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Abstract

Large language models (LLMs) have demon-001
strated their ability to learn in-context, allow-002
ing them to perform various tasks based on a003
few input-output examples. However, the ef-004
fectiveness of in-context learning is heavily re-005
liant on the quality of the selected examples.006
In this paper, we propose a novel framework007
to iteratively train dense retrievers that can008
identify high-quality in-context examples for009
LLMs. Our framework initially trains a reward010
model based on LLM feedback to evaluate011
the quality of candidate examples, followed012
by knowledge distillation to train a bi-encoder013
based dense retriever. Our experiments on a014
suite of 30 tasks demonstrate that our frame-015
work significantly enhances in-context learn-016
ing performance. Furthermore, we show the017
generalization ability of our framework to un-018
seen tasks during training. An in-depth anal-019
ysis reveals that our model improves perfor-020
mance by retrieving examples with similar021
patterns, and the gains are consistent across022
LLMs of varying sizes.023

1 Introduction024

In-context learning (ICL) (Brown et al., 2020) is an025

emerging learning paradigm that allows LLMs to026

perform tasks with few-shot examples, without re-027

quiring any updates to the model parameters. This028

approach stands in stark contrast to traditional ma-029

chine learning, where models are typically trained030

on large datasets of labeled examples (Devlin et al.,031

2019). In-context learning offers a significant ad-032

vantage in domains where labeled data is scarce033

or expensive to obtain, as it greatly reduces the034

amount of required labeled data.035

There are several challenges associated with un-036

derstanding and enhancing the effectiveness of in-037

context learning. One such challenge is that LLMs038

can be highly sensitive to the quality of the in-039

context examples provided (Liu et al., 2022; Min040

et al., 2022). If the examples are not representative041

of the target task, then the model may not be able 042

to learn effectively. Empirical studies (Liu et al., 043

2022; Luo et al., 2023) have demonstrated that us- 044

ing BM25 algorithm or off-the-shelf sentence em- 045

beddings (Reimers and Gurevych, 2019) to retrieve 046

examples from the training set can substantially en- 047

hance the performance of in-context learning over 048

random selection. Another approach involves train- 049

ing dense retrievers based on the feedback signals 050

from LLMs, which has shown promising results in 051

semantic parsing (Rubin et al., 2022), cross-task 052

prompt retrieval (Cheng et al., 2023), and unified 053

multi-task retrieval (Li et al., 2023). However, ex- 054

isting methods either focus on a relatively small 055

language model (Rubin et al., 2022), or fail to ex- 056

ploit the fine-grained feedback information from 057

LLMs in a principled manner (Li et al., 2023). 058

In this paper, we propose a novel framework, 059

LLM-R (LLM Retriever), which aims to retrieve 060

high-quality in-context examples for large lan- 061

guage models. Given an initial set of retrieved 062

candidates, our framework ranks them based on the 063

conditional LLM log probabilities of the ground- 064

truth outputs. Subsequently, a cross-encoder based 065

reward model is trained to capture the fine-grained 066

ranking signals from LLMs. Finally, a bi-encoder 067

based dense retriever is trained using knowledge 068

distillation. The reward model plays a crucial role 069

in providing more informative soft-labels that are 070

suitable for distillation, instead of using heuristi- 071

cally constructed one-hot labels. This pipeline can 072

be iterated multiple times by retrieving a new set 073

of candidates based on the latest dense retriever. 074

For evaluation purposes, we assemble a diverse 075

set of 30 NLP tasks, which span 9 categories, in- 076

cluding question answering, natural language infer- 077

ence, commonsense reasoning, and summarization, 078

among others. Experimental results obtained using 079

LLaMA-7B (Touvron et al., 2023) demonstrate 080

that our model improves the in-context learning 081

performance by an average of 7.8% compared to 082
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random selection. Similar improvements are also083

observed on held-out tasks and LLMs of varying084

sizes. Further analysis reveals that the top-retrieved085

examples share similar input patterns or the same086

labels as the testing example. Our model is par-087

ticularly effective for classification tasks with am-088

ple training examples. In contrast, tasks such as089

closed-book question answering and commonsense090

reasoning rely more on the inherent capabilities091

of LLMs and are less sensitive to the quality of092

in-context examples.093

2 Related Work094

In-Context Learning is an emergent property of095

large language models (LLMs) that enables them to096

perform various tasks conditioned on a few input-097

output examples, without any parameter updates or098

fine-tuning. This property has been demonstrated099

in LLMs such as GPT-3 (Brown et al., 2020), GPT-100

Neo (Black et al., 2021), and LLaMA (Touvron101

et al., 2023), and attracts considerable attention102

from the research community. One area of research103

is focused on understanding the underlying mech-104

anism and principles of in-context learning. For105

instance, Xie et al. view in-context learning as im-106

plicit Bayesian inference, while Dai et al. interpret107

it as meta optimization.108

Another area of research is to explore different109

strategies for selecting and designing in-context110

examples for LLMs. Recent studies (Liu et al.,111

2022; Rubin et al., 2022; Li et al., 2023; Luo et al.,112

2023) have shown that using BM25 algorithm or113

fine-tuning dense retrievers based on LLM feed-114

back to retrieve from the training set can improve115

the performance of in-context learning. Our work116

also falls into this area by proposing a novel train-117

ing method. To model the interaction between118

in-context examples, determinantal point process119

(Ye et al., 2023) and sequential decision-making120

(Zhang et al., 2022) are introduced as preliminary121

explorations. In contrast, Structured Prompting122

(Hao et al., 2022) breaks the limitation of input123

context length and scales the number of in-context124

examples to thousands.125

Dense Retrieval is a widely used information re-126

trieval approach that utilizes dense vectors to per-127

form semantic matching between queries and doc-128

uments in the latent space (Reimers and Gurevych,129

2019; Wang et al., 2022). Compared to sparse130

retrieval methods such as BM25, dense retrieval131

exploits the powerful modeling capacity of pre-132

trained language models (PLMs) (Devlin et al., 133

2019) to learn relevance functions and has the po- 134

tential to overcome the vocabulary mismatch prob- 135

lem. Various techniques such as hard negative min- 136

ing (Karpukhin et al., 2020), knowledge distilla- 137

tion (Ren et al., 2021), and continual pre-training 138

(Wang et al., 2022) have been proposed to enhance 139

the performance of dense retrieval. 140

Retrieval Augmented LLMs combine the gener- 141

ative power of LLMs with the ability to retrieve 142

relevant information from external sources (Ram 143

et al., 2023; Lewis et al., 2020; Shi et al., 2023). 144

This paradigm has the potential to enhance the fac- 145

tual consistency of generated texts, make LLMs 146

aware of the up-to-date knowledge, as well as pro- 147

vide a natural way for source attribution (Nakano 148

et al., 2021). The retrieved information can be in- 149

corporated into LLMs through various mechanisms, 150

such as input concatenation (Shi et al., 2023), in- 151

termediate attention fusion (Borgeaud et al., 2022), 152

and output interpolation (Khandelwal et al., 2020). 153

For in-context learning, the goal of retrieval aug- 154

mentation is to improve the performance of LLMs 155

on downstream tasks by retrieving informative ex- 156

amples (Li et al., 2023; Luo et al., 2023). 157

3 Preliminaries 158

In this section, we provide a brief introduction 159

to the problem setting of in-context example re- 160

trieval. Given a test example xtest from a target 161

task and k in-context examples {(xi, yi)}ki=1 from 162

a pre-defined pool P, a frozen language model M 163

is employed to predict an output y′test through au- 164

toregressive decoding. The primary objective of 165

in-context example retrieval is to retrieve k exam- 166

ples from P such that the predicted output y′test is 167

as close as possible to the ground-truth output ytest 168

based on some task-specific metrics. In this paper, 169

the example pool P is the union of the training set 170

for all the tasks in our evaluation. 171

Straightforward solutions include utilizing the 172

BM25 algorithm or readily available text embed- 173

ding models (Wang et al., 2022; Liu et al., 2022) 174

to retrieve examples from P by treating xtest as 175

a query. Despite their simplicity, these methods 176

have been shown to be more effective empirically 177

when compared to the random selection baseline. 178

In contrast, our framework aims to learn a dense re- 179

triever customized for in-context example retrieval 180

by leveraging the feedback from LLMs. 181
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Figure 1: The overall architecture of our proposed framework LLM-R. The training process comprises three stages:
generating training data based on an initial retriever and LLM feedback, reward modeling, and training dense
retrievers by distilling the knowledge from the reward model. At inference time, the trained dense retriever is
employed to retrieve in-context examples from the pool P and the retrieved examples are fed to the LLM to
generate the output.

4 Methodology182

Our proposed framework is depicted in Figure 1.183

It includes four main components: training data184

generation, reward modeling, dense retriever train-185

ing, and inference, which are described in detail in186

the following subsections.187

4.1 Training Data Generation188

Initial Candidates Retrieval Given an example189

(x, y) from the training set, where x is the input and190

y is the groundtruth output, we retrieve the top-n191

candidates {(xi, yi)}ni=1 from the example pool P192

using an initial retriever. The pool P contains the193

training examples from a mixture of tasks. Since194

(x, y) ∈ P holds during training, we exclude itself195

from the retrieval results.196

In this paper, we employ the unsupervised197

BM25 algorithm as the initial retriever. The query198

only consists of the input x, while each retrieval199

candidate is the string concatenation of the input200

xi and the output yi. This setting aligns with the201

test-time scenario, where the groundtruth output202

is unavailable. Assuming the initial retriever is203

reasonably effective, we anticipate that the top-n204

candidates would contain some positive examples205

and hard negative examples.206

207

Ranking Candidates using LLMs To assess the208

quality of the retrieved candidates, we utilize feed-209

back signals from a frozen LLM. Specifically, we 210

rank the candidates in descending order based on 211

the log-likelihood of the groundtruth output y, as 212

given by the following equation: 213

log p(y|x, xi, yi), ∀i ∈ {1, 2, . . . , n} (1) 214

Here, p(y|x, xi, yi) is the conditional probability of 215

y given the input x and the i-th candidate (xi, yi). 216

It is noteworthy that computing p(y|x, xi, yi) re- 217

quires only one forward pass, and does not rely 218

on any task-specific metrics, despite the autore- 219

gressive nature of language models. In practical 220

applications, this helps reduce the inference cost of 221

LLMs. 222

4.2 Reward Modeling 223

In order to capture the preferences of LLMs over 224

the retrieved candidates and provide fine-grained 225

supervision for dense retrievers, we propose to train 226

a cross-encoder based reward model. For a training 227

example (x, y), we first sample one positive exam- 228

ple (x+, y+) from the top-ranked candidates and 229

Nneg hard negative examples {(x−i , y
−
i )}

Nneg
i=1 from 230

the bottom-ranked candidates. The reward model 231

takes as input the concatenation of (x, y, x+, y+) 232

and produces a real-valued score s(x, y, x+, y+), 233

similarly for the hard negatives. It is trained to 234
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minimize the following cross-entropy loss:235

Lreward = − log
es(x,y,x

+,y+)

es(x,y,x+,y+) +
∑Nneg

i=1 e
s(x,y,x−

i ,y−i )

(2)236

It is important to note that the reward model is only237

used to provide supervision for the dense retriever238

and has access to the groundtruth label y, which is239

not available at test time. This is a key difference240

from the re-ranker in the ad-hoc retrieval setting241

(Ren et al., 2021). Compared to the bi-encoder242

based dense retrievers, the reward model enables243

full interaction between the inputs and can there-244

fore serve as a teacher model.245

4.3 Training LLM Retrievers with246

Knowledge Distillation247

To facilitate efficient inference, the dense retriever248

is based on the bi-encoder architecture. Given249

a query x, we compute its low-dimensional em-250

bedding hx by performing average pooling over251

the last-layer hidden states. Similarly, we obtain252

the embedding h(xi,yi) for the candidate (xi, yi)253

by taking the concatenation of xi and yi as in-254

put. The matching score f(x, xi, yi) is com-255

puted as the temperature-scaled cosine similarity256

cos(hx,h(xi,yi))/τ , where τ is a temperature hy-257

perparameter. In this paper, we use a shared en-258

coder for both the query and the retrieval candi-259

dates.260

The dense retriever is trained to distill the knowl-261

edge from the reward model. We use the KL di-262

vergence loss Ldistill = KL(preward || pretriever) to263

measure the mismatch between the reward model264

distribution preward and the retriever distribution265

pretriever. Ldistill is only computed over the hard neg-266

atives for efficiency reasons. To incorporate the267

in-batch negatives, we also include an InfoNCE-268

based contrastive loss Lcont (Chen et al., 2020)269

by treating the candidate with the highest reward270

as the positive example. The final loss function271

Lretriever is a weighted sum of the contrastive loss272

and the knowledge distillation loss:273

Lretriever = αLcont + Ldistill (3)274

Here, α is a constant that controls the relative275

importance of the two losses.276

277

Iterative Training As illustrated in Figure 1, the278

retriever trained in iteration i can be employed to279

retrieve candidates for the subsequent iteration i+1.280

In the first iteration, the candidates are retrieved 281

using BM25. Such an iterative training approach 282

(Xiong et al., 2021; Li et al., 2023) allows improv- 283

ing retriever quality by mining better positive and 284

hard negative examples. 285

4.4 Evaluation of LLM Retrievers 286

Given a test example xtest, we compute its embed- 287

ding htest using the trained retriever and retrieve 288

the top k candidates from the pool P as the k-shot 289

in-context examples. The input to the LLM is the 290

concatenation of the k-shot examples and xtest. The 291

overall procedure is illustrated in Figure 1. 292

Depending on the task type of xtest, different 293

decoding strategies are employed to generate the 294

final prediction. For classification tasks, we use 295

greedy search with constrained decoding to make 296

sure the prediction is a valid class label. For multi- 297

ple choice tasks, all the choices are ranked based on 298

the average token-level log-likelihood score, and 299

the one with the highest score is selected as the 300

model’s prediction. Generation tasks use greedy 301

search without any constraints. For quantitative 302

evaluation, the prediction is compared with the 303

groundtruth ytest using task-specific metrics. 304

5 Experiments 305

5.1 Evaluation Setup 306

We utilize a total of 30 publicly available datasets 307
1 from 9 distinct categories for training and eval- 308

uation, as shown in Figure 2. This collection is 309

based on FLAN (Wei et al., 2022) and UPRISE 310

(Cheng et al., 2023). Different from our work, 311

FLAN is focused on fine-tuning language models 312

to follow instructions, while UPRISE is designed 313

for cross-task retrieval. To test the generalization 314

ability of the models to unseen tasks, we held out 315

four datasets, namely QNLI, PIQA, WSC273, and 316

Yelp, from the training process. The retrieval pool 317

is created by taking the union of all the training 318

examples, which results in a total of approximately 319

6.3M examples. For each dataset, we sample a 320

maximum of 30k examples for training and 10k 321

examples for evaluation to reduce the cost of LLM 322

inference. For evaluation, we report the average 323

metrics in each task category. Please check Table 324

8 for the specific metrics used for each dataset. 325

In the main experiments, we use LLaMA-7B 326

(Touvron et al., 2023) as the default LLM for can- 327

didate ranking and task evaluation unless other- 328

1We use “datasets” and “tasks” interchangeably.
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Figure 2: The collection of datasets used in our experiments. The yellow-colored datasets are held out and excluded
from training. For further information, please refer to Table 8 in the Appendix.

# of datasets→ CQA Comm. Coref. NLI Para. RC Sent. D2T Summ. Avg
3 3 3 5 3 4 3 3 3 30

Zero-shot 29.0 71.5 66.8 44.0 60.0 41.3 50.5 25.6 17.5 44.9
Random 40.4 77.6 67.2 50.9 56.6 58.1 88.8 47.0 38.9 57.9
K-means 41.6 79.5 66.0 50.8 52.6 53.6 90.9 42.5 40.5 57.0
BM25 45.9 78.1 62.9 54.7 66.1 59.9 89.6 49.3 50.0 61.3
E5base 49.0 79.8 64.6 53.6 58.0 60.2 94.4 48.0 50.0 61.4
SBERT 48.5 79.3 64.2 57.5 64.1 60.6 91.9 47.4 49.3 62.1
EPR† 48.4 79.3 64.4 64.3 65.1 59.8 91.7 49.7 50.0 63.5
LLM-R (1 iter) 48.8 80.1 67.6 71.9 66.5 60.0 93.5 50.1 50.8 65.7
LLM-R (2 iter) 48.7 80.4 70.4 72.5 71.5 59.0 93.6 49.9 51.1 66.5
LLM-R (3 iter) 48.9 80.0 70.8 72.6 72.8 58.0 92.9 49.8 50.8 66.4
Std dev. ±0.2 ±0.8 ±0.7 ±0.1 ±1.1 ±0.0 ±0.4 ±0.0 ±0.1 ±0.2

Table 1: Our main results. We report the average metrics for Close QA (CQA), Commonsense Reasoning (Comm.),
Coreference (Coref.), NLI, Paraphrase (Para.), Reading Comprehension (RC), Sentiment (Sent.), Data-to-text
(D2T), Summarize (Summ.). The standard deviation is computed over 3 runs with the “Random” baseline. Dense
retriever baselines include E5 (Wang et al., 2022), SBERT (Reimers and Gurevych, 2019), and EPR (Rubin et al.,
2022). †: Our re-implementation for fair comparison.

wise specified. The reward model is initialized329

with ELECTRAbase (Clark et al., 2020) and the330

retriever is initialized with E5base (Wang et al.,331

2022). The baselines include zero-shot prompting,332

k-means clustering, random selection, BM25 (Lin333

et al., 2021), and two off-the-shelf dense retrievers,334

namely SBERT (all-mpnet-base-v2) (Reimers and335

Gurevych, 2019) and E5base. Except for zero-shot336

evaluation, we retrieve 8 in-context examples for337

each test input. More implementation details and338

training hyperparameters can be found in Appendix339

A.340

5.2 Main Results341

Table 1 presents the main results of our experi-342

ments. We observe that the simple BM25 algo-343

rithm serves as a strong baseline, exhibiting con-344

sistent improvements over the random selection 345

strategy. This conclusion aligns with the find- 346

ings of Luo et al.. After the first iteration, our 347

proposed model LLM-R outperforms all the base- 348

lines (63.5 → 65.7) by training on the BM25 re- 349

trieved candidates. The second iteration includes 350

the mined positive and hard negative examples 351

from “LLM-R (1 iter)”, raising the average score 352

to 66.5 (+0.8). Further iterations do not yield sub- 353

stantial improvements, indicating that the model 354

has converged. 355

6 Analysis 356

In this section, we examine the performance of 357

LLM-R across various tasks, LLMs, and model 358

variants. Unless explicitly specified, “LLM-R” 359

refers to the model with 2 training iterations. 360
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CQA Comm. Coref. NLI Para. RC Sent. D2T Summ. Avg
LLM-R (1 iter) 48.8 80.1 67.6 71.9 66.5 60.0 93.5 50.1 50.8 65.7
model variants
w/o reward model 48.8 79.1 64.3 68.9 70.2 60.5 91.7 49.4 50.5 64.9
LLM score as reward 48.0 79.4 67.0 67.0 74.0 60.5 91.5 49.6 50.3 65.2

retriever initialization
initialize w/ BERTbase 48.7 79.6 69.4 70.9 63.0 60.7 92.0 50.0 50.2 65.2

Table 2: Different training variants of LLM-R. “w/o reward model” is trained solely with contrastive loss on LLM
ranked candidates. “LLM score as reward” uses the log-likelihood score from LLMs as the distillation target.
Neither of these variants utilizes the reward model.

Zero-shot Random K-means BM25 E5base SBERT LLM-R
QNLI 49.2 56.4 53.4 62.2 61.5 61.9 69.6↑7.7
PIQA 77.0 79.1 79.4 81.3 81.3 80.7 81.6↑0.3
WSC273 74.0 74.4 74.7 64.5 65.2 62.6 79.5↑4.8
Yelp 47.9 92.0 93.5 93.5 97.3 95.9 95.9↓1.4

Average 62.0 75.5 75.3 75.4 76.3 75.3 81.7↑5.4

Table 3: Generalization to four held-out tasks.

6.1 Training Pipeline of LLM-R361

We investigate several LLM-R variants LLM-R in362

Table 2 to understand the contribution of each com-363

ponent. The “w/o reward model” variant removes364

the knowledge distillation loss and sees 0.8 points365

drop in average score. This indicates that the re-366

ward model is crucial for the performance of LLM-367

R. Inspired by REPLUG (Shi et al., 2023), we ex-368

periment with a variant that uses the log-likelihood369

from LLMs as the reward for distillation. Although370

it outperforms the “w/o reward model” variant, it371

still lags behind our method by 0.5 points. We hy-372

pothesize that the log-likelihood of LLMs may not373

be well-calibrated for knowledge distillation with374

KL divergence. Changing the retriever initializa-375

tion from E5 (Wang et al., 2022) to BERT (Devlin376

et al., 2019) results in a performance drop, but not377

as significant as in the ad-hoc retrieval setting.378

6.2 Generalization Ability of LLM-R379

We evaluate the generalization ability of LLM-R380

from two dimensions. In the first scenario, we test381

whether the trained retriever can retrieve good in-382

context examples for tasks that are not seen during383

training. In the second scenario, we test whether384

a model trained with one LLM can generalize to385

other LLMs that vary in size and quality.386

In Table 3, we report the performance of LLM-R387

on four held-out tasks. The results demonstrate that388

LLM-R surpasses the second-best model E5base389

by an average of 5.4 points, indicating its ability390

to generalize to previously unseen tasks. Under391

the current evaluation protocol, there are training 392

datasets that share the same task category as the 393

held-out ones (e.g., QNLI and SNLI are both for 394

natural language inference). A more challenging 395

setting is to test on non-overlapping task categories, 396

which we leave for future work. 397

The LLM-R model is trained with LLaMA-7B. 398

To evaluate its generalization ability across differ- 399

ent LLMs, we test on three other models, namely 400

GPT-Neo-2.7B (Black et al., 2021), LLaMA-13B, 401

and GPT-35-Turbo. Results in Table 4 show that 402

LLM-R consistently outperforms the BM25 base- 403

line for LLMs with parameter ranges from 2.7B 404

to tens of billions. Notably, the gains are par- 405

ticularly significant for small-size language mod- 406

els, possibly because they are less powerful and 407

thus require higher-quality examples to perform 408

in-context learning. 409

6.3 When does LLM-R Work and When 410

Does it Not? 411

Reporting a single aggregate score for all tasks 412

facilitates comparison across different model vari- 413

ants. However, this approach hides the fact that 414

LLM-R performs better on certain tasks than oth- 415

ers, and may even lead to performance degrada- 416

tion in some cases. In Figure 3, we partition the 417

tasks into two groups. A task is considered to be 418

knowledge-intensive if solving this task requires 419

commonsense, complex reasoning, or memorized 420

factual knowledge. 421

For tasks in the knowledge-intensive set, the 422
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CQA Comm. Coref. NLI Para. RC Sent. D2T Summ. Avg
gpt-neo-2.7b

BM25 41.1 67.0 53.2 47.6 64.5 51.2 78.3 45.4 47.3 54.4
LLM-R 42.2 68.0 59.7 71.5 73.0 51.6 91.6 46.9 48.8 61.8↑7.4

llama-13b
BM25 49.6 80.1 61.1 67.0 69.9 60.5 92.5 49.9 50.9 64.6
LLM-R 52.0 83.7 71.2 76.8 73.3 62.2 94.2 50.7 52.0 68.8↑4.2

gpt-35-turbo†

BM25 75.3 85.2 65.0 78.1 78.0 84.4 95.7 51.9 52.8 74.7
LLM-R 79.3 86.7 63.8 79.6 76.0 84.0 95.4 52.2 53.0 75.1↑0.4

Table 4: Generalization to LLMs that are not used for training. †: Since the official API of gpt-35-turbo does
not return the log-probabilities, we use different input-output templates to formulate all tasks as text generation.
Consequently, the scores of gpt-35-turbo cannot be directly compared with those of other LLMs. More details are
in Appendix B.

snli
ag_news

mrpc
mnli_m

mnli_m
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Figure 3: Performance gains of LLM-R over the random selection baseline. The selected knowledge-intensive tasks
are NQ, ARC (easy and challenge), PIQA, HellaSwag, COPA, Paws, OpenBook QA, WSC273, WSC, Winogrande,
and MultiRC.

absolute improvements are substantially smaller423

than the average, with NQ being the only excep-424

tion. This is not surprising, as these tasks rely more425

heavily on the underlying foundation model’s ca-426

pability to perform reasoning and knowledge mem-427

orization. For the NQ dataset, we empirically find428

that there is some overlap between the training and429

test sets, where test questions are paraphrases of430

some training questions. Despite this, we decide431

to keep the NQ dataset in our evaluation, as it is432

a widely used benchmark and the remaining non-433

overlapping questions are still valuable.434

Another noticeable case is the SQuAD v1 dataset435

(Rajpurkar et al., 2016), where LLM-R performs436

worse than the random selection baseline. Upon437

manual inspection, we find that many questions in438

SQuAD share the same passage as the context. This439

frequently results in LLM-R retrieving examples440

with limited diversity, which may account for the441

observed decline in performance.442

In Table 5, for the Sentiment140 and MNLI443

datasets, our model helps by retrieving examples444

that share similar input patterns with the test ex- 445

ample. In contrast, the PIQA dataset requires com- 446

monsense knowledge and may not benefit much 447

from the retrieved examples. 448

6.4 Using Different LLMs for Data 449

Generation and Task Evaluation 450

One crucial aspect of our framework is the selec- 451

tion of the LLM for training data generation and 452

task evaluation. During the training phase, the 453

LLM plays a pivotal role in ranking the retrieved 454

candidates and providing supervision signals for 455

the reward model. In the task evaluation phase, the 456

LLM is used to generate the final predictions. 457

We experiment with GPT-Neo-2.7B and 458

LLaMA-7B. Table 6 shows the results under 459

different combinations of LLMs for training and 460

evaluation. We observe that the quality of the 461

evaluation LLM is the primary determinant for 462

the final performance, while the choice of ranking 463

LLM has a relatively minor impact. Although 464

merging the training data from two LLMs yields 465

7



Task name Sentiment140

Test Input Math review. Im going to fail the exam. What is the sentiment of this tweet?

Test Answer Negative
LLM-R revising for maths exam on tuesday which im gonna fail badly What is the sentiment of this tweet? Negative
Task name MNLI-m

Test Input "Part 2), Confidentiality of Alcohol and Drug Abuse Patient Records." Hypothesis: "Drug and alcohol patient records
should be confidential" Does the premise entail the hypothesis? Yes, No, or Maybe?

Test Answer Yes

LLM-R Premise: "Eligible Clients unable to attain needed legal assistance" Hypothesis: "Clients that should have received legal
assistance but didn’t" Does the premise entail the hypothesis? Yes, No, or Maybe? Yes

Task name PIQA

Test Input Here is a goal: "How can I keep a bathroom mirror from fogging up?" How would you accomplish this goal?

Test Answer Wipe down with shaving cream.

LLM-R Here is a goal: "how do you ’clean up’ an eyebrow you’ve filled in?" How would you accomplish this goal? use concealer
to cover up any mistakes made.

Table 5: Retrieved examples by LLM-R. The bold texts are the groundtruth answers for the test inputs and retrieved
candidates. More examples are available in Table 11.

Rank LLM→
Eval LLM ↓ GPT-Neo-2.7B LLaMA-7B Both

GPT-Neo-2.7B 61.7 61.3 61.6
LLaMA-7B 66.0 65.7 66.3

Table 6: On the impacts of using different LLMs for
candidate ranking and task evaluation. The “Both” set-
ting merges the training data from two LLMs.

the best overall performance, we do not employ466

this technique in our main experiments for the sake467

of simplicity.468

6.5 Scaling the Number of In-Context469

Examples and Retriever Size470

In Figure 4, we investigate the scaling effect of471

LLM-R from two aspects: the number of in-context472

examples and the retriever model size. The overall473

performance improves as we increase the number474

of retrieved examples, but the gains diminish after475

4 examples. Including more examples usually leads476

to longer prompts and higher inference cost.477

With regard to the retriever size, we observe478

that the small-size model produces comparable re-479

sults with the base-size one, whereas the large-size480

retriever exhibits a more substantial performance481

boost. The trends are consistent for the two exam-482

ined language models. Practitioners can select the483

appropriate configurations based on the trade-off484

between performance and computational cost.485

7 Conclusion486

In this paper, we introduce an iterative training487

framework named LLM-R to retrieve high-quality488

in-context examples for large language models.489

1 2 4 8 16
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Figure 4: The scaling effect with respect to the number
of in-context examples and retriever size. Our main ex-
periments use 8 in-context examples and base-size re-
triever. We vary the retriever model size by initializing
with the released E5-{small, base, large} checkpoints
from Wang et al..

This framework generates training data by utiliz- 490

ing a frozen LLM to rank the top retrieved can- 491

didates, and then learns a cross-encoder based re- 492

ward model to capture the ranking preference. Bi- 493

encoder based dense retrievers are trained to distill 494

the knowledge from the reward model. We conduct 495

a comprehensive evaluation of LLM-R on a diverse 496

set of tasks and demonstrate that it consistently 497

outperforms various strong baselines. Our model 498

also generalizes well to held-out tasks and LLMs 499

of varying sizes. 500
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Limitations501

In our framework, we treat each candidate exam-502

ple independently and retrieve the top-k results for503

each test example. This may be suboptimal as the504

in-context examples can influence each other. In-505

corporating the techniques from the field of combi-506

natorial optimization can be a promising direction507

to explore.508

Another limitation of our study is related to the509

automatic evaluation protocol. To compare the per-510

formance of different methods, we report the arith-511

metic mean of the metrics over all tasks. However,512

this may put generation tasks at a disadvantage513

since metrics like ROUGE and BLEU typically514

have a narrower range of variation compared to515

classification accuracy. Moreover, the simple arith-516

metic mean does not account for the quality of each517

dataset.518
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A Implementation Details 912

Retriever Reward Model
initialization E5base ELECTRAbase
learning rate 3× 10−5 10−5

# of GPUs 8 8
batch size 256 128
train steps 6k 3k
τ 0.01 n.a.
α 0.2 n.a.
positive examples top 3 bottom 16
negative examples top 3 bottom 16
# of negatives 3 7
ranking depth 100 100
input length 256 384

Table 7: Hyperparameters for training the bi-encoder
retriever and reward model. We use the same hyperpa-
rameters for every iteration.

The hyperparameters for the retriever model 913

and reward model are summarized in Table 7. 914

The E5base checkpoint is available at https:// 915

huggingface.co/intfloat/e5-base-v2. This 916

checkpoint is also employed for the k-means clus- 917

tering baseline, where we select 8 examples closest 918

to each cluster center as the in-context examples. 919

For each iteration, we employ LLaMA-7B to rank 920

the top-100 retrieved candidates. As we retrieve 921

from a unified pool of examples, it is possible that 922

a candidate comes from a different task than the 923

query. In this case, we assign a low score to it. 924

During the evaluation, we retrieve top-8 candi- 925

dates and use them as in-context examples. The 926

maximum input length for LLaMA-7B is set to 927

1024. Longer inputs are truncated from the left 928

side. The maximum output length is set to 64. 929

The most time-consuming part in our pipeline is 930

ranking candidates with LLaMA-7B, which takes 931

about 12 hours for 200k examples with 8 V100 932
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Dataset name Category # train # test Metric Held-out?
AESLC (Zhang and Tetreault, 2019) Summarize 13,181 1,750 ROUGE-L N
AGNews (Zhang et al., 2015) Summarize 120,000 7,600 Accuracy N
ARC Challenge (Bhakthavatsalam et al., 2021) Close QA 1,117 1,165 Accuracy N
ARC Easy (Bhakthavatsalam et al., 2021) Close QA 2,241 2,365 Accuracy N
BoolQ (Clark et al., 2019) Reading Comp. 9,427 3,270 Accuracy N
CommonGen (Lin et al., 2020) Data-to-text 67,389 4,018 ROUGE-L N
COPA (Roemmele et al., 2011) Commonsense 400 100 Accuracy N
DART (Nan et al., 2021) Data-to-text 62,659 2,768 ROUGE-L N
E2E NLG (Dušek et al., 2019) Data-to-text 33,525 1,847 ROUGE-L N
Gigaword (Napoles et al., 2012) Summarize 2,044,465 730 ROUGE-L N
HellaSwag (Zellers et al., 2019) Commonsense 39,905 10,042 Accuracy N
MNLI (m) (Williams et al., 2018) NLI 392,702 9,815 Accuracy N
MNLI (mm) (Williams et al., 2018) NLI 392,702 9,832 Accuracy N
MRPC (Dolan and Brockett, 2005) Paraphrase 3,668 408 Accuracy N
MultiRC (Khashabi et al., 2018) Reading Comp. 27,243 4,848 F1 N
NQ (Kwiatkowski et al., 2019) Close QA 87,925 3,610 Exact Match N
OpenBook QA (Mihaylov et al., 2018) Reading Comp. 4,957 500 Accuracy N
PAWS (Zhang et al., 2019) Paraphrase 49,401 8,000 Accuracy N
PIQA (Bisk et al., 2020) Commonsense 16,113 1,838 Accuracy Y
QNLI (Rajpurkar et al., 2018) NLI 104,743 5,463 Accuracy Y
QQP (Wang et al., 2019) Paraphrase 363,846 40,430 Accuracy N
RTE (Bentivogli et al.) NLI 2,490 277 Accuracy N
Sentiment140 (Go et al., 2009) Sentiment 1,600,000 359 Accuracy N
SNLI (Bowman et al., 2015) NLI 549,367 9,824 Accuracy N
SQuAD v1 (Rajpurkar et al., 2016) Reading Comp. 87,599 10,570 Exact Match N
SST2 (Socher et al., 2013) Sentiment 67,349 872 Accuracy N
Winogrande (Sakaguchi et al., 2020) Coreference 40,398 1,267 Accuracy N
WSC (Levesque et al., 2012) Coreference 554 104 Accuracy N
WSC273 (Levesque et al., 2012) Coreference 0 273 Accuracy Y
Yelp (Zhang et al., 2015) Sentiment 490,456 33,285 Accuracy Y
Total n.a. 6.3M 177k n.a. n.a.
Total (sampled) n.a. 591k 123k n.a. n.a.

Table 8: Statistics for the datasets used in this paper.

GPUs. Training the retriever model and reward933

model takes less than 10 hours in total.934

B Evaluation with GPT-35-Turbo935

Due to quota limits, we sample at most 1k examples936

for each dataset. As GPT-35-Turbo does not return937

token-level log-probabilities, we cannot evaluate938

the multiple-choice datasets by computing the log-939

likelihood of each option. Instead, we append all940

the options to the end of the input, and let the model941

generate the option index. An example is shown in942

Table 9. We also tried using this format to LLaMA-943

7B, but the performance is significantly worse than944

comparing the log-likelihood of each option.945

For a small number of test examples, GPT-35-946

Turbo fails to follow the patterns of in-context ex-947

amples and generates outputs that are not valid948

class labels. We add some simple heuristics based949

on string matching to determine the model predic-950

tion.951
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Input

What happens next in this paragraph? How to survive remedial classes Look at the course as an opportunity.
Many students are discouraged when they are assigned to a remedial class. Some assume this placement
means they aren’t ready for college. OPTIONS:
A) However, people who are not unable to do what they’re given on campus, or those who are cut out
from college academies, are likely to have some little snitches. You want to be prepared for a negative
outcome if possible.
B) In this case, you should consider what you will do if your subject consists of a certain term or number
of subject areas. You could set up a study study program yourself or tutor a student who is struggling to
thoroughly comprehend where they sat for homework.
C) If you take the course, you might find you feel highly motivated after passing the test. Try to develop a
positive attitude towards the course so that you are not discouraged when you take your homework at the
end of the day.
D) However, being assigned a remedial class doesn’t mean that you are behind, just that you have an
opportunity to receive better instruction and improve your skills in a subject that you have struggled
with in the past. There is nothing unusual about being asked to attend a remedial course: two thirds of
community college students take at least one remedial course.

Output D

Table 9: Input-output format for GPT-35-Turbo. This example is from the HellaSwag dataset. We add some line
breaks for better readability.

Task Zero-shot Random Kmeans BM25 E5base SBERT EPR
LLM-R

1 iter 2 iter 3 iter
AESLC 5.8 19.4 19.0 26.8 27.0 25.3 26.0 26.7 27.3 27.1
AGNews 31.5 67.4 71.9 90.6 90.6 90.2 91.8 92.4 93.5 93.5
ARC Chall. 35.6 39.7 40.5 40.3 44.6 42.8 43.0 43.4 43.6 44.0
ARC Easy 51.0 60.0 61.8 59.9 63.0 63.1 63.1 63.6 63.3 63.6
BoolQ 64.7 70.0 69.0 74.7 72.4 73.9 74.8 75.6 75.1 74.1
CommonGen 19.2 36.3 34.4 37.6 37.4 37.6 39.2 38.2 37.7 37.3
COPA 66.0 80.0 85.0 78.0 83.0 82.0 82.0 84.0 84.0 84.0
DART 22.9 52.0 46.6 55.9 54.7 54.4 56.2 57.3 57.2 57.3
E2E NLG 34.6 52.7 46.4 54.5 51.8 50.2 53.6 54.9 54.7 54.9
Gigaword 15.3 30.0 30.7 32.7 32.5 32.6 32.4 33.3 32.5 31.8
HellaSwag 71.5 73.9 74.0 74.9 75.2 75.3 75.2 75.4 75.5 75.4
MNLI (m) 35.8 46.3 44.2 50.1 44.5 50.8 59.9 68.2 70.2 69.8
MNLI (mm) 35.6 48.1 45.4 48.3 44.7 49.3 61.5 69.5 72.0 71.3
MRPC 69.1 49.5 38.0 61.8 41.2 52.7 55.9 62.3 75.3 78.2
MultiRC 57.0 48.5 34.1 54.2 56.0 55.3 50.4 52.9 51.5 52.1
NQ 0.3 21.5 22.6 37.6 39.3 39.4 39.2 39.4 39.1 39.2
OpenBook QA 41.6 49.8 49.0 49.6 51.4 51.4 49.6 50.8 52.2 53.4
PAWS 53.2 57.0 56.6 56.6 55.4 58.2 57.7 57.0 56.6 57.0
PIQA 77.0 79.1 79.4 81.3 81.3 80.7 80.5 80.9 81.6 80.6
QNLI 49.2 56.4 53.4 62.2 61.5 61.9 65.0 74.4 69.6 69.4
QQP 57.7 63.4 63.3 79.8 77.5 81.3 81.7 80.1 82.6 83.3
RTE 59.6 59.9 58.5 65.7 63.9 67.2 66.8 67.2 68.6 70.4
Sentiment140 49.3 88.6 89.4 90.8 93.9 92.2 91.4 90.8 91.1 90.3
SNLI 39.8 43.7 52.5 47.1 53.5 58.4 68.4 80.2 82.0 82.2
SQuAD v1 2.1 64.1 62.3 61.2 60.8 61.6 64.3 60.7 57.3 52.5
SST2 54.4 85.9 89.7 84.4 92.1 87.6 88.7 94.0 93.8 93.1
Winogrande 62.0 66.7 66.5 67.5 66.9 66.5 66.5 67.9 68.1 67.2
WSC 64.4 60.6 56.7 56.7 61.5 63.5 61.5 60.6 63.5 66.4
WSC273 74.0 74.4 74.7 64.5 65.2 62.6 65.2 74.4 79.5 78.8
Yelp 47.9 92.0 93.5 93.5 97.3 95.9 95.1 95.7 95.9 95.5
Average 44.9 57.9 57.0 61.3 61.4 62.1 63.5 65.7 66.5 66.4

Table 10: Detailed results for each dataset.
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Task Name AG News

Test Input
"Holiday Shoppers Off to a Fast Start Holiday shoppers spent 10 percent more Friday than they did a year
ago, according to early reports, but Wal-Mart Stores Inc. dampened hopes for a strong start to the key
retail season by " What is this text about? World, Sports, Business, or Technology?

Test Answer Business

LLM-R Top 1

"Disappointing holiday news hurts retail shares Shares in a range of area retailers dipped Monday on
disappointing Thanksgiving sales data from Wal-Mart Stores Inc. In addition, ShopperTrak, which tallies
sales results from 30,000 stores nationwide, said " What is this text about? World, Sports, Business, or
Technology? Business

Task name ARC Challenge

Test Input
In the 17th century, to estimate the distance to other planets, scientists first used the technique of viewing
the planet from two different locations on Earth’s surface. Which characteristic of the planet were the
scientists using to calculate the distance from Earth?

Test Answer location

LLM-R Top 1
Which physical characteristic of Earth is similar to a physical characteristic of the Moon? its mountain
ranges

Task name ARC Easy
Test Input What is the major cause of seasonal changes?
Test Answer tilt of the Earth’s axis
LLM-R Top 1 Which occurs as a result of Earth’s tilt on its rotating axis? seasonal changes in the climate
Task name CommonGen
Test Input Concepts: field, throw, kid, bunch, ball. Write a sentence that includes all these words.
Test Answer A bunch of kids are running around and throwing a ball on a field.

LLM-R Top 1
Concepts: look, ball, lot. Write a sentence that includes all these words. Two babies look up while they
are playing in a playpen with a lot of balls.

Task name COPA
Test Input "The boy skipped dinner." What is the cause?
Test Answer He ate a big lunch.

LLM-R Top 1
"The parents left their children with a babysitter." What is the cause? They made plans to celebrate
their anniversary.

Task name DART

Test Input
Triple: The Mill, eatType, coffee shop; The Mill, food, Chinese; The Mill, priceRange, moderate; The
Mill, area, city centre; The Mill, near, The Sorrento What is a sentence that describes this triple?

Test Answer
There is a coffee shop serving Chinese food called The Mill. It has a moderate price range is is find
in the city centre near The Sorrento.

LLM-R Top 1
Triple: The Mill, eatType, coffee shop; The Mill, food, Indian; The Mill, priceRange, cheap; The Mill,
area, riverside; The Mill, near, The Sorrento What is a sentence that describes this triple? The Mill coffee
shop is located in the riverside area near The Sorrento. They serve Indian food at a cheap price.

Task name Gigaword

Test Input
Write a short summary for this text: the dollar and major european currencies traded within narrow ranges
on tuesday on the london forex market , which was waiting for the easter holiday weekend and for us
employment figures to be announced on friday , traders said in late afternoon .

Test Answer london forex market stable as market waits for easter us data

LLM-R Top 1
Write a short summary for this text: the dollar was stable over-all early monday afternoon by comparison
with morning levels on the london forex market , which was waiting for publication at the end of the week
of us inflation figures , traders said . dollar stable in london as market waits for us inflation data

Task name MRPC

Test Input
Here are two sentences: An episode is declared when the ozone reaches .20 parts per million parts of air
for one hour . A Stage 1 episode is declared when ozone levels reach 0.20 parts per million . Do they
have the same meaning?

Test Answer Yes

LLM-R Top 1
Here are two sentences: A Stage One alert is declared when ozone readings exceed 0.20 parts per million
during a one-hour period . A Stage 1 episode is declared when ozone levels reach 0.20 parts per million .
Do they have the same meaning? Yes

Task name NQ
Test Input Question: legislation regarding data protection and security in uk? Answer:
Test Answer The Data Protection Act 1998

LLM-R Top 1
Question: which law relates to the protection of personal information? Answer: Data Protection Act
1998

Table 11: More retrieved examples. The format is the same as Table 5.
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