling method using merge-and-reduce technique, however as these
method allows the algorithm to discard a sample which might have been selected in the coreset at some
previous step, so these sampling methods do not qualify as baselines for our online sampling method. As
there are very limited baselines, so we compare with other offline methods such as LWCS and RelCoreset.
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We compare the performance on the following datasets:

1) KDD(BIO-TRAIN): 145, 751 points with 74 features. We consider k = {100, 200} and squared Euclidean as
the Bregman divergence (see Figure 1). We further consider that the data points are arriving in a streaming
fashion. On this dataset we compare the performance of BregFilter with other algorithms.

2) MNIST: 60, 000 points in 784 dimension digits dataset. Here we consider k = {5, 10, 25, 50} and rel-
ative entropy as Bregman divergence (see Figure 2). On this dataset we compare a heuristic version of
NonParametricFilter with Uniform and TwoPass sampling algorithms.

Using each of the above described algorithm, we first subsample coresets of different sizes. Once we have
the coreset, we run the weighted k-means++ Arthur & Vassilvitskii (2007) on them to obtain the centers.
We then use these centers and compute the quantization error (Cs) on the full data set. We also compute
quantization error by running k-means++ on the full data set (Cf ). Finally we report the Relative-Error
η = |Cs − Cf |/Cf .

In the figure 1 the Y-axis represents the relative error η and the X-axis represents the expected sample
size which is in terms of percentage of the full data. For every expected sample size, we run 10 random
instances. Using a parameter that controls the sample size, we ensure that the expected sample size of the
10 random instances are equal. Based on these we compute the average η of these 10 events and report
it in the plot. The figure shows the change in η with the increase in the coreset size for k = {100, 200}
on KDD(BIO-TRAIN) datasets for k-means clustering. As the coreset size increases the η decreases for all
the algorithms. As expected, the offline methods LWCS and RelCoreset perform relatively better than our
BregFilter. BregFilter clearly outperforms the baseline Online-K-Means in terms of relative error at all
sample sizes. We also compare with online version of Leverage score sampling which, empirically, appears to
be competitive with our method. However, recall that the coresets from Leverage do not have any provable
guarantee and it is not difficult to show a bad input where Leverage will fail to return reasonable clusters,
e.g. if the data spans a low rank space but has a large number of clusters. We present a toy example in the
appendix.

Also note that Leverage and Online-k-Means have update times of O(d2) and O(kd) respectively, as opposed
to the O(d) update time of BregFilter. On KDD(BIO-TRAIN) for k = 100 and expected coreset size as 1%
of the data, the average running time of BregFilter is 2 seconds, Online-k-Means is 379 seconds and
Leverage is 5264 seconds.
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Figure 1: Relative error v/s coreset size for squared Euclidean k-means clustering. We do not hope to beat
the offline methods. However, we are at par with them. We are one pass.
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For comparing the performance of non-parametric coreset2. We run TwoPass, Uniform and NP-Filter
on MNIST. To the best of our knowledge there are no other baselines to compare with. In Uniform we
sample each point with probability r/n, where r is a parameter used to control the coreset size and n
is the number of input points. Now to capture the notion of coreset for non-parametric clustering we
run k-means++ on every coreset from each method for various values of k = {5, 10, 25, 50}. Finally we
compute the relative error η as described above. The computation of empirical sensitivity scores makes
the NonParametricFilter computationaly expensive. The running time is Õ(n2). So we run NP-Filter
(heuristic version of NonParametricFilter) where we use the upper bound of the expected barrier sensitivity
scores as in Lemma 5.6 to sample every point, i.e., r̃u

i = r̃u
i = 2f

Mi
φi

(ai)

µiϵ
∑

j≤i
f

Mj
φj

(aj)
+ 12

µiϵ(i−1) for all i ∈ [n]. Hence

the running time of NP-Filter is just O(nd) and the sampling complexity of the returned coreset is controlled
by the distortion parameter ϵ. Now for every value of ϵ we run 5 instances of the algorithms and report the
average η for every value of k. Notice that as we increase ϵ, the η also increases. This is due the fact that
the coreset size inversely depends on ϵ, so a high ϵ results to a smaller coreset and as a result it incurs higher
η. It is evident from figure 2 that even our heuristic outperforms the Uniform and performs equivalent to
TwoPass.

10 20 30 40 50
Number of Centers (k)

0.05

0.10

Re
la

tiv
e 

Er
ro

r = 0.25
Uniform
TwoPass

NP-Filter

10 20 30 40 50
Number of Centers (k)

0.0

0.1

0.2
Re

la
tiv

e 
Er

ro
r = 0.5

Uniform
TwoPass

NP-Filter

10 20 30 40 50
Number of Centers (k)

0.0

0.2

Re
la

tiv
e 

Er
ro

r = 0.75
Uniform
TwoPass

NP-Filter

10 20 30 40 50
Number of Centers (k)

0.25
0.50
0.75

Re
la

tiv
e 

Er
ro

r = 1
Uniform
TwoPass

NP-Filter

Figure 2: Change in η with respect to #centers k for various ϵ.

Please note here we compare the performance in terms of relative error approximation, which is stronger
than our actual additive error theoretical guarantees. The plot shows that even with small coreset sizes we
get tight relative error approximations and thus supporting the theoretical guarantees.

8 Conclusion

Here we presented online coreset for clustering based on Bregman divergences. We also present the first
algorithm for non-parametric coreset for the same problem. The algorithm leverages upon additive error
approximation, and uses barrier functions and empirical sensitivity scores.

Broader Impact Statement

We do not foresee any potential negative impact.

2coreset for non-parametric clustering.
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A Appendix

In this paper we use the following theorems in our analysis.
Theorem A.1 (Bernstein’s inequality 2009). Let the scalar random variables x1, x2,··· , xn be independent
that satisfy ∀i ∈ [n], |xi −E[xi]| ≤ b. Let X =

∑
i xi and let σ2 =

∑
i σ2

i be the variance of X. Then for any
t > 0,

Pr
(
X > E[X] + t

)
≤ exp

(
−t2

2σ2+bt/3

)
Theorem A.2 (2020b). Let A be the dataset, X be the query space of dimension D, and for x ∈ X, let
fx(·) be the cost function. Let sj be the sensitivity of the jth row of A, and the sum of sensitivities be S.
Let (ϵ, δ) ∈ (0, 1). Let r be such that

r ≥ O
( S

ϵ2 (D log 1
ϵ

+ log 1
δ

)
)

C be a matrix of r rows, each sampled i.i.d from A such that each ãi ∈ C is chosen to be aj, with weight
S

rsj
, with probability sj

S , for j ∈ [n]. Then C is an ϵ-coreset of A for function f(), with probability at least
1 − δ.

We use the above Theorem to bound our coreset size. Note that the Theorem considers a multinomial
sample where a point ãi in coreset C is aj and weight S

rsj
for j ∈ [n] with probability sj

S . Instead in our
approach we get ãi as ai, with weight 1/ min{1, rsi}, with probability min{1, rsi} or it is ∅, with weight 0,
with probability 1 − min{1, rsi}. However, the same Theorem as above applies.

A.1 Online Coresets for Clustering

Here we discuss the proofs of the supporting lemmas to claim of the main theorem

A.1.1 Proof of Lemma 4.5

Proof. For some fixed (query) X ∈ Rk×d consider the following random variable.

wi =
{

(1/pi − 1)fX(ai) with probability pi

−fX(ai) with probability (1 − pi)

Note that E[wi] = 0 and with pi = 1 we get |wi| = 0. The algorithm uses the sampling probability
pi = min{rli, 1}. Now we bound the term |wi|. In the case when pi < 1 and ai is sampled we have,

|wi| ≤ 1
pi

fX(ai)

= fX(ai)
rli

(i)
≤ (fX(Ai−1) + fφi(Ai))fX(ai)

rfX(ai)

= (fX(Ai−1) + fφi
(Ai))

r

≤ (fX(A) + fφ(A))
r

(i) is by replacing li with a smaller term, fX(ai)
fX(Ai−1+fφi

(Ai)) . In the last inequality is because fφ(A) ≥ fφi
(Ai).

Here φ = φn is the mean of the entire data A. Next if the point ai is not sampled then we know for sure
that pi < 1, hence we have that,

1 > rli
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≥ rfX(ai)
(fX(Ai−1) + fφi

(Ai))

∴ fX(ai) ≤ (fX(A) + fφ(A))
r

Say, b = (fX(A) + fφ(A))/r, so |wi| ≤ b. Next we bound the var(
∑

i≤n wi) =
∑

i≤n E[w2
i ]. Note that for a

single term when pi < 1, E[w2
i ] is,

E[w2
i ] =

(
pi(1/pi − 1)2 + (1 − pi)

)
fX(ai)2

≤ 1
pi

fX(ai)2

= fX(ai)2

rli

≤ (fX(Ai−1) + fφi
(Ai))fX(ai)2

rfX(ai)

= (fX(Ai−1) + fφi
(Ai))fX(ai)

r

≤ fX(ai)(fX(A) + fφ(A))
r

So we get,

var
(∑

i≤n

wi

)
=

∑
i≤n

E[w2
i ]

≤
∑
i≤n

fX(ai)(fX(A) + fφ(A))
r

= fX(A)(fX(A) + fφ(A))
r

≤ (fX(A) + fφ(A))2

r

Now by applying Bernstein’s inequality (A.1) on
∑

i≤n wi with t = ϵ(fX(A) + fφ(A)) we bound the proba-
bility P = Pr

(
|fX(C, Ω) − fX(A)| ≥ ϵ(fX(A) + fφ(A))

)
as follows,

P ≤ exp
(

−ϵ2(fX(A) + fφ(A))2

ϵ(fX(A) + fφ(A))2/3r + 2(fX(A) + fφ(A))2/r

)
= exp

(
−rϵ2

(ϵ/3 + 2)

)
So to get the above event with at least 0.99 probability it is enough to set r to be O

(
1
ϵ2

)
. Note that the

above is guaranteed for a fixed X ∈ Rk×d.

Now we show that coreset (C, Ω) can be made strong coreset by taking a union bound over a set of queries.
We take a union bound over the ϵ/2-net of Rk×d Woodruff et al. (2014); Lucic et al. (2016). Such a net
will have at most O(ϵ−dk log k) queries. To ensure a strong a coreset guarantee it is enough to set r as
O
(

dk(log k) log(1/ϵ)
ϵ2

)
.

Intuition for log(fX(A)): Consider the following input stream — every i that is a multiple of
√

n has the
property that fX(ai) = fX(Ai−1), i.e. this point’s contribution to the current cost is more than the total
contributions of all the previous input points. For all other j, fX(aj) is, say, small. Any online algorithm
(i.e. one that makes irrevocable decisions without looking at the future) will need to assign a constant
probability to every i that is a multiple of

√
n. Hence the resulting coreset size is at least

√
n. Note that

fX(A) = O(c
√

n), and hence log(fX(A)) is a tight bound on the coreset size in this example.
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Lemma A.3. For a µ-similar Bregman divergence, for all i ∈ [n] every incoming points ai we have,

sup
X∈Rk×d

fX(ai)
fX(Ai−1) + τfφi(Ai)

≤
2fMi

φi
(ai)

µiτ
∑

j≤i f
Mj
φj (aj)

+ 8
µiτ(i − 1) (17)

Proof.

fX(ai)
fX(Ai−1) + τfφi(Ai)

(i)
≤ fMi

X (ai)
fX(Ai−1) + τfφi(Ai)

≤
2fMi

φi
(ai) + 2fMi

X (φi)
fX(Ai−1) + τfφi

(Ai)

≤
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1) + 4
i−1 fMi

X (Ai−1)
fX(Ai−1) + τfφi

(Ai)
(ii)
≤

2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1) + 4

i−1 fMi

X (Ai−1)
µi(fMi

X (Ai−1) + τfMi
φi (Ai))

=
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1)
µi(fMi

X (Ai−1) + τfMi
φi (Ai))

+
4

i−1 fMi

X (Ai−1)
µi(fMi

X (Ai−1) + τfMi
φi (Ai))

≤
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1)
µi(fMi

X (Ai−1) + τfMi
φi (Ai))

+ 4
µi(i − 1)

≤
2fMi

φi
(ai)

µiτfMi
φi (Ai)

+
4

i−1 fMi
φi

(Ai−1)
µiτfMi

φi (Ai)
+ 4

µi(i − 1)
(iii)
≤

2fMi
φi

(ai)
µiτfMi

φi (Ai)
+ 4

µi(i − 1)( [
1 ]τ + 1)

≤
2fMi

φi
(ai)

µiτ
∑

j≤i f
Mj
φj (aj)

+ 4
µiτ(i − 1)( [

1 ]τ + 1)

Further with an analysis similar to second claim in lemma 4.4 we get
∑

i≤n li ≤ 8 log n +
4 log

(
fM

φ (A)
)

−4 log
(

f
M2
φ2 (a2)

)
µτ . Now the algorithm samples point based on its li score. Then, applying Bern-

stein’s inequality on sum of all the random variables defined as,

wi =
{

(1/pi − 1)fX(ai) with probability pi

−fX(ai) with probability (1 − pi).

Finally, by taking a union bound over an ϵ-net we can prove the claim in corollary 4.1.

A.2 Coresets for Non-Parametric Clustering

A.2.1 Proof of Lemma 5.3

Proof. The proof is fairly straight forward. Using simple algebra (similar to (Sherman & Morrison, 1950))
we have,

1
q + w − ur

= 1
q + w

+ ur(q + w)−2

1 − ur(q + w)−1

= 1
q + w

+ u

1 − u
(q + w)−1
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1
q + w − vr

= 1
q + w

+ vr(q + w)−2

1 − vr(q + w)−1

= 1
q + w

+ v

1 − v
(q + w)−1

So we get,

E
[

s

t + w
− s

q + w

]
= pu + (1 − p)v − uv

(1 − u)(1 − v)

(
s

q + w

)

A.2.2 Proof of Lemma 5.4

Proof. In order to show this we define the following notations. Let Ai represent the set of i points seen by
the algorithm so far. For some X and for some j ≤ n, we define two scalars ζu

i,j and ζl
i,j as follows,

ζu
i,j = ϵ

2fX(Ai) + (1 + ϵ

2)fX(Aj) and ζl
i,j = − ϵ

2fX(Ai) + (1 − ϵ

2)fX(Aj)

So we have ζu
i,i = (1 + ϵ)fX(Ai) and ζl

i,i = (1 − ϵ)fX(Ai). It is clear that for j ≤ i − 1 we have ζu
i−1,j ≥ ζu

j,j

and ζl
i−1,j ≤ ζl

j,j . Further two more scalars γu
i,j and γl

i,j are defined as follows,

γu
i,j = ζu

i,j − fX(Cj , Ωj) and γl
i,j = fX(Cj , Ωj) − ζl

i,j

Note that γu
i,i = (1 + ϵ)fX(Ai) − fX(Ci, Ωi) and γl

i,i = fX(Ci, Ωi) − (1 − ϵ)fX(Ai). For j ≤ i − 1 we get
γu

i−1,j ≥ γu
j,j and γl

i−1,j ≥ γl
j,j . Let, dj+1 = fX(aj+1)

pj+1
. If pj+1 < 1, then we have pj+1 ≥ cus̃u

j+1 ≥ cusu
j+1, and

hence we have the following for upper barrier,

pj+1 ≥ cufX(aj+1)
γu

j,j + ϵfφj+1(Aj+1) ≥ cufX(aj+1)
γu

i−1,j + ϵfφj+1(Aj+1) ≥ cufX(aj+1)
γu

i−1,j + ϵfφi
(Ai)

.

Therefore,
dj+1

γu
i−1,j + ϵfφi(Ai)

≤ 1
cu

.

Let dj+1
γu

i−1,j
+ϵfφi

(Ai) = hu
j+1, which is bounded by 1

cu . Similarly for the lower barrier we have,

pj+1 ≥ clfX(aj+1)
γl

j,j + ϵfφj+1(Aj+1)
≥ clfX(aj+1)

γl
i−1,j + ϵfφj+1(Aj+1)

≥ clfX(aj+1)
γl

i−1,j + ϵfφi
(Ai)

.

So we get,
dj+1

γl
i−1,j + ϵfφi

(Ai)
≤ 1

cl
.

A.2.3 Proof of Lemma 5.5

Proof. For brevity, going forward, we denote hl
j+1 = dj+1

γl
i−1,j

+ϵfφi
(Ai) . Recall that Lemma5.4 showed that

hl
j+1 ≤ 1

cl .

To apply Lemma 5.3 we set q = γu
i−1,j , r = dj+1/hu

j+1, s = fX(ai) and w = ϵfφi
(Ai). Further let u =

hu
j+1(1 − pj+1(1 + ϵ/2)), v = −hu

j+1pj+1(1 + ϵ/2) and p = pj+1. Note that from the above substitution we
get r

q+w = 1 and t = γu
i−1,j+1. To prove the corollary we need the RHS of the lemma pu+(1−p)v−uv

(1−u)(1−v) ≤ 0.

After substituting every term we we get, pj+1hu
j+1(hu

j+1(1+ϵ/2−pj+1(1+ϵ/2)2)−ϵ/2)
(1−u)(1−v) . Now if pj+1 ≥ 1/(1 + ϵ/2)
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then this term is non positive, else when cu = 2
ϵ + 1 the term remains non-positive. As πj+1 ∈ {0, 1} is the

sampling choice made by the algorithm for aj+1. So we have,

Eπj+1

[
fX(ai)

γu
i−1,j+1 + ϵfφi(Ai)

]
≤ fX(ai)

γu
i−1,j + ϵfφi(Ai)

A similar analysis also follows for the lower barrier. We use Lemma 5.3 by setting q = γl
i−1,j , r =

dj+1/hl
j+1, s = fX(ai) and w = ϵfφi(Ai). Further let u = −hl

j+1(1 − pj+1(1 − ϵ/2)), v = hl
j+1pj+1(1 − ϵ/2))

and p = pj+1. By these substitution we have, r
q+w = 1 and the random variable t = γl

i−1,j+1. Let
πj+1 ∈ {0, 1} is the random sampling choice made by the algorithm for aj+1. Now for cl = 2

ϵ − 1 we get,

Eπj+1

[
fX(ai)

γl
i−1,j+1 + ϵfφi

(Ai)

]
≤ fX(ai)

γl
i−1,j + ϵfφi

(Ai)

A.2.4 Proof of Lemma 5.6

Proof. We use Lemma 5.5 to get the expected upper bound on the sensitivity scores i.e.,

sup
X

fX(ai)
(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi

(Ai)

sup
X

fX(ai)
fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) + ϵfφi

(Ai)

Let (1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) = fX(Au
i−1) where fX(Au

i−1) =
∑

j≤i−1 fX(au
j ). Here each term

fX(au
j ) = (1 + ϵ − p−1

j )fX(aj) if aj is present in Ci−1 else fX(au
j ) = (1 + ϵ)fX(aj). Now the expected upper

bound on the upper barrier sensitivity score can be bounded as follows.

EΠi−1

[
fX(ai)

fX(Au
i−1) + ϵfφi

(Ai)

]
(i)
≤ EΠi−1

[
fMi

X (ai)
fX(Au

i−1) + ϵfφi
(Ai)

]
(ii)
≤ Eπi−1

[[2fMi
φi

(ai) + 4
i−1

∑
aj∈Ai−1

[fMi
φi

(aj) + fMi

X (aj)]
]

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi
(Ai)

∣∣∣Πi−2

]

= Eπi−1

[ [
2fMi

φi
(ai) + 4

i−1
∑

aj∈Ai−1
fMi

φi
(aj)

]
(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi

(Ai)

∣∣∣Πi−2

]
+ Eπi−1

[ 4
i−1 fMi

X (Ai−1)
(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + ϵfφi

(Ai)

∣∣∣Πi−2

]
(iii)= Eπi−1

[2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

γu
i−1,i−1 + ϵfφi

(Ai)

∣∣∣Πi−2

]
+ Eπi−1

[ 4
i−1 fMi

X (Ai−1)
γu

i−1,i−1 + ϵfφi
(Ai)

∣∣∣Πi−2

]
(iv)
≤ Eπi−2

[2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

γu
i−1,i−2 + ϵfφi(Ai)

∣∣∣Πi−3

]
+ Eπi−2

[ 4
i−1 fMi

X (Ai−1)
γu

i−1,i−2 + ϵfφi
(Ai)

∣∣∣Πi−3

]
(v)
≤ Eπ0

[2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

γu
i−1,0 + ϵfφi

(Ai)

]
+ Eπ0

[ 4
i−1 fMi

X (Ai−1)
γu

i−1,0 + ϵfφi
(Ai)

]
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=
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1)
ϵ/2fX(Ai−1) + ϵfφi(Ai)

+
4

(i−1) fMi

X (Ai−1)
ϵ/2fX(Ai−1) + ϵfφi(Ai)

(vi)
≤

2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

µiϵ(0.5fMi

X (Ai−1) + fMi
φi (Ai))

+
4

(i−1) fMi

X (Ai−1)
µiϵ(0.5fMi

X (Ai−1) + fMi
φi (Ai))

≤
2fMi

φi
(ai)

µiϵf
Mi
φi (Ai)

+
4fMi

φi
(Ai−1)

µiϵ(i − 1)fMi
φi (Ai)

+ 8fMi

X (Ai−1)
µiϵ(i − 1)fMi

X (Ai−1)
(vii)
≤

2fMi
φi

(ai)
µiϵf

Mi
φi (Ai)

+ 4
µiϵ(i − 1) + 8

µiϵ(i − 1)

≤
2fMi

φi
(ai)

µiϵ
∑

j≤i f
Mj
φj (aj)

+ 12
µiϵ(i − 1)

The inequality (i) is by upper bounding Bregman divergence by squared Mahalanobis distance. The inequal-
ity (ii) is due to applying triangle inequality on the numerator, (a2 + b2) ≤ 2(a2 + b2). The (iii) equality is
by replacing the denominator with the above definition. The (iv) inequality is by applying the supporting
Lemma 5.3. By recursively applying Lemma 5.3 we get the inequality (v) which is independent of the ran-
dom choices made by the algorithm. The inequality (vi) is by using the lower bound on the denominator.
The inequality (vii) an upper bound on the second and the third term. In the final inequality we use the
fact that for any µ similar Bregman divergence from Ackermann & Blömer (2009); Lucic et al. (2016) we
have Mj ⪯ Mi for j ≤ i (Lemma 4.1). Further by the property of Bregman divergence we know that
fφi(Ai−1) ≥ fφi−1(Ai−1). Hence we have fMi

φi
(Ai) ≥

∑
j≤i f

Mj
φj (aj). Notice that the above analysis is also

true for all X. Hence we have this upper bound for all X with at most n centers. So we have the,

EΠi−1

[
fX(ai)

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + fφi(Ai)

]
≤ 2fφi

(ai)
ϵ
∑

j≤i fφj (aj) + 12
ϵ(i − 1)

Now let (fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) = fX(Al
i−1) where fX(Al

i−1) =
∑

j≤i−1 fX(al
j). Here each term

fX(al
j) = (p−1

j −1+ ϵ)fX(aj) if aj is present in Ci−1 else fX(al
j) = (−1+ ϵ)fX(aj). Now the expected upper

bound on the lower sensitivity score is,

EΠi−1

[
fX(ai)

fX(Al
i−1) + ϵfφi

(Ai)

]
(i)
≤ EΠi−1

[
fMi

X (ai)
fX(Al

i−1) + ϵfφi
(Ai)

]
(ii)
≤ Eπi−1

[[2fMi
φi

(ai) + 4
i−1

∑
aj∈Ai−1

[fMi
φi

(aj) + fMi

X (aj)]
]

fX(Ci−1, Ωi−1) − (1 − ϵ)fMi

X (Ai−1) + ϵfφii
(Ai)

∣∣∣Πi−2

]

= Eπi−1

[ [
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1)
]

fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) + ϵfφi(Ai)

∣∣∣Πi−2

]
+ Eπi−1

[ 4
ϵ(i−1) fMi

X (Ai−1)
fX(Ci−1, Ωi−1) − (1 − ϵ)fX(Ai−1) + ϵfφi

(Ai)

∣∣∣Πi−2

]
(iii)= Eπi−1

[2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

γl
i−1,i−1 + ϵfφi

(Ai)

∣∣∣Πi−2

]

+ Eπi−1

[ 4
i−1 fMi

X (Ai−1)
γl

i−1,i−1 + ϵfφi
(Ai)

∣∣∣Πi−2

]
(iv)
≤ Eπi−2

[2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

γl
i−1,i−2 + ϵfφi(Ai)

∣∣∣Πi−3

]

+ Eπi−3

[ 4
i−1 fMi

X (Ai−1)
γl

i−1,i−2 + ϵfφi
(Ai)

∣∣∣Πi−3

]
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(v)
≤ Eπ0

[2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

γl
i−1,0 + ϵfφi

(Ai)

]
+ Eπ0

[ 4
i−1 fMi

X (Ai−1)
γl

i−1,0 + ϵfφi
(Ai)

]

=
2fMi

φi
(ai) + 4

i−1 fMi
φi

(Ai−1)
ϵ/2fX(Ai−1) + ϵfφi

(Ai)
+

4
(i−1) fMi

X (Ai−1)
ϵ/2fX(Ai−1) + ϵfφi

(Ai)
(vi)
≤

2fMi
φi

(ai) + 4
i−1 fMi

φi
(Ai−1)

µiϵ(0.5fMi

X (Ai−1) + fMi
φi (Ai))

+
4

(i−1) fMi

X (Ai−1)
µiϵ(0.5fMi

X (Ai−1) + fMi
φi (Ai))

≤
2fMi

φi
(ai)

µiϵ
∑

j≤i f
Mj
φj (aj)

+ 12
µiϵ(i − 1)

The inequality (i) is by upper bounding Bregman divergence by squared Mahalanobis distance. The in-
equality (ii) is due to applying triangle inequality on the numerator. The (iii) equality is by replacing the
denominator with the above definition. The (iv) inequality is by applying the supporting Lemma 5.3. By
recursively applying Lemma 5.3 we get the inequality (v) which is independent of the random choices made
by the algorithm. The inequality (vi) is by using the lower bound on the denominator and from here the
analysis is same as the upper bound analysis. So we have the following,

EΠi−1

[
fX(ai)

(1 + ϵ)fX(Ai−1) − fX(Ci−1, Ωi−1) + fφi
(Ai)

]
≤

2fMi
φi

(ai)
µiϵ
∑

j≤i f
Mj
φj (aj)

+ 12
µiϵ(i − 1)

A.2.5 Proof of Lemma 5.7

Proof. First we bound the expected sampling probability of each ai i.e., EΠi−1 [pi].

EΠi−1 [pi] = cuEΠi−1 [s̃u
i ] + clEΠi−1 [s̃l

i]
(i)
≤

2cufMi
φi

(ai)
µiϵ
∑

j≤i f
Mj
φj (aj)

+ 12cu

µiϵ(i − 1) +
2clfMi

φi
(ai)

ϵ
∑

j≤i f
Mj
φj (aj)

+ 12cl

µiϵ(i − 1)

≤
8fMi

φi
(ai)

µiϵ2∑
j≤i f

Mj
φj (aj)

+ 48
µiϵ2(i − 1)

The inequality (i) is because the oracle returns a tight upper bound on the actual barrier sensitivity scores.
Now we bound the total expected sample size,

∑
3≤i≤n

E[pi] ≤
∑

3≤i≤n

(
8fMi

φi
(ai)

µiϵ2∑
j≤i f

Mj
φj (aj)

+ 48
µiϵ2(i − 1)

)

≤ 48 log n

µiϵ2 +
∑

3≤i≤n

(
8fMi

φi
(ai)

µiϵ2∑
j≤i f

Mj
φj (aj)

)

Because of the subtlety that E[p2] ≥ 1, hence in the above analysis we bound sum from 3 to n. Let the term
f

Mi
φi

(ai)∑
j≤i

f
Mj
φj

(aj)
= qi ≤ 1. In the following analysis we bound summation of this term i.e.,

∑
i≤n qi. For that

consider the term
∑

j≤i f
Mj
φj (aj) as follows,

∑
j≤i

fMj
φj

(aj) =
∑

j≤i−1
fMj

φj
(aj)

(
1 +

fMi
φi

(ai)∑
j≤i−1 f

Mj
φj (aj)

)

≥
∑

j≤i−1
fMj

φj
(aj)

(
1 +

fMi
φi

(ai)∑
j≤i f

Mj
φj (aj)

)
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=
∑

j≤i−1
fMj

φj
(aj)(1 + qi)

(i)
≥ exp(qi/2)

∑
j≤i−1

fMj
φj

(aj)

exp(qi/2) ≤
∑

j≤i f
Mj
φj (aj)∑

j≤i−1 f
Mj
φj (aj)

In (i) we use the fact that, for qi ≤ 1, (1 + qi) ≥ exp(qi/2). Now as we know that
∑

j≤i f
Mj
φj (aj) ≥∑

j≤i−1 f
Mj
φj (aj) hence following product results into a telescopic product and we get,

∏
3≤i≤n

exp(qi/2) ≤
∑

j≤n f
Mj
φj (aj)

fM2
φ2 (a2)

≤
fM

φ (A)
fM2

φ2 (a2)

Now taking log in both sides we get
∑

3≤i≤n qi ≤ 2 log
(
fM

φ (A)
)

− 2 log
(
fM2

φ2
(a2)

)
. Now with p1 = p2 = 1

we have the following bound on the expected samples.∑
1≤i≤n

E[pi] ≤ 2 + 32
µϵ2

(
3 log n + log

(
fM

φ (A)
)

− log
(
fM2

φ2
(a2)

))

Here we consider that ∀i ∈ [n] we have µ = µn ≤ µi and M = Mn ⪰ Mi as the µ-similar Bregaman
divergence parameters for A. Note that the coreset size is independent of k and d. Hence the resultant
coreset ensures the desired guarantee equation 1 for all X with at most n centers in Rd. The expected size
of the coreset is O

(
1

µϵ2

(
log n + log

(
fM

φ (A)
)

− log
(
fM2

φ2
(a2)

)))
.

A.2.6 Proof of Lemma 5.2:k-means Clustering

Proof. We prove it using the Lemmas 5.2, 5.6, 5.9 and 5.8. As for k-means clustering we have Mi = Id and
µi = 1 for each i ≤ n, hence ∀i ∈ [n] the expected upper bound on both lower and upper barrier sensitivity
scores are,

2fφi
(ai)

ϵ
∑

j≤i fφj (aj) + 12
ϵ(i − 1)

It can be verified by a similar analysis as in the proof A.2.1 and A.2.4 of Lemma 5.3 and 5.6. The rest of
the lemma’s proof follows as it is and we get a required guarantee. The NonParametricFilter returns a
coreset of O

(
1
ϵ2

(
log n + log

(
fφ(A)

)
− log

(
fφ2(a2)

)))
expected samples.

A.3 Uniform Deviation

A.3.1 Proof of Lemma 6.1

Proof. For any a ∈ Rd and X ∈ Rk×d we have,

fX(a)
σ + E[fX(a)]

(i)
≤ fM

X (a)
µ(σM + E[fM

X (a)])
(ii)
≤

2fM
ξ (a) + 2fM

X (ξ)
µ(σM + E[fM

X (a)])

=
2fM

ξ (a) + 2E[fM
X (ξ)]

µ(σM + E[fM
X (a)])
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(iii)
≤

2fM
ξ (a) + 4E[fM

ξ (a)] + 4E[fM
X (a)]

µ(σM + E[fM
X (a)])

=
2fM

ξ (a) + 4σM + 4E[fM
X (a)]

µ(σM + E[fM
X (a)])

≤
2fM

ξ (a)
µσM

+ 8
µ

Here (i) is by using upper bound (on the numerator) and lower bound (on the denominator) of the Bregman
divergence using squared Mahalanobis distance. In (ii) and (iii) we use the fact that (a + b)2 ≤ 2(a2 + b2).
Next we bound E[s(a)2].

E[s(a)2] = E

(2fM
ξ (a)

µσM
+ 8

µ

)2


= E

[(
4fM

ξ (a)2

µ2σ2
M

+ 64
µ2 +

32fM
ξ (a)

µ2σM

)]

=
E[4fM

ξ (a)2]
µ2σ2

M
+ 64

µ2 +
32E[fM

ξ (a)]
µ2σM

≤
4E[fM

ξ (a)2]
µ2σ2

M
+ 96

µ2 < t

We get the last equality because E[fM
ξ (a)] = σM and by the assumption equation 14.

A.3.2 Proof of Theorem 6.2

Proof. The proof of is same as the proof of Theorem 5 in Bachem et al. (2017a). Hence, here we only present
proof sketch.

As E[s(a)] ≤ t, hence on 2m i.i.d. samples {ai, . . . , a2m} by Markov we get 1
2m

∑2m
i=1 s(ai)2 < O(t) with at

least a constant probability.

The rest of the proof is based on a double sampling approach. Let am+1, am+2, . . . , a2m be an additional
m independent samples from D and let h1, h2, . . . , hm be independent random variables uniformly sampled
from {−1, 1}. If E[s(a)2] ≤ t, the probability of equation 16 not holding can be bounded by the probability
that there exists a gX(·) ∈ G such that∣∣∣∣∣∣ 1

m

∑
i≤m

hi · (gX(ai) − gX(am+i))

∣∣∣∣∣∣ ≥ ϵ (18)

We first provide the intuition for some function g ∈ G and then show how we extend it to all g ∈ G.
While the function g(a) is not bounded, for a given sample a1, a2, . . . , a2m, each g(ai) is contained within
[0, s(ai)]. Given the sample a1, a2, . . . , a2m, the random variable hi · (g(ai) − g(ai+m) is bounded in 0 ±
max{s(ai), s(ai+m)} and has zero mean. Hence, given independent samples a1, a2, . . . , a2m, the probability
of equation 18 occurring for a single g ∈ G can be bounded using Hoeffding’s inequality by,

P

∣∣∣∣∣∣ 1
m

∑
i≤m

hi · (gX(ai) − gX(am+i))

∣∣∣∣∣∣ ≤ ϵ

 ≤ 2 exp
(

−2mϵ2

1
m

∑
i≤m max{s(ai), s(ai+m)}

)

≤ 2 exp
(

−mϵ2

1
2m

∑
i≤2m s(ai)

)
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From lemma 6.1 as we know E[s(a)2] ≤ t, so for m ∈ Ω
(

t
ϵ2

)
we can ensure above event with at least 0.99

probability. Finally using Pdim(G) ≤ ρ we take a union to ensure that the above event with at least 0.99
probability. So we get m ∈ Ω

(
tρ
ϵ2

)
.

A.4 Experiments on MNIST and Song Data

Here we discuss some more experimental results. We run our algorithms to compare with other baseline
coreset creation algorithms. Once the coreset is obtained from each of the sampling methods, we run weighted
k-means++ clustering (Arthur & Vassilvitskii, 2007) on them for various values of k and get the centers.
These centers are considered as initial centres while running k-means clustering on the coreset and finally
obtain the centres. Once these centers are obtained, we compute the quantization error on the entire dataset
Cs, with respect to the corresponding centers. We also run a similar k-means clustering on the entire data
for the same values of k and get the quantization error from those centres, i.e., Cf . Finally we report the
relative error η, i.e., η = |Cs−Cf |

Cf
.

A.4.1 BregmanFilter

We compare the performance of BregFilter (our BregmanFilter) with Uniform and TwoPass on the fol-
lowing datasets.

1. MNIST: 60, 000 points in 784 dimension digits dataset.

2. KDD(BIO-TRAIN): 145, 751 points with 74 features.

3. SONGS: 515, 345 songs from the Million song dataset with 90 features.

In the figure 3 we show the change in relative error (η) with respect to the change in the coreset size (% of
data). Here we consider relative entropy (or KL divergence) as Bregman divergence and run the sampling
methods on the MNIST dataset. As the data has a natural clustering of 10 digits, hence we use k = {5, 10}.
We run the sampling algorithms for various coreset sizes. We run 5 random instances for each each coreset
size and here we report the average of their η.
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Figure 3: Relative error v/s coreset size for KL divergence.

We also run the sampling methods on KDD(BIO-TRAIN) and SONGS, considering squared Euclidean distance
as the Bregman divergence. In the figure 4 we report the average η of the 5 runs, for k = {100, 200}. The
plot shows the change in relative error (η) with change in coreset size (% of data).
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Breg Breg

Breg Breg

Figure 4: Relative error v/s coreset size. Squared Euclidean Distance as Bregman Divergence.

In all these cases, as per the expectation we do see an improvement in η as coreset size increases. Fur-
ther we also notice that the performance of the BregFilter is equivalent to TwoPass and outperforms the
performance of Uniform.

Bad example for Leverage: In the datasets considered, the empirical performance of the leverage score
is similar to that of the provable sampling strategy that we propose. It is useful to recall that this is not
always the case. The following example shows when leverage score can perform really badly.

Consider 4 points in R1 as (1000), (1000), (1000) and (1) coming in this order. On these we are interested
in a 2-means clustering, i.e., k = 2. Clearly the cluster centers are (1000) and (1). Now the online leverage
scores (as defined in Algorithm 1 in Chhaya et al. (2020a)) of these points will be 10002

10002 , 10002

2·10002 , 10002

3·10002 , and
1

3·10002+1 . Let r be the parameter that controls the expected coreset size. So the points are sampled with
probability r · 1, r · 0.5, r · 0.33 and r

3·10002+1 respectively. Now based on this, if we build a coreset, say with
r = 3, then with a very high probability we will not sample any representative from the (1) cluster (this
example can easily be generalized to coresets of a general size). Now with our sensitivity upper bound (refer
li in algorithm 1) depends on how much a current point is far from the previous points. In this example, the
online sensitivity score of the first point (1000) will be 1 and point will be sampled with probability r · 1.
The second point (1000) is just a copy of the first point, and hence the mean of the first two points is equal
to the second point itself. As a result its online sensitivity will be 1 (which is due to the second term in the
algorithm) and even this point will be sampled with probability r · 1. For the next point (1000), also the
mean does not move, so its online sensitivity score will be 1/2 and its sampling probability will be r · 0.5.
Now for the final point (1) the mean moves from (1000) to (750.25). So its online sensitivity scores will be
749.25
749.25 + 1

2 and its sampling probability be r
( 749.25

749.25 + 1
2
)
, which is bigger than 1. So for any r the final point

will be sampled in our coreset with higher probability than the third point in the stream. As a result our
coreset, even if it is of size three, will have representatives from each cluster.
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The main insight from the above toy example is that leverage score sampling only tries to preserve the rank
of the data, and not the cluster structure. Hence, if the data spans only a low rank space but has a large
number of clusters then Leverage sampling will likely perform worse compared to our BregFilter.

A.4.2 NonParametricFilter

Now we compare the performance of a heuristic version of NonParametricFilter called NP-Filter with
Uniform, Offline and TwoPass on KDD(BIO-TRAIN) dataset. The Offline is the lightweight coreset from
(Bachem et al., 2018a). Here for the comparison we do not consider the assumption 5.1. Instead use simply
use the expected upper bounds as shown in lemma 5.6. Further for NP-Filter the coreset size is controlled
by ϵ. Now once we get a coreset from NP-Filter, we set the desired parameters of other sampling methods
to get similar coreset size. Here once the coreset is obtained from each of the sampling methods, we get
the relative error η as described above. Now on each coreset, we run k-clustering for various values of
k = {50, 100, 200, 300} to capture the non-parametric nature of the coreset.
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Figure 5: Change in Relative Error η with respect to number of centers k for various values of ϵ.

For each of the algorithms and for each value of ϵ we run 5 random instances, compute η = |CS−CF |
CF

and
report the average η value. We consider ϵ = {1.0, 0.75, 0.5, 0.25}, for which we have {500, 850, 1650, 5500}
expected samples. Figure 5 shows the change in the value of Relative Error η with respect to the change
in number of centers k, for various values of ϵ. With decrease in ϵ we can note that the value of η also
decreases. This is because as the ϵ increases, the coreset size reduces, which results to a high η. Now an
interesting point to note is that the η remains significantly smaller than ϵ for the same coreset across various
values of k. Even though our algorithm is heuristic, but this plot reflects the non-parametric nature of our
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coreset from importance sampling. Note that, even though Offline outperforms NP-Filter, but they are
very close.
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