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Abstract

We study strategic behavior of project proposers in the context of approval-based
participatory budgeting (PB). In our model we assume that the votes are fixed and
known and the proposers want to set as high project prices as possible, provided
that their projects get selected and the prices are not below the minimum costs of
their delivery. We study the existence of pure Nash equilibria (NE) in such games,
focusing on the AV/Cost, Phragmén, and Method of Equal Shares rules. We also
provide an experimental study of cost selection on real-life PB election data.

1 Introduction

Consider a city that implements participatory budgeting (PB) [Cabannes, 2004; Goel et al., 2019;
Rey and Maly, 2023]. The city council allocates a fixed amount of funds for the initiative and invites
citizens to submit project proposals, for which the funding decisions will be made through voting.
One natural question that the proposers face is how much money should they realistically request. It
is tempting to propose expensive projects, as higher costs are typically associated with better quality
and broader scope, but overly expensive projects risk rejection due to a limited budget.

Indeed, evidence suggests that the costs of the projects are often set strategically. For example, in
10% of participatory budgeting elections held in the city of Wrocław, Poland, all project propos-
als had costs equal to the maximum allowed amount (see the Pabulib database [Faliszewski et al.,
2023]) in the corresponding instance. Moreover, in 85% of these elections, more than half of the
proposals were priced at the maximum value. A similar phenomenon, if less pronounced, also oc-
curs in other cities. For instance, in 25% of Pabulib PB instances approximately half of the projects
have costs reaching at least 90% of the maximum allowed value in the corresponding instance. In
another 50% of these instances, more than 30% of the projects are priced at or above 50% of the
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allowed maximum. This pattern is unlikely to be coincidental and it seems implausible that the
implementation costs of different projects would naturally converge to such similar values. Instead,
this suggests that projects are prepared strategically, with costs deliberately set as high as possible
within the given constraints and perceived chances of selection.

Cost-selection strategies are likely influenced by the voting rules used. If the rule prioritizes the
number of votes a project receives, proposers might feel encouraged to submit more expensive pro-
posals. This happens, e.g., if the city uses the BasicAV rule (also known as GreedyAV [Boehmer
et al., 2023] or GreedCost [Rey and Maly, 2023]) which greedily selects those projects that are ap-
proved by the largest numbers of voters (provided they still fit in the remaining budget). Conversely,
if the city were to use a proportional rule, such as the Method of Equal Shares (MES) [Peters and
Skowron, 2020; Peters et al., 2021] or Phragmén [Brill et al., 2017; Los et al., 2022], then each
proposer would have to analyze how the other ones might act and choose the costs accordingly.

For example, in recent instances of participatory budgeting in Wieliczka—where the BasicAV rule
was used and the maximum project cost was set to half of the budget—exactly two projects were
winners, each with the highest allowed cost. However, when in 2023 Wieliczka used MES in their
experimental “Green Million” PB election, there were 30 winning projects, with costs distributed
much more uniformly over the range of the allowed values (the maximum allowed project cost was
10% of the budget, so if the proposers acted as previously, there would be 10 winning projects; for
details of the election, see https://equalshares.net/elections/zielony-milion/). While this is anecdotal
evidence, it shows that voting rules do affect the structure of PB elections.

Our goal is to analyze this game-theoretic nature of project cost selection under various participatory
budgeting rules. Studying strategic cost selection is also a natural direction in market analysis and
is present, e.g., in the context of the Hotelling-Downs model; see the overview of Eiselt [2011].
Notably, our work is different from that of Aziz et al. [2023], who consider how voters pool their
funds; see also the work of Wagner and Meir [2023].

The Game. We analyze the following scenario. The sets of projects and voters are fixed and
each voter indicates which projects he or she approves (this information is common knowledge, an
assumption we discuss later on). Each project is controlled by a different proposer choosing its cost
so that it is as high as possible, while ensuring that the project is selected. However, each project also
has a certain delivery cost—i.e., the lowest cost under which it can be reasonably implemented—
and the proposers prefer costs that are at least as high. Note that we view the notion of a project
broadly: Choosing a lower cost means proposing a smaller-scale project, and choosing a higher cost
means submitting a more comprehensive one (but addressing the same general need). Importantly,
whether a voter approves a project or not, does not depend on its cost; this strategy of the voters is
often called threshold approval voting [Benadè et al., 2020; Fairstein et al., 2023]. The projects are
chosen according to a given rule, such as BasicAV, AV/Cost, Phragmén, or MES (see Section 2 for
details). We analyze whether thus defined games—where the project proposers are the players—
have pure Nash equilibria and, if so, what costs are reported under these equilibria.

While our games present a simplified view of reality due to abstracting away from excessive com-
plexities, they lead to identifying certain phenomena and explaining behavior that we see in data.
Consequently, our model lays the foundations and sets expectations for more sophisticated scenar-
ios. Natural extensions will become apparent after we explain our assumptions and their limitations:

Votes are common knowledge. As we use classic Nash equilibrium analysis, we need the ability
to evaluate players’ utilities for all possible strategy profiles, which essentially means that the
votes are common knowledge. While this is a standard assumption in the analysis of Nash
equilibria, in practice, neither the precise identities of the voters nor their votes are known
to project proposers when submitting their projects. Yet, proposers often estimate potential
support, e.g., using insights from previous PB editions. Hence, despite its seemingly strong
assumptions, game theory offers valuable insight into strategic aspects of cost selection.

Project costs do not affect approvals. We assume that voters’ approvals do not depend on project
costs. Although it is a simplification, it is supported by several observations. First, data shows
that costly projects are frequent, suggesting a common belief that high prices do not deter vot-
ers. Second, approving projects based on their quality and ignoring the costs is often suggested
as a superior strategy for utility-oriented voters [Benadè et al., 2020; Fairstein et al., 2023].
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Third, there is evidence that taking project costs into account, e.g., performing the value-for-
money analysis, is cognitively expensive [Fairstein et al., 2023].

While relaxing our assumptions would give a more general class of games, we start with a clean,
simple model, in order to obtain a baseline. That said, we complement our discussion by allowing
the voters to have individual ranges of costs under which they approve each project, and we argue
why we believe that such a model leads to less useful conclusions (see Section 6).

Our Contributions. We study the existence of pure Nash equilibria in our games, under various
PB rules and a number of restrictions on their structure. Importantly, we find that MES with cost
utilities always admits NEs with the costs of the projects bounded proportionally to their expected
support, whereas BasicAV has NEs where a single project takes the whole budget. In contrast,
AV/Cost, Phragmén, and MES with approval utilities may fail to have any NEs at all. The existence
of an NE for a rule suggests that it might naturally incentivize project proposers to gravitate towards
it, whereas the non-existence indicates increased challenges in reasoning about the costs, leading to
less predictable behaviour.

Further, our theoretical tools enable the experimental analysis of NEs in real-life scenarios. We
conduct such an analysis based on the Pabulib dataset [Faliszewski et al., 2023]. We find that
Phragmén and MES based on approval utilities are very different from MES with cost utilities. The
former two rules promote cheaper projects, and the latter selects fewer and more expensive ones.

Our model aligns well with the patterns observed in real elections, such as those in Wrocław and
Wieliczka. Similarly, it provides insight into why most cities using BasicAV impose upper bounds
on allowed project costs. Interestingly, the city of Świecie, Poland that transitioned from BasicAV
to MES in 2023, dropped such upper bounds. This shows that the city officials have an intuitive
understanding of the strategic incentives arising under different voting rules.

2 Preliminaries
Participatory Budgeting. We define a PB instance (or, a PB election) as a tuple E =
(P, V,B, cost), where P = {p1, . . . , pm} is a set of projects, V = {v1, . . . , vn} is a set of vot-
ers, B ∈ R+ is the available budget, and cost : P → R+ is a function specifying the cost of each
project. Each voter vi casts a nonempty approval ballot A(vi) ⊆ P , containing the set of projects
that he or she approves (see, e.g., the work of Fairstein et al. [2023] for a discussion of other ballot
formats). Note that a voter may approve projects whose total cost exceeds the available budget. We
often refer to the voters and their approval ballots as either an approval profile or a preference profile.
We extend the A(·) notation so that for a project pi, A(pi) is the set of voters that approve pi. Then,
|A(pi)| is the approval score of pi. For each project pi, we assume that |A(pi)| ≥ 1. Given a subset
of projects P ′, we let cost(P ′) =

∑
p′∈P ′ cost(p′).

Each PB instance comes with a tie-breaking order ≻ over the projects, used by the PB rules to
resolve internal ties. While tie-breaking can notably influence voting [Obraztsova and Elkind, 2011;
Obraztsova et al., 2011] and PB elections [Boehmer et al., 2023], especially in case of smaller
instances [Janeczko and Faliszewski, 2023], we do not expect many ties in PB (ties are very rare in
Pabulib data; see also the work of Xia [2021] for an argument regarding large ordinal elections).

Participatory Budgeting Rules. A PB rule is a function f that for a PB instance E outputs a
set f(E) of projects with total cost not exceeding the budget. We refer to the projects in f(E) as
winning (or selected, or funded). Note that our rules are resolute, that is, their outcomes are unique.
We focus on the following ones, denoting by E = (P, V,B, cost) the instance we consider and
assuming ≻ to be the tie-breaking order:

BasicAV. It starts with W = ∅ and considers all the projects in the order of their nonincreasing
approval scores (with ties broken using ≻), putting a considered project p into W if cost(W ∪
{p}) ≤ B. Finally, it outputs W .

AV/Cost. For each project p, its approval-to-cost ratio is |A(p)|/cost(p). AV/Cost acts like BasicAV,
considering the projects in the nonincreasing order of these ratios and breaking ties using ≻.

Phragmén [Brill et al., 2017; Los et al., 2022]. Phragmén starts with W = ∅ and fills it in as fol-
lows. Initially, the voters have empty virtual bank accounts, but they continuously earn money
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at the rate of one unit per unit of time. When there is a project p such that the voters who
approve it have at least cost(p) units of money all together and the project is within the budget
(i.e., cost(W ∪ {p}) ≤ B), these voters purchase it: p is included in W , the bank accounts of
voters in A(p) are reset to zero, and p is removed from consideration. If cost(W ∪ {p}) > B,
then p is removed without being included in W . If several projects could be purchased simul-
taneously, we pick one using the tie-breaking order. The rule stops and outputs W when all
projects are removed from consideration.

Method of Equal Shares (MES-Cost) [Peters et al. 2020; 2021]. First, each voter receives B/|V |
amount of money. Then we let W = ∅ and proceed iteratively: Within each iteration, for each
project p not in W we compute its affordability coefficient αp as the smallest number such that
the following holds (bi is the money that voter vi currently has):∑

vi∈A(p) min(bi, αp · cost(p)) = cost(p). (1)
If no such value exists (i.e., the voters approving p cannot afford it) then we set αp = ∞. If
αp = ∞ for all p /∈ W , then we terminate and output W . Otherwise, we choose p′ /∈ W with
the lowest affordability coefficient (using tie-breaking, if needed), include p′ in W , and take
αp′ · cost(p′) money from each voter in A(p′) (or all the remaining funds, if the voter had less
than αp′ · cost(p′)). Due to the use of cost in Eq. (1), the rule is called MES with cost utilities.

MES with Approval Utilities (MES-Apr). It works like MES-Cost, but with Eq. (1) replaced by∑
vi∈A(p) min(bi, αp) = cost(p). While in MES-Cost the affordability coefficients are be-

tween 0 and 1, under MES-Apr they can be as large as B.
Remark 2.1. Both variants of MES may output a set of projects that can be extended without
exceeding the budget. In our experiments we use Phragmén completion: When a MES variant
finishes, we extend its output by running Phragmén with voters’ bank accounts initiated with their
then-current amounts of money. This defines the MES-Cost/Ph and MES-Apr/Ph rules.

Many authors also study other PB rules (see, e.g., the works of Goel et al. [2019]; Talmon and
Faliszewski [2019]; Sreedurga et al. [2022]); for an overview, see the survey of Rey and Maly
[2023] and the book of Lackner and Skowron [2023] (which regards multiwinner elections, where
projects have unit costs). BasicAV is commonly used in practice, MES-Cost also was recently used
by several cities (see https://equalshares.net); the other rules are mostly studied theoretically.

Structured Preferences. In a plurality profile, each voter approves exactly one project, whereas in
a party-list profile the projects are grouped into “parties” and each voter approves all projects from a
single party. Importantly, plurality profiles form a special case of party-list preferences. Some cities
require plurality profiles (e.g., Wrocław, Poland; see the respective datasets in Pabulib); party-list
ones are mostly interesting theoretically.
Definition 2.1. Consider a set of projects P and a voter collection V with approval ballots over P .
We say that these voters have: (1) plurality preferences, if |A(vi)| = 1 for each voter vi, (2) party-list
preferences, if either A(vi) = A(vj) or A(vi) ∩A(vj) = ∅ for each two voters vi and vj .

For a party-list profile, let party(p) denote the set of projects approved by these voters that approve p.

3 Participatory Budgeting Cost Games

We now define our main object of study, participatory budgeting cost games (PB games). Formally,
a PB game is a tuple (P, V,B, d), where P is a set of projects, V is a collection of voters with
approval preferences over the projects from P , B is the available budget, and d : P → R+ is
a function that associates each project with its minimal delivery cost (see the description of the
payoffs in the next paragraph). We assume that for each project pi, d(pi) ≤ B. In this game, the
projects are the players and each of them needs to report its cost. That is, a strategy profile is a tuple
c = (c1, . . . , cn), with a cost ci ∈ R+ for each project pi, which will be used in a PB election. As is
standard, by (c−i, c

′) we mean a strategy profile identical to c except that project pi reports cost c′.
We often write c(pi) to denote the cost reported by pi under profile c, and we use strategy profiles
as cost functions in PB instances.

Let us fix a PB rule f and a PB game G = (P, V,B, d). For a strategy profile c, the associated PB
instance is E(c) = (P, V,B, c) and the payoff of each project pi ∈ P is:

ui(c) = ci − d(pi) if pi ∈ f
(
E(c)

)
, and ui(c) = 0 otherwise.
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Table 1: Our NE existence results. By “d ≡ 0” and “arb. d” we mean zero and arbitrary delivery costs.

ballots Plurality Party-List Unrestricted
d ≡ 0 arb. d d ≡ 0 arb. d d ≡ 0 arb. d

BasicAV ■ ■ ■ ■ ■ ■
Pr. 4.1 Pr. 4.1 Pr. 4.1 Pr. 4.1 Pr. 4.1 Pr. 4.1

AV/Cost ■ ■ □ ■† ■ □ ■† ■ □
Pr. 4.2 Thm. 4.4, Ex. 4.3 Pr. 4.2 Thm. 4.4, Ex. 4.3 Pr. 4.2 Thm. 4.4, Ex. 4.3

Phragmén ■† ■ □ ■ ■? □ □ □
Cor. 4.6 Cor. 4.6 Pr. 4.7 Cor. 4.6 Pr. 4.8 Pr. 4.8

MES-Apr ■ ■ ■ ■ □ □ □
Thm. 4.10 Thm. 4.10 Thm. 4.12 Thm. 4.12, Ex. B.2 Pr. 4.11 Pr. 4.11

MES-Cost ■ ■ ■ ■ ■ ■
Thm. 4.9 Thm. 4.9 Thm. 4.9 Thm. 4.9 Thm. 4.9 Thm. 4.9

Legend

■ NE guaranteed for an arbitrary tie-breaking
■ NE always exists for some tie-breaking
□ no NE for all tie-breaking orders
? conjecture
† result holds also if for each project p we

have d(p) ≤ ap(p), where ap is the cor-
responding approval-proportional strategy
profile

The interpretation is as follows: Each project p has a minimum delivery cost d(p), which is the
lowest price under which it can be implemented. Yet, with more money the project can be better,
the proposer prefers this, and the utilities implement this preference. In particular, the proposers do
not receive funds equal to the utility values. Instead, to compute utility values, we deduct minimum
delivery costs. We often consider the special case of zero delivery costs.1

For a PB rule f and a PB game G = (P, V,B, d), we say that a strategy profile c for this game is a
Nash equilibrium under f (is an f -NE) , if no project has a profitable deviation. That is, it cannot
benefit by reporting a different cost than that from the f -NE (assuming no other costs change).
Definition 3.1. For a PB rule f and a PB game G = (P, V,B, d), we say that a strategy profile c
for this game is a Nash equilibrium under f (is an f -NE) if for every project pi ∈ P and every cost
c′ ∈ R+ it holds that ui(c) ≥ ui(c−i, c

′).

Example 3.1. Take AV/Cost and a PB game with projects p1, p2, voters v1, . . . , v5, budget 10, and
zero delivery costs. We have A(p1) = {v1, v2} and A(p2) = {v3, v4, v5}, so this is a plurality
profile. Strategy profile c where c(p1) = 4 and c(p2) = 6 is an NE. Indeed, according to AV/Cost,
under these costs p1 and p2 are tied as |A(p1)|/c(p1) = |A(p2)|/c(p2) = 1/2, and both projects are
selected under any tie-breaking order. If either of the projects reports a lower cost, it gets selected,
but its utility decreases. If it reports a higher cost, it is not selected and its utility drops to zero.

We sometimes use approval-to-delivery-cost (A/D) tie-breaking orders, which favor projects with
larger ratios of their approvals to delivery costs. So, ≻ is A/D if projects with zero delivery costs
are ranked highest, while A(pi)/d(pi) > A(pj)/d(pj) implies pi ≻ pj if d(pi) · d(pj) > 0. As some
projects may have equal approval-to-delivery cost ratios, there may be several different A/D orders.
Remark 3.1. In our games, a proposer receives the same utility of zero when his or her project is
not funded and when it is funded with exactly its delivery cost. One could distinguish these cases by
using extended utility function u′

i such that:

u′
i(c) = c(pi)− d(pi) + 1[c(pi) ≥ d(pi)] if pi ∈ f

(
E(c)

)
, and u′

i(c) = 0 otherwise,

where 1[x] is 1 if x holds and 0 otherwise. We prefer our formulation as it is simpler and captures the
intuition that only projects more costly than their delivery costs are worth implementing. That said,
all our NE-(non)existence results still hold for the extended utility functions (for the nonexistence
results this is automatic and for the existence ones, see Appendix A).

4 Existence of Equilibria

Our theoretical results, summarized in Table 1, focus on the existence of NEs in PB games. We
mostly show that either: (1) There always is an equilibrium, for any tie-breaking order; (2) There
always is an equilibrium for some A/D tie-breaking order; or (3) There is a PB game with no equilib-
rium for any tie-breaking order. When such statements are difficult to show, we seek instances with
no equilibria for some tie-breaking order. Such an observation is weaker than a result of type (3),

1This assumption is well justified. First, based on the design of the game, project proposers are incentivized
to submit costly projects, so the risk of costs approaching zero is minimal. Second, assigning fixed delivery
costs introduces an unrealistic hard constraint, as proposers often possess the flexibility to adjust project scope
and influence the costs. Modeling delivery costs as zero thus provides a clean representation of this flexibility.
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is incomparable to a result of type (2), and implies that a result of type (1) does not exist. Pragmat-
ically, it is most important to know whether a result of type (1) holds or not in a given setting; the
other types of results indicate various levels of bad news regarding the existence of Nash equilibria.

We are interested in strategy profiles that are proportional in some way, and, in particular, in which
the costs of the projects are justifiable by the level of support that they have. A detailed discussion
of fairness in PB is, for example, in the works of Brill et al. [2023] and Maly et al. [2023], as well
as the works defining MES and Phragmén). Below, we define a basic type of such a profile, where
project costs are proportional to the numbers of approvals they get.
Definition 4.1 (Approval-Proportional Strategy Profile). Consider a PB game with P =
{p1, p2, . . . , pm}. We say that strategy profile ap is approval-proportional if for each project p it
holds that ap(p) = B · |A(p)|/

∑
p′∈P |A(p′)|.

Under plurality preferences ap is natural for rules that aim to achieve proportionality. For more
involved settings, other profiles may be more appropriate (see, e.g., MES-Cost and Theorem 4.9).

4.1 BasicAV

For BasicAV, there is an equilibrium where the most popular project requests the full budget amount.
Proposition 4.1. For each PB game and each internal tie-breaking order ≻ there is a BasicAV-NE
where the project with most approvals (best with respect to ≻) reports cost B.

In fact, the most popular project reports cost B (and is selected) under every BasicAV-NE. Hence,
Proposition 4.1 indicates that proposers of projects receiving many approvals have an incentive to
overstate their costs, whereas proposers of less popular projects have an incentive to bundle them
together, to garner votes (indeed, this is what seems to happen in Wieliczka PB elections held using
BasicAV; recall Section 1). Consequently, BasicAV equilibria in our games are disproportional,
highlighting known deficiencies of this rule.

4.2 AV/Cost

Some shortcomings of BasicAV are remedied by AV/Cost, for which the approval-proportional strat-
egy is an equilibrium. To show this, we note that in an NE, if the delivery costs are limited, all
projects are funded, using the whole budget. It follows that then ap is the only equilibrium profile.
Proposition 4.2. If for each project p we have d(p) ≤ ap(p), then ap is the only AV/cost-NE.

If (some of) the delivery costs are higher than the costs implied by the approval-proportional strategy,
then the situation becomes more complicated and it is no longer true that an NE exist for all internal
tie-breaking orders. Yet, there always is a tie-breaking order yielding an NE.
Example 4.3. Take a PB game (P, V,B, d) with plurality ballots, where P = {p1, p2}, |A(p1)| =
|A(p2)| = 5, B = 10, d(p1) = 0, d(p2) = 6, and the tie-breaking order is p2 ≻ p1. Assume that
c is an AV/Cost-NE. Consider two cases: (1) If c(p2) ≥ 6, then either (a) c(p1) ≥ c(p2), where it
is better for p1 to report a cost lower than c(p2) (otherwise p2 is selected before p1 and there is no
budget left for p1), or (b) c(p1) < c(p2) and it is better for p1 to increase its cost (keeping it below
c(p2)). (2) If c(p2) < 6, then either p2 is chosen and it prefers to report cost 6 (otherwise its payoff
is c(p2) − d(p2) < 0), or p2 is not selected, meaning that c(p1) < c(p2) and it is better for p1 to
increase its cost (keeping it below c(p2)).

Nevertheless, if we change the tie-breaking order so that p1 ≻ p2, then (6, 6) is an equilibrium,
where only p1 is funded: Both projects would decrease their payoff by lowering costs and they
would not benefit by increasing their costs (p1 would no longer be selected, and p2’s payoff would
not change).
Theorem 4.4. For each PB game and A/D tie-breaking order there is an AV/Cost-NE computable
in polynomial time.

Proof sketch. We propose an algorithm that computes the claimed profile c in iterations. Starting
from the situation where each project reports its delivery cost, in each iteration it selects a group of
projects that “underreport” their costs compared to their support. Then, it increases their reported
costs as much as possible, with the projects remaining funded. Finally, if the funded projects after the
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update do not use up the whole budget, the procedure is repeated for the remaining projects whose
prices have not been increased so far. These projects, albeit worse regarding the delivery-cost-to-
support ratio, can still benefit from the increase. In the end, the procedure outputs an equilibrium
profile. The somewhat involved proof is in the appendix.

We conclude by noting that even for plurality preferences the costs of projects selected in an equi-
librium can be arbitrarily far from using the entire budget.

Proposition 4.5. For each integer γ > 1 there is a PB game with plurality preferences and AV/Cost-
NE profile c with the total cost of projects funded under AV/Cost at most B/γ.

4.3 Phragmén

For plurality ballots, AV/Cost and Phragmén always output the same projects. Thus, the next corol-
lary translates results from the previous section to the case of Phragmén.

Corollary 4.6. For each PB game with plurality ballots, (a) if d(p) ≤ ap(p) for all p ∈ P , then
ap is the only Phragmén-NE for every tie-breaking order; (b) otherwise, for each A/D tie-breaking
order there is a Phragmén-NE (and there are PB games and tie-breaking orders with no Phragmén-
NE).

Naturally, Proposition 4.5 also holds for Phragmén, so there are games with equilibria for which
Phragmén funds projects whose total cost is an arbitrarily small fraction of the budget. Next, we
focus on more involved preference profiles. On the positive side, for party-list ballots (and zero
delivery costs) we always have unique equilibria, for every tie-breaking order: Each project p reports
a cost proportional to the number of its approvals, divided by the size of its party.

Proposition 4.7. For every PB game with party-list ballots and zero delivery costs, there is the
unique Phragmén-NE c, where for every project p we have c(p) = B · |A(p)|

|V |·|party(p)| .

Unfortunately, party-list preferences with zero delivery costs are where the good news end. Indeed,
we find that there are small instances without equilibria.

Proposition 4.8. There is a PB game with six projects and six voters and zero delivery costs, for
which there is no Phragmén-NE irrespective of the tie-breaking order.

4.4 Method of Equal Shares

The mechanics of MES might seem similar to those of Phragmén, as these rules follow the approach
in which voters buy the projects they approve. However, contrary to Phragmén, in both types of
MES voters have limited amounts of budget to spend. So, the approval scores of projects give
upper-bounds on the maximum costs that the projects might report. I.e., as each voter gets an equal
share of the budget, projects that cost more than the total budget of their supporters cannot be funded.

In case of MES-Cost, this translates to our most positive result: For each PB game there always is
an, essentially unique, MES-Cost-NE, regardless of the tie-breaking order and the delivery costs.
Furthermore, this NE can be computed in polynomial time and if all the projects have sufficiently
low delivery costs and sufficiently high support, then it uses up the whole budget (even though,
in general, MES is not exhaustive). Together with its proportionality features, this reinforces the
position of MES-Cost as a very attractive PB rule.

Theorem 4.9. For each PB game, there is a polynomial-time computable MES-Cost-NE profile c,
unique up to the actions of the projects not selected by MES-Cost under c.

Proof sketch. Let p be the project with the largest number of approvals (and preferred in the tie-
breaking order, if there are several such projects). We observe that p can always request the full
amount of money that its voters have at the beginning of the execution of MES-Cost; the rule would
fund p irrespective of the costs of the other projects. Thus, p reports this amount and is funded (if
the amount is below its delivery cost, p reports the delivery cost and is not funded). The project has
no reason to report less, and reporting more would cause it to not be funded. Then, we disregard all
the voters that approve it and repeat the reasoning for the remaining projects and voters.
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Table 2: PB instances analyzed in our experiments.

Instance |P | |V | Budget Avg. num. of approvals per ballot

Wesola 29 1182 1 011 000 PLN 7.87
Kleine Wereld 52 426 250 000 EUR 11.93

Perhaps surprisingly, for MES-Apr the results are much less positive. While there always are
MES-Apr-NE for plurality ballots, in general there are small games with zero delivery costs that
have no MES-Apr-NE irrespective of the tie-breaking order used.
Theorem 4.10. For each PB game with plurality ballots, there is a polynomial-time computable
MES-Apr-NE.
Proposition 4.11. There are games with zero delivery costs, for which there is no MES-Apr-NE
regardless of the tie-breaking order, even if we have only 4 projects and 16 votes.

In case of party-list ballots, existence of equilibria depends on delivery costs and tie-breaking.
Theorem 4.12. Every PB game with party-list ballots and an A/D tie-breaking order has
a MES-Apr-NE computable in polynomial-time. There are examples of PB games with party-list
preferences, nonzero delivery costs and non-A/D tie-breaking that do not have MES-Apr-NE.

For zero delivery costs every tie-breaking order is A/D, so the above theorem shows that PB games
with party-list preferences and zero delivery costs always have MES-Apr-NE. We conclude by
noting a surprising difference between MES-Apr and Phragmén, presented in the following theorem.
Theorem 4.13. In some instances symmetric projects (w.r.t. their supporters) submit different costs
in a MES-Apr-NE, but identical ones in Phragmén-NE.

5 Experiments

We move on to the experimental analysis of our games for real-life PB instances from Pabulib [Fal-
iszewski et al., 2023]. We focus on two instances, one held in 2022 in Wesoła (a district of Warsaw,
Poland) and one held in 2019 in Kleine Wereld (a part of the Noord District of Amsterdam, The
Netherlands). A few details regarding these instances are available in Table 2. We have also ana-
lyzed many other instances from Pabulib, some of which we show in Appendix C. While all of them
lead to similar conclusions, the instances we chose are particularly illustrative. Our code is publicly
available at https://github.com/Project-PRAGMA/strategic-cost-selection-in-PB--NeurIPS2025.

We perform two experiments. First, we take a PB instance with the original project costs and com-
pute proposers’ best responses. Second, we seek equilibiria for our instances. We omit plots for
MES-Apr/Ph, as they resemble those for Phragmén (see Appendix C).

5.1 Winning and Losing Margins

Take a PB instance E and a PB rule f . Intuitively, for each project p its best response br(p) is the
highest cost such that if we use it instead of cost(p), then p is (still) funded under f . We define it as
the supremum of the set of costs under which p is funded. Then, if p is winning in E under f , we let
its winning margin be br(p)−cost(p), and if it is losing we let its losing margin be cost(p)−br(p).

In Figure 1 we show the winning and losing margins (and, hence, the best responses) for all the
projects from our two PB instances. For BasicAV, we observe very high winning margins for the
projects with the largest numbers of approvals, and close-to-zero best responses for the remaining
ones (this phenomenon is particularly visible in Kleine Wereld). In principle, under BasicAV if
a project receives few votes even making it cheap will not make it funded, unless it is so cheap
that it is selected simply because nothing else could fit within the budget left. For AV/Cost the
best responses roughly correspond to the numbers of approvals each project got; the same, roughly,
holds for Phragmén and MES-Apr/Ph. The margins for MES-Cost/Ph are different, with several
most-approved projects having much higher winning margins than the rest.

The main general observation is that unless a project received relatively few approvals, then typically
its proposers could have reported a much higher cost. In practice, this means that project proposers
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Figure 1: Winning and losing margins in real-life PB—Wesola with the budget of 1 011k PLN at the top and
Kleine Wereld with one of 250k EUR at the bottom. Projects ordered by decreasing approval scores (on the
x-axis) are represented by bars. Tacks and crosses show, respectively, the original and best response costs.

should rather focus on designing convincing, attractive projects, and not on minimizing their costs,
as the latter is not as likely to be decisive. Yet, of course, there are projects where lowering their
costs could have gotten them funded; see also the recent work of Boehmer et al. [2024].

5.2 Finding Equilibria Using Dynamics

In the second experiment, our goal was to compute (approximate) equilibria for our two instances.
While for BasicAV, AV/Cost, and MES-Cost/Ph we could compute the equilibria using results from
the previous section, this would not be possible for Phragmén and MES-Apr/Ph. Instead, we simu-
late certain dynamics. (For the rules where we can compute equilibria directly, our dynamics give
nearly identical results; for Phragmén and MES-Apr/Ph there may be no NE, but the results suggest
that the profiles that we find are, at least, close to being equilibria). We assumed zero delivery costs.
In Appendix D we show results for delivery costs equal to 80% of the originally submitted ones,
obtaining similar conclusions.

Given a PB instance, our dynamics go as follows. First, each proposer reports the same cost as was
originally chosen for his or her project. Then, in each iteration, one of them, selected uniformly
at random, either slightly increases or decreases his or her project’s cost. Specifically, the proposer
chooses a number x between 0 and cost/10 uniformly at random (where cost is the current project’s
cost) and if their project was losing in the previous iteration, then the proposer decreases its cost by
x, and if it was winning, then he or she increases its cost by x (but if this action would have caused
the project to lose, then the proposer does not change the project’s cost). We expect to converge to
an NE, if one exists, after running sufficiently many iterations.

In Figure 2 we present the results of the dynamics, that is, the obtained strategy profiles, after 10 000
iterations. Under BasicAV, as expected, all the budget goes to the project with the most votes. Under
AV/Cost, every project ends up with a cost proportional to its support. Like in the previous exper-
iment, Phragmén, and MES-Apr/Ph produce similar results, while those of MES-Cost/Ph remain
different. For BasicAV, AV/Cost, and MES-Cost/Ph most of the projects “reached” the costs pre-
dicted by the equilibrium. (However, note that not all of our dynamics ended up in perfect equilibria
within 10 000 iterations as, e.g., some projects are not winning).

The main conclusion from this experiment (supported also by simulations for other PB instances;
see Appendix C) is that under AV/Cost, Phragmén, and MES-Apr/Ph the proposers are incentivized
to use costs that mostly reflect the number of approvals they receive. Under MES-Cost/Ph, most
strongly supported projects, as well as those that are supported by many voters who do not approve
other, more popular projects, can request much higher costs. Consequently, in an NE MES-Cost/Ph
funds fewer, more expensive projects than AV/Cost, Phragmén, and MES-Apr/Ph. We view this
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Figure 2: Strategy profiles after 10 000 iterations of our dynamics for the instances Wesola with the budget of
1 011k PLN at the top and Kleine Wereld with one of 250k EUR at the bottom.. Projects ordered by decreasing
approval scores (x-axis). Final projects’ costs shown by bars; the original costs shown as dashed lines. Red and
green bars indicate, respectively, losing and winning projects; brighter parts are the increases over the original
cost.

observation as one of the more important take-home messages from our work, which can be used to
favor MES-Cost/Ph in practice (while funding some cheap projects is important, funding only such
projects is logistically challenging for cities that then need to coordinate their implementation).

6 What If Votes Depended on Costs?

So far, we have assumed that the voters’ approvals are independent of the project costs. We justified
this view in the introduction, and here we further argue that not only is it reasonable, but also es-
sential. Specifically, we demonstrate that if the approvals depended on the costs, then our equilibria
guarantees would collapse, albeit due to such dynamics among voters and project proposers that are
not particularly realistic. This reinforces the careful design of our basic model, which allows for
both accurate analysis and meaningful insights into real-world phenomena.

We extend our basic model to cost-interval PB games, where each voter v approves a project p
exactly if its cost falls within an interval that v views as acceptable for p (specified in the game
description). This approach is inspired by the model of Sreedurga [2023].
Theorem 6.1. For f ∈ {BasicAV, AV/Cost, Phragmén, MES-Apr, MES-Cost}, there is a cost-
interval PB game with no delivery costs that has no f -NE.

We find the basic model more insightful because cost-interval PB games allow for very unrealistic
scenarios—such as having voters that approve building a bike path for at most $25,000, when others
do so only if it costs above $75,000. In practice, such disparities are unlikely, but the proof of
Theorem 6.1 exploits exactly such scenarios and the ability to shift between received support by
varying the costs (even under plurality preferences). While cost-interval PB games capture more
nuanced voters’ behaviors, they also allow for vastly unrealistic cases that distort the results.

7 Summary and Future Work

We have introduced a game-theoretic framework capturing strategic cost selection of projects in
participatory budgeting scenarios, studied the existence of equilibira in our games, and used them to
analyze two real-life PB instances. We believe to have set the groundwork for future studies, which
may include establishing the complexity of deciding if equilibria exist in our games and studying
more involved settings, emerging from relaxing our basic assumptions. In particular, it is compelling
to verify to what extent our observations hold in more realistic models.
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G. Benadè, S. Nath, A. D. Procaccia, and N. Shah. Preference elicitation for participatory budgeting.
Management Science, 67(5):2813–2827, 2020.

N. Boehmer, P. Faliszewski, L. Janeczko, and A. Kaczmarczyk. Robustness of participatory budget-
ing outcomes: Complexity and experiments. In Proceedings of SAGT-2023, 2023.

N. Boehmer, P. Faliszewski, L. Janeczko, D. Peters, G. Pierczyński, S. Schierreich, P. Skowron,
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract clearly describes the main goals of the paper and the results
mentioned in the Introduction reflect both theoretical and experimental contribution of the
manuscript.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The manuscript contains a detailed description of the modeling assumptions
that were chosen, as well as the restriction that they entail. Furthermore, the theoretical
questions that were not answered in the submission are clearly marked.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The main manuscript contains proof sketches for the main claims, and full
proofs of all results are provided in supplementary material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details needed for reproducing the main results of the paper are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The real-life data used in the experiments is publicly available. The code will
be publicly available upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: Neural networks are not used in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Values of standard deviation have been provided in the supplementary mate-
rial, where useful for the interpretation of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: None of the experiments required extensive computational resources. All the
experiments can be feasibly computed on a standard MacBook Air with M1 chip.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we fulfill the anonymity requirement as well as other parts of the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The manuscript is primarily theory-focus, and does not provide direct practi-
cal implications.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no high risk of misuse of the proposed data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The only external data comes from Pabulib, and it is properly credited in the
references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has cu-
rated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not involved in the core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Games with Preference for Funding

A PB game with preference for funding (PB/P4F game) is a standard PB game where instead of our
standard utility functions we use the extended ones, as defined in Remark 3.1:

u′
i(c) =

{
c(pi)− d(pi) + 1[c(pi) ≥ d(pi)] if pi ∈ f

(
E(c)

)
,

0 otherwise,

where 1[x] is 1 if x holds and 0 otherwise.

All our NE-(non)existence results for PB games translate to PB/P4F games. Indeed, if a PB game
does not admint an equilibrium then neither does its P4F variant (every profitable deviation in a
PB game is also profitable in the corresponding P4F game). The other direction is more involved as
there are games that have equilibria in our model but do not have them in the P4F variant (see Exam-
ple A.1). However, if a PB game has an NE where all projects that report values above their delivery
costs are funded, then it remains an NE in the corresponding P4F game (a profitable deviation for the
P4F game would also be profitable in the original one). All our existence results produce equilibria
that satisfy this condition.
Example A.1. Consider three projects p1, p2, p3, each supported by one distinct voter, with delivery
costs d1 = 1, d2 = d3 = 0, tie-breaking order p1 ≻ p2 ≻ p3 and budget B = 2. As we prove in
the appendix, the corresponding PB game admits Phragmén-NE c = (2, 1, 1) but the corresponding
P4F PB game has no NEs under Phragmén.

Below we argue why the statement from the above example indeed holds. Let us denote the PB
game from the example as G and the P4F PB game as G′. Using G and G′, we show now that in
some cases PB games admit a Phragmén-NE, while PB/P4F games (based on the same input) do
not.

First, observe that c = (2, 1, 1) is a Phragmén-NE in PB games. To see that, suppose that it is
not and consider a project pi and a cost c′i for which ui((c−i, c

′
i)) > ui(c). If pi is p2 or p3, we

notice that pi is selected under c but not under (c−i, c
′
i), for each c′i > ci. So, neither p2 nor p3 can

improve its utility. For pi = p1, we notice that it is not funded under c and that it can only be funded
if c′i ≤ 1. But then ui((c−i, c

′
i)) ≤ 0. It follows that c is a Phragmén-NE in PB games.

Second, we show that G′ does not admit a Phragmén-NE. For contradiction, suppose that G′ admits
a Phragmén-NE, say c, for PB/P4F games. As a warm up, we note that at least one project has to be
chosen in E(c), as otherwise each project benefits from lowering their cost to B = 2.

Further, consider the case that in c projects have the same cost c. If c < 1, then, following the tie-
breaking order, p1 is funded and gets a negative utility. Hence, by increasing its cost to c′ > B > c,
p1 becomes not funded and increases its utility. Also, if c ≥ 1, then p3 is not funded, and as d3 = 0,
it can benefit from decreasing its cost.

Now, suppose that in c projects do not have the same costs. Let c1 ≥ 1. Then, if c2 ≥ c1 or c3 ≥ c1,
then some project that is not funded would benefit from lowering its cost. For a complementary case
of c2 < c1 and c3 < c1, we further consider two subcases. If c2 + c3 < 2, then one of p2 and p3
would benefit from increasing their cost. Alternatively, c2 + c3 ≥ 2. This implies that c1 > 1 and
that c2 ≥ 1 or c3 ≥ 1. In this case p1 would benefit, in a PB/P4F game, from choosing c′1 = 1 and
becoming selected.

Finally, if c1 < 1, then it benefits from increasing its cost if it is funded under c. Notice further that
if it would not be funded, then c2 < 1 and c3 < 1, and both of these costs are lower than c1. It
follows that one of them can increase its utility by increasing its cost.

As our case distinction is exhaustive, we know that there is no Phragmén-NE for G′. Consequently,
we proved our claim about the equilibria in games G and G′.

B Missing Proofs

B.1 Proof of Proposition 4.1

Proof. Take a PB game and a strategy profile c as described in the statement, and let p be the project
such that c(p) = B. If a project other than p increases its cost, it still is not selected so this is not a
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beneficial move. If p decreases its cost then its utility drops, and if it increases its cost then it is not
funded. In either case, its utility decreases. So, c is a BasicAV-NE.

B.2 Proof of Proposition 4.2

In our proof we first use the following proposition.

Proposition B.1. Take a PB game and the corresponding strategy profile ap. If d(p) ≤ ap(p) for
each project p, then if a profile c is an AV/Cost-NE for this game, then (1)

∑
p∈P c(p) = B, and (2)

AV/Cost funds all the projects.

Proof. Let the notation be as in the statement of the proposition. In the beginning we observe that if∑
p∈P c(p) < B, then AV/Cost selects all the projects. Hence, the project considered last benefits

by reporting a higher cost (so that the sum of the reported costs is B). Thus such a strategy profile c
is not an equilibrium.

Next, let us assume that
∑

p∈P c(p) > B. Let Pwon and Plost be sets of projects that, respectively,
are and are not funded. By our assumption, we know that Plost must be nonempty, and we also note
that Pwon must be nonempty. Naturally,

∑
p∈Pwon

c(p) ≤ B. For each two projects pi and pj in
Pwon , it must be the case that |A(pi)|/c(pi) = |A(pj)|/c(pj). For example, if we had |A(pi)|/c(pi) >
|A(pj)|/c(pj) then AV/Cost would consider pi prior to pj and, consequently, it would be beneficial
for pi to increase its reported cost by a small-enough amount so that it would still be considered
(and selected) prior to pj . This would contradict the assumption that c is an equilibrium. Next,
since

∑
p∈P ap(p) = B, there must be some project p′ in Pwon such that c(p′) > ap(p′) ≥ d(p′)

(otherwise, if each project p′ ∈ Pwon reported at most ap(p′), then any project p ∈ Plost would
be selected after reducing its cost to ap(p), so c could not have been NE). Further, by definition
of the approval-proportional profile, for every project p ∈ P , we have that |A(p)|/ap(p) is the same
value and, so, for every project q ∈ Plost it holds that |A(q)|/ap(q) = |A(p′)|/ap(p′) > |A(p′)|/c(p′).
This means that every project q ∈ Plost can improve its utility by reporting cost ap(q) and being
selected. This contradicts the assumption that c is an equilibrium.

Thus it must be the case that
∑

p∈P c(p) = B, which implies that AV/Cost selects all projects.

Proof of Proposition 4.2. Consider a PB game (P, V,B, d) such that for every pi ∈ P it is true
that d(p) ≤ ap(p).

We argue that strategy c = ap is a AV/Cost-NE. Note that the sum of the reported costs in c is
exactly B and all projects are funded. Hence, for each player, decreasing the cost leads to a utility
loss. Hence, a profitable deviation could only be through increasing the reported cost. Towards
contradiction, let us fix some player pi ∈ ap and assume that reporting a cost c′i > ci leads to
a better payoff. This means that pi is funded in the modified election E′ = (P, V,B, (c−i, c

′
i)) ,

that is, pi ∈ AV/cost(E′). Additionally, since by Proposition B.1 we know that
∑

j∈|P | cj = B,
it immediately follows that c′i +

∑
j∈|P |\{i} cj > B >

∑
j∈|P |\{i} cj . It is also the case that for

each j ∈ |P |, |A(Pj)|/cj > |A(Pi)|/c′i. Hence, in particular, in the run of AV/cost for E′, all projects
are considered before pi. Since all of these project are selected, by the time the procedure starts
considering pi, the remaining budget is smaller than c′i, so pi ̸∈ AV/cost(E′); a contradiction. Note
that because all projects that are funded are always considered by the procedure in the same time,
the result is independent of the tie-breaking order ≻.

We now argue that every strategy profile c other than ap is not a AV/cost-NE. To this end, we
take such a profile c and assume towards contradiction that it is a AV/cost-NE. Observe that since
c ̸= ap, there exist two distinct projects pi and pj such that |A(pi)|/ci ̸= |A(pj)|/cj . Hence one
of the projects is considered earlier than the other; we assume without loss of generality that pi
is considered before pj . Notably, as c is (by our assumption) a AV/cost-NE, by Proposition B.1,
we know that {pi, pj} ⊆ AV/cost(c). This implies, however, that pi can report a slightly higher
price c′i and still be selected by AV/cost thus obtaining a better payoff. Formally, there exists a
c′i > ci resulting in the profile (c′i, c−i) in which |A(Pi)|/c′i < |A(Pj)|/cj . So, pi is (still) considered
by AV/cost before cj and the deviation is small enough (that is, c′i− ci < cj) to guarantee that pi ∈
AV/cost((c−i, c

′
i)). So, c is not a AV/cost-NE; a contradiction. Again, due to Proposition B.1,
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Data: set P = {p1, p2, . . . , pm} of projects with the delivery costs function d, set V of voters with
their ballots, budget B, A/D tie-breaking ≻.

Result: profile c that is a AV/cost-NE under tie-breaking ≻.
1: B∗ ← B // remaining budget

2: c← (d(p1), d(p2), . . . , d(pm)) = c0 // initial strategy

// let t(p), for each p ∈ P , be d(p)/A(p)

// note that ≻ is nondecreasing w.r.t. values of t

// posX(i) denotes the top ith project of order ≻ restricted to X ⊆ P

3: Pp ← {p ∈ P : c(p) ≤ B∗} // prospective projects

4: while Pp ̸= ∅ do // are there projects to consider?

5: P ′ ← Pp // P ′ is a helper variable

6: d(posP ′(0))← − inf // guardian “fake” value

7: d(posP ′(|P ′|+ 1))← + inf // guardian “fake” value

8: k ← maximum integer x ≤ |P ′| such that
t(posP ′(x))

∑
i≤x−1 A(posP ′(i)) ≤ B∗ < t(posP ′(x+ 1))

∑
i≤x+1 A(posP ′(i))

9: T ← maximum x ≤ d(posP ′ (k+1))/|A(posP ′ (k+1))|
such that x

∑
i∈[k] A(posP ′(i)) ≤ B∗

10: for i = 1 to k do // update c and B∗

11: c(posP ′(i))← T ·A(posP ′(i))
12: B∗ ← B∗ − c(posP ′(i))
13: Pp ← Pp \ {posP ′(i)}
14: end for
15: if k < |P ′| then
16: Pp ← Pp \ {posP ′(k + 1)}
17: end if
18: Pp ← {p ∈ Pp : c(p) ≤ B∗}
19: end while
20: return c

Algorithm 1: Finding a Nash equilibrium for AV/cost.

in each Nash equilibrium, all projects are selected to be funded. Hence, our proof works for every
possible tie-breaking.

B.3 Proof of Theorem 4.4

Proof. Our Algorithm 1 computes the claimed AV/Cost-NE.

Let us fix a PB game G = (P, V,B, d) and some corresponding A/D tie-breaking ≻, as specified in
the theorem statement. We first introduce helpful notation and discuss ≻ in more detail. Then, we
proceed with presenting a high-level description of Algorithm 1 that finds the claimed AV/Cost-NE,
which we refer to as c. Eventually, we prove the correctness of the algorithm using Claim 1 and
conclude with proving Claim 1 itself.

Recall that by definition≻ orders the projects pi nonincreasingly according to approval-to-delivery-
cost ratios |A(pi)|/d(pi). Crucially,≻ is always compatible with the order in which AV/Cost considers
the projects assuming they report their delivery costs, that is, where for all pi ∈ P , c(pi) = d(pi).
In what follows, for each set of projects X ⊆ P , each pi ∈ X , and the corresponding suborder ≻X

of ≻, we write posX(pi) to denote the position of pi in ≻X . Analogously, for some natural num-
ber x ≤ |X|, we denote by topX(x) the set of top x projects according to ≻X .

Algorithm 1 constructs the AV/Cost c iteratively, starting from strategy c0 in which each project
reports its delivery cost (Line 2). In each iteration of the while loop, the algorithm selects a group
of projects that “underreport” their costs compared to the support that they get. As the next step,
the algorithm increases the reported costs of these projects in strategy AV/Cost as much as possible
ensuring that the projects remain funded. If the funded projects after this update do not exhaust the
budget, the procedure is repeated for the remaining projects, whose prices have not been increased
so far. Such projects, albeit worse regarding the delivery-cost-to-support ratio, can still benefit from
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the increase. The algorithm outputs c if one of the updates step lead to the situation in which the
whole budget is used or when there is no more projects underreporting their costs.

In the following more detailed description of Algorithm 1, we use the notation as specified in the
pseudocode and whenever the value k in an iteration of the loop is smaller than |P ′|, we define p∗ =
posP ′(k + 1) (assuming the value of P ′ from the corresponding iteration). Central to Algorithm 1
is the while loop. Importantly, due to our basic assumption on the delivery costs of the projects
(i.e., that for each p ∈ P , d(p) ≤ B), initially set Pp is not empty (Line 3), so the while loop runs
at least once. Line 9 of the algorithm guarantees that in each iteration the loop sets the values of T
and k to:

k < |P ′| and T = d(p∗)/A(p∗) or (S1)

k < |P ′| and T ·
∑

pj∈topP ′ (k)

|A(pj)| = B∗, or (S2)

k = |P ′| and T ·
∑

pj∈topP ′ (k)

|A(pj)| = B∗. (S3)

The aforementioned case distinction is crucial for the following claim.

Claim 1. Right after executing Line 18 in each iteration of the while loop of Algorithm 1, it jointly
holds that:

1. all projects from topP ′(k) are funded under strategy profile c and none of them has a
profitable deviation for c;

2. either k = |P ′| or there exists a project p∗ = posP ′(k + 1) that is not funded and has no
profitable deviation for profile c;

3. no project from topP ′(k) has a profitable deviation for each strategy profile c′ that differs
from c only by strategies of projects in Pp in a way that, for each p ∈ PP, c′(p) ≥ c(p);

4. either k = |P ′| or the project p∗ = posP ′(k + 1) has no profitable deviation for each
strategy profile c′ that differs from c only on strategies of projects in Pp such that, for
each p ∈ PP, c′(p) ≥ c(p);

5. no project in P \ Pp has a profitable deviation in c.

Note that Algorithm 1 ends when executing Line 18 makes Pp empty. So, by Item 5 of Claim 1 the
algorithm returns profile c which is a Nash equilibirum. Clearly, in each iteration k > 0, so at least
one element is removed from Pp in every iteration of the loop. Consequently, the algorithm always
ends and thus it is correct. To conclude the whole proof it remains to show that Claim 1 indeed
holds.

Proof of Claim 1. We provide an inductive argument over the iterations of the while loop of Al-
gorithm 1. For the sake of the argument’s simplicity, instead of thinking of AV/Cost considering
projects in nonincreasing order of approval-to-cost ratio, we say that it considers projects in nonde-
creasing order of cost-to-approval ratio. We note that these two interpretations are equivalent. We
take the first iteration of the loop as the base case and subsequently show that Items 1 to 5 hold.

Item 1. We first show that each p ∈ topP ′(k) is funded in election E(c). Let us denote as t(p)
the ratio c(p)/|A(p)|. Due to Line 9 and the following foreach loop, we know that every project
in topP ′(k) is tied to be considered by AV/Cost due to the same cost-to-approval ratio T . So,
if k = |P ′|, then all projects in Pp = P are tied for consideration. Since, by Line 9 all project
costs sum up to B∗ = B, the claim holds. We follow assuming that k < |P ′|. In this case, Line 9
shows that p∗ has cost-to-approval ratio t(p∗) ≥ T . Recall that ≻ orders projects nondecreasingly
with respect to their cost-to-approval ratio assuming c0 and that c differs from c0 only in strategies
of projects in topP ′(k). Hence, p∗ precedes in c each project except of those in topP ′(k) and all
projects in topP ′(k) are considered before p∗ (the latter holds even in the case of t(p∗) = T due
to ≻). Eventually, Line 9 guarantees that the cost of all projects in topP ′(k) does not exceed the
budget. Knowing that, we show that no project in topP ′(k) has a profitable deviation in c. To
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prove it by contradiction, let us assume that some player pi ∈ topP ′(k) has a profitable deviation
by reporting cost c′i > ci; the opposite case of c′i < ci trivially does not yield a payoff improvement
for pi. As a result, pi has to be funded in the corresponding election E((c−i, c

′
i)). In this election,

pi has cost-to-approval ratio t′ = c′i/|A(pi)| > T . We further split our analysis into the three cases
from Equations (S1) to (S3).

Assuming Equation (S1), project p∗ is also funded in election E′, as it is considered before pi due
to t′ > T . Hence, the funded projects cost at least

T ·
∑

pj∈topP ′ (k)
pj ̸=pi

|A(pj)|+ t′|A(pi)|+ T |A(p∗)| >

T ·
∑

pj∈topP ′ (k+1)

|A(pj)|.

However, due to Line 8, we know that B∗ = B < T
∑

pj∈topP ′ (k+1) |A(pj)|, which gives the
contradiction with the fact that pi is funded.

Suppose Equation (S2) or Equation (S3) hold. Then, given our assumption that pi is funded, the
total cost of funded projects is

T ·
∑

pj∈topP ′ (k)
pj ̸=pi

|A(pj)|+ t′|A(pi)| >

T
∑

pj∈topP ′ (k)

|A(pj)| = B∗ = B,

Here, the equality is due to the assumption of Equation (S2) or Equation (S3); which yields the
sought contradiction.

Item 2. If k = |P ′|, then the statement trivially holds. Otherwise, let us consider p∗ in the light
of Equation (S1). Due to Line 8, we have that

B < T
∑

pj∈topP ′ (k+1)

|A(pj)| =

T
∑

pj∈topP ′ (k)

|(A(pj))|+ d(p∗).

Hence, since all projects in topP ′(k) are funded, p∗ is not funded. Naturally, if p∗ reports a cost
bigger than d(p∗) it will not be funded even more, whereas reporting a cost lower than d(p∗) results
in a worse payoff, which finishes the argument for, for Equation (S1). By the condition of Equa-
tion (S2), it immediately holds that all projects topP ′(k) use up the whole budget. As a result, again,
p∗ is not funded and, analogously to the case of Equation (S1), p∗ has no profitable deviation. We
already observed that Item 2 trivially holds for k = |P ′|, which subsumes Equation (S3).

Items 3 and 4. Observe that assuming strategy c, all projects in Pp are considered after all projects
outside of Pp in election E(c). This is because order ≻ is compliant with the order of considering
the projects by AV/Cost and our modifications to the initial strategy profile c do not change the
order of considering projects (note that we let modified projects be tied for consideration with cost-
to-approval ratio T ). Furthermore, note that Algorithm 1 never decreases the reported costs of the
projects and never considers the same project twice, so the projects in Pp will never be considered
before the other ones as a result of further modifications of c. So, no modification of the profile c
that increases the costs for projects in Pp can influence the decision made for projects in topP ′(k)
or topP ′(k + 1) (depending on whether k < |P ′|), as the latter are considered by AV/Cost earlier
than projects in Pp.

Item 5. Note that P \ Pp consists only of the following projects: (i) those removed in the foreach
loop, that is, topP ′(k); (ii) p∗ if k < |P ′|; and (iii) those removed in Line 18. Regarding the first
two groups, we have already shown that they do not have a profitable deviation for c. Let p̂ be
topP ′(k) if k < |P ′| or, otherwise, let p̂ be p∗. The last group Y consists of these projects p ∈ P ′,
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for which p̂ ≻ p and whose d(p) > B∗. Hence, by≻, these projects are considered after all projects
in topP ′(k)∪{p̂}. However, projects in topP ′(k) are selected to be funded, which leaves exactly B∗

remaining budget. So there is not enough budget left to fund any project in Y , even if it reports its
delivery cost. Hence, no project in Y has a profitable deviation.

Thus, we have established the base case and we move on to the induction step. Consider x > 1
and the x-th iteration of the while loop, assuming that the base case claims are met for the (x− 1)-
th iteration. Due to the assumptions for the (x − 1)-th iteration together with the fact that our
algorithm never changes the order≻ in which AV/Cost considers projects and that it never considers
the same project twice, we can ignore all projects processed in previous (x − 1) iterations of the
while loop. Clearly, the ignored projects will have no impact on the current loop iteration except
for decreasing the value of the variable B∗ representing the remaining budget. Consequently, the
arguments for Items 1 to 4 carry on without changes for the xth iteration of the while loop. The
claim from Item 5, however, needs more attention. Let Q(x−1) = P \ P (x−1)

p be the set of players
without profitable deviations after the (x − 1)-th iteration of the loop. Note that P ′ = P

(x−1)
p . We

denote by R the set of projects, that are removed from the initial state of Pp by Lines 13 and 18.
That is, R consists of all these projecst that—due to Items 1 to 4 and the argument for Item 5 in the
base case—have no profitable deviation in c. So, we have that Pp = P ′ \ R. We now consider the
set Q = P \ Pp of the projects for which we need to show that they have no profitable deviation.
Putting the bits together, we observe the following:

Q =P \ Pp = P \ (P ′ \R) =

P \ (P (x−1)
p \R) = (P ∩R) ∪ (P \ P (x−1)

p ).

Since P ∩ R = R, we obtained that Q = R ∪ Q(x−1) thus showing that the x-th iteration extends
the set of project that do not have a profitable deviation with a collection of project that have no
profitable deviation either. As a result, we proved Item 5 for the x-th iteration. ■

Having proven Claim 1, we completed the argument for the correctness of Algorithm 1 and Theo-
rem 4.4. □

B.4 Proof of Proposition 4.5

Proof. Take a natural γ > 1 and consider a PB game (P, V,B, d) where P = {p1, p2, p3}, B = 10,
d(p1) = d(p2) = 0, and d(p3) = 10 − 1

2γ . The voters have plurality ballots such that |A(p1)| =
|A(p2)| = 1 and A(p3) = 20γ − 1. We assume tie-breaking order p1 ≻ p2 ≻ p3. We claim that
strategy profile c such that c(p1) = c(p2) =

1
2γ and c(p3) = 10− 1

2γ is a Phragmén-NE.

First, we see that if the projects reports costs as in c then Phragmén selects p1 and p2. Indeed, we
see that at time moment 1

2γ the voters supporting each of the projects have exactly as much money
as is need to purchase them. Due to tie-breaking, the singleton voters supporting p1 and p2 buy these
projects and, then, there is not enough budget left for p3 and the rule finishes.

Second, we observe that no project can benefit by changing its strategy under c. Indeed, if either
p1 or p2 decreased their cost, they would obtain lower payoff, and if either of them increased their
cost, p3 would be funded instead and the payoff of the project that increased its cost would drop to
zero. If p3 decreased its cost then it would be selected, but its payoff would become negative (due
to the delivery cost), and if it increased its cost then its payoff would remain zero. Consequently, c
is Phragmén-NE.

Finally, we have c(p1) + c(c2) = 1/γ, and as B = 10, this is less than B/γ. This concludes the
proof.

B.5 Proof of Proposition 4.7

Proof. Consider a PB game G and the strategy profile c as defined in the statement of the propo-
sition. We claim that c is a Phragmén-NE. First, we observe that under c Phragmén selects all the
projects, so it is not beneficial for any of them to report a lower cost. On the other hand, if some
project p reports a higher cost, this project is not selected by Phragmén. To see why this is the case,
consider some project p. Under c, the total cost of the projects in party(p) is B·|A(p)|/|V |. Since
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each of the |A(p)| voters supporting these projects earns one unit of money per one unit of time,
altogether they earn this money in time B/|V |. This value is independent of p so, under c, the last
project of each party is funded at the same time. Hence, if some project increased its price, it would
be considered even later and, by that time, there would not be enough budget left. Hence, it is never
beneficial to increase a cost and so, c is a Phragmén-NE.

It remains to show that c is the unique Phragmén-NE for our game. To this end, let c′ be some
arbitrary equilibrium for G. By Proposition B.1, we know that under c′ the reported costs of all
projects sum up to B and all projects are funded. Next, we observe that for each project p, all projects
from party(p) report the same cost. Indeed, if there were two projects, p′ and p′′ ∈ party(p), such
that c′(p′) < c′(p′′), then it would be beneficial for p′ to report a higher cost (but below c′(p′′)),
so that Phragmén would still consider and fund it prior to p′′ (for which, then, there would not be
enough budget left).

Finally, if there are two projects, p and q, such that party(p) ̸= party(q), then, under c′, the last
project from party(p) and the last project from party(q) are selected by Phragmén at the same time.
Indeed, if this were not the case, then it would be beneficial for the one selected earlier to report
higher cost (but so that it still is selected at an earlier time than the other project).

Altogether, the only strategy profile that satisfies the properties described above is c as defined in
the statement of the proposition.

B.6 Proof of Proposition 4.8

Proof. Let our project set be P = P ′ ∪ P ′′, where P ′ = {p′1, p′2, p′3} and P ′′ = {p′′1 , p′′2 , p′′3}.
Similarly, the set of voters is V = V ′ ∪ V ′′, where V ′ = {v1′ , v2′ , v3′} and V ′′ = {v1′′ , v2′′ , v3′′}.
The approvals are as follows (see also Figure 3 for illustration):

1. p′1 is approved by v1′ , p′2 is approved by v2′ , and p′3 is approved by all the voters in V ′.

2. The approvals for the projects in P ′′ are analogous, except that they are approved by the
voters from V ′′.

We set the delivery costs d to be zero for every project, and we set the budget B to be 1 (the exact
value will be irrelevant as we will operate on times when Phragmén reaches the costs of particular
projects rather than on directly on these costs). We claim that under Phragmén there are no Nash
equilibria for the thus defined PB game G = (P, V,B, d).

v′1 v′3 v′2

p′3

p′1 p′2

v′′1 v′′3 v′′2

p′′3

p′′1 p′′2

Figure 3: Illustration of the PB game from the proof of Proposition 4.8. The projects are depicted as boxes.
Each voter approves those projects that are drawn directly above him or her (and are crossed by the dotted line).

For the sake of contradiction, let us assume that there is Phragmén-NE for G and let it be c∗. For
each project p ∈ P , let time(p) be the time moment (in the sense of the Phragmén rule) when the
voters approving p would collect exactly c∗(p) amount of money (assuming that neither of these
voters spends it on any other projects in between; hence time(p) = c∗(p)/|A(p)|). We make the
following observations:

1. All projects in P are funded for the reported costs c∗ (if some project were not funded, it
would prefer to report a small nonzero cost that would be at most equal to B and that would
ensure that Phragmén considers it first).

2. It must be the case that time(p′1) = time(p′2). Indeed, if we had time(p′1) < time(p′2)
then it would be beneficial for p′1 to slightly increase its cost, but so that time(p′1) would
still be below p′2. Then, irrespective in what order are the other projects funded, p′1’s voter
would collect enough money to purchase p′1 before the p′2’s voter would, and p′1 would be
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bought (since p′2 would not be selected at this time yet, there would be enough budget left
for this). This would contradict that c∗ is an equilibrium. The case time(p′2) < time(p′1)
is symmetric.

3. It must be the case that time(p′3) = time(p′1) and, hence, also equal to time(p′2). Indeed,
if we had time(p′3) < time(p′1) = time(p′2) then it would be beneficial for p′3 to report
slightly higher cost, so that time(p′3) would still be smaller than time(p′1) = time(p′2),
yet p′3’s cost would not have increased by more than the total costs of p′1 and p′2. Then p′3
would still be selected before p′1 and p′2 and there would be sufficient amound of budget left
for it. This would contradict that c∗ is an equilibrium. On the other hand, if time(p′3) >
time(p′1) = time(p′2) then it would be beneficial, e.g., for p′1 to report slightly higher
cost, but ensuring that time(p′1) < time(p′3). Indeed, if originally we have time(p′1) <
time(p′3), then p′1 is funded before p′3 by Phragmén. After the increase, p′1 would still be
purchased before p′3 and, thus, there would still be sufficient budget for it. This would
contradict that c∗ is an equilibrium.

4. By reasoning analogous to the one given above, it must be the case that time(p′′1) =
time(p′′2) = time(p′′3).

Given the above observations, we set:
time ′ = time(p′1) = time(p′2) = time(p′3), and

time ′′ = time(p′′1) = time(p′′2) = time(p′′3).

Note that this implies that c∗(p′1) = c∗(p′2) = time ′, c∗(p′′1) = c∗(p′′2) = time ′′, c∗(p′3) = 3·time ′,
and c∗(p′′3) = 3 · time ′′. We claim that time ′ = time ′′. Indeed, let us consider what happens if
time ′ < time ′′ (the case where time ′′ < time ′ is symmetric). There are two cases two consider
(the second case also splits into two).

Case A First, let us assume that at least one of p′1 and p′2 is preferred to p′3 by the tie-breaking
order (for the sake of specificity, let this be p′1). Then it is beneficial for p′2 to slightly increase its
cost. To see why this is the case, let us consider how Phragmén operates after this increase. At time
time(p′1) = time(p′3), the voters have enough funds to purchase either p′1 or p′3 (and not enough to
purchase p′2, who increased its cost). The rule selects p′1 due to tie-breaking. Consequently, voter
1′ pays for p′1 and his or her virtual bank account is reset to zero. Voters 2′ and 3′ still have time ′

amount of money. The cost of p′3 is 3 · time ′, so voters in N ′ will have collected enough money for
it after further 1/3time ′ amount of time. However, if p′2 increased its cost from time ′ to an amount a
bit below 4/3 · time ′ then its voter will have collected this amount earlier, and p′2 will be purchased
before p′3. This contradicts the fact that c∗ is an equilibrium.

Case B′ The second case is that p′3 is preferred by tie-breaking to both p′1 and p′2. Then it is
beneficial for p′3 to slightly increase its cost. Again, let us consider how Phragmén operates after
such a change. If p′′3 is selected prior to both p′′1 and p′′2 , then at time time ′′ (after the purchase of
p′′3 ) the voters have the following amounts of money:

1. Voter 3′ has time ′′ amount of money and the remaining voters in N ′ have nonzero amounts
of money (specifically, each of them has time ′′− time ′, because they paid for p′1 and p′2 at
time time ′).

2. All the voters in V ′′ have empty bank accounts.

Hence, only after another time ′′ amount of time will the voters in N ′′ have enough money to pur-
chase p′′1 and p′′2 . Yet, at this time the voters in N ′ would, altogether, have more than 4time ′′. So, if
p′3 increased its cost to be between 3 · time ′ and 4 · time ′ (which is smaller than 4 · time ′′), then p′3
would be funded before p′′1 and p′′2 , and there would be sufficient amount of budget left for this.

Case B′′ On the other hand, if at least one of p′′1 and p′′2 is preferred to p′′3 by tie-breaking at time
time ′′, then both p′′1 and p′′2 are funded at that time (because after one of them is selected due to tie-
breaking, the voters in V ′′ no longer have enough money to purchase p′′3 , but they do have enough
for the other one among p′′1 and p′′2 ). Consequently, after p′′1 and p′′2 are purchased at time time ′′,
only projects p′3 and p′′3 are not selected yet and the voters have the following amounts of money:

27



1. Voter v3′ has time ′′ amount of money and the remaining voters in V ′ have nonzero amounts
of money (specifically, each of them has time ′′− time ′, because they paid for p′1 and p′2 at
time time ′).

2. Voter v3′′ has time ′′ amount of money and the remaining voters in V ′′ have no money.

Since voters in V ′ have, together, more money than those in V ′′, but voters from both groups (jointly)
earn money at the same rate (as |V ′| = |V ′′|), if p′3 increased its cost to be slightly below that of p′′3 ,
it will be funded before p′3. Consequently, if c∗ is an equilibrium then we must have time ′ = time ′′.

Finally, it suffices to show that the assumption time ′ = time ′′ also leads to no equilibrium. W.l.o.g.,
we assume that p′3 precedes both p′1 and p′2 in the tie-breaking order, and that p′′3 precedes both p′′1
and p′′2 (if this were not the case, then the arguments given in Case A above would still show that
c∗ is not an equilibrium). However, now we can see that, e.g., it is beneficial for p′3 to slightly
increase its cost. This follows by the same reasoning as given in Case B′. Hence, we have reached
a contradiction. Consequently, under Phragmén there is no Nash equilibrium in our game.

B.7 Proof of Theorem 4.9

Proof. Let (P, V,B, d) be a MES-Cost PB game.

We provide an iterative algorithm that computes c. In each iteration, the algorithm fixes selected
values of c, drops the corresponding projects from further consideration and deletes the voters that
have no budget left. The algorithm finishes when there is no more projects to consider. Before
laying out the details, let us recall that in MES-Cost, each voter gets the equal share of the budget
and cannot spend on the projects more than their entitlement.

Our algorithm constructs the strategy c step by step maintaining the collection V ′ of voters to con-
sider and the collection P ′ of projects to consider. The algorithm starts with setting V ′ = V , P ′ = P
and proceeds as follows:

1. Remove from P ′ all projects pi ∈ P ′ for which |A(pi) ∩ V ′| · B/|V | is lower than d(pi) or
equal to zero and let their strategy be c(pi) = d(pi).

2. For each project pj ∈ P ′, let αj = 1/|A(pj)∩V ′| (due to Step 1 we avoid dividing by zero)
and let p∗ be the project pj ∈ P ′ with the minimum αj-value (in case of a tie, select the
first one in the tie-breaking order).

3. Set the strategy c(p∗) to |A(p∗) ∩ V ′| · B/|V |, that is, such that p∗ reports the cost equal to
the total budget of its supporters in V ′.

4. Remove all supporters of p∗ from V ′ and remove p∗ from P ′.

5. Repeat Steps 1 to 4 until P ′ is empty.

Our algorithm is based on the following useful claim about the decisions made by MES-Cost.

Claim 2. Let us fix some stage of MES-Cost in which every voter with a nonzero budget has the
same value of budget and let V ′ be these voters. Then, for each α′-affordable project p′ it holds that
that α′ = 1/|A(p′)∩V ′|.

The claim is implied by the definition of MES-Cost. Observe that if a project p is α-affordable, then
the voters approving it have enough budget to buy it and α is the minimum such x that |A(p′)∩V ′| ·
x · cost(p) ≤ cost(p). The sought α is then clearly 1/|A(p′)∩V ′|.

Let us denote by (p∗1, p
∗
2, . . . , p

∗
k) the projects considered in the respective iterations 1 to k of

Steps 1-4. In what follows we show that in each Nash equilibrium MES-Cost selects exactly
projects (p∗1, p

∗
2, . . . , p

∗
k) in the given order and that c is a Nash equilibrium. We apply induction

over the stages of MES-Cost.

For the base case, we argue that p∗1 has to be selected first by MES-Cost and has to play c(c∗1) in
every Nash equilibirum. Assume for contradiction that some other project p′ is selected first instead
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p2

p1

p3

p4

Figure 4: Approval sets of projects p1, p2, p3, and p4. Here, each vertex represents a single voter.

of p∗1 in a Nash equilibrium. Due to Claim 2 and since MES-Cost selects α-affordable projects
starting from those with the smallest α, it follows that one of the three holds: (i) 1/|A(p′)| < 1/|A(p∗

1)|,
(ii) 1/|A(p′)| = 1/|A(p∗

1)| and p′ is preferred to p∗1 by the tie-breaking, or (iii) p∗1 reports a cost greater
than the budget of its supporters. Cases (i) and (ii) yield a clear contradiction to Step 2, which
defines p∗1. In Case (iii), reporting cost c′(p∗1) = d(p∗1) + ϵ ≤ B · |A(p∗

1)|/|V | (such an ϵ always exists
due to Step 1) is a profitable deviation for p∗1—a contradiction. Knowing that p∗1 is selected first in
every Nash equilibrium, we observe that if p∗1 reports a cost c′(p∗1) < B · |A(p∗

1)|/|V |, then reporting
exactly c(p∗1) = B · |A(p∗

1)|/|V | is always a profitable deviation, which confirms that in every Nash
equilibrium p∗1’s strategy is c(p∗1) and it is selected first by MES-Cost.

We move on to the inductive step and thus consider stage i of MES-Cost in which project p∗i is
selected. Imporantly, as we have shown that player p∗1 has to report cost c(p∗1) equal to the total
budget of p∗1 supporters, then we can assume that at the i-th stage we have only voters who either
spend all their budget or who did not spend their budget at all; we denote the latter group by V ′.
As a result, Claim 2 holds at the i-th stage, which we consider. Thanks to this, we apply an anal-
ogous exchange argument (pretending that voters outside of V ′ do not exist) to that for the base
case to show that indeed p∗i has to be selected at the i-th stage. Then, we directly repeat the ar-
gument regarding the optimal strategy for p∗1 applying it to p∗i . Eventually, we have shown that in
each Nash equilibrium for MES-Cost projects (p∗1, p

∗
2, . . . , p

∗
k) are selected and report, respectively,

costs (c(p∗1), c(p
∗
2), . . . , c(p

∗
k)).

B.8 Proof of Theorem 4.10

Proof. Let (P, V,B, d) be a MES-Apr PB game with plurality ballots. In MES-Apr, like in every
MES rule, each voter receives B/|V | money for the whole election process. As each voter approves
only one project, each project pi can request at most M(pi) = |A(pi)|·B/|V | from its supporters, and
will report this cost as they would not spend any money on other projects. Thus, if d(pi) ≤ M(pi),
project pi reports M(pi) and gets selected with its maximum possible cost. Otherwise, if d(pi) >
M(pi), pi cannot be selected with cost covering d(pi), so pi reports d(pi) and is not selected.

B.9 Proof of Proposition 4.11

Proof. We create four projects p1, . . . , p4 and 16 voters v1, . . . , v16. Project p1 is approved by voters
v1, . . . , v5; project p2 by voters v13, . . . , v16, v1; project p3 by voters v5, . . . , v9; and project p4 by
voters v9, . . . , v13. We set the budget to be some positive integer B and delivery costs to be d ≡ 0.
Please note that we do not specify tie-breaking as we prove nonexistence of MES-Apr-NE in any
tie-breaking.

For a better visualization of the instance, please look at the Figure 4. In particular, one can see that
the instance is symmetric (each project is approved by three voters supporting only it and by two
voters, one shared with each neighbour).
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Now we will show that there is no MES-Apr-NE for this instance. Suppose towards contradiction
that some profile c is a MES-Apr-NE.

At the beginning, each voter receives b = B
|V | = B

16 money. Therefore, a) no project says cost
exceeding 5b = 5B

16 (otherwise its supporters would never have enough money to buy it, and b) no
project says less than 3b = 3B

16 (as each project has three supporters that contribute only to it, it is
nonoptimal to say less than they have). Further, as each project has zero delivery costs, each project
must be selected in MES-Apr-NE, otherwise an unselected project could have decreased its cost to
0 and be selected. For this reason,

∑4
i=1 c(pi) ≤ B.

For the sake of brevity, for yet-unselected project pi in iteration j, we denote αj(pi) as minimum
value such that project pi is αj(pi)-affordable according to MES-Apr rule (or infinity, if such a value
does not exist). By ϵ ∈ R+ we mean some very small positive real number such that adding it does
not change the given strict inequality sign.

Due to symmetry, w.l.o.g. we can assume that 1) project p1 says the lowest cost (i.e., c(p1) ≤
c(p2), c(p3), c(p4)) and wins ties if there is more than more project with this cost as well as 2)
c(p2) ≤ c(p3) and p2 wins ties with p3. If it was not the case, we can shift or rotate projects and
perform analogous reasoning.

Before we move on, let us exclude some cases in which c cannot be MES-Apr-NE.

We point out that if there is no project of the same cost as p1, then p1 could have increased its cost
by some positive number ϵ while still being considered first and getting more, so c could not have
been MES-Apr-NE in this case. Therefore, p1 has the same cost either as 1) p4, or as 2) p2 (please
note c(p1) = c(p3) implies c(p1) = c(p2) due to assumption that c(p2) ≤ c(p3)).

With our assumptions, project p1 is selected in the first iteration and each of its supporters pays
c(p1)

5 for p1. As b − c(pi)
5 ≤ B

16 −
3B
16

5 =
2B
16

5 <
3B
16

5 ≤
c(pj)

5 for any pi, pj ∈ P , voter v1 has
insufficient money to contribute the equal share c(p2)

5 to purchase p2. Therefore, in the second

iteration, α2(p4) = c(p4)
5 , α2(p2) =

c(p2)−(b− c(p1)
5 )

4 , and α2(p3) =
c(p3)−(b− c(p1)

5 )

4 ≥ α2(p2).

Please note that α2(p2) =
c(p2)−(b− c(p1)

5 )

4 ≥ c(p1)−( B
16−

c(p1)
5 )

4 = 6c(p1)
20 − B

64 = 4c(p1)
20 + ( 2c(p1)

20 −
B
64 ) ≥

c(p1)
5 + (

2· 3B16
20 −

B
64 ) = c(p1)

5 + 6B−5B
16·20 = c(p1)

5 + B
16·20 > c(p1)

5 = α1(p1). Thus, as
α2(p2) > α1(p1), project p4 would regret saying the same cost as project p1. Indeed, selecting p1
in the first iteration significantly increases α2(p2) and α2(p3), so if p4 said c(p4) = c(p1), then it
would benefit from slightly increasing the cost by ϵ (it would still be before p2, but it would earn
more). For this reason, it cannot be the case that c(p1) = c(p4), so due to the former reasoning we
know that c(p1) = c(p2) and c(p1) < c(p4).

So we know that: c(p1) = c(p2), c(p1) < c(p4), and c(p2) ≤ c(p3). We have two cases to
consider:

• Project p4 is selected in the second iteration. It means that α2(p4) ≤ α2(p2). We observe
that it must be α2(p4) = α2(p2), otherwise it would be beneficial for p4 to slightly increase
its cost by ϵ in such a way that p4 is still considered before p2 and gains more.

In this case, as p2 and p3 are approved by disjoint sets of voters and both p1 and p4 took
the same amount of money from the same number of their supporters, both p2 and p3
should request for the same amount of money, that is, all money that their supporters have.
Thus c(p3) = c(c2) = 3 · b + (b − c(p1)

5 ) + (b − c(p4)
5 ) = 5b − c(p1)

5 − c(p4)
5 and

c(p4) = 5 · (5b− c(p1)
5 − c(p2)) = 25b− 5c(p2)− c(p1).

However, we know that c(p1) = c(p2), so c(p1) = c(p2) = c(p3) = 5b − c(p1)
5 −

c(p4)
5 , which implies that c(p4) = 25b − 5c(p2) − c(p1) = 25b − 6c(p1). Therefore,

α2(p4) = α2(p2) means that c(p4)
5 =

c(p2)−(b− c(p1)
5 )

4 = 6c(p1)
20 − b

4 , which is equivalent to
25b−6c(p1)

5 = 6c(p1)−5b
20 ⇒ 100b−24c(p1) = 6c(p1)−5b⇒ 30c(p1) = 105b⇒ c(p1) =

7b
2 . Then we have c(p1) = c(p2) = c(p3) =

7b
2 and c(p4) = 25b− 6c(p1) = 25b− 21b =

4b.
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Now imagine that project p1 changes its cost from c(p1) =
7b
2 to c′(p1) =

36b
10 . Naturally,

projects p2 and p3 are selected in first two iterations so voters v1, . . . , v5 supporting p1 are
left with b− c(c2)

5 , b, b, b, b− c(p3)
5 money respectively and they have b− c(c2)

5 +b+b+b+

b − c(p3)
5 = 5b − 2 · 7b10 = 36b

10 money in total which they can only spend on project p1 as
they disapprove p4. So p1 gets selected with c′(p1) =

36b
10 > 7b

2 = c(p1) which indicates
that c could not be MES-Apr-NE.

• Project p2 is selected in the second iteration. It means that α2(p2) ≤ α2(p4). We observe
that it must be α2(p2) = α2(p4), otherwise it would be beneficial for p2 to slightly increase
its cost in such a way that p2 is still considered before p4 and gains more (please note that
even if p3 would jump before p2, it takes money from the disjoint set of voters from p2’s
supporters, so it does not disprove this argument).

By performing analogous calculations to the previous case and using c(p1) = c(p2) we

obtain that α2(p2) =
c(p2)−(b− c(p1)

5 )

4 = 6c(p1)
20 − b

4 , so α2(p4) = α2(p2) ⇒ c(p4)
5 =

6c(p1)
20 − b

4 ⇒ c(p4) =
6c(p1)−5b

4 .

After p1 and p2 are selected, voter v1 has 0 money left, voters v2, . . . , v5 have b − c(p1)
5

money left, voters v13, . . . , v16 have b − α2(p2) = b − ( 6c(p1)
20 − b

4 ) =
25b−6c(p1)

20 money
left, and voters v6, . . . , v12 have b money left.

We need to consider two cases:

– p3 is selected before p4. Then c(p3) = c(p2), otherwise (if c(p2) < c(p3)) p2 would
increase its cost by ϵ in such a way that c(p2) + ϵ < c(p3) and still be selected in
the second iteration, but with more money. Because c(p3) = c(p2) = c(p1) and the
supporters of p2 and p3 are disjoint and symmetric, after selecting p3, voter v5 be left
with no money whereas voters v6, . . . , v9 with b−α3(p3) = b−α2(p2) =

25b−6c(p1)
20 .

Further, in the fourth iteration, the supporters of p4 have together 3b+2 · 25b−6c(p1)
20 =

30b+25b−6c(p1)
10 = 55b−6c(p1)

10 , so p4 asks for the money they still have in total.

Therefore, c(p4) =
6c(p1)−5b

4 = 55b−6c(p1)
10 ⇒ 30c(p1)− 25b = 110b− 12c(p1) ⇒

42c(p1) = 135b ⇒ c(p1) = 135b
42 . Thus c(p4) = 6c(p1)−5b

4 =
6· 135b42 −5b

4 =
135b−35b

4·7 = 100b
28 = 150b

42 .

Imagine what happens if p1 increases its cost from c(p1) = 135b
42 to c′(p1) = 156b

42 .
Then p2 gets selected first with cost c(p2) = 135b

42 and each of its supporters pays
c(p2)

5 =
135b
42

5 = 27b
42 . Next, each of p3’s supporters will pay 27b

42 to purchase p3 (voters
supporting p2 and p3 are disjoint). After that, regardless whether p4 is selected before
p1 or not, the supporters of p1 have 3b + 2 · (b − 27b

42 ) = 3·42+2·15b
42 = 156b

42 , so
the supporters of p1 have enough money to purchase p1. We showed that p1 could
improve its utility by changing its cost, so the proposed c is not MES-Apr-NE in this
case.

– p4 is selected before p3. It means that α3(p4) ≤ α3(p3). As we know how

much money each voter has in the third iteration, α3(p4) =
c(p4)− 25b−6c(p1)

20

4 =

20c(p4)−25b+6c(p1)
80 and α3(p3) =

c(p3)− c(p1)
5

4 = 20c(p3)−4c(p1)
80 . After insert-

ing the exact values we obtain that α3(p4) ≤ α3(p3) ⇒ 20c(p4)−25b+6c(p1)
80 ≤

20c(p3)−4c(p1)
80 ⇒ 20c(p3) ≥ 20c(p4)−25b+10c(p1)⇒ c(p3) ≥ c(p4)+

c(p1)
2 −

5b
4 .

However, c(p3) ≥ c(p4)+
c(p1)

2 − 5b
4 > c(p4)+

3b
2 −

5b
4 = c(p4)+

b
4 > c(p1)+

b
4 =

c(p2)+
b
4 , so c(p3) is significantly greater than c(p2). In other words, even when voter

v9 pays a greater share to buy p4 and is left with less money than c(p4)
5 , there is still

enough money to purchase p3. Therefore, p2 can increase its cost from c(p2) = c(p1)
to c(p3)− ϵ and lose in the second iteration with p4, but still be funded before p3 and
obtain more money. For this reason, c is not MES-Apr-NE.
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We showed that in no case MES-Apr-NE exists for this instance. The remaining tie-breaking order
are completely analogous due to the instance’s symmetry.

It means that for the given instance there is no tie-breaking for which MES-Apr-NE exists.

B.10 Proof of Theorem 4.12

Proof. We first consider the case of zero delivery costs, as it is simpler. Let (P,N,B, d) be a
MES-Apr PB game with party-list ballots and zero delivery costs.

At the beginning, each voter receives B/|V | money. In a party-list profile, as every two voters have
either the same preferences or the disjoint ones, A(pi) = A(party(pi)). The total money the sup-
porters of party(pi) have is M(party(pi)) = |A(pi)| · B/|V | = |A(pi)|·B

|V | . Therefore, the projects in
party(pi) need to somehow distribute this money between them in such a way that no project would
complain and change its cost to obtain better outcome.

Since we have cardinal utilities, the α-value of project pi is initially α1(pi) = c(pi)
|A(party(pi))| . For

this reason, MES-Apr will start from the cheapest project in the party to the most expensive one
(following tie-breaking order in case of a tie) and equally take the budget from the party supporters
to fund the next project unless the cost exceeds the money they still have.

This means that each project should ask for the equal part of the money of party supporters, that it,
M(party(pi))
|party(pi)| . The project asking for more money would be moved to the end of the order when its

supporters have insufficient money to fund it, so no project would increase its cost. Asking for less
money is pointless if it is already funded.

For this reason, for the profile c where each project says c(pi) = M(party(pi))
|A(party(pi)| , we obtain

MES-Apr-NE.

Next we move to the case with arbitrary delivery costs. Let (P, V,B, d) be a MES-Apr PB game
with party-list ballots. Recall that at the beginning each voter receives B/|V | money. Then, the total
money the supporters of party(pi) have is M(party(pi)) = |A(pi)| · B/|V | = |A(pi)|·B

|V | .

Let ≻ be the A/D tie-breaking order from the theorem statement. Note that for the case of party-list
ballots ≻ orders the projects within the same party nondescendingly by the delivery costs. That is,
within the same party cheaper projects preferred to the more expensive ones. In case of two projects
within the same party with equal delivery costs, we assume without loss of generality that the project
with a lower index is preferred (we can always relabel projects to achieve this condition). Notably,
≻ does not impose any specific order with respect to the delivery costs over any two projects of two
different parties.

Since in MES-Apr we consider cardinal utilities, the α-value of project pi is at the beginning:
α1(pi) =

c(pi)
|A(party(pi))| . For this reason, MES-Apr will start from the cheapest project in the party

to the most expensive one (following the specified tie-breaking order in case of a tie) and equally
take the budget from the party supporters to fund the next project unless the cost exceeds the money
they still have.

Now we have to consider two cases:

• The last in the tie-breaking order project pj ∈ party(pi) has delivery cost d(pj) not ex-
ceeding M(party(pi))

|party(pi)| . Note that this case is similar to our case with zero delivery costs

that we started this proof with, i.e., each project submits M(party(pi))
|party(pi)| , gets funded, and no

project benefits from changing its cost.

• The last in the tie-breaking order project pj ∈ party(pi) has delivery cost d(pj) exceeding
M(party(pi))
|party(pi)| . In such a case, if every project submitted cost d(pj), then pj would not be

selected as it is last in the tie-breaking order and cannot profitably decrease its cost. For
this reason, we set the cost of pj to be d(pj), remove pj from consideration, and repeat this
procedure as long as the product of the number of yet-remained projects and the delivery
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cost of the last in the tie-breaking project exceeds M(party(pi)). Suppose now that the
procedure stopped and project pk was the last removed one. Then all y yet-remaining
projects would say cost min(M(party(pi))/y, d(pk)) and be given this funding. Saying more
than d(pk) would result in being overtaken by project pk and thrown out of the outcome
due to insufficient budget. Saying more than M(party(pi))/y would result in getting the
last among remaining projects and asking for more money than left in the budget at that
timestamp.

The combination of c profiles calculated in the above way for all parties is a MES-Apr-NE for the
given instance.

Example B.2. Take a PB game G with one voter approving projects p1, p2, and p3. Let B = 6,
d(p1) = 3, d(p2) = 0, and d(p3) = 0, with p1 ≻ p2 ≻ p3. There is no MES-Apr-NE in G (the full
proof is in the appendix and we give a sketch): Suppose that c is an NE. Then c(p1) ≥ 3 (otherwise,
as it is selected, p1 improves by reporting 3) and c(p2), c(p3) < c(p1) = 3 = B/2 (otherwise, the
more expensive one is not funded). Since c(p2) + c(p3) < B, p2 may report (c(c1)+c(c2))/2 and still
be selected, so c is not an NE.

Suppose towards contradiction that c is such an equilibrium. W.l.o.g.,let c(p1) ≥ d(p1) = 3.
Otherwise, if p1 would be selected under these costs (and, hence, received a negative payoff), then
it would prefer to report d(p1) and receive utility 0. If it was not funded under c, then (c−i, d(p1))
also would be an equilibrium. Next, we observe that c(p1) = 3. Indeed, if p1 reported a value
greater than 3, then one of the projects could obtain a better payoff: If p2 or p3 reported a value
greater or equal to c(p1), then it would benefit by reporting a smaller one; if p2 and p3 reported
values that sum up to more than B, then at least one of them would benefit by reporting a smaller
cost, and if they reported values that sum up to at most B then either (a) one of them would benefit
by reporting a larger cost, or (b) if they both reported 3, p1 would benefit by reporting 3. Hence, we
have that c(p1) = 3 = B/2. Then, both c(p2) > 0 and c(p3) > 0 (the project reporting 0 would
benefit by reporting a larger number). Further, we have that c(p2) < c(p1) and c(p3) < c(p1).
Indeed, if either p2 or p3 reported value greater or equal to c(p1) then it would not be selected and,
hence, would benefit by reporting a smaller cost. So, c(p2) + c(p3) < B. But then either of them
would benefit by reporting a higher cost (so that the sum of their costs would not exceed B). Thus c
is not a MES-Apr-NE.

B.11 Proof of Theorem 4.13

Proof. Our example is in fact the example from Proposition 4.8 narrowed to prim voters and
projects.

We have three voters v1, v2, and v3 as well as three projects p1, p2, and p3. Projects p1 and p2 are
approved by, respectively, voters v1 and v2, while project p3 is approved by all three voters. We set
the budget to be some positive integer denoted as B and the delivery costs of these projects to be
d ≡ 0. We set the tie-breaking between projects to be p1 ≻ p2 ≻ p3. For the sake of brevity, for
yet-unselected project pi in iteration j, we denote αj(pi) as minimum value such that project pi is
αj(pi)-affordable according to MES-Apr rule (or infinity, if such a value does not exist).

Let (c(p1) = 7B
36 , c(p2) =

8B
36 , c(p3) =

21B
36 ) be the costs the projects say. We will show that it is

MES-Apr-NE.

At the beginning, each of three voters receives B
3 = 12B

36 money.

In the first iteration, α1(p1) =
7B/36

1 = 7B
36 , α1(p2) =

8B/36
1 = 8B

36 , α1(p3) =
21B/36

3 = 7B
36 , so p1

and p3 are tied, while p2 has greater α-value and is skipped for now. Thus, due to tie-breaking, we
select p1 and voter v1 pays 7B

36 for p1.

In the second iteration, v1 has 5B
36 money while both v2 and v3 have 12B

36 . Thus, since the budget of
v2 did not change, α2(p2) = α1(p2) =

8B
36 . In order to purchase p3, voter v1 would need to spend

all left money whereas v2 and v3 would need to pay more to make up v1’s insufficient money. More
precisely, α2(p3) =

21B/36−5B/36
2 =

16B/36
2 = 8B

36 . So projects p2 and p3 are tied and we select p2
due to tie-breaking (by taking money from v2).
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Finally, in the third iteration, we will select p3 as its supporters have 5B
36 +

4B
36 +

12B
36 = 21B

36 = c(p3),
all voters will use use all their money for it.

We showed that each project is selected with the proposed costs so no project benefits from lowering
its costs. Next, p3 will not increase its cost as its supporters would not have enough money to buy
it in the last iteration. Further, p2 will not increase its cost as it would lose with p3 in the second
iteration and its only supporter v2 would pay 8B

36 for p3, leaving insufficient 4B
36 for p2. Analogously,

p1 will not increase its cost as it would lose with p3 in the first iteration and its only supporter v1
would pay 7B

36 for p3, leaving insufficient 5B
36 for p1.

For this reason, c = (c(p1) = 7B
36 , c(p2) = 8B

36 , c(p3) = 21B
36 ) is a MES-Apr-NE for the given

instance.

One can show in an analogous way that c′ = (c′(p1) = 8B
36 , c

′(p2) = 7B
36 , c

′(p3) = 21B
36 ) is also

MES-Apr-NE for the given instance.

B.12 Proof of Theorem 6.1

Let us begin by introducing additional notation. In a cost-interval PB game G+ = (P, V,B) we
associate each voter v with an approval function A : V × P → 2[0,B], with A(v, p) specifying how
costly can a project p be for v to approve it. For simplicity, we assume that A(v, p) is a possibly
empty interval. We say that a voter v potentially supports a project p if A(v, p) ̸= ∅. Then, for
a strategy profile c, the corresponding PB election E(c) = (P, V,B, c) is such that each voter
v approves a project p ∈ P if cost(p) ∈ Av(p). Then, the payoff function and Nash equilibria
are defined for cost-interval PB games analogously to PB games. We now showcase examples
witnessing the result for particular voting rules.

MES-Cost. Consider the following cost-interval PB game G. Take the set of projects P =
{p1, p2}, as well as the set of voters V = {v1, v2, v3, v4}. Further, we let A(v1, p1) = A(v2, p1) =
[8, 12], A(v3, p1) = A(v4, p1) = [0, 4], A(v1, p2) = [4, 8], and A(v2, p2) = A(v3, p2) =
A(v4, p2) = [0, 3]. Finally, let B = 16.

Suppose that there exists a strategy profile c that is a MES-Cost-NE. Let us then consider the
following, exhaustive cases:

1. c(p1) ∈ (4, 8) ∪ (12, 16]. Then, p1 is not funded, while for c(p1) = 1, p1 is founded
regardless of c(p2).

2. c(p1) ∈ (8, 12] Then, p1 is not funded, and hence could benefit from lowering its cost.
3. c(p1) = 8. Then, we note that as c is an NE, c(p2) = 3, as then p2 is funded but would

not be selected for (8, c′(p2)) with c′(p2) > 3. But then, p1 is not funded under c, while it
would benefit from submitting c′(p1) = 4.

4. c(p1) ∈ [0, 4]. Then, c(p2) = 4, as then p2 is funded under c but would not be under
(c(p1), c

′(p2)), for any c′(p2) > 4. However, in that case p1 would benefit from raising
their cost to 8.

It follows that there is no MES-Cost-NE in G.

BasicAV. Consider the following cost-interval PB game G. Take the set of projects P = {p1, p2},
where p1 ≻ p2, as well as the set of voters V = {v1, v2, v3, v4, v5}. Further, we let A(v1, p1) =
[5, 9], A(v2, p1) = [3, 7], A(v3, p2) = [4, 8], A(v4, p2) = [5, 7], and A(v5, p2) = [1, 6] so this is a
plurality profile. Finally, let B = 10.

Suppose that there exists a strategy profile c that is a BasicAV-NE. Let us then consider the follow-
ing, exhaustive cases:

1. c(p1) ∈ [0, 3)∪ (9, 10]. Then, p1 is not funded but would benefit from submitting c′(p2) =
3, as then p1 is always selected.

2. c(p1) ∈ [3, 4) ∪ (7, 9]. Then, we note that as c is an NE, c(p2) = 7, as then p2 is funded
but would not be selected for (c(p1), c′(p2)) with c′(p2) > 7. But then, p1 is not funded
under c, while it would benefit from submitting c′(p1) = 7.
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3. c(p1) ∈ [4, 7]. Then, c(p2) = 6, as then p2 is funded under c but would not be under
(c(p1), c

′(p2)), for any c′(p2) > 6. However, in that case p1 would benefit from reducing
their cost to 4.

It follows that there is no BasicAV-NE in G.

AV/cost. Consider the following cost-interval PB game G. Take the set of projects P = {p1, p2},
where p2 ≻ p1, as well as the set of voters V = {v1, v2, v3, v4}. Further, we let A(v1, p1) = [4, 9],
A(v2, p1) = A(v3, p1) = [8, 9], and A(v4, p2) = [2, 6], so this is a plurality profile. Finally, let
B = 10.

Suppose that there exists a strategy profile c that is a AV/Cost. Let us then consider the following,
exhaustive cases:

1. c(p1) ∈ [0, 4)∪ (9, 10]. Then, p1 is not funded but would benefit from submitting c′(p2) =
5, as then p1 is always selected.

2. c(p1) ∈ [8, 9]. Then, we note that as c is an NE, c(p2) = c(p1)/3, as then p2 is funded but
would not be selected for (c(p1), c′(p2)) with c′(p2) > c(p1)/3. But then, p1 is not funded
under c, while it would benefit from submitting c(p1) ∈ [4, 3 · c(p2)).

3. c(p1) ∈ [5, 8]. Then, c(p2) = min(c(p2), 6) ∈ [5, 6], as then p2 is funded under c but
would not be under (c(p1), c′(p2)), for any c′(p2) > min(c(p2), 6). However, in that case
p1 would benefit from raising their cost to 9.

4. c(p1) ∈ [4, 5). Then, c(p2) = min(10 − c(p2), 6) ∈ [5, 6], as then p2 is funded under c
but would not be under (c(p1), c′(p2)), for any c′(p2) > min(10 − c(p2), 6). However,
p1 would benefit from raising their cost to 9.

It follows that there is no AV/Cost in G.

Phragmén. The claim follows by the example for AV/Cost, as Phragménand AV/Cost are equiva-
lent for plurality elections.

MES-Apr. Consider the following cost-interval PB game G. Take the set of projects P =
{p1, p2}, as well as the set of voters V = {v1, v2, v3}. Also, let A(v1, p1) = A(v1, p2) = [12, 18].
Then, let A(v2, p1) = A(v2, p2) = [6, 12] and the approval function of v3 be the same as the ap-
proval function of v2. Finally, we let B = 18 and assume zero delivery costs. It’s clear that each
voter received B/3 = 6 money units at the beginning of the algorithm regardless of the costs of the
projects.

Suppose that there is a MES-Apr-NE c = (c1, c2) for G. First, we can see that each of the projects is
funded with the cost set to 6 regardless of the cost submitted by the other proposer. So, both projects
are funded under (c1, c2). Hence, we notice that c1 ∈ [6, 12] and c2 ∈ [6, 12], as otherwise, either
one of the projects would submit cost higher than 12 and be supported by only voter (whose budget
is 6), or submit a cost lower than 6 and not be supported by anyone. So, in both scenarios one of the
project would not be funded. Let us then consider the following exhaustive cases:

1. c1 = 12 or c2 = 12. Without loss of generality, let c1 = 12. Then, we see that c2 = 8 or
c2 = 12. Otherwise, if c2 ∈ (8, 12), then p2 would not be funded and if c2 < 8, then p2
would be funded under (12, c2 + ϵ), for some ϵ > 0. But then, one of the projects is not
funded under (c1, c2), as c1 + c2 > B. Hence, according to previous observations, (c1, c2)
is not a MES-Apr-NE.

2. c1 ∈ [6, 12) and c1 ∈ [6, 12). Observe that for this cost range, only voters v2 and v3
may pay for these projects, while having 12 money units in total. Then, we observe that
c1 + c2 ≤ 12, as otherwise one of the projects would not be funded. Moreover, c1 = c2,
as otherwise the proposer pi submitting the lower cost would benefit from increasing ci.
Hence, in this case c1 = c2 = 6. But then p1 would also be funded under (12, 6), and
hence (c1, c2) is not an MES-Apr-NE.

It follows that there is no MES-Apr-NE in G.
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Table 3: Additional PB instances that we analyze in the experiments. Vote Len. means the average number of
approvals in a ballot. Rule indicates the PB rule that was used in the original election.

Instance |P | |V | Budget Vote Len. Rule

Bemowo 83 5181 4854279 10.8 BasicAV
Bielany 98 4957 5258802 9.8 BasicAV

Wilanow 35 2359 1516962 9.59 BasicAV
Wlochy 43 2221 1719224 9.51 BasicAV

Figure 5: Winning (green bars) and losing (red bars) margins in real-life PB. Projects ordered by decreasing
approval scores (on the x-axis) are represented by bars. Tacks and crosses show, respectively, the original and
best response costs.

C Additional Experimental Results

Here, we present experimental results for four additional PB instances held in 2022 in different
districts of Warsaw, Poland, i.e., in Bemowo, Bielany, Wilanow, and Wlochy. Details regarding
these datasets are presented in Table 3. In Figure 5 we present the winning and losing margins
in additional real-life PB instances, and in Figure 6 we present the strategy profiles after 10′000
iterations of our dynamics.

Moreover, in Table 4 we present comparison of the original winning and losing margins and those
after 10’000 iterations. We observe that in most cases the size of the margins drastically decreased.

D Dynamics With 80% Delivery Costs

In Figure 7 we show the results of the dynamics from Section 5.2 for the case where each project
has delivery cost equal to the 80% of the cost it had in the original instance. We see that aside from
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Rule
Original Margins 10000 it. Margins

Winning Losing Winning Losing

B
em

ow
o

BasicAV 1830± 1283 122± 182 0 24± 37

AV/Cost 150± 104 225± 257 1± 3 0.2± 0.1

Phragmén 141± 91 220± 261 3± 3 0.9± 0.7

MES-Apr/Ph 150± 95 223± 264 3± 4 2± 2

MES-Cost/Ph 250± 323 205± 244 1± 2 1± 2
B

ie
la

ny

BasicAV 1447± 1355 218± 205 0 2± 2

AV/Cost 157± 128 171± 150 0.9± 2 0.2± 0.3

Phragmén 146± 121 176± 154 4± 3 0.9± 0.9

MES-Apr/Ph 148± 121 176± 151 3± 4 1± 2

MES-Cost/Ph 172± 193 180± 154 3± 6 3± 4

W
es

ol
a

BasicAV 265± 249 64± 51 0 0
AV/Cost 86± 27 55± 31 0.3± 0.4 0.2± 0.1

Phragmén 69± 31 51± 37 2± 1 0.9± 1

MES-Apr/Ph 79± 33 43± 37 2± 1 0.7± 0.7

MES-Cost/Ph 70± 56 65± 45 0.1± 0.1 0.4± 0.5

W
ila

no
w

BasicAV 536± 399 87± 80 0 0
AV/Cost 87± 59 51± 34 2± 2 0.1± 0.0

Phragmén 77± 52 66± 41 2± 2 0.3± 0.2

MES-Apr/Ph 89± 56 58± 37 2± 1 0.7± 0.8

MES-Cost/Ph 79± 120 95± 64 1± 2 2± 4

W
lo

ch
y

BasicAV 532± 524 46± 35 0 0
AV/Cost 107± 49 56± 48 0.8± 1.0 0.1± 0.1

Phragmén 83± 52 62± 42 3± 3 2± 1

MES-Apr/Ph 85± 53 64± 45 2± 2 1± 1

MES-Cost/Ph 138± 186 56± 46 0.2± 0.2 0.4± 0.5

K
le

in
e

W
er

el
d BasicAV 117± 78 14± 11 0 1.0± 0.0

AV/Cost 12± 8 12± 12 0.1± 0.1 0.1± 0.0

Phragmén 10± 8 10± 11 0.5± 0.6 0.2± 0.2

MES-Apr/Ph 11± 7 11± 11 0.4± 0.6 0.2± 0.2

MES-Cost/Ph 26± 34 11± 11 2± 1 0.1± 0.0

Table 4: Comparison of winning and losing margins in the original elections and after 10000 iterations of the
game. (All the values are in 1000 PLN\EUR). In each entry the first value denotes the average and the second
value (i.e., the one after ± sign) denotes the standard deviation.

fairly expensive projects, whose cost could not drop below the delievery cost, the overall behavior
of our rules is as with zero delivery costs.
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Figure 6: Strategy profiles after 10 000 iterations of our dynamics. Projects ordered by decreasing approval
scores (x-axis). Final projects’ costs shown by bars; the original costs shown as dashed lines. Red and green
bars indicate, respectively, losing and winning projects; brighter parts are the increases over the original cost.
The triangles at the top mark the originally winning projects. Brown circles denote the equilibrium costs (for
rules for which we can compute it).
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Figure 7: Strategy profiles after 10 000 iterations of our dynamics. for the case where each project has delivery
cost equal to 80% of its original cost in the instance. Projects ordered by decreasing approval scores (x-axis).
Final projects’ costs shown by bars; the original costs shown as dashed lines. Red and green bars indicate,
respectively, losing and winning projects; brighter parts are the increases over the original cost. The triangles
at the top mark the originally winning projects. Brown circles denote the equilibrium costs (for rules for which
we can compute it).
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