## **Strategic Cost Selection in Participatory Budgeting**

#### Piotr Faliszewski

AGH University Kraków, Poland faliszew@agh.edu.pl

## Andrzej Kaczmarczyk

University of Chicago Chicago, USA akaczmarczyk@uchicago.edu

#### **Piotr Skowron**

University of Warsaw Warsaw, Poland p.skowron@mimuw.edu.pl

#### Łukasz Janeczko

AGH University Kraków, Poland ljaneczk@agh.edu.pl

#### Grzegorz Lisowski

University of Groningen Groningen, The Netherlands q.a.lisowski@ruq.nl

#### Stanisław Szufa

CNRS, Université Paris Dauphine-PSL Paris, France s.szufa@gmail.com

#### Mateusz Szwagierczak

AGH University
Kraków, Poland
matiszw@student.agh.edu.pl

#### Abstract

We study strategic behavior of project proposers in the context of approval-based participatory budgeting (PB). In our model we assume that the votes are fixed and known and the proposers want to set as high project prices as possible, provided that their projects get selected and the prices are not below the minimum costs of their delivery. We study the existence of pure Nash equilibria (NE) in such games, focusing on the AV/Cost, Phragmén, and Method of Equal Shares rules. We also provide an experimental study of cost selection on real-life PB election data.

## 1 Introduction

Consider a city that implements participatory budgeting (PB) [Cabannes, 2004; Goel *et al.*, 2019; Rey and Maly, 2023]. The city council allocates a fixed amount of funds for the initiative and invites citizens to submit project proposals, for which the funding decisions will be made through voting. One natural question that the proposers face is how much money should they realistically request. It is tempting to propose expensive projects, as higher costs are typically associated with better quality and broader scope, but overly expensive projects risk rejection due to a limited budget.

Indeed, evidence suggests that the costs of the projects are often set strategically. For example, in 10% of participatory budgeting elections held in the city of Wrocław, Poland, all project proposals had costs equal to the maximum allowed amount (see the Pabulib database [Faliszewski *et al.*, 2023]) in the corresponding instance. Moreover, in 85% of these elections, more than half of the proposals were priced at the maximum value. A similar phenomenon, if less pronounced, also occurs in other cities. For instance, in 25% of Pabulib PB instances approximately half of the projects have costs reaching at least 90% of the maximum allowed value in the corresponding instance. In another 50% of these instances, more than 30% of the projects are priced at or above 50% of the

allowed maximum. This pattern is unlikely to be coincidental and it seems implausible that the implementation costs of different projects would naturally converge to such similar values. Instead, this suggests that projects are prepared strategically, with costs deliberately set as high as possible within the given constraints and perceived chances of selection.

Cost-selection strategies are likely influenced by the voting rules used. If the rule prioritizes the number of votes a project receives, proposers might feel encouraged to submit more expensive proposals. This happens, e.g., if the city uses the BasicAV rule (also known as GreedyAV [Boehmer et al., 2023] or GreedCost [Rey and Maly, 2023]) which greedily selects those projects that are approved by the largest numbers of voters (provided they still fit in the remaining budget). Conversely, if the city were to use a proportional rule, such as the Method of Equal Shares (MES) [Peters and Skowron, 2020; Peters et al., 2021] or Phragmén [Brill et al., 2017; Los et al., 2022], then each proposer would have to analyze how the other ones might act and choose the costs accordingly.

For example, in recent instances of participatory budgeting in Wieliczka—where the BasicAV rule was used and the maximum project cost was set to half of the budget—exactly two projects were winners, each with the highest allowed cost. However, when in 2023 Wieliczka used MES in their experimental "Green Million" PB election, there were 30 winning projects, with costs distributed much more uniformly over the range of the allowed values (the maximum allowed project cost was 10% of the budget, so if the proposers acted as previously, there would be 10 winning projects; for details of the election, see <a href="https://equalshares.net/elections/zielony-milion/">https://equalshares.net/elections/zielony-milion/</a>). While this is anecdotal evidence, it shows that voting rules do affect the structure of PB elections.

Our goal is to analyze this game-theoretic nature of project cost selection under various participatory budgeting rules. Studying strategic cost selection is also a natural direction in market analysis and is present, e.g., in the context of the Hotelling-Downs model; see the overview of Eiselt [2011]. Notably, our work is different from that of Aziz *et al.* [2023], who consider how voters pool their funds; see also the work of Wagner and Meir [2023].

**The Game.** We analyze the following scenario. The sets of projects and voters are fixed and each voter indicates which projects he or she approves (this information is common knowledge, an assumption we discuss later on). Each project is controlled by a different proposer choosing its cost so that it is as high as possible, while ensuring that the project is selected. However, each project also has a certain delivery cost—i.e., the lowest cost under which it can be reasonably implemented—and the proposers prefer costs that are at least as high. Note that we view the notion of a project broadly: Choosing a lower cost means proposing a smaller-scale project, and choosing a higher cost means submitting a more comprehensive one (but addressing the same general need). Importantly, whether a voter approves a project or not, does not depend on its cost; this strategy of the voters is often called threshold approval voting [Benadè *et al.*, 2020; Fairstein *et al.*, 2023]. The projects are chosen according to a given rule, such as BasicAV, AV/Cost, Phragmén, or MES (see Section 2 for details). We analyze whether thus defined games—where the project proposers are the players—have pure Nash equilibria and, if so, what costs are reported under these equilibria.

While our games present a simplified view of reality due to abstracting away from excessive complexities, they lead to identifying certain phenomena and explaining behavior that we see in data. Consequently, our model lays the foundations and sets expectations for more sophisticated scenarios. Natural extensions will become apparent after we explain our assumptions and their limitations:

Votes are common knowledge. As we use classic Nash equilibrium analysis, we need the ability to evaluate players' utilities for all possible strategy profiles, which essentially means that the votes are common knowledge. While this is a standard assumption in the analysis of Nash equilibria, in practice, neither the precise identities of the voters nor their votes are known to project proposers when submitting their projects. Yet, proposers often estimate potential support, e.g., using insights from previous PB editions. Hence, despite its seemingly strong assumptions, game theory offers valuable insight into strategic aspects of cost selection.

**Project costs do not affect approvals.** We assume that voters' approvals do not depend on project costs. Although it is a simplification, it is supported by several observations. First, data shows that costly projects are frequent, suggesting a common belief that high prices do not deter voters. Second, approving projects based on their quality and ignoring the costs is often suggested as a superior strategy for utility-oriented voters [Benadè *et al.*, 2020; Fairstein *et al.*, 2023].

Third, there is evidence that taking project costs into account, e.g., performing the *value-for-money* analysis, is cognitively expensive [Fairstein *et al.*, 2023].

While relaxing our assumptions would give a more general class of games, we start with a clean, simple model, in order to obtain a baseline. That said, we complement our discussion by allowing the voters to have individual ranges of costs under which they approve each project, and we argue why we believe that such a model leads to less useful conclusions (see Section 6).

**Our Contributions.** We study the existence of pure Nash equilibria in our games, under various PB rules and a number of restrictions on their structure. Importantly, we find that MES with cost utilities always admits NEs with the costs of the projects bounded proportionally to their expected support, whereas BasicAV has NEs where a single project takes the whole budget. In contrast, AV/Cost, Phragmén, and MES with approval utilities may fail to have any NEs at all. The existence of an NE for a rule suggests that it might naturally incentivize project proposers to gravitate towards it, whereas the non-existence indicates increased challenges in reasoning about the costs, leading to less predictable behaviour.

Further, our theoretical tools enable the experimental analysis of NEs in real-life scenarios. We conduct such an analysis based on the Pabulib dataset [Faliszewski *et al.*, 2023]. We find that Phragmén and MES based on approval utilities are very different from MES with cost utilities. The former two rules promote cheaper projects, and the latter selects fewer and more expensive ones.

Our model aligns well with the patterns observed in real elections, such as those in Wrocław and Wieliczka. Similarly, it provides insight into why most cities using BasicAV impose upper bounds on allowed project costs. Interestingly, the city of Świecie, Poland that transitioned from BasicAV to MES in 2023, dropped such upper bounds. This shows that the city officials have an intuitive understanding of the strategic incentives arising under different voting rules.

#### 2 Preliminaries

**Participatory Budgeting.** We define a PB instance (or, a PB election) as a tuple E = (P, V, B, cost), where  $P = \{p_1, \ldots, p_m\}$  is a set of projects,  $V = \{v_1, \ldots, v_n\}$  is a set of voters,  $B \in \mathbb{R}_+$  is the available budget, and  $cost \colon P \to \mathbb{R}_+$  is a function specifying the cost of each project. Each voter  $v_i$  casts a nonempty approval ballot  $A(v_i) \subseteq P$ , containing the set of projects that he or she approves (see, e.g., the work of Fairstein et al. [2023] for a discussion of other ballot formats). Note that a voter may approve projects whose total cost exceeds the available budget. We often refer to the voters and their approval ballots as either an approval profile or a preference profile. We extend the  $A(\cdot)$  notation so that for a project  $p_i$ ,  $A(p_i)$  is the set of voters that approve  $p_i$ . Then,  $|A(p_i)|$  is the approval score of  $p_i$ . For each project  $p_i$ , we assume that  $|A(p_i)| \ge 1$ . Given a subset of projects P', we let  $cost(P') = \sum_{p' \in P'} cost(p')$ .

Each PB instance comes with a tie-breaking order  $\succ$  over the projects, used by the PB rules to resolve internal ties. While tie-breaking can notably influence voting [Obraztsova and Elkind, 2011; Obraztsova *et al.*, 2011] and PB elections [Boehmer *et al.*, 2023], especially in case of smaller instances [Janeczko and Faliszewski, 2023], we do not expect many ties in PB (ties are very rare in Pabulib data; see also the work of Xia [2021] for an argument regarding large ordinal elections).

**Participatory Budgeting Rules.** A PB rule is a function f that for a PB instance E outputs a set f(E) of projects with total cost not exceeding the budget. We refer to the projects in f(E) as winning (or selected, or funded). Note that our rules are resolute, that is, their outcomes are unique. We focus on the following ones, denoting by E = (P, V, B, cost) the instance we consider and assuming  $\succ$  to be the tie-breaking order:

**BasicAV.** It starts with  $W = \emptyset$  and considers all the projects in the order of their nonincreasing approval scores (with ties broken using  $\succ$ ), putting a considered project p into W if  $cost(W \cup \{p\}) \leq B$ . Finally, it outputs W.

**AV/Cost.** For each project p, its approval-to-cost ratio is |A(p)|/cost(p). AV/Cost acts like BasicAV, considering the projects in the nonincreasing order of these ratios and breaking ties using  $\succ$ .

**Phragmén [Brill** et al., 2017; Los et al., 2022]. Phragmén starts with  $W = \emptyset$  and fills it in as follows. Initially, the voters have empty virtual bank accounts, but they continuously earn money

at the rate of one unit per unit of time. When there is a project p such that the voters who approve it have at least cost(p) units of money all together and the project is within the budget (i.e.,  $cost(W \cup \{p\}) \leq B$ ), these voters purchase it: p is included in W, the bank accounts of voters in A(p) are reset to zero, and p is removed from consideration. If  $cost(W \cup \{p\}) > B$ , then p is removed without being included in W. If several projects could be purchased simultaneously, we pick one using the tie-breaking order. The rule stops and outputs W when all projects are removed from consideration.

**Method of Equal Shares (MES-Cost)** [Peters et al. 2020; 2021]. First, each voter receives B/|V| amount of money. Then we let  $W = \emptyset$  and proceed iteratively: Within each iteration, for each project p not in W we compute its affordability coefficient  $\alpha_p$  as the smallest number such that the following holds ( $b_i$  is the money that voter  $v_i$  currently has):

$$\sum_{v_i \in A(p)} \min(b_i, \alpha_p \cdot cost(p)) = cost(p). \tag{1}$$

If no such value exists (i.e., the voters approving p cannot afford it) then we set  $\alpha_p = \infty$ . If  $\alpha_p = \infty$  for all  $p \notin W$ , then we terminate and output W. Otherwise, we choose  $p' \notin W$  with the lowest affordability coefficient (using tie-breaking, if needed), include p' in W, and take  $\alpha_{p'} \cdot cost(p')$  money from each voter in A(p') (or all the remaining funds, if the voter had less than  $\alpha_{p'} \cdot cost(p')$ ). Due to the use of cost in Eq. (1), the rule is called Cost with Cost utilities.

**MES with Approval Utilities (MES-Apr).** It works like MES-Cost, but with Eq. (1) replaced by  $\sum_{v_i \in A(p)} \min(b_i, \alpha_p) = cost(p)$ . While in MES-Cost the affordability coefficients are between 0 and 1, under MES-Apr they can be as large as B.

**Remark 2.1.** Both variants of MES may output a set of projects that can be extended without exceeding the budget. In our experiments we use Phragmén completion: When a MES variant finishes, we extend its output by running Phragmén with voters' bank accounts initiated with their then-current amounts of money. This defines the MES-Cost/Ph and MES-Apr/Ph rules.

Many authors also study other PB rules (see, e.g., the works of Goel *et al.* [2019]; Talmon and Faliszewski [2019]; Sreedurga *et al.* [2022]); for an overview, see the survey of Rey and Maly [2023] and the book of Lackner and Skowron [2023] (which regards multiwinner elections, where projects have unit costs). BasicAV is commonly used in practice, MES-Cost also was recently used by several cities (see <a href="https://equalshares.net">https://equalshares.net</a>); the other rules are mostly studied theoretically.

**Structured Preferences.** In a *plurality* profile, each voter approves exactly one project, whereas in a *party-list* profile the projects are grouped into "parties" and each voter approves all projects from a single party. Importantly, plurality profiles form a special case of party-list preferences. Some cities require plurality profiles (e.g., Wrocław, Poland; see the respective datasets in Pabulib); party-list ones are mostly interesting theoretically.

**Definition 2.1.** Consider a set of projects P and a voter collection V with approval ballots over P. We say that these voters have: (1) plurality preferences, if  $|A(v_i)| = 1$  for each voter  $v_i$ , (2) party-list preferences, if either  $A(v_i) = A(v_i)$  or  $A(v_i) \cap A(v_i) = \emptyset$  for each two voters  $v_i$  and  $v_i$ .

For a party-list profile, let party(p) denote the set of projects approved by these voters that approve p.

#### 3 Participatory Budgeting Cost Games

We now define our main object of study, participatory budgeting cost games (PB games). Formally, a PB game is a tuple (P,V,B,d), where P is a set of projects, V is a collection of voters with approval preferences over the projects from P, B is the available budget, and  $d\colon P\to\mathbb{R}_+$  is a function that associates each project with its minimal delivery cost (see the description of the payoffs in the next paragraph). We assume that for each project  $p_i$ ,  $d(p_i)\leq B$ . In this game, the projects are the players and each of them needs to report its cost. That is, a strategy profile is a tuple  $\mathbf{c}=(c_1,\ldots,c_n)$ , with a cost  $c_i\in\mathbb{R}_+$  for each project  $p_i$ , which will be used in a PB election. As is standard, by  $(\mathbf{c}_{-i},c')$  we mean a strategy profile identical to  $\mathbf{c}$  except that project  $p_i$  reports cost c'. We often write  $\mathbf{c}(p_i)$  to denote the cost reported by  $p_i$  under profile  $\mathbf{c}$ , and we use strategy profiles as cost functions in PB instances.

Let us fix a PB rule f and a PB game G = (P, V, B, d). For a strategy profile  $\mathbf{c}$ , the associated PB instance is  $E(\mathbf{c}) = (P, V, B, \mathbf{c})$  and the *payoff* of each project  $p_i \in P$  is:

$$u_i(\mathbf{c}) = c_i - d(p_i)$$
 if  $p_i \in f(E(\mathbf{c}))$ , and  $u_i(\mathbf{c}) = 0$  otherwise.

| Table 1: Our NE existence results. By | d'''d = 0" and " | 'arh d'' we mean zero and | l arhitrary delivery costs       |
|---------------------------------------|------------------|---------------------------|----------------------------------|
| Table 1. Our NE carstence results. Dv | u = 0 and        | aro, a we mean zero and   | i ai biti ai v ucii vci v costs. |

| ballots  | P            | lurality          |              | rty-List           | Unr          | restricted        |                                                                   |
|----------|--------------|-------------------|--------------|--------------------|--------------|-------------------|-------------------------------------------------------------------|
|          | $d \equiv 0$ | arb. $d$          | $d \equiv 0$ | arb. $d$           | $d \equiv 0$ | arb. $d$          | T 1                                                               |
| BasicAV  |              |                   |              |                    |              |                   | Legend                                                            |
|          | Pr. 4.1      | Pr. 4.1           | Pr. 4.1      | Pr. 4.1            | Pr. 4.1      | Pr. 4.1           | ■ NE guaranteed for an arbitrary tie-breaking                     |
| AV/Cost  |              |                   | <b>■</b> †   |                    | <b></b> †    |                   | NE always exists for some tie-breaking                            |
|          | Pr. 4.2      | Thm. 4.4, Ex. 4.3 | Pr. 4.2      | Thm. 4.4, Ex. 4.3  | Pr. 4.2      | Thm. 4.4, Ex. 4.3 | <ul> <li>no NE for all tie-breaking orders</li> </ul>             |
| Phragmén | <b>■</b> †   |                   |              | ? □                |              |                   | ? conjecture                                                      |
|          | Cor. 4.6     | Cor. 4.6          | Pr. 4.7      | Cor. 4.6           | Pr. 4.8      | Pr. 4.8           | $\dagger$ result holds also if for each project $p$ we            |
| MES-Apr  |              |                   |              |                    |              |                   | have $d(p) \leq \mathbf{ap}(p)$ , where $\mathbf{ap}$ is the cor- |
| -        | Thm. 4.10    | Thm. 4.10         | Thm. 4.12    | Thm. 4.12, Ex. B.2 | Pr. 4.11     | Pr. 4.11          | responding approval-proportional strategy                         |
| MES-Cost |              |                   | -            |                    | •            |                   | profile                                                           |
|          | Thm. 4.9     | Thm. 4.9          | Thm. 4.9     | Thm. 4.9           | Thm. 4.9     | Thm. 4.9          |                                                                   |

The interpretation is as follows: Each project p has a minimum delivery cost d(p), which is the lowest price under which it can be implemented. Yet, with more money the project can be better, the proposer prefers this, and the utilities implement this preference. In particular, the proposers do not receive funds equal to the utility values. Instead, to compute utility values, we deduct minimum delivery costs. We often consider the special case of zero delivery costs.  $^{1}$ 

For a PB rule f and a PB game G=(P,V,B,d), we say that a strategy profile  ${\bf c}$  for this game is a Nash equilibrium under f (is an f-NE), if no project has a profitable deviation. That is, it cannot benefit by reporting a different cost than that from the f-NE (assuming no other costs change).

**Definition 3.1.** For a PB rule f and a PB game G = (P, V, B, d), we say that a strategy profile  $\mathbf{c}$  for this game is a Nash equilibrium under f (is an f-NE) if for every project  $p_i \in P$  and every cost  $c' \in \mathbb{R}_+$  it holds that  $u_i(\mathbf{c}) \geq u_i(\mathbf{c}_{-i}, c')$ .

**Example 3.1.** Take AV/Cost and a PB game with projects  $p_1$ ,  $p_2$ , voters  $v_1, \ldots, v_5$ , budget 10, and zero delivery costs. We have  $A(p_1) = \{v_1, v_2\}$  and  $A(p_2) = \{v_3, v_4, v_5\}$ , so this is a plurality profile. Strategy profile  $\mathbf{c}$  where  $\mathbf{c}(p_1) = 4$  and  $\mathbf{c}(p_2) = 6$  is an NE. Indeed, according to AV/Cost, under these costs  $p_1$  and  $p_2$  are tied as  $|A(p_1)|/\mathbf{c}(p_1) = |A(p_2)|/\mathbf{c}(p_2) = 1/2$ , and both projects are selected under any tie-breaking order. If either of the projects reports a lower cost, it gets selected, but its utility decreases. If it reports a higher cost, it is not selected and its utility drops to zero.

We sometimes use approval-to-delivery-cost (A/D) tie-breaking orders, which favor projects with larger ratios of their approvals to delivery costs. So,  $\succ$  is A/D if projects with zero delivery costs are ranked highest, while  $\frac{A(p_i)}{d(p_i)} > \frac{A(p_j)}{d(p_j)}$  implies  $p_i \succ p_j$  if  $d(p_i) \cdot d(p_j) > 0$ . As some projects may have equal approval-to-delivery cost ratios, there may be several different A/D orders.

**Remark 3.1.** In our games, a proposer receives the same utility of zero when his or her project is not funded and when it is funded with exactly its delivery cost. One could distinguish these cases by using extended utility function  $u'_i$  such that:

$$u_i'(\mathbf{c}) = \mathbf{c}(p_i) - d(p_i) + \mathbb{1}[\mathbf{c}(p_i) \ge d(p_i)]$$
 if  $p_i \in f(E(\mathbf{c}))$ , and  $u_i'(\mathbf{c}) = 0$  otherwise,

where  $\mathbb{1}[x]$  is 1 if x holds and 0 otherwise. We prefer our formulation as it is simpler and captures the intuition that only projects more costly than their delivery costs are worth implementing. That said, all our NE-(non)existence results still hold for the extended utility functions (for the nonexistence results this is automatic and for the existence ones, see Appendix A).

#### 4 Existence of Equilibria

Our theoretical results, summarized in Table 1, focus on the existence of NEs in PB games. We mostly show that either: (1) There always is an equilibrium, for any tie-breaking order; (2) There always is an equilibrium for some A/D tie-breaking order; or (3) There is a PB game with no equilibrium for any tie-breaking order. When such statements are difficult to show, we seek instances with no equilibria for some tie-breaking order. Such an observation is weaker than a result of type (3),

<sup>&</sup>lt;sup>1</sup>This assumption is well justified. First, based on the design of the game, project proposers are incentivized to submit costly projects, so the risk of costs approaching zero is minimal. Second, assigning fixed delivery costs introduces an unrealistic hard constraint, as proposers often possess the flexibility to adjust project scope and influence the costs. Modeling delivery costs as zero thus provides a clean representation of this flexibility.

is incomparable to a result of type (2), and implies that a result of type (1) does not exist. Pragmatically, it is most important to know whether a result of type (1) holds or not in a given setting; the other types of results indicate various levels of bad news regarding the existence of Nash equilibria.

We are interested in strategy profiles that are proportional in some way, and, in particular, in which the costs of the projects are justifiable by the level of support that they have. A detailed discussion of fairness in PB is, for example, in the works of Brill *et al.* [2023] and Maly *et al.* [2023], as well as the works defining MES and Phragmén). Below, we define a basic type of such a profile, where project costs are proportional to the numbers of approvals they get.

**Definition 4.1** (Approval-Proportional Strategy Profile). Consider a PB game with  $P = \{p_1, p_2, \ldots, p_m\}$ . We say that strategy profile ap is approval-proportional if for each project p it holds that  $\mathbf{ap}(p) = B \cdot |A(p)| / \sum_{p' \in P} |A(p')|$ .

Under plurality preferences **ap** is natural for rules that aim to achieve proportionality. For more involved settings, other profiles may be more appropriate (see, e.g., MES-Cost and Theorem 4.9).

#### 4.1 BasicAV

For BasicAV, there is an equilibrium where the most popular project requests the full budget amount.

**Proposition 4.1.** For each PB game and each internal tie-breaking order  $\succ$  there is a BasicAV-NE where the project with most approvals (best with respect to  $\succ$ ) reports cost B.

In fact, the most popular project reports cost B (and is selected) under every BasicAV-NE. Hence, Proposition 4.1 indicates that proposers of projects receiving many approvals have an incentive to overstate their costs, whereas proposers of less popular projects have an incentive to bundle them together, to garner votes (indeed, this is what seems to happen in Wieliczka PB elections held using BasicAV; recall Section 1). Consequently, BasicAV equilibria in our games are disproportional, highlighting known deficiencies of this rule.

#### 4.2 AV/Cost

Some shortcomings of BasicAV are remedied by AV/Cost, for which the approval-proportional strategy is an equilibrium. To show this, we note that in an NE, if the delivery costs are limited, all projects are funded, using the whole budget. It follows that then ap is the only equilibrium profile.

**Proposition 4.2.** If for each project p we have d(p) < ap(p), then ap is the only AV/cost-NE.

If (some of) the delivery costs are higher than the costs implied by the approval-proportional strategy, then the situation becomes more complicated and it is no longer true that an NE exist for all internal tie-breaking orders. Yet, there always is a tie-breaking order yielding an NE.

**Example 4.3.** Take a PB game (P, V, B, d) with plurality ballots, where  $P = \{p_1, p_2\}$ ,  $|A(p_1)| = |A(p_2)| = 5$ , B = 10,  $d(p_1) = 0$ ,  $d(p_2) = 6$ , and the tie-breaking order is  $p_2 \succ p_1$ . Assume that  $\mathbf{c}$  is an AV/Cost-NE. Consider two cases: (1) If  $\mathbf{c}(p_2) \geq 6$ , then either (a)  $\mathbf{c}(p_1) \geq \mathbf{c}(p_2)$ , where it is better for  $p_1$  to report a cost lower than  $\mathbf{c}(p_2)$  (otherwise  $p_2$  is selected before  $p_1$  and there is no budget left for  $p_1$ ), or (b)  $\mathbf{c}(p_1) < \mathbf{c}(p_2)$  and it is better for  $p_1$  to increase its cost (keeping it below  $\mathbf{c}(p_2)$ ). (2) If  $\mathbf{c}(p_2) < 6$ , then either  $p_2$  is chosen and it prefers to report cost 6 (otherwise its payoff is  $\mathbf{c}(p_2) - d(p_2) < 0$ ), or  $p_2$  is not selected, meaning that  $\mathbf{c}(p_1) < \mathbf{c}(p_2)$  and it is better for  $p_1$  to increase its cost (keeping it below  $\mathbf{c}(p_2)$ ).

Nevertheless, if we change the tie-breaking order so that  $p_1 > p_2$ , then (6,6) is an equilibrium, where only  $p_1$  is funded: Both projects would decrease their payoff by lowering costs and they would not benefit by increasing their costs  $(p_1 \text{ would no longer be selected, and } p_2$ 's payoff would not change).

**Theorem 4.4.** For each PB game and A/D tie-breaking order there is an AV/Cost-NE computable in polynomial time.

*Proof sketch.* We propose an algorithm that computes the claimed profile **c** in iterations. Starting from the situation where each project reports its delivery cost, in each iteration it selects a group of projects that "underreport" their costs compared to their support. Then, it increases their reported costs as much as possible, with the projects remaining funded. Finally, if the funded projects after the

update do not use up the whole budget, the procedure is repeated for the remaining projects whose prices have not been increased so far. These projects, albeit worse regarding the delivery-cost-to-support ratio, can still benefit from the increase. In the end, the procedure outputs an equilibrium profile. The somewhat involved proof is in the appendix.

We conclude by noting that even for plurality preferences the costs of projects selected in an equilibrium can be arbitrarily far from using the entire budget.

**Proposition 4.5.** For each integer  $\gamma > 1$  there is a PB game with plurality preferences and AV/Cost-NE profile c with the total cost of projects funded under AV/Cost at most  $B/\gamma$ .

## 4.3 Phragmén

For plurality ballots, AV/Cost and Phragmén always output the same projects. Thus, the next corollary translates results from the previous section to the case of Phragmén.

**Corollary 4.6.** For each PB game with plurality ballots, (a) if  $d(p) \leq ap(p)$  for all  $p \in P$ , then ap is the only Phragmén-NE for every tie-breaking order; (b) otherwise, for each A/D tie-breaking order there is a Phragmén-NE (and there are PB games and tie-breaking orders with no Phragmén-NE).

Naturally, Proposition 4.5 also holds for Phragmén, so there are games with equilibria for which Phragmén funds projects whose total cost is an arbitrarily small fraction of the budget. Next, we focus on more involved preference profiles. On the positive side, for party-list ballots (and zero delivery costs) we always have unique equilibria, for every tie-breaking order: Each project p reports a cost proportional to the number of its approvals, divided by the size of its party.

**Proposition 4.7.** For every PB game with party-list ballots and zero delivery costs, there is the unique Phragmén-NE  $\mathbf{c}$ , where for every project p we have  $\mathbf{c}(p) = B \cdot \frac{|A(p)|}{|V| \cdot |party(p)|}$ .

Unfortunately, party-list preferences with zero delivery costs are where the good news end. Indeed, we find that there are small instances without equilibria.

**Proposition 4.8.** There is a PB game with six projects and six voters and zero delivery costs, for which there is no Phragmén-NE irrespective of the tie-breaking order.

#### 4.4 Method of Equal Shares

The mechanics of MES might seem similar to those of Phragmén, as these rules follow the approach in which voters buy the projects they approve. However, contrary to Phragmén, in both types of MES voters have limited amounts of budget to spend. So, the approval scores of projects give upper-bounds on the maximum costs that the projects might report. I.e., as each voter gets an equal share of the budget, projects that cost more than the total budget of their supporters cannot be funded.

In case of MES-Cost, this translates to our most positive result: For each PB game there always is an, essentially unique, MES-Cost-NE, regardless of the tie-breaking order and the delivery costs. Furthermore, this NE can be computed in polynomial time and if all the projects have sufficiently low delivery costs and sufficiently high support, then it uses up the whole budget (even though, in general, MES is not exhaustive). Together with its proportionality features, this reinforces the position of MES-Cost as a very attractive PB rule.

**Theorem 4.9.** For each PB game, there is a polynomial-time computable MES-Cost-NE profile **c**, unique up to the actions of the projects not selected by MES-Cost under **c**.

*Proof sketch.* Let p be the project with the largest number of approvals (and preferred in the tiebreaking order, if there are several such projects). We observe that p can always request the full amount of money that its voters have at the beginning of the execution of MES-Cost; the rule would fund p irrespective of the costs of the other projects. Thus, p reports this amount and is funded (if the amount is below its delivery cost, p reports the delivery cost and is not funded). The project has no reason to report less, and reporting more would cause it to not be funded. Then, we disregard all the voters that approve it and repeat the reasoning for the remaining projects and voters.

Table 2: PB instances analyzed in our experiments.

| Instance                | P | V | Budget                       | Avg. num. of approvals per ballot |
|-------------------------|---|---|------------------------------|-----------------------------------|
| Wesola<br>Kleine Wereld |   |   | 1 011 000 PLN<br>250 000 EUR | 7.87<br>11.93                     |

Perhaps surprisingly, for MES-Apr the results are much less positive. While there always are MES-Apr-NE for plurality ballots, in general there are small games with zero delivery costs that have no MES-Apr-NE irrespective of the tie-breaking order used.

**Theorem 4.10.** For each PB game with plurality ballots, there is a polynomial-time computable MES-Apr-NE.

**Proposition 4.11.** There are games with zero delivery costs, for which there is no MES-Apr-NE regardless of the tie-breaking order, even if we have only 4 projects and 16 votes.

In case of party-list ballots, existence of equilibria depends on delivery costs and tie-breaking.

**Theorem 4.12.** Every PB game with party-list ballots and an A/D tie-breaking order has a MES-Apr-NE computable in polynomial-time. There are examples of PB games with party-list preferences, nonzero delivery costs and non-A/D tie-breaking that do not have MES-Apr-NE.

For zero delivery costs every tie-breaking order is A/D, so the above theorem shows that PB games with party-list preferences and zero delivery costs always have MES-Apr-NE. We conclude by noting a surprising difference between MES-Apr and Phragmén, presented in the following theorem.

**Theorem 4.13.** In some instances symmetric projects (w.r.t. their supporters) submit different costs in a MES-Apr-NE, but identical ones in Phragmén-NE.

## 5 Experiments

We move on to the experimental analysis of our games for real-life PB instances from Pabulib [Faliszewski *et al.*, 2023]. We focus on two instances, one held in 2022 in Wesoła (a district of Warsaw, Poland) and one held in 2019 in Kleine Wereld (a part of the Noord District of Amsterdam, The Netherlands). A few details regarding these instances are available in Table 2. We have also analyzed many other instances from Pabulib, some of which we show in Appendix C. While all of them lead to similar conclusions, the instances we chose are particularly illustrative. Our code is publicly available at https://github.com/Project-PRAGMA/strategic-cost-selection-in-PB--NeurIPS2025.

We perform two experiments. First, we take a PB instance with the original project costs and compute proposers' best responses. Second, we seek equilibiria for our instances. We omit plots for MES-Apr/Ph, as they resemble those for Phragmén (see Appendix C).

## 5.1 Winning and Losing Margins

Take a PB instance E and a PB rule f. Intuitively, for each project p its best response br(p) is the highest cost such that if we use it instead of cost(p), then p is (still) funded under f. We define it as the supremum of the set of costs under which p is funded. Then, if p is winning in E under f, we let its winning margin be br(p) - cost(p), and if it is losing we let its losing margin be cost(p) - br(p).

In Figure 1 we show the winning and losing margins (and, hence, the best responses) for all the projects from our two PB instances. For BasicAV, we observe very high winning margins for the projects with the largest numbers of approvals, and close-to-zero best responses for the remaining ones (this phenomenon is particularly visible in Kleine Wereld). In principle, under BasicAV if a project receives few votes even making it cheap will not make it funded, unless it is so cheap that it is selected simply because nothing else could fit within the budget left. For AV/Cost the best responses roughly correspond to the numbers of approvals each project got; the same, roughly, holds for Phragmén and MES-Apr/Ph. The margins for MES-Cost/Ph are different, with several most-approved projects having much higher winning margins than the rest.

The main general observation is that unless a project received relatively few approvals, then typically its proposers could have reported a much higher cost. In practice, this means that project proposers

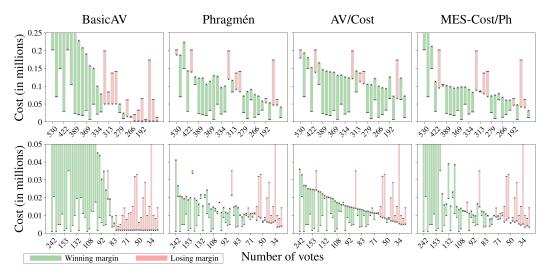


Figure 1: Winning and losing margins in real-life PB—Wesola with the budget of  $1\,011k$  PLN at the top and Kleine Wereld with one of 250k EUR at the bottom. Projects ordered by decreasing approval scores (on the x-axis) are represented by bars. Tacks and crosses show, respectively, the original and best response costs.

should rather focus on designing convincing, attractive projects, and not on minimizing their costs, as the latter is not as likely to be decisive. Yet, of course, there are projects where lowering their costs could have gotten them funded; see also the recent work of Boehmer *et al.* [2024].

#### 5.2 Finding Equilibria Using Dynamics

In the second experiment, our goal was to compute (approximate) equilibria for our two instances. While for BasicAV, AV/Cost, and MES-Cost/Ph we could compute the equilibria using results from the previous section, this would not be possible for Phragmén and MES-Apr/Ph. Instead, we simulate certain dynamics. (For the rules where we can compute equilibria directly, our dynamics give nearly identical results; for Phragmén and MES-Apr/Ph there may be no NE, but the results suggest that the profiles that we find are, at least, close to being equilibria). We assumed zero delivery costs. In Appendix D we show results for delivery costs equal to 80% of the originally submitted ones, obtaining similar conclusions.

Given a PB instance, our dynamics go as follows. First, each proposer reports the same cost as was originally chosen for his or her project. Then, in each iteration, one of them, selected uniformly at random, either slightly increases or decreases his or her project's cost. Specifically, the proposer chooses a number x between 0 and cost/10 uniformly at random (where cost is the current project's cost) and if their project was losing in the previous iteration, then the proposer decreases its cost by x, and if it was winning, then he or she increases its cost by x (but if this action would have caused the project to lose, then the proposer does not change the project's cost). We expect to converge to an NE, if one exists, after running sufficiently many iterations.

In Figure 2 we present the results of the dynamics, that is, the obtained strategy profiles, after 10 000 iterations. Under BasicAV, as expected, all the budget goes to the project with the most votes. Under AV/Cost, every project ends up with a cost proportional to its support. Like in the previous experiment, Phragmén, and MES-Apr/Ph produce similar results, while those of MES-Cost/Ph remain different. For BasicAV, AV/Cost, and MES-Cost/Ph most of the projects "reached" the costs predicted by the equilibrium. (However, note that not all of our dynamics ended up in perfect equilibria within 10 000 iterations as, e.g., some projects are not winning).

The main conclusion from this experiment (supported also by simulations for other PB instances; see Appendix C) is that under AV/Cost, Phragmén, and MES-Apr/Ph the proposers are incentivized to use costs that mostly reflect the number of approvals they receive. Under MES-Cost/Ph, most strongly supported projects, as well as those that are supported by many voters who do not approve other, more popular projects, can request much higher costs. Consequently, in an NE MES-Cost/Ph funds fewer, more expensive projects than AV/Cost, Phragmén, and MES-Apr/Ph. We view this

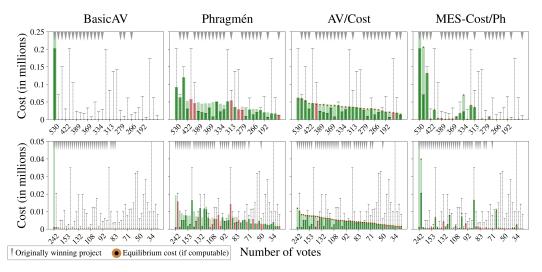


Figure 2: Strategy profiles after  $10\,000$  iterations of our dynamics for the instances Wesola with the budget of  $1\,011k$  PLN at the top and Kleine Wereld with one of 250k EUR at the bottom.. Projects ordered by decreasing approval scores (x-axis). Final projects' costs shown by bars; the original costs shown as dashed lines. Red and green bars indicate, respectively, losing and winning projects; brighter parts are the increases over the original cost.

observation as one of the more important take-home messages from our work, which can be used to favor MES-Cost/Ph in practice (while funding some cheap projects is important, funding only such projects is logistically challenging for cities that then need to coordinate their implementation).

## **6** What If Votes Depended on Costs?

So far, we have assumed that the voters' approvals are independent of the project costs. We justified this view in the introduction, and here we further argue that not only is it reasonable, but also essential. Specifically, we demonstrate that if the approvals depended on the costs, then our equilibria guarantees would collapse, albeit due to such dynamics among voters and project proposers that are not particularly realistic. This reinforces the careful design of our basic model, which allows for both accurate analysis and meaningful insights into real-world phenomena.

We extend our basic model to *cost-interval PB games*, where each voter v approves a project p exactly if its cost falls within an interval that v views as acceptable for p (specified in the game description). This approach is inspired by the model of Sreedurga [2023].

**Theorem 6.1.** For  $f \in \{BasicAV, AV/Cost, Phragmén, MES-Apr, MES-Cost\}$ , there is a cost-interval PB game with no delivery costs that has no f-NE.

We find the basic model more insightful because cost-interval PB games allow for very unrealistic scenarios—such as having voters that approve building a bike path for at most \$25,000, when others do so only if it costs above \$75,000. In practice, such disparities are unlikely, but the proof of Theorem 6.1 exploits exactly such scenarios and the ability to shift between received support by varying the costs (even under plurality preferences). While cost-interval PB games capture more nuanced voters' behaviors, they also allow for vastly unrealistic cases that distort the results.

## 7 Summary and Future Work

We have introduced a game-theoretic framework capturing strategic cost selection of projects in participatory budgeting scenarios, studied the existence of equilibira in our games, and used them to analyze two real-life PB instances. We believe to have set the groundwork for future studies, which may include establishing the complexity of deciding if equilibria exist in our games and studying more involved settings, emerging from relaxing our basic assumptions. In particular, it is compelling to verify to what extent our observations hold in more realistic models.

## Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 101002854). Piotr Skowron was supported by the European Union (ERC, PRO-DEMOCRATIC, 101076570). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. Grzegorz Lisowski acknowledges support by the European Union under the Horizon Europe project Perycles (Participatory Democracy that Scales). This research has been supported by the French government under the management of Agence Nationale de la Recherche as part of the France 2030 program, reference ANR-23-IACL-0008.







#### References

- H. Aziz, S. Gujar, M. Padala, M. Suzuki, and J. Vollen. Coordinating monetary contributions in participatory budgeting. In Proceedings of SAGT-2023, pages 142–160, 2023.
- G. Benadè, S. Nath, A. D. Procaccia, and N. Shah. Preference elicitation for participatory budgeting. Management Science, 67(5):2813-2827, 2020.
- N. Boehmer, P. Faliszewski, L. Janeczko, and A. Kaczmarczyk. Robustness of participatory budgeting outcomes: Complexity and experiments. In Proceedings of SAGT-2023, 2023.
- N. Boehmer, P. Faliszewski, L. Janeczko, D. Peters, G. Pierczyński, S. Schierreich, P. Skowron, and S. Szufa. Evaluation of project performance in participatory budgeting. In *Proceedings of* IJCAI-2024, pages 2678-2686, 2024.
- M. Brill, R. Freeman, S. Janson, and M. Lackner. Phragmén's voting methods and justified representation. In *Proceedings of AAAI-2017*, pages 406–413, 2017.
- M. Brill, M. Lackner, J. Maly, and J. Peters. Proportionality in approval-based participatory budgeting. In *Proceedings of AAAI-2023*, pages 5524–5531, 2023.
- Y. Cabannes. Participatory budgeting: A significant contribution to participatory democracy. *Envi*ronment and Urbanization, 16(1):27-46, 2004.
- Horst A Eiselt. Equilibria in competitive location models. Foundations of location analysis, pages 139-162, 2011.
- R. Fairstein, G. Benadè, and K. Gal. Participatory budgeting designs for the real world. In *Proceed*ings of AAAI-2023, pages 5633-5640, 2023.
- P. Faliszewski, J. Flis, D. Peters, G. Pierczyński, P. Skowron, D. Stolicki, S. Szufa, and N. Talmon. Participatory budgeting: Data, tools and analysis. In *Proceedings of IJCAI-2023*, pages 2667– 2674, 8 2023.
- A. Goel, A. Krishnaswamy, S. Sakshuwong, and T. Aitamurto. Knapsack voting for participatory budgeting. ACM Transactions on Economics and Computation, 7(2):1–27, 2019.
- L. Janeczko and P. Faliszewski. Ties in multiwinner approval voting. In *Proceedings of IJCAI-2023*, pages 2765–2773, 2023.
- M. Lackner and P. Skowron. Multi-Winner Voting with Approval Preferences. Springer Briefs in Intelligent Systems. Springer, 2023.
- M. Los, Z. Christoff, and D. Grossi. Proportional budget allocations: Towards a systematization. In Proceedings of IJCAI-2022, pages 398–404, 2022.

- J. Maly, S. Rey, U. Endriss, and M. Lackner. Fairness in participatory budgeting via equality of resources. In *Proceedings of AAMAS-2023*, pages 2031–2039, 2023.
- S. Obraztsova and E. Elkind. On the complexity of voting manipulation under randomized tiebreaking. In *Proceedings of IJCAI-2011*, pages 319–324, July 2011.
- S. Obraztsova, E. Elkind, and N. Hazon. Ties matter: Complexity of voting manipulation revisited. In *Proceedings of AAMAS-2011*, pages 71–78, May 2011.
- D. Peters and P. Skowron. Proportionality and the limits of welfarism. In *Proceedings of EC-2020*, pages 793–794, 2020.
- D. Peters, G. Pierczyński, and P. Skowron. Proportional participatory budgeting with additive utilities. In *Proceedings of NeurIPS-2021*, pages 12726–12737, 2021.
- S. Rey and J. Maly. The (computational) social choice take on indivisible participatory budgeting. Technical Report arXiv.2303.00621, arXiv, 2023.
- G. Sreedurga, M. Bhardwaj, and Y. Narahari. Maxmin participatory budgeting. In *Proceedings of IJCAI-2022*, pages 489–495, 2022.
- G. Sreedurga. Indivisible participatory budgeting with multiple degrees of sophistication of projects. In *Proceedings of AAMAS-2023*, pages 2694–2696, 2023.
- N. Talmon and P. Faliszewski. A framework for approval-based budgeting methods. In *Proceedings of AAAI-2019*, pages 2181–2188, 2019.
- J. Wagner and R. Meir. Strategy-proof budgeting via a vcg-like mechanism. In *Proceedings of SAGT-2023*, volume 14238, pages 401–418, 2023.
- L. Xia. How likely are large elections tied? In *Proceedings of EC-2021*, pages 884–885, 2021.

## **NeurIPS Paper Checklist**

#### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract clearly describes the main goals of the paper and the results mentioned in the Introduction reflect both theoretical and experimental contribution of the manuscript.

#### Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
  contributions made in the paper and important assumptions and limitations. A No or
  NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The manuscript contains a detailed description of the modeling assumptions that were chosen, as well as the restriction that they entail. Furthermore, the theoretical questions that were not answered in the submission are clearly marked.

#### Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

## 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The main manuscript contains proof sketches for the main claims, and full proofs of all results are provided in supplementary material.

#### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

#### 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details needed for reproducing the main results of the paper are provided. Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
  - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

#### 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The real-life data used in the experiments is publicly available. The code will be publicly available upon acceptance.

#### Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

#### 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: Neural networks are not used in this paper.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

#### 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Values of standard deviation have been provided in the supplementary material, where useful for the interpretation of the results.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

#### 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [No]

Justification: None of the experiments required extensive computational resources. All the experiments can be feasibly computed on a standard MacBook Air with M1 chip.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

#### 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we fulfill the anonymity requirement as well as other parts of the NeurIPS Code of Ethics.

#### Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
  deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

#### 10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The manuscript is primarily theory-focus, and does not provide direct practical implications.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

## 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no high risk of misuse of the proposed data.

#### Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

## 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The only external data comes from Pabulib, and it is properly credited in the references.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets.

#### Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can
  either create an anonymized URL or include an anonymized zip file.

## 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

#### Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

# 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

#### 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not involved in the core method development.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

## A Games with Preference for Funding

A PB game with preference for funding (PB/P4F game) is a standard PB game where instead of our standard utility functions we use the extended ones, as defined in Remark 3.1:

$$u_i'(\mathbf{c}) = \begin{cases} \mathbf{c}(p_i) - d(p_i) + \mathbb{1}[\mathbf{c}(p_i) \ge d(p_i)] & \text{if } p_i \in f(E(\mathbf{c})), \\ 0 & \text{otherwise,} \end{cases}$$

where  $\mathbb{1}[x]$  is 1 if x holds and 0 otherwise.

All our NE-(non)existence results for PB games translate to PB/P4F games. Indeed, if a PB game does not admint an equilibrium then neither does its P4F variant (every profitable deviation in a PB game is also profitable in the corresponding P4F game). The other direction is more involved as there are games that have equilibria in our model but do not have them in the P4F variant (see Example A.1). However, if a PB game has an NE where all projects that report values above their delivery costs are funded, then it remains an NE in the corresponding P4F game (a profitable deviation for the P4F game would also be profitable in the original one). All our existence results produce equilibria that satisfy this condition.

**Example A.1.** Consider three projects  $p_1$ ,  $p_2$ ,  $p_3$ , each supported by one distinct voter, with delivery costs  $d_1 = 1$ ,  $d_2 = d_3 = 0$ , tie-breaking order  $p_1 \succ p_2 \succ p_3$  and budget B = 2. As we prove in the appendix, the corresponding PB game admits Phragmén-NE  $\mathbf{c} = (2, 1, 1)$  but the corresponding P4F PB game has no NEs under Phragmén.

Below we argue why the statement from the above example indeed holds. Let us denote the PB game from the example as G and the P4F PB game as G'. Using G and G', we show now that in some cases PB games admit a Phragmén-NE, while PB/P4F games (based on the same input) do not.

First, observe that  $\mathbf{c}=(2,1,1)$  is a Phragmén-NE in PB games. To see that, suppose that it is not and consider a project  $p_i$  and a cost  $c_i'$  for which  $u_i((\mathbf{c}_{-i},c_i'))>u_i(\mathbf{c})$ . If  $p_i$  is  $p_2$  or  $p_3$ , we notice that  $p_i$  is selected under  $\mathbf{c}$  but not under  $(\mathbf{c}_{-i},c_i')$ , for each  $c_i'>c_i$ . So, neither  $p_2$  nor  $p_3$  can improve its utility. For  $p_i=p_1$ , we notice that it is not funded under  $\mathbf{c}$  and that it can only be funded if  $c_i'\leq 1$ . But then  $u_i((\mathbf{c}_{-i},c_i'))\leq 0$ . It follows that  $\mathbf{c}$  is a Phragmén-NE in PB games.

Second, we show that G' does not admit a Phragmén-NE. For contradiction, suppose that G' admits a Phragmén-NE, say  $\mathbf{c}$ , for PB/P4F games. As a warm up, we note that at least one project has to be chosen in  $E(\mathbf{c})$ , as otherwise each project benefits from lowering their cost to B=2.

Further, consider the case that in c projects have the same cost c. If c < 1, then, following the tiebreaking order,  $p_1$  is funded and gets a negative utility. Hence, by increasing its cost to c' > B > c,  $p_1$  becomes not funded and increases its utility. Also, if  $c \ge 1$ , then  $p_3$  is not funded, and as  $d_3 = 0$ , it can benefit from decreasing its cost.

Now, suppose that in c projects do not have the same costs. Let  $c_1 \geq 1$ . Then, if  $c_2 \geq c_1$  or  $c_3 \geq c_1$ , then some project that is not funded would benefit from lowering its cost. For a complementary case of  $c_2 < c_1$  and  $c_3 < c_1$ , we further consider two subcases. If  $c_2 + c_3 < 2$ , then one of  $p_2$  and  $p_3$  would benefit from increasing their cost. Alternatively,  $c_2 + c_3 \geq 2$ . This implies that  $c_1 > 1$  and that  $c_2 \geq 1$  or  $c_3 \geq 1$ . In this case  $p_1$  would benefit, in a PB/P4F game, from choosing  $c_1' = 1$  and becoming selected.

Finally, if  $c_1 < 1$ , then it benefits from increasing its cost if it is funded under c. Notice further that if it would not be funded, then  $c_2 < 1$  and  $c_3 < 1$ , and both of these costs are lower than  $c_1$ . It follows that one of them can increase its utility by increasing its cost.

As our case distinction is exhaustive, we know that there is no Phragmén-NE for G'. Consequently, we proved our claim about the equilibria in games G and G'.

## **B** Missing Proofs

## B.1 Proof of Proposition 4.1

*Proof.* Take a PB game and a strategy profile c as described in the statement, and let p be the project such that c(p) = B. If a project other than p increases its cost, it still is not selected so this is not a

beneficial move. If p decreases its cost then its utility drops, and if it increases its cost then it is not funded. In either case, its utility decreases. So, c is a BasicAV-NE.

## **B.2** Proof of Proposition 4.2

In our proof we first use the following proposition.

**Proposition B.1.** Take a PB game and the corresponding strategy profile **ap**. If  $d(p) \leq \mathbf{ap}(p)$  for each project p, then if a profile  $\mathbf{c}$  is an AV/Cost-NE for this game, then (1)  $\sum_{p \in P} \mathbf{c}(p) = B$ , and (2) AV/Cost funds all the projects.

*Proof.* Let the notation be as in the statement of the proposition. In the beginning we observe that if  $\sum_{p \in P} \mathbf{c}(p) < B$ , then AV/Cost selects all the projects. Hence, the project considered last benefits by reporting a higher cost (so that the sum of the reported costs is B). Thus such a strategy profile  $\mathbf{c}$  is not an equilibrium.

Next, let us assume that  $\sum_{p\in P} \mathbf{c}(p) > B$ . Let  $P_{won}$  and  $P_{lost}$  be sets of projects that, respectively, are and are not funded. By our assumption, we know that  $P_{lost}$  must be nonempty, and we also note that  $P_{won}$  must be nonempty. Naturally,  $\sum_{p\in P_{won}} \mathbf{c}(p) \leq B$ . For each two projects  $p_i$  and  $p_j$  in  $P_{won}$ , it must be the case that  $|A(p_i)|/\mathbf{c}(p_i)| = |A(p_j)|/\mathbf{c}(p_j)|$ . For example, if we had  $|A(p_i)|/\mathbf{c}(p_i)| > |A(p_j)|/\mathbf{c}(p_j)|$  then AV/Cost would consider  $p_i$  prior to  $p_j$  and, consequently, it would be beneficial for  $p_i$  to increase its reported cost by a small-enough amount so that it would still be considered (and selected) prior to  $p_j$ . This would contradict the assumption that  $\mathbf{c}$  is an equilibrium. Next, since  $\sum_{p\in P} \mathbf{ap}(p) = B$ , there must be some project p' in  $P_{won}$  such that  $\mathbf{c}(p') > \mathbf{ap}(p') \geq d(p')$  (otherwise, if each project  $p' \in P_{won}$  reported at most  $\mathbf{ap}(p')$ , then any project  $p \in P_{lost}$  would be selected after reducing its cost to  $\mathbf{ap}(p)$ , so  $\mathbf{c}$  could not have been NE). Further, by definition of the approval-proportional profile, for every project  $p \in P$ , we have that  $|A(p)|/\mathbf{ap}(p)$  is the same value and, so, for every project  $p \in P_{lost}$  it holds that  $|A(p)|/\mathbf{ap}(p)| = |A(p')|/\mathbf{ap}(p')| > |A(p')|/\mathbf{c}(p')|$ . This means that every project  $p \in P_{lost}$  can improve its utility by reporting cost  $\mathbf{ap}(p)$  and being selected. This contradicts the assumption that  $\mathbf{c}$  is an equilibrium.

Thus it must be the case that  $\sum_{p \in P} \mathbf{c}(p) = B$ , which implies that AV/Cost selects all projects.  $\square$ 

Proof of Proposition 4.2. Consider a PB game (P, V, B, d) such that for every  $p_i \in P$  it is true that  $d(p) \leq ap(p)$ .

We argue that strategy  $\mathbf{c} = \mathbf{ap}$  is a AV/Cost-NE. Note that the sum of the reported costs in  $\mathbf{c}$  is exactly B and all projects are funded. Hence, for each player, decreasing the cost leads to a utility loss. Hence, a profitable deviation could only be through increasing the reported cost. Towards contradiction, let us fix some player  $p_i \in \mathbf{ap}$  and assume that reporting a cost  $c_i' > c_i$  leads to a better payoff. This means that  $p_i$  is funded in the modified election  $E' = (P, V, B, (\mathbf{c}_{-i}, c_i'))$ , that is,  $p_i \in \mathrm{AV/cost}(E')$ . Additionally, since by Proposition B.1 we know that  $\sum_{j \in |P|} c_j = B$ , it immediately follows that  $c_i' + \sum_{j \in |P| \setminus \{i\}} c_j > B > \sum_{j \in |P| \setminus \{i\}} c_j$ . It is also the case that for each  $j \in |P|, |A(P_j)|/c_j > |A(P_i)|/c_i'$ . Hence, in particular, in the run of  $\mathrm{AV/cost}$  for E', all projects are considered before  $p_i$ . Since all of these project are selected, by the time the procedure starts considering  $p_i$ , the remaining budget is smaller than  $c_i'$ , so  $p_i \notin \mathrm{AV/cost}(E')$ ; a contradiction. Note that because all projects that are funded are always considered by the procedure in the same time, the result is independent of the tie-breaking order  $\succ$ .

We now argue that every strategy profile  ${\bf c}$  other than ap is not a AV/cost-NE. To this end, we take such a profile  ${\bf c}$  and assume towards contradiction that it is a AV/cost-NE. Observe that since  ${\bf c} \neq {\bf ap}$ , there exist two distinct projects  $p_i$  and  $p_j$  such that  $|A(p_i)|/c_i \neq |A(p_j)|/c_j$ . Hence one of the projects is considered earlier than the other; we assume without loss of generality that  $p_i$  is considered before  $p_j$ . Notably, as  ${\bf c}$  is (by our assumption) a AV/cost-NE, by Proposition B.1, we know that  $\{p_i, p_j\} \subseteq {\rm AV/cost}({\bf c})$ . This implies, however, that  $p_i$  can report a slightly higher price  $c_i'$  and still be selected by AV/cost thus obtaining a better payoff. Formally, there exists a  $c_i' > c_i$  resulting in the profile  $(c_i', {\bf c}_{-i})$  in which  $|A(P_i)|/c_i' < |A(P_j)|/c_j$ . So,  $p_i$  is (still) considered by AV/cost before  $c_j$  and the deviation is small enough (that is,  $c_i' - c_i < c_j$ ) to guarantee that  $p_i \in {\rm AV/cost}(({\bf c}_{-i}, c_i'))$ . So,  ${\bf c}$  is not a AV/cost-NE; a contradiction. Again, due to Proposition B.1,

**Data:** set  $P = \{p_1, p_2, \dots, p_m\}$  of projects with the delivery costs function d, set V of voters with their ballots, budget B, A/D tie-breaking  $\succ$ .

```
Result: profile c that is a AV/cost-NE under tie-breaking \succ.
 1: B^* \leftarrow B
                                                                                                                                              // remaining budget
 2: \mathbf{c} \leftarrow (d(p_1), d(p_2), \dots, d(p_m)) = \mathbf{c}_0
                                                                                                                                                  // initial strategy
                                                             // let t(p), for each p \in P, be d(p)/A(p)
                                                         // note that \succ is nondecreasing w.r.t. values of t
                                                                                 // \operatorname{pos}_X(i) denotes the top ith project of order \succ restricted to X \subseteq P
 3: P_p \leftarrow \{p \in P : c(p) \leq B^*\}
4: while P_p \neq \emptyset do
                                                                                                                                          // prospective projects
                                                                                                                              // are there projects to consider?
        P' \leftarrow P_{\mathsf{p}}
                                                                                                                                      /\!/ P' is a helper variable
          d(pos_{P'}(0)) \leftarrow -\inf
 6:
                                                                                                                                        // guardian "fake" value
           d(pos_{P'}(|P'|+1)) \leftarrow + inf
                                                                                                                                        // guardian "fake" value
           k \leftarrow \text{maximum integer } x \leq |P'| \text{ such that }
            t(pos_{P'}(x)) \sum_{i \le x-1} A(pos_{P'}(i)) \le B^* < t(pos_{P'}(x+1)) \sum_{i \le x+1} A(pos_{P'}(i))
          T \leftarrow \text{maximum } x \leq d(\text{pos}_{P'}(k+1))/|A(\text{pos}_{P'}(k+1))|
 9:
              such that x \sum_{i \in [k]} A(pos_{P'}(i)) \leq B^*
           for i = 1 to k do
10:
                                                                                                                                             // update \mathbf{c} and B^*
               c(pos_{P'}(i)) \leftarrow T \cdot A(pos_{P'}(i))
11:
              B^* \leftarrow B^* - c(\operatorname{pos}_{P'}(i))
P_{\operatorname{p}} \leftarrow P_{\operatorname{p}} \setminus \{\operatorname{pos}_{P'}(i)\}
12:
13:
14:
          if k < |P'| then
15:
             P_{\mathbf{p}} \leftarrow P_{\mathbf{p}} \setminus \{ pos_{P'}(k+1) \}
16:
17:
         P_{\mathsf{p}} \leftarrow \{ p \in P_{\mathsf{p}} : c(p) \le B^* \}
18:
19: end while
20: return c
```

**Algorithm 1:** Finding a Nash equilibrium for AV/cost.

in each Nash equilibrium, all projects are selected to be funded. Hence, our proof works for every possible tie-breaking.  $\Box$ 

## **B.3** Proof of Theorem 4.4

*Proof.* Our Algorithm 1 computes the claimed AV/Cost-NE.

Let us fix a PB game G = (P, V, B, d) and some corresponding A/D tie-breaking  $\succ$ , as specified in the theorem statement. We first introduce helpful notation and discuss  $\succ$  in more detail. Then, we proceed with presenting a high-level description of Algorithm 1 that finds the claimed AV/Cost-NE, which we refer to as c. Eventually, we prove the correctness of the algorithm using Claim 1 and conclude with proving Claim 1 itself.

Recall that by definition  $\succ$  orders the projects  $p_i$  nonincreasingly according to approval-to-delivery-cost ratios  $|A(p_i)|/d(p_i)$ . Crucially,  $\succ$  is always compatible with the order in which AV/Cost considers the projects assuming they report their delivery costs, that is, where for all  $p_i \in P$ ,  $c(p_i) = d(p_i)$ . In what follows, for each set of projects  $X \subseteq P$ , each  $p_i \in X$ , and the corresponding suborder  $\succ_X$  of  $\succ$ , we write  $\operatorname{pos}_X(p_i)$  to denote the position of  $p_i$  in  $\succ_X$ . Analogously, for some natural number  $x \leq |X|$ , we denote by  $\operatorname{top}_X(x)$  the set of top x projects according to  $\succ_X$ .

Algorithm 1 constructs the AV/Cost c iteratively, starting from strategy  $c_0$  in which each project reports its delivery cost (Line 2). In each iteration of the while loop, the algorithm selects a group of projects that "underreport" their costs compared to the support that they get. As the next step, the algorithm increases the reported costs of these projects in strategy AV/Cost as much as possible ensuring that the projects remain funded. If the funded projects after this update do not exhaust the budget, the procedure is repeated for the remaining projects, whose prices have not been increased so far. Such projects, albeit worse regarding the delivery-cost-to-support ratio, can still benefit from

the increase. The algorithm outputs c if one of the updates step lead to the situation in which the whole budget is used or when there is no more projects underreporting their costs.

In the following more detailed description of Algorithm 1, we use the notation as specified in the pseudocode and whenever the value k in an iteration of the loop is smaller than |P'|, we define  $p^* =$  $pos_{P'}(k+1)$  (assuming the value of P' from the corresponding iteration). Central to Algorithm 1 is the while loop. Importantly, due to our basic assumption on the delivery costs of the projects (i.e., that for each  $p \in P$ ,  $d(p) \leq B$ ), initially set  $P_p$  is not empty (Line 3), so the while loop runs at least once. Line 9 of the algorithm guarantees that in each iteration the loop sets the values of Tand k to:

$$k < |P'|$$
 and  $T = \frac{d(p^*)}{A(p^*)}$  or (S1)

$$k < |P'| \text{ and } T \cdot \sum_{p_j \in \text{top}_{D'}(k)} |A(p_j)| = B^*, \text{ or}$$
 (S2)

$$k < |P'| \text{ and } T \cdot \sum_{p_j \in \text{top}_{P'}(k)} |A(p_j)| = B^*, \text{ or}$$
 (S2)  
 $k = |P'| \text{ and } T \cdot \sum_{p_j \in \text{top}_{P'}(k)} |A(p_j)| = B^*.$  (S3)

The aforementioned case distinction is crucial for the following claim.

Claim 1. Right after executing Line 18 in each iteration of the while loop of Algorithm 1, it jointly holds that:

- 1. all projects from  $top_{P'}(k)$  are funded under strategy profile c and none of them has a profitable deviation for c;
- 2. either k = |P'| or there exists a project  $p^* = pos_{P'}(k+1)$  that is not funded and has no profitable deviation for profile **c**;
- 3. no project from  $top_{P'}(k)$  has a profitable deviation for each strategy profile  $\mathbf{c}'$  that differs from  $\mathbf{c}$  only by strategies of projects in  $P_p$  in a way that, for each  $p \in P_P$ ,  $\mathbf{c}'(p) \ge \mathbf{c}(p)$ ;
- 4. either k = |P'| or the project  $p^* = pos_{P'}(k+1)$  has no profitable deviation for each strategy profile  $\mathbf{c}'$  that differs from  $\mathbf{c}$  only on strategies of projects in  $P_p$  such that, for each  $p \in P_P$ ,  $\mathbf{c}'(p) \ge \mathbf{c}(p)$ ;
- 5. no project in  $P \setminus P_p$  has a profitable deviation in  $\mathbf{c}$ .

Note that Algorithm 1 ends when executing Line 18 makes  $P_p$  empty. So, by Item 5 of Claim 1 the algorithm returns profile c which is a Nash equilibrium. Clearly, in each iteration k > 0, so at least one element is removed from  $P_p$  in every iteration of the loop. Consequently, the algorithm always ends and thus it is correct. To conclude the whole proof it remains to show that Claim 1 indeed holds.

*Proof of Claim 1.* We provide an inductive argument over the iterations of the while loop of Algorithm 1. For the sake of the argument's simplicity, instead of thinking of AV/Cost considering projects in nonincreasing order of approval-to-cost ratio, we say that it considers projects in nondecreasing order of cost-to-approval ratio. We note that these two interpretations are equivalent. We take the first iteration of the loop as the base case and subsequently show that Items 1 to 5 hold.

Item 1. We first show that each  $p \in top_{P'}(k)$  is funded in election  $E(\mathbf{c})$ . Let us denote as t(p)the ratio c(p)/|A(p)|. Due to Line 9 and the following foreach loop, we know that every project in  $top_{P'}(k)$  is tied to be considered by AV/Cost due to the same cost-to-approval ratio T. So, if k = |P'|, then all projects in  $P_p = P$  are tied for consideration. Since, by Line 9 all project costs sum up to  $B^* = B$ , the claim holds. We follow assuming that k < |P'|. In this case, Line 9 shows that  $p^*$  has cost-to-approval ratio  $t(p^*) \geq T$ . Recall that  $\succ$  orders projects nondecreasingly with respect to their cost-to-approval ratio assuming  $c_0$  and that c differs from  $c_0$  only in strategies of projects in  $top_{P'}(k)$ . Hence,  $p^*$  precedes in c each project except of those in  $top_{P'}(k)$  and all projects in  $top_{P'}(k)$  are considered before  $p^*$  (the latter holds even in the case of  $t(p^*) = T$  due to  $\succ$ ). Eventually, Line 9 guarantees that the cost of all projects in  $top_{P'}(k)$  does not exceed the budget. Knowing that, we show that no project in  $top_{P'}(k)$  has a profitable deviation in c. To prove it by contradiction, let us assume that some player  $p_i \in \text{top}_{P'}(k)$  has a profitable deviation by reporting  $\text{cost } c_i' > c_i$ ; the opposite case of  $c_i' < c_i$  trivially does not yield a payoff improvement for  $p_i$ . As a result,  $p_i$  has to be funded in the corresponding election  $E((\mathbf{c}_{-i}, c_i'))$ . In this election,  $p_i$  has cost-to-approval ratio  $t' = c_i'/|A(p_i)| > T$ . We further split our analysis into the three cases from Equations (S1) to (S3).

Assuming Equation (S1), project  $p^*$  is also funded in election E', as it is considered before  $p_i$  due to t' > T. Hence, the funded projects cost at least

$$T \cdot \sum_{\substack{p_j \in \text{top}_{P'}(k) \\ p_j \neq p_i}} |A(p_j)| + t'|A(p_i)| + T|A(p^*)| >$$
$$T \cdot \sum_{\substack{p_j \in \text{top}_{P'}(k+1)}} |A(p_j)|.$$

However, due to Line 8, we know that  $B^* = B < T \sum_{p_j \in \text{top}_{P'}(k+1)} |A(p_j)|$ , which gives the contradiction with the fact that  $p_i$  is funded.

Suppose Equation (S2) or Equation (S3) hold. Then, given our assumption that  $p_i$  is funded, the total cost of funded projects is

$$T \cdot \sum_{\substack{p_j \in \text{top}_{P'}(k) \\ p_j \neq p_i}} |A(p_j)| + t'|A(p_i)| >$$
$$T \sum_{\substack{p_j \in \text{top}_{P'}(k) }} |A(p_j)| = B^* = B,$$

Here, the equality is due to the assumption of Equation (S2) or Equation (S3); which yields the sought contradiction.

Item 2. If k = |P'|, then the statement trivially holds. Otherwise, let us consider  $p^*$  in the light of Equation (S1). Due to Line 8, we have that

$$B < T \sum_{p_j \in \text{top}_{P'}(k+1)} |A(p_j)| = T \sum_{p_j \in \text{top}_{P'}(k)} |(A(p_j))| + d(p^*).$$

Hence, since all projects in  $top_{P'}(k)$  are funded,  $p^*$  is not funded. Naturally, if  $p^*$  reports a cost bigger than  $d(p^*)$  it will not be funded even more, whereas reporting a cost lower than  $d(p^*)$  results in a worse payoff, which finishes the argument for, for Equation (S1). By the condition of Equation (S2), it immediately holds that all projects  $top_{P'}(k)$  use up the whole budget. As a result, again,  $p^*$  is not funded and, analogously to the case of Equation (S1),  $p^*$  has no profitable deviation. We already observed that Item 2 trivially holds for k = |P'|, which subsumes Equation (S3).

Items 3 and 4. Observe that assuming strategy c, all projects in  $P_p$  are considered after all projects outside of  $P_p$  in election  $E(\mathbf{c})$ . This is because order  $\succ$  is compliant with the order of considering the projects by AV/Cost and our modifications to the initial strategy profile c do not change the order of considering projects (note that we let modified projects be tied for consideration with cost-to-approval ratio T). Furthermore, note that Algorithm 1 never decreases the reported costs of the projects and never considers the same project twice, so the projects in  $P_p$  will never be considered before the other ones as a result of further modifications of c. So, no modification of the profile c that increases the costs for projects in  $P_p$  can influence the decision made for projects in  $top_{P'}(k)$  or  $top_{P'}(k+1)$  (depending on whether k < |P'|), as the latter are considered by AV/Cost earlier than projects in  $P_p$ .

Item 5. Note that  $P \setminus P_p$  consists only of the following projects: (i) those removed in the foreach loop, that is,  $top_{P'}(k)$ ; (ii)  $p^*$  if k < |P'|; and (iii) those removed in Line 18. Regarding the first two groups, we have already shown that they do not have a profitable deviation for c. Let  $\hat{p}$  be  $top_{P'}(k)$  if k < |P'| or, otherwise, let  $\hat{p}$  be  $p^*$ . The last group Y consists of these projects  $p \in P'$ ,

for which  $\hat{p} \succ p$  and whose  $d(p) > B^*$ . Hence, by  $\succ$ , these projects are considered after all projects in  $\operatorname{top}_{P'}(k) \cup \{\hat{p}\}$ . However, projects in  $\operatorname{top}_{P'}(k)$  are selected to be funded, which leaves exactly  $B^*$  remaining budget. So there is not enough budget left to fund any project in Y, even if it reports its delivery cost. Hence, no project in Y has a profitable deviation.

Thus, we have established the base case and we move on to the induction step. Consider x>1 and the x-th iteration of the while loop, assuming that the base case claims are met for the (x-1)-th iteration. Due to the assumptions for the (x-1)-th iteration together with the fact that our algorithm never changes the order  $\succ$  in which AV/Cost considers projects and that it never considers the same project twice, we can ignore all projects processed in previous (x-1) iterations of the while loop. Clearly, the ignored projects will have no impact on the current loop iteration except for decreasing the value of the variable  $B^*$  representing the remaining budget. Consequently, the arguments for Items 1 to 4 carry on without changes for the xth iteration of the while loop. The claim from Item 5, however, needs more attention. Let  $Q^{(x-1)} = P \setminus P_p^{(x-1)}$  be the set of players without profitable deviations after the (x-1)-th iteration of the loop. Note that  $P' = P_p^{(x-1)}$ . We denote by R the set of projects, that are removed from the initial state of  $P_p$  by Lines 13 and 18. That is, R consists of all these projects that—due to Items 1 to 4 and the argument for Item 5 in the base case—have no profitable deviation in c. So, we have that  $P_p = P' \setminus R$ . We now consider the set  $Q = P \setminus P_p$  of the projects for which we need to show that they have no profitable deviation. Putting the bits together, we observe the following:

$$Q = P \setminus P_{p} = P \setminus (P' \setminus R) =$$
  
 
$$P \setminus (P_{p}^{(x-1)} \setminus R) = (P \cap R) \cup (P \setminus P_{p}^{(x-1)}).$$

Since  $P \cap R = R$ , we obtained that  $Q = R \cup Q^{(x-1)}$  thus showing that the x-th iteration extends the set of project that do not have a profitable deviation with a collection of project that have no profitable deviation either. As a result, we proved Item 5 for the x-th iteration.

Having proven Claim 1, we completed the argument for the correctness of Algorithm 1 and Theorem 4.4. □

## **B.4** Proof of Proposition 4.5

*Proof.* Take a natural  $\gamma>1$  and consider a PB game (P,V,B,d) where  $P=\{p_1,p_2,p_3\}, B=10, d(p_1)=d(p_2)=0,$  and  $d(p_3)=10-\frac{1}{2\gamma}.$  The voters have plurality ballots such that  $|A(p_1)|=|A(p_2)|=1$  and  $A(p_3)=20\gamma-1.$  We assume tie-breaking order  $p_1\succ p_2\succ p_3.$  We claim that strategy profile  ${\bf c}$  such that  ${\bf c}(p_1)={\bf c}(p_2)=\frac{1}{2\gamma}$  and  ${\bf c}(p_3)=10-\frac{1}{2\gamma}$  is a Phragmén-NE.

First, we see that if the projects reports costs as in c then Phragmén selects  $p_1$  and  $p_2$ . Indeed, we see that at time moment  $\frac{1}{2\gamma}$  the voters supporting each of the projects have exactly as much money as is need to purchase them. Due to tie-breaking, the singleton voters supporting  $p_1$  and  $p_2$  buy these projects and, then, there is not enough budget left for  $p_3$  and the rule finishes.

Second, we observe that no project can benefit by changing its strategy under c. Indeed, if either  $p_1$  or  $p_2$  decreased their cost, they would obtain lower payoff, and if either of them increased their cost,  $p_3$  would be funded instead and the payoff of the project that increased its cost would drop to zero. If  $p_3$  decreased its cost then it would be selected, but its payoff would become negative (due to the delivery cost), and if it increased its cost then its payoff would remain zero. Consequently, c is Phragmén-NE.

Finally, we have  $\mathbf{c}(p_1) + \mathbf{c}(c_2) = 1/\gamma$ , and as B = 10, this is less than  $B/\gamma$ . This concludes the proof.

#### **B.5** Proof of Proposition 4.7

*Proof.* Consider a PB game G and the strategy profile  $\mathbf{c}$  as defined in the statement of the proposition. We claim that  $\mathbf{c}$  is a Phragmén-NE. First, we observe that under  $\mathbf{c}$  Phragmén selects all the projects, so it is not beneficial for any of them to report a lower cost. On the other hand, if some project p reports a higher cost, this project is not selected by Phragmén. To see why this is the case, consider some project p. Under  $\mathbf{c}$ , the total cost of the projects in party(p) is  $\frac{B \cdot |A(p)|}{|V|}$ . Since

each of the |A(p)| voters supporting these projects earns one unit of money per one unit of time, altogether they earn this money in time B/|V|. This value is independent of p so, under c, the last project of each party is funded at the same time. Hence, if some project increased its price, it would be considered even later and, by that time, there would not be enough budget left. Hence, it is never beneficial to increase a cost and so, c is a Phragmén-NE.

It remains to show that  $\mathbf{c}$  is the unique Phragmén-NE for our game. To this end, let  $\mathbf{c}'$  be some arbitrary equilibrium for G. By Proposition B.1, we know that under  $\mathbf{c}'$  the reported costs of all projects sum up to B and all projects are funded. Next, we observe that for each project p, all projects from party(p) report the same cost. Indeed, if there were two projects, p' and  $p'' \in party(p)$ , such that  $\mathbf{c}'(p') < \mathbf{c}'(p'')$ , then it would be beneficial for p' to report a higher cost (but below  $\mathbf{c}'(p'')$ ), so that Phragmén would still consider and fund it prior to p'' (for which, then, there would not be enough budget left).

Finally, if there are two projects, p and q, such that  $party(p) \neq party(q)$ , then, under  $\mathbf{c}'$ , the last project from party(p) and the last project from party(q) are selected by Phragmén at the same time. Indeed, if this were not the case, then it would be beneficial for the one selected earlier to report higher cost (but so that it still is selected at an earlier time than the other project).

Altogether, the only strategy profile that satisfies the properties described above is c as defined in the statement of the proposition.

#### **B.6** Proof of Proposition 4.8

*Proof.* Let our project set be  $P=P'\cup P''$ , where  $P'=\{p_1',p_2',p_3'\}$  and  $P''=\{p_1'',p_2'',p_3''\}$ . Similarly, the set of voters is  $V=V'\cup V''$ , where  $V'=\{v_{1'},v_{2'},v_{3'}\}$  and  $V''=\{v_{1''},v_{2''},v_{3''}\}$ . The approvals are as follows (see also Figure 3 for illustration):

- 1.  $p'_1$  is approved by  $v_{1'}$ ,  $p'_2$  is approved by  $v_{2'}$ , and  $p'_3$  is approved by all the voters in V'.
- 2. The approvals for the projects in P'' are analogous, except that they are approved by the voters from V''.

We set the delivery costs d to be zero for every project, and we set the budget B to be 1 (the exact value will be irrelevant as we will operate on times when Phragmén reaches the costs of particular projects rather than on directly on these costs). We claim that under Phragmén there are no Nash equilibria for the thus defined PB game G = (P, V, B, d).

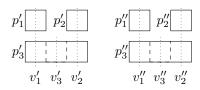


Figure 3: Illustration of the PB game from the proof of Proposition 4.8. The projects are depicted as boxes. Each voter approves those projects that are drawn directly above him or her (and are crossed by the dotted line).

For the sake of contradiction, let us assume that there is Phragmén-NE for G and let it be  $\mathbf{c}^*$ . For each project  $p \in P$ , let time(p) be the time moment (in the sense of the Phragmén rule) when the voters approving p would collect exactly  $\mathbf{c}^*(p)$  amount of money (assuming that neither of these voters spends it on any other projects in between; hence  $time(p) = \frac{\mathbf{c}^*(p)}{|A(p)|}$ ). We make the following observations:

- 1. All projects in P are funded for the reported costs  $\mathbf{c}^*$  (if some project were not funded, it would prefer to report a small nonzero cost that would be at most equal to B and that would ensure that Phragmén considers it first).
- 2. It must be the case that  $time(p_1') = time(p_2')$ . Indeed, if we had  $time(p_1') < time(p_2')$  then it would be beneficial for  $p_1'$  to slightly increase its cost, but so that  $time(p_1')$  would still be below  $p_2'$ . Then, irrespective in what order are the other projects funded,  $p_1'$  s voter would collect enough money to purchase  $p_1'$  before the  $p_2'$ 's voter would, and  $p_1'$  would be

bought (since  $p_2'$  would not be selected at this time yet, there would be enough budget left for this). This would contradict that  $\mathbf{c}^*$  is an equilibrium. The case  $time(p_2') < time(p_1')$  is symmetric.

- 3. It must be the case that  $time(p_3') = time(p_1')$  and, hence, also equal to  $time(p_2')$ . Indeed, if we had  $time(p_3') < time(p_1') = time(p_2')$  then it would be beneficial for  $p_3'$  to report slightly higher cost, so that  $time(p_3')$  would still be smaller than  $time(p_1') = time(p_2')$ , yet  $p_3'$ 's cost would not have increased by more than the total costs of  $p_1'$  and  $p_2'$ . Then  $p_3'$  would still be selected before  $p_1'$  and  $p_2'$  and there would be sufficient amound of budget left for it. This would contradict that  $\mathbf{c}^*$  is an equilibrium. On the other hand, if  $time(p_3') > time(p_1') = time(p_2')$  then it would be beneficial, e.g., for  $p_1'$  to report slightly higher cost, but ensuring that  $time(p_1') < time(p_3')$ . Indeed, if originally we have  $time(p_1') < time(p_3')$ , then  $p_1'$  is funded before  $p_3'$  by Phragmén. After the increase,  $p_1'$  would still be purchased before  $p_3'$  and, thus, there would still be sufficient budget for it. This would contradict that  $\mathbf{c}^*$  is an equilibrium.
- 4. By reasoning analogous to the one given above, it must be the case that  $time(p_1'') = time(p_2'') = time(p_3'')$ .

Given the above observations, we set:

$$time' = time(p'_1) = time(p'_2) = time(p'_3)$$
, and  $time'' = time(p''_1) = time(p''_2) = time(p''_3)$ .

Note that this implies that  $\mathbf{c}^*(p_1') = \mathbf{c}^*(p_2') = time', \mathbf{c}^*(p_1'') = \mathbf{c}^*(p_2'') = time'', \mathbf{c}^*(p_3') = 3 \cdot time',$  and  $\mathbf{c}^*(p_3'') = 3 \cdot time''$ . We claim that time' = time''. Indeed, let us consider what happens if time' < time'' (the case where time'' < time' is symmetric). There are two cases two consider (the second case also splits into two).

Case A First, let us assume that at least one of  $p_1'$  and  $p_2'$  is preferred to  $p_3'$  by the tie-breaking order (for the sake of specificity, let this be  $p_1'$ ). Then it is beneficial for  $p_2'$  to slightly increase its cost. To see why this is the case, let us consider how Phragmén operates after this increase. At time  $time(p_1') = time(p_3')$ , the voters have enough funds to purchase either  $p_1'$  or  $p_3'$  (and not enough to purchase  $p_2'$ , who increased its cost). The rule selects  $p_1'$  due to tie-breaking. Consequently, voter 1' pays for  $p_1'$  and his or her virtual bank account is reset to zero. Voters 2' and 3' still have time' amount of money. The cost of  $p_3'$  is  $3 \cdot time'$ , so voters in N' will have collected enough money for it after further 1/3time' amount of time. However, if  $p_2'$  increased its cost from time' to an amount a bit below  $4/3 \cdot time'$  then its voter will have collected this amount earlier, and  $p_2'$  will be purchased before  $p_3'$ . This contradicts the fact that  $\mathbf{c}^*$  is an equilibrium.

Case B' The second case is that  $p'_3$  is preferred by tie-breaking to both  $p'_1$  and  $p'_2$ . Then it is beneficial for  $p'_3$  to slightly increase its cost. Again, let us consider how Phragmén operates after such a change. If  $p''_3$  is selected prior to both  $p''_1$  and  $p''_2$ , then at time time'' (after the purchase of  $p''_3$ ) the voters have the following amounts of money:

- 1. Voter 3' has time'' amount of money and the remaining voters in N' have nonzero amounts of money (specifically, each of them has time'' time', because they paid for  $p'_1$  and  $p'_2$  at time time').
- 2. All the voters in V'' have empty bank accounts.

Hence, only after another time'' amount of time will the voters in N'' have enough money to purchase  $p_1''$  and  $p_2''$ . Yet, at this time the voters in N' would, altogether, have more than 4time''. So, if  $p_3'$  increased its cost to be between  $3 \cdot time'$  and  $4 \cdot time'$  (which is smaller than  $4 \cdot time''$ ), then  $p_3'$  would be funded before  $p_1''$  and  $p_2''$ , and there would be sufficient amount of budget left for this.

Case  $\mathbf{B}''$  On the other hand, if at least one of  $p_1''$  and  $p_2''$  is preferred to  $p_3''$  by tie-breaking at time time'', then both  $p_1''$  and  $p_2''$  are funded at that time (because after one of them is selected due to tie-breaking, the voters in V'' no longer have enough money to purchase  $p_3''$ , but they do have enough for the other one among  $p_1''$  and  $p_2''$ ). Consequently, after  $p_1''$  and  $p_2''$  are purchased at time time'', only projects  $p_3'$  and  $p_3''$  are not selected yet and the voters have the following amounts of money:

- 1. Voter  $v_{3'}$  has time'' amount of money and the remaining voters in V' have nonzero amounts of money (specifically, each of them has time'' time', because they paid for  $p'_1$  and  $p'_2$  at time time').
- 2. Voter  $v_{3''}$  has time'' amount of money and the remaining voters in V'' have no money.

Since voters in V' have, together, more money than those in V'', but voters from both groups (jointly) earn money at the same rate (as |V'| = |V''|), if  $p'_3$  increased its cost to be slightly below that of  $p''_3$ , it will be funded before  $p'_3$ . Consequently, if  $\mathbf{c}^*$  is an equilibrium then we must have time' = time''.

Finally, it suffices to show that the assumption time' = time'' also leads to no equilibrium. W.l.o.g., we assume that  $p_3'$  precedes both  $p_1'$  and  $p_2'$  in the tie-breaking order, and that  $p_3''$  precedes both  $p_1''$  and  $p_2''$  (if this were not the case, then the arguments given in Case A above would still show that  $\mathbf{c}^*$  is not an equilibrium). However, now we can see that, e.g., it is beneficial for  $p_3'$  to slightly increase its cost. This follows by the same reasoning as given in Case B'. Hence, we have reached a contradiction. Consequently, under Phragmén there is no Nash equilibrium in our game.

#### B.7 Proof of Theorem 4.9

*Proof.* Let (P, V, B, d) be a MES-Cost PB game.

We provide an iterative algorithm that computes c. In each iteration, the algorithm fixes selected values of c, drops the corresponding projects from further consideration and deletes the voters that have no budget left. The algorithm finishes when there is no more projects to consider. Before laying out the details, let us recall that in MES-Cost, each voter gets the equal share of the budget and cannot spend on the projects more than their entitlement.

Our algorithm constructs the strategy c step by step maintaining the collection V' of voters to consider and the collection P' of projects to consider. The algorithm starts with setting V' = V, P' = P and proceeds as follows:

- 1. Remove from P' all projects  $p_i \in P'$  for which  $|A(p_i) \cap V'| \cdot B/|V|$  is lower than  $d(p_i)$  or equal to zero and let their strategy be  $\mathbf{c}(p_i) = d(p_i)$ .
- 2. For each project  $p_j \in P'$ , let  $\alpha_j = 1/|A(p_j) \cap V'|$  (due to Step 1 we avoid dividing by zero) and let  $p^*$  be the project  $p_j \in P'$  with the minimum  $\alpha_j$ -value (in case of a tie, select the first one in the tie-breaking order).
- 3. Set the strategy  $\mathbf{c}(p^*)$  to  $|A(p^*) \cap V'| \cdot |B'||V||$ , that is, such that  $p^*$  reports the cost equal to the total budget of its supporters in V'.
- 4. Remove all supporters of  $p^*$  from V' and remove  $p^*$  from P'.
- 5. Repeat Steps 1 to 4 until P' is empty.

Our algorithm is based on the following useful claim about the decisions made by MES-Cost.

**Claim 2.** Let us fix some stage of MES-Cost in which every voter with a nonzero budget has the same value of budget and let V' be these voters. Then, for each  $\alpha'$ -affordable project p' it holds that that  $\alpha' = 1/|A(p') \cap V'|$ .

The claim is implied by the definition of MES-Cost. Observe that if a project p is  $\alpha$ -affordable, then the voters approving it have enough budget to buy it and  $\alpha$  is the minimum such x that  $|A(p') \cap V'| \cdot x \cdot cost(p) \leq cost(p)$ . The sought  $\alpha$  is then clearly  $1/|A(p') \cap V'|$ .

Let us denote by  $(p_1^*, p_2^*, \dots, p_k^*)$  the projects considered in the respective iterations 1 to k of Steps 1-4. In what follows we show that in each Nash equilibrium MES-Cost selects exactly projects  $(p_1^*, p_2^*, \dots, p_k^*)$  in the given order and that  $\mathbf{c}$  is a Nash equilibrium. We apply induction over the stages of MES-Cost.

For the base case, we argue that  $p_1^*$  has to be selected first by MES-Cost and has to play  $\mathbf{c}(c_1^*)$  in every Nash equilibrium. Assume for contradiction that some other project p' is selected first instead

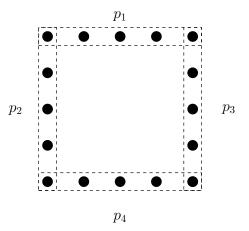


Figure 4: Approval sets of projects  $p_1, p_2, p_3$ , and  $p_4$ . Here, each vertex represents a single voter.

of  $p_1^*$  in a Nash equilibrium. Due to Claim 2 and since MES-Cost selects  $\alpha$ -affordable projects starting from those with the smallest  $\alpha$ , it follows that one of the three holds: (i)  $^1/|A(p')| < ^1/|A(p_1^*)|$ , (ii)  $^1/|A(p')| = ^1/|A(p_1^*)|$  and p' is preferred to  $p_1^*$  by the tie-breaking, or (iii)  $p_1^*$  reports a cost greater than the budget of its supporters. Cases (i) and (ii) yield a clear contradiction to Step 2, which defines  $p_1^*$ . In Case (iii), reporting cost  $\mathbf{c}'(p_1^*) = d(p_1^*) + \epsilon \le B \cdot |A(p_1^*)|/|V|$  (such an  $\epsilon$  always exists due to Step 1) is a profitable deviation for  $p_1^*$ —a contradiction. Knowing that  $p_1^*$  is selected first in every Nash equilibrium, we observe that if  $p_1^*$  reports a cost  $\mathbf{c}'(p_1^*) < B \cdot |A(p_1^*)|/|V|$ , then reporting exactly  $\mathbf{c}(p_1^*) = B \cdot |A(p_1^*)|/|V|$  is always a profitable deviation, which confirms that in every Nash equilibrium  $p_1^*$ 's strategy is  $\mathbf{c}(p_1^*)$  and it is selected first by MES-Cost.

We move on to the inductive step and thus consider stage i of MES-Cost in which project  $p_i^*$  is selected. Imporantly, as we have shown that player  $p_1^*$  has to report  $\cos \mathbf{c}(p_1^*)$  equal to the total budget of  $p_1^*$  supporters, then we can assume that at the i-th stage we have only voters who either spend all their budget or who did not spend their budget at all; we denote the latter group by V'. As a result, Claim 2 holds at the i-th stage, which we consider. Thanks to this, we apply an analogous exchange argument (pretending that voters outside of V' do not exist) to that for the base case to show that indeed  $p_i^*$  has to be selected at the i-th stage. Then, we directly repeat the argument regarding the optimal strategy for  $p_1^*$  applying it to  $p_i^*$ . Eventually, we have shown that in each Nash equilibrium for MES-Cost projects  $(p_1^*, p_2^*, \dots, p_k^*)$  are selected and report, respectively,  $\cot \mathbf{c}(p_1^*), \mathbf{c}(p_2^*), \dots, \mathbf{c}(p_k^*)$ .

#### **B.8** Proof of Theorem 4.10

*Proof.* Let (P,V,B,d) be a MES-Apr PB game with plurality ballots. In MES-Apr, like in every MES rule, each voter receives  $^B/|V|$  money for the whole election process. As each voter approves only one project, each project  $p_i$  can request at most  $M(p_i) = |A(p_i)| \cdot B/|V|$  from its supporters, and will report this cost as they would not spend any money on other projects. Thus, if  $d(p_i) \leq M(p_i)$ , project  $p_i$  reports  $M(p_i)$  and gets selected with its maximum possible cost. Otherwise, if  $d(p_i) > M(p_i)$ ,  $p_i$  cannot be selected with cost covering  $d(p_i)$ , so  $p_i$  reports  $d(p_i)$  and is not selected.  $\square$ 

## **B.9** Proof of Proposition 4.11

*Proof.* We create four projects  $p_1, \ldots, p_4$  and 16 voters  $v_1, \ldots, v_{16}$ . Project  $p_1$  is approved by voters  $v_1, \ldots, v_5$ ; project  $p_2$  by voters  $v_{13}, \ldots, v_{16}, v_1$ ; project  $p_3$  by voters  $v_5, \ldots, v_9$ ; and project  $p_4$  by voters  $v_9, \ldots, v_{13}$ . We set the budget to be some positive integer B and delivery costs to be  $d \equiv 0$ . Please note that we do not specify tie-breaking as we prove nonexistence of MES-Apr-NE in any tie-breaking.

For a better visualization of the instance, please look at the Figure 4. In particular, one can see that the instance is symmetric (each project is approved by three voters supporting only it and by two voters, one shared with each neighbour).

Now we will show that there is no MES-Apr-NE for this instance. Suppose towards contradiction that some profile c is a MES-Apr-NE.

At the beginning, each voter receives  $b=\frac{B}{|V|}=\frac{B}{16}$  money. Therefore, a) no project says cost exceeding  $5b=\frac{5B}{16}$  (otherwise its supporters would never have enough money to buy it, and b) no project says less than  $3b=\frac{3B}{16}$  (as each project has three supporters that contribute only to it, it is nonoptimal to say less than they have). Further, as each project has zero delivery costs, each project must be selected in MES-Apr-NE, otherwise an unselected project could have decreased its cost to 0 and be selected. For this reason,  $\sum_{i=1}^4 \mathbf{c}(p_i) \leq B$ .

For the sake of brevity, for yet-unselected project  $p_i$  in iteration j, we denote  $\alpha_j(p_i)$  as minimum value such that project  $p_i$  is  $\alpha_j(p_i)$ -affordable according to MES-Apr rule (or infinity, if such a value does not exist). By  $\epsilon \in \mathbb{R}_+$  we mean some very small positive real number such that adding it does not change the given strict inequality sign.

Due to symmetry, w.l.o.g. we can assume that 1) project  $p_1$  says the lowest cost (i.e.,  $\mathbf{c}(p_1) \leq \mathbf{c}(p_2), \mathbf{c}(p_3), \mathbf{c}(p_4)$ ) and wins ties if there is more than more project with this cost as well as 2)  $\mathbf{c}(p_2) \leq \mathbf{c}(p_3)$  and  $p_2$  wins ties with  $p_3$ . If it was not the case, we can shift or rotate projects and perform analogous reasoning.

Before we move on, let us exclude some cases in which c cannot be MES-Apr-NE.

We point out that if there is no project of the same cost as  $p_1$ , then  $p_1$  could have increased its cost by some positive number  $\epsilon$  while still being considered first and getting more, so  $\mathbf{c}$  could not have been MES-Apr-NE in this case. Therefore,  $p_1$  has the same cost either as 1)  $p_4$ , or as 2)  $p_2$  (please note  $\mathbf{c}(p_1) = \mathbf{c}(p_3)$  implies  $\mathbf{c}(p_1) = \mathbf{c}(p_2)$  due to assumption that  $\mathbf{c}(p_2) \leq \mathbf{c}(p_3)$ ).

With our assumptions, project  $p_1$  is selected in the first iteration and each of its supporters pays  $\frac{\mathbf{c}(p_1)}{5}$  for  $p_1$ . As  $b - \frac{\mathbf{c}(p_i)}{5} \le \frac{B}{16} - \frac{\frac{3B}{16}}{5} = \frac{\frac{2B}{16}}{5} < \frac{\frac{3B}{16}}{5} \le \frac{\mathbf{c}(p_j)}{5}$  for any  $p_i, p_j \in P$ , voter  $v_1$  has insufficient money to contribute the equal share  $\frac{\mathbf{c}(p_2)}{5}$  to purchase  $p_2$ . Therefore, in the second iteration,  $\alpha_2(p_4) = \frac{\mathbf{c}(p_4)}{5}$ ,  $\alpha_2(p_2) = \frac{\mathbf{c}(p_2) - (b - \frac{\mathbf{c}(p_1)}{5})}{4}$ , and  $\alpha_2(p_3) = \frac{\mathbf{c}(p_3) - (b - \frac{\mathbf{c}(p_1)}{5})}{4} \ge \alpha_2(p_2)$ . Please note that  $\alpha_2(p_2) = \frac{\mathbf{c}(p_2) - (b - \frac{\mathbf{c}(p_1)}{5})}{4} \ge \frac{\mathbf{c}(p_1) - (\frac{B}{16} - \frac{\mathbf{c}(p_1)}{5})}{4} = \frac{6\mathbf{c}(p_1)}{20} - \frac{B}{64} = \frac{4\mathbf{c}(p_1)}{20} + (\frac{2\mathbf{c}(p_1)}{20} - \frac{B}{64}) \ge \frac{\mathbf{c}(p_1)}{5} + \frac{6B - 5B}{16 \cdot 20} = \frac{\mathbf{c}(p_1)}{5} + \frac{B}{16 \cdot 20} > \frac{\mathbf{c}(p_1)}{5} = \alpha_1(p_1)$ . Thus, as  $\alpha_2(p_2) > \alpha_1(p_1)$ , project  $p_4$  would regret saying the same cost as project  $p_1$ . Indeed, selecting  $p_1$  in the first iteration significantly increases  $\alpha_2(p_2)$  and  $\alpha_2(p_3)$ , so if  $p_4$  said  $\mathbf{c}(p_4) = \mathbf{c}(p_1)$ , then it would benefit from slightly increasing the cost by  $\epsilon$  (it would still be before  $p_2$ , but it would earn more). For this reason, it cannot be the case that  $\mathbf{c}(p_1) = \mathbf{c}(p_4)$ , so due to the former reasoning we know that  $\mathbf{c}(p_1) = \mathbf{c}(p_2)$  and  $\mathbf{c}(p_1) < \mathbf{c}(p_4)$ .

So we know that:  $\mathbf{c}(p_1) = \mathbf{c}(p_2)$ ,  $\mathbf{c}(p_1) < \mathbf{c}(p_4)$ , and  $\mathbf{c}(p_2) \leq \mathbf{c}(p_3)$ . We have two cases to consider:

• Project  $p_4$  is selected in the second iteration. It means that  $\alpha_2(p_4) \leq \alpha_2(p_2)$ . We observe that it must be  $\alpha_2(p_4) = \alpha_2(p_2)$ , otherwise it would be beneficial for  $p_4$  to slightly increase its cost by  $\epsilon$  in such a way that  $p_4$  is still considered before  $p_2$  and gains more.

In this case, as  $p_2$  and  $p_3$  are approved by disjoint sets of voters and both  $p_1$  and  $p_4$  took the same amount of money from the same number of their supporters, both  $p_2$  and  $p_3$  should request for the same amount of money, that is, all money that their supporters have. Thus  $\mathbf{c}(p_3) = \mathbf{c}(c_2) = 3 \cdot b + (b - \frac{\mathbf{c}(p_1)}{5}) + (b - \frac{\mathbf{c}(p_4)}{5}) = 5b - \frac{\mathbf{c}(p_1)}{5} - \frac{\mathbf{c}(p_4)}{5}$  and  $\mathbf{c}(p_4) = 5 \cdot (5b - \frac{\mathbf{c}(p_1)}{5} - \mathbf{c}(p_2)) = 25b - 5\mathbf{c}(p_2) - \mathbf{c}(p_1)$ .

However, we know that  $\mathbf{c}(p_1) = \mathbf{c}(p_2)$ , so  $\mathbf{c}(p_1) = \mathbf{c}(p_2) = \mathbf{c}(p_3) = 5b - \frac{\mathbf{c}(p_1)}{5} - \frac{\mathbf{c}(p_4)}{5}$ , which implies that  $\mathbf{c}(p_4) = 25b - 5\mathbf{c}(p_2) - \mathbf{c}(p_1) = 25b - 6\mathbf{c}(p_1)$ . Therefore,  $\alpha_2(p_4) = \alpha_2(p_2)$  means that  $\frac{\mathbf{c}(p_4)}{5} = \frac{\mathbf{c}(p_2) - (b - \frac{\mathbf{c}(p_1)}{5})}{b} = \frac{6\mathbf{c}(p_1)}{20} - \frac{b}{4}$ , which is equivalent to  $\frac{25b - 6\mathbf{c}(p_1)}{5} = \frac{6\mathbf{c}(p_1) - 5b}{20} \Rightarrow 100b - 24\mathbf{c}(p_1) = 6\mathbf{c}(p_1) - 5b \Rightarrow 30\mathbf{c}(p_1) = 105b \Rightarrow \mathbf{c}(p_1) = \frac{7b}{2}$ . Then we have  $\mathbf{c}(p_1) = \mathbf{c}(p_2) = \mathbf{c}(p_3) = \frac{7b}{2}$  and  $\mathbf{c}(p_4) = 25b - 6\mathbf{c}(p_1) = 25b - 21b = 4b$ .

Now imagine that project  $p_1$  changes its cost from  $\mathbf{c}(p_1) = \frac{7b}{2}$  to  $\mathbf{c}'(p_1) = \frac{36b}{10}$ . Naturally, projects  $p_2$  and  $p_3$  are selected in first two iterations so voters  $v_1, \ldots, v_5$  supporting  $p_1$  are left with  $b - \frac{\mathbf{c}(c_2)}{5}, b, b, b, b - \frac{\mathbf{c}(p_3)}{5}$  money respectively and they have  $b - \frac{\mathbf{c}(c_2)}{5} + b + b + b + b - \frac{\mathbf{c}(p_3)}{5} = 5b - 2 \cdot \frac{7b}{10} = \frac{36b}{10}$  money in total which they can only spend on project  $p_1$  as they disapprove  $p_4$ . So  $p_1$  gets selected with  $\mathbf{c}'(p_1) = \frac{36b}{10} > \frac{7b}{2} = \mathbf{c}(p_1)$  which indicates that  $\mathbf{c}$  could not be MES-Apr-NE.

• Project  $p_2$  is selected in the second iteration. It means that  $\alpha_2(p_2) \leq \alpha_2(p_4)$ . We observe that it must be  $\alpha_2(p_2) = \alpha_2(p_4)$ , otherwise it would be beneficial for  $p_2$  to slightly increase its cost in such a way that  $p_2$  is still considered before  $p_4$  and gains more (please note that even if  $p_3$  would jump before  $p_2$ , it takes money from the disjoint set of voters from  $p_2$ 's supporters, so it does not disprove this argument).

By performing analogous calculations to the previous case and using  $\mathbf{c}(p_1) = \mathbf{c}(p_2)$  we obtain that  $\alpha_2(p_2) = \frac{\mathbf{c}(p_2) - (b - \frac{\mathbf{c}(p_1)}{5})}{4} = \frac{6\mathbf{c}(p_1)}{20} - \frac{b}{4}$ , so  $\alpha_2(p_4) = \alpha_2(p_2) \Rightarrow \frac{\mathbf{c}(p_4)}{5} = \frac{6\mathbf{c}(p_1)}{20} - \frac{b}{4} \Rightarrow \mathbf{c}(p_4) = \frac{6\mathbf{c}(p_1) - 5b}{4}$ .

After  $p_1$  and  $p_2$  are selected, voter  $v_1$  has 0 money left, voters  $v_2,\ldots,v_5$  have  $b-\frac{\mathbf{c}(p_1)}{5}$  money left, voters  $v_{13},\ldots,v_{16}$  have  $b-\alpha_2(p_2)=b-(\frac{6\mathbf{c}(p_1)}{20}-\frac{b}{4})=\frac{25b-6\mathbf{c}(p_1)}{20}$  money left, and voters  $v_6,\ldots,v_{12}$  have b money left.

We need to consider two cases:

-  $p_3$  is selected before  $p_4$ . Then  $\mathbf{c}(p_3) = \mathbf{c}(p_2)$ , otherwise (if  $\mathbf{c}(p_2) < \mathbf{c}(p_3)$ )  $p_2$  would increase its cost by  $\epsilon$  in such a way that  $\mathbf{c}(p_2) + \epsilon < \mathbf{c}(p_3)$  and still be selected in the second iteration, but with more money. Because  $\mathbf{c}(p_3) = \mathbf{c}(p_2) = \mathbf{c}(p_1)$  and the supporters of  $p_2$  and  $p_3$  are disjoint and symmetric, after selecting  $p_3$ , voter  $v_5$  be left with no money whereas voters  $v_6, \ldots, v_9$  with  $b - \alpha_3(p_3) = b - \alpha_2(p_2) = \frac{25b - 6\mathbf{c}(p_1)}{20}$ . Further, in the fourth iteration, the supporters of  $p_4$  have together  $3b + 2 \cdot \frac{25b - 6\mathbf{c}(p_1)}{20} = \frac{30b + 25b - 6\mathbf{c}(p_1)}{10} = \frac{55b - 6\mathbf{c}(p_1)}{10}$ , so  $p_4$  asks for the money they still have in total.

$$\frac{300 + 200}{10} = \frac{300 + 6(p_1)}{10}, \text{ so } p_4 \text{ asks for the money they still have in total.}$$

$$\text{Therefore, } \mathbf{c}(p_4) = \frac{6\mathbf{c}(p_1) - 5b}{4} = \frac{55b - 6\mathbf{c}(p_1)}{10} \Rightarrow 30\mathbf{c}(p_1) - 25b = 110b - 12\mathbf{c}(p_1) \Rightarrow 42\mathbf{c}(p_1) = 135b \Rightarrow \mathbf{c}(p_1) = \frac{135b}{42}. \text{ Thus } \mathbf{c}(p_4) = \frac{6\mathbf{c}(p_1) - 5b}{4} = \frac{6 \cdot \frac{135b}{42} - 5b}{4} = \frac{135b - 35b}{4 \cdot 7} = \frac{100b}{28} = \frac{150b}{42}.$$

Imagine what happens if  $p_1$  increases its cost from  $\mathbf{c}(p_1) = \frac{135b}{42}$  to  $\mathbf{c}'(p_1) = \frac{156b}{42}$ . Then  $p_2$  gets selected first with cost  $\mathbf{c}(p_2) = \frac{135b}{42}$  and each of its supporters pays  $\frac{\mathbf{c}(p_2)}{5} = \frac{135b}{42} = \frac{27b}{5}$ . Next, each of  $p_3$ 's supporters will pay  $\frac{27b}{42}$  to purchase  $p_3$  (voters supporting  $p_2$  and  $p_3$  are disjoint). After that, regardless whether  $p_4$  is selected before  $p_1$  or not, the supporters of  $p_1$  have  $3b + 2 \cdot (b - \frac{27b}{42}) = \frac{3\cdot 42 + 2\cdot 15b}{42} = \frac{156b}{42}$ , so the supporters of  $p_1$  have enough money to purchase  $p_1$ . We showed that  $p_1$  could improve its utility by changing its cost, so the proposed  $\mathbf{c}$  is not MES-Apr-NE in this case

-  $p_4$  is selected before  $p_3$ . It means that  $\alpha_3(p_4) \leq \alpha_3(p_3)$ . As we know how much money each voter has in the third iteration,  $\alpha_3(p_4) = \frac{\mathbf{c}(p_4) - \frac{25b - 6\mathbf{c}(p_1)}{20}}{4} = \frac{20\mathbf{c}(p_4) - 25b + 6\mathbf{c}(p_1)}{80}$  and  $\alpha_3(p_3) = \frac{\mathbf{c}(p_3) - \frac{\mathbf{c}(p_1)}{5}}{4} = \frac{20\mathbf{c}(p_3) - 4\mathbf{c}(p_1)}{80}$ . After inserting the exact values we obtain that  $\alpha_3(p_4) \leq \alpha_3(p_3) \Rightarrow \frac{20\mathbf{c}(p_4) - 25b + 6\mathbf{c}(p_1)}{80} \leq \frac{20\mathbf{c}(p_3) - 4\mathbf{c}(p_1)}{80} \Rightarrow 20\mathbf{c}(p_3) \geq 20\mathbf{c}(p_4) - 25b + 10\mathbf{c}(p_1) \Rightarrow \mathbf{c}(p_3) \geq \mathbf{c}(p_4) + \frac{\mathbf{c}(p_1)}{2} - \frac{5b}{4}$ . However,  $\mathbf{c}(p_3) \geq \mathbf{c}(p_4) + \frac{\mathbf{c}(p_1)}{2} - \frac{5b}{4} > \mathbf{c}(p_4) + \frac{3b}{2} - \frac{5b}{4} = \mathbf{c}(p_4) + \frac{b}{4} > \mathbf{c}(p_1) + \frac{b}{4} = \mathbf{c}(p_2) + \frac{b}{4}$ , so  $\mathbf{c}(p_3)$  is significantly greater than  $\mathbf{c}(p_2)$ . In other words, even when voter  $v_9$  pays a greater share to buy  $p_4$  and is left with less money than  $\frac{\mathbf{c}(p_4)}{5}$ , there is still enough money to purchase  $p_3$ . Therefore,  $p_2$  can increase its cost from  $\mathbf{c}(p_2) = \mathbf{c}(p_1)$  to  $\mathbf{c}(p_3) - \epsilon$  and lose in the second iteration with  $p_4$ , but still be funded before  $p_3$  and obtain more money. For this reason,  $\mathbf{c}$  is not MES-Apr-NE.

We showed that in no case MES-Apr-NE exists for this instance. The remaining tie-breaking order are completely analogous due to the instance's symmetry.

It means that for the given instance there is no tie-breaking for which MES-Apr-NE exists.  $\Box$ 

#### **B.10** Proof of Theorem 4.12

*Proof.* We first consider the case of zero delivery costs, as it is simpler. Let (P, N, B, d) be a MES-Apr PB game with party-list ballots and zero delivery costs.

At the beginning, each voter receives B/|V| money. In a party-list profile, as every two voters have either the same preferences or the disjoint ones,  $A(p_i) = A(party(p_i))$ . The total money the supporters of  $party(p_i)$  have is  $M(party(p_i)) = |A(p_i)| \cdot B/|V| = \frac{|A(p_i)| \cdot B}{|V|}$ . Therefore, the projects in  $party(p_i)$  need to somehow distribute this money between them in such a way that no project would complain and change its cost to obtain better outcome.

Since we have cardinal utilities, the  $\alpha$ -value of project  $p_i$  is initially  $\alpha_1(p_i) = \frac{\mathbf{c}(p_i)}{|A(party(p_i))|}$ . For this reason, MES-Apr will start from the cheapest project in the party to the most expensive one (following tie-breaking order in case of a tie) and equally take the budget from the party supporters to fund the next project unless the cost exceeds the money they still have.

This means that each project should ask for the equal part of the money of party supporters, that it,  $\frac{M(party(p_i))}{|party(p_i)|}$ . The project asking for more money would be moved to the end of the order when its supporters have insufficient money to fund it, so no project would increase its cost. Asking for less money is pointless if it is already funded.

For this reason, for the profile **c** where each project says  $\mathbf{c}(p_i) = \frac{M(party(p_i))}{|A(party(p_i))|}$ , we obtain MES-Apr-NE.

Next we move to the case with arbitrary delivery costs. Let (P, V, B, d) be a MES-Apr PB game with party-list ballots. Recall that at the beginning each voter receives B/|V| money. Then, the total money the supporters of  $party(p_i)$  have is  $M(party(p_i)) = |A(p_i)| \cdot B/|V| = \frac{|A(p_i)| \cdot B}{|V|}$ .

Let  $\succ$  be the A/D tie-breaking order from the theorem statement. Note that for the case of party-list ballots  $\succ$  orders the projects within the same party nondescendingly by the delivery costs. That is, within the same party cheaper projects preferred to the more expensive ones. In case of two projects within the same party with equal delivery costs, we assume without loss of generality that the project with a lower index is preferred (we can always relabel projects to achieve this condition). Notably,  $\succ$  does not impose any specific order with respect to the delivery costs over any two projects of two different parties.

Since in MES-Apr we consider cardinal utilities, the  $\alpha$ -value of project  $p_i$  is at the beginning:  $\alpha_1(p_i) = \frac{\mathbf{c}(p_i)}{|A(party(p_i))|}$ . For this reason, MES-Apr will start from the cheapest project in the party to the most expensive one (following the specified tie-breaking order in case of a tie) and equally take the budget from the party supporters to fund the next project unless the cost exceeds the money they still have.

Now we have to consider two cases:

- The last in the tie-breaking order project  $p_j \in party(p_i)$  has delivery cost  $d(p_j)$  not exceeding  $\frac{M(party(p_i))}{|party(p_i)|}$ . Note that this case is similar to our case with zero delivery costs that we started this proof with, i.e., each project submits  $\frac{M(party(p_i))}{|party(p_i)|}$ , gets funded, and no project benefits from changing its cost.
- The last in the tie-breaking order project  $p_j \in party(p_i)$  has delivery  $\cot d(p_j)$  exceeding  $\frac{M(party(p_i))}{|party(p_i)|}$ . In such a case, if every project submitted  $\cot d(p_j)$ , then  $p_j$  would not be selected as it is last in the tie-breaking order and cannot profitably decrease its cost. For this reason, we set the cost of  $p_j$  to be  $d(p_j)$ , remove  $p_j$  from consideration, and repeat this procedure as long as the product of the number of yet-remained projects and the delivery

cost of the last in the tie-breaking project exceeds  $M(party(p_i))$ . Suppose now that the procedure stopped and project  $p_k$  was the last removed one. Then all y yet-remaining projects would say cost  $min(M(party(p_i))/y, d(p_k))$  and be given this funding. Saying more than  $d(p_k)$  would result in being overtaken by project  $p_k$  and thrown out of the outcome due to insufficient budget. Saying more than  $M(party(p_i))/y$  would result in getting the last among remaining projects and asking for more money than left in the budget at that timestamp.

The combination of c profiles calculated in the above way for all parties is a MES-Apr-NE for the given instance.

**Example B.2.** Take a PB game G with one voter approving projects  $p_1$ ,  $p_2$ , and  $p_3$ . Let B=6,  $d(p_1)=3$ ,  $d(p_2)=0$ , and  $d(p_3)=0$ , with  $p_1\succ p_2\succ p_3$ . There is no MES-Apr-NE in G (the full proof is in the appendix and we give a sketch): Suppose that  $\mathbf{c}$  is an NE. Then  $\mathbf{c}(p_1)\geq 3$  (otherwise, as it is selected,  $p_1$  improves by reporting 3) and  $\mathbf{c}(p_2)$ ,  $\mathbf{c}(p_3)<\mathbf{c}(p_1)=3=\frac{B}{2}$  (otherwise, the more expensive one is not funded). Since  $\mathbf{c}(p_2)+\mathbf{c}(p_3)< B$ ,  $p_2$  may report  $(\mathbf{c}(c_1)+\mathbf{c}(c_2))/2$  and still be selected, so  $\mathbf{c}$  is not an NE.

Suppose towards contradiction that  $\mathbf{c}$  is such an equilibrium. W.l.o.g.,let  $\mathbf{c}(p_1) \geq d(p_1) = 3$ . Otherwise, if  $p_1$  would be selected under these costs (and, hence, received a negative payoff), then it would prefer to report  $d(p_1)$  and receive utility 0. If it was not funded under  $\mathbf{c}$ , then  $(\mathbf{c}_{-i}, d(p_1))$  also would be an equilibrium. Next, we observe that  $\mathbf{c}(p_1) = 3$ . Indeed, if  $p_1$  reported a value greater than 3, then one of the projects could obtain a better payoff: If  $p_2$  or  $p_3$  reported a value greater or equal to  $\mathbf{c}(p_1)$ , then it would benefit by reporting a smaller one; if  $p_2$  and  $p_3$  reported values that sum up to more than B, then at least one of them would benefit by reporting a smaller cost, and if they reported values that sum up to at most B then either (a) one of them would benefit by reporting a larger cost, or (b) if they both reported B, B, would benefit by reporting B. Hence, we have that  $\mathbf{c}(p_1) = B = B/2$ . Then, both  $\mathbf{c}(p_2) > 0$  and  $\mathbf{c}(p_3) > 0$  (the project reporting 0 would benefit by reporting a larger number). Further, we have that  $\mathbf{c}(p_2) < \mathbf{c}(p_1)$  and  $\mathbf{c}(p_3) < \mathbf{c}(p_1)$ . Indeed, if either B0 or B1 reported value greater or equal to B2. B. But then either of them would benefit by reporting a higher cost (so that the sum of their costs would not exceed B3. Thus  $\mathbf{c}$  is not a MES-Apr-NE.

### **B.11 Proof of Theorem 4.13**

*Proof.* Our example is in fact the example from Proposition 4.8 narrowed to prim voters and projects.

We have three voters  $v_1, v_2$ , and  $v_3$  as well as three projects  $p_1, p_2$ , and  $p_3$ . Projects  $p_1$  and  $p_2$  are approved by, respectively, voters  $v_1$  and  $v_2$ , while project  $p_3$  is approved by all three voters. We set the budget to be some positive integer denoted as B and the delivery costs of these projects to be  $d \equiv 0$ . We set the tie-breaking between projects to be  $p_1 \succ p_2 \succ p_3$ . For the sake of brevity, for yet-unselected project  $p_i$  in iteration j, we denote  $\alpha_j(p_i)$  as minimum value such that project  $p_i$  is  $\alpha_j(p_i)$ -affordable according to MES-Apr rule (or infinity, if such a value does not exist).

Let  $(\mathbf{c}(p_1) = \frac{7B}{36}, \mathbf{c}(p_2) = \frac{8B}{36}, \mathbf{c}(p_3) = \frac{21B}{36})$  be the costs the projects say. We will show that it is MES-Apr-NE.

At the beginning, each of three voters receives  $\frac{B}{3} = \frac{12B}{36}$  money.

In the first iteration,  $\alpha_1(p_1)=\frac{7B/36}{1}=\frac{7B}{36}, \alpha_1(p_2)=\frac{8B/36}{1}=\frac{8B}{36}, \alpha_1(p_3)=\frac{21B/36}{3}=\frac{7B}{36}$ , so  $p_1$  and  $p_3$  are tied, while  $p_2$  has greater  $\alpha$ -value and is skipped for now. Thus, due to tie-breaking, we select  $p_1$  and voter  $v_1$  pays  $\frac{7B}{36}$  for  $p_1$ .

In the second iteration,  $v_1$  has  $\frac{5B}{36}$  money while both  $v_2$  and  $v_3$  have  $\frac{12B}{36}$ . Thus, since the budget of  $v_2$  did not change,  $\alpha_2(p_2) = \alpha_1(p_2) = \frac{8B}{36}$ . In order to purchase  $p_3$ , voter  $v_1$  would need to spend all left money whereas  $v_2$  and  $v_3$  would need to pay more to make up  $v_1$ 's insufficient money. More precisely,  $\alpha_2(p_3) = \frac{^{21B/36-5B/36}}{2} = \frac{^{16B/36}}{2} = \frac{8B}{36}$ . So projects  $p_2$  and  $p_3$  are tied and we select  $p_2$  due to tie-breaking (by taking money from  $v_2$ ).

Finally, in the third iteration, we will select  $p_3$  as its supporters have  $\frac{5B}{36} + \frac{4B}{36} + \frac{12B}{36} = \frac{21B}{36} = \mathbf{c}(p_3)$ , all voters will use use all their money for it.

We showed that each project is selected with the proposed costs so no project benefits from lowering its costs. Next,  $p_3$  will not increase its cost as its supporters would not have enough money to buy it in the last iteration. Further,  $p_2$  will not increase its cost as it would lose with  $p_3$  in the second iteration and its only supporter  $v_2$  would pay  $\frac{8B}{36}$  for  $p_3$ , leaving insufficient  $\frac{4B}{36}$  for  $p_2$ . Analogously,  $p_1$  will not increase its cost as it would lose with  $p_3$  in the first iteration and its only supporter  $v_1$  would pay  $\frac{7B}{36}$  for  $p_3$ , leaving insufficient  $\frac{5B}{36}$  for  $p_1$ .

For this reason,  $\mathbf{c}=(\mathbf{c}(p_1)=\frac{7B}{36},\mathbf{c}(p_2)=\frac{8B}{36},\mathbf{c}(p_3)=\frac{21B}{36})$  is a MES-Apr-NE for the given instance.

One can show in an analogous way that  $\mathbf{c}' = (\mathbf{c}'(p_1) = \frac{8B}{36}, \mathbf{c}'(p_2) = \frac{7B}{36}, \mathbf{c}'(p_3) = \frac{21B}{36})$  is also MES-Apr-NE for the given instance.

#### **B.12** Proof of Theorem 6.1

Let us begin by introducing additional notation. In a cost-interval PB game  $G^+ = (P, V, B)$  we associate each voter v with an approval function  $A: V \times P \to 2^{[0,B]}$ , with A(v,p) specifying how costly can a project p be for v to approve it. For simplicity, we assume that A(v,p) is a possibly empty interval. We say that a voter v potentially supports a project p if  $A(v,p) \neq \emptyset$ . Then, for a strategy profile c, the corresponding PB election E(c) = (P, V, B, c) is such that each voter v approves a project  $p \in P$  if  $cost(p) \in A_v(p)$ . Then, the payoff function and Nash equilibria are defined for cost-interval PB games analogously to PB games. We now showcase examples witnessing the result for particular voting rules.

**MES-Cost.** Consider the following cost-interval PB game G. Take the set of projects  $P = \{p_1, p_2\}$ , as well as the set of voters  $V = \{v_1, v_2, v_3, v_4\}$ . Further, we let  $A(v_1, p_1) = A(v_2, p_1) = [8, 12], \ A(v_3, p_1) = A(v_4, p_1) = [0, 4], \ A(v_1, p_2) = [4, 8], \ \text{and} \ A(v_2, p_2) = A(v_3, p_2) = A(v_4, p_2) = [0, 3].$  Finally, let B = 16.

Suppose that there exists a strategy profile c that is a MES-Cost-NE. Let us then consider the following, exhaustive cases:

- 1.  $\mathbf{c}(p_1) \in (4,8) \cup (12,16]$ . Then,  $p_1$  is not funded, while for  $\mathbf{c}(p_1) = 1$ ,  $p_1$  is founded regardless of  $\mathbf{c}(p_2)$ .
- 2.  $\mathbf{c}(p_1) \in (8, 12]$  Then,  $p_1$  is not funded, and hence could benefit from lowering its cost.
- 3.  $\mathbf{c}(p_1) = 8$ . Then, we note that as  $\mathbf{c}$  is an NE,  $\mathbf{c}(p_2) = 3$ , as then  $p_2$  is funded but would not be selected for  $(8, \mathbf{c}'(p_2))$  with  $\mathbf{c}'(p_2) > 3$ . But then,  $p_1$  is not funded under  $\mathbf{c}$ , while it would benefit from submitting  $\mathbf{c}'(p_1) = 4$ .
- 4.  $\mathbf{c}(p_1) \in [0,4]$ . Then,  $\mathbf{c}(p_2) = 4$ , as then  $p_2$  is funded under  $\mathbf{c}$  but would not be under  $(\mathbf{c}(p_1), \mathbf{c}'(p_2))$ , for any  $\mathbf{c}'(p_2) > 4$ . However, in that case  $p_1$  would benefit from raising their cost to 8.

It follows that there is no MES-Cost-NE in G.

**BasicAV.** Consider the following cost-interval PB game G. Take the set of projects  $P = \{p_1, p_2\}$ , where  $p_1 \succ p_2$ , as well as the set of voters  $V = \{v_1, v_2, v_3, v_4, v_5\}$ . Further, we let  $A(v_1, p_1) = [5, 9]$ ,  $A(v_2, p_1) = [3, 7]$ ,  $A(v_3, p_2) = [4, 8]$ ,  $A(v_4, p_2) = [5, 7]$ , and  $A(v_5, p_2) = [1, 6]$  so this is a plurality profile. Finally, let B = 10.

Suppose that there exists a strategy profile  ${\bf c}$  that is a BasicAV-NE. Let us then consider the following, exhaustive cases:

- 1.  $\mathbf{c}(p_1) \in [0,3) \cup (9,10]$ . Then,  $p_1$  is not funded but would benefit from submitting  $\mathbf{c}'(p_2) = 3$ , as then  $p_1$  is always selected.
- 2.  $\mathbf{c}(p_1) \in [3,4) \cup (7,9]$ . Then, we note that as  $\mathbf{c}$  is an NE,  $\mathbf{c}(p_2) = 7$ , as then  $p_2$  is funded but would not be selected for  $(\mathbf{c}(p_1), \mathbf{c}'(p_2))$  with  $\mathbf{c}'(p_2) > 7$ . But then,  $p_1$  is not funded under  $\mathbf{c}$ , while it would benefit from submitting  $\mathbf{c}'(p_1) = 7$ .

3.  $\mathbf{c}(p_1) \in [4,7]$ . Then,  $\mathbf{c}(p_2) = 6$ , as then  $p_2$  is funded under  $\mathbf{c}$  but would not be under  $(\mathbf{c}(p_1), \mathbf{c}'(p_2))$ , for any  $\mathbf{c}'(p_2) > 6$ . However, in that case  $p_1$  would benefit from reducing their cost to 4.

It follows that there is no Basic AV-NE in G.

**AV/cost.** Consider the following cost-interval PB game G. Take the set of projects  $P = \{p_1, p_2\}$ , where  $p_2 \succ p_1$ , as well as the set of voters  $V = \{v_1, v_2, v_3, v_4\}$ . Further, we let  $A(v_1, p_1) = [4, 9]$ ,  $A(v_2, p_1) = A(v_3, p_1) = [8, 9]$ , and  $A(v_4, p_2) = [2, 6]$ , so this is a plurality profile. Finally, let B = 10.

Suppose that there exists a strategy profile c that is a AV/Cost. Let us then consider the following, exhaustive cases:

- 1.  $\mathbf{c}(p_1) \in [0, 4) \cup (9, 10]$ . Then,  $p_1$  is not funded but would benefit from submitting  $\mathbf{c}'(p_2) = 5$ , as then  $p_1$  is always selected.
- 2.  $\mathbf{c}(p_1) \in [8, 9]$ . Then, we note that as  $\mathbf{c}$  is an NE,  $\mathbf{c}(p_2) = \mathbf{c}(p_1)/3$ , as then  $p_2$  is funded but would not be selected for  $(\mathbf{c}(p_1), \mathbf{c}'(p_2))$  with  $\mathbf{c}'(p_2) > \mathbf{c}(p_1)/3$ . But then,  $p_1$  is not funded under  $\mathbf{c}$ , while it would benefit from submitting  $\mathbf{c}(p_1) \in [4, 3 \cdot \mathbf{c}(p_2))$ .
- 3.  $\mathbf{c}(p_1) \in [5,8]$ . Then,  $\mathbf{c}(p_2) = min(\mathbf{c}(p_2),6) \in [5,6]$ , as then  $p_2$  is funded under  $\mathbf{c}$  but would not be under  $(\mathbf{c}(p_1),\mathbf{c}'(p_2))$ , for any  $\mathbf{c}'(p_2) > min(\mathbf{c}(p_2),6)$ . However, in that case  $p_1$  would benefit from raising their cost to 9.
- 4.  $\mathbf{c}(p_1) \in [4, 5)$ . Then,  $\mathbf{c}(p_2) = min(10 \mathbf{c}(p_2), 6) \in [5, 6]$ , as then  $p_2$  is funded under  $\mathbf{c}$  but would not be under  $(\mathbf{c}(p_1), \mathbf{c}'(p_2))$ , for any  $\mathbf{c}'(p_2) > min(10 \mathbf{c}(p_2), 6)$ . However,  $p_1$  would benefit from raising their cost to 9.

It follows that there is no AV/Cost in G.

**Phragmén.** The claim follows by the example for AV/Cost, as Phragménand AV/Cost are equivalent for plurality elections.

**MES-Apr.** Consider the following cost-interval PB game G. Take the set of projects  $P = \{p_1, p_2\}$ , as well as the set of voters  $V = \{v_1, v_2, v_3\}$ . Also, let  $A(v_1, p_1) = A(v_1, p_2) = [12, 18]$ . Then, let  $A(v_2, p_1) = A(v_2, p_2) = [6, 12]$  and the approval function of  $v_3$  be the same as the approval function of  $v_2$ . Finally, we let B = 18 and assume zero delivery costs. It's clear that each voter received B/3 = 6 money units at the beginning of the algorithm regardless of the costs of the projects.

Suppose that there is a MES-Apr-NE  $\mathbf{c}=(c_1,c_2)$  for G. First, we can see that each of the projects is funded with the cost set to 6 regardless of the cost submitted by the other proposer. So, both projects are funded under  $(c_1,c_2)$ . Hence, we notice that  $c_1 \in [6,12]$  and  $c_2 \in [6,12]$ , as otherwise, either one of the projects would submit cost higher than 12 and be supported by only voter (whose budget is 6), or submit a cost lower than 6 and not be supported by anyone. So, in both scenarios one of the project would not be funded. Let us then consider the following exhaustive cases:

- 1.  $c_1=12$  or  $c_2=12$ . Without loss of generality, let  $c_1=12$ . Then, we see that  $c_2=8$  or  $c_2=12$ . Otherwise, if  $c_2\in(8,12)$ , then  $p_2$  would not be funded and if  $c_2<8$ , then  $p_2$  would be funded under  $(12,c_2+\epsilon)$ , for some  $\epsilon>0$ . But then, one of the projects is not funded under  $(c_1,c_2)$ , as  $c_1+c_2>B$ . Hence, according to previous observations,  $(c_1,c_2)$  is not a MES-Apr-NE.
- 2.  $c_1 \in [6,12)$  and  $c_1 \in [6,12)$ . Observe that for this cost range, only voters  $v_2$  and  $v_3$  may pay for these projects, while having 12 money units in total. Then, we observe that  $c_1 + c_2 \le 12$ , as otherwise one of the projects would not be funded. Moreover,  $c_1 = c_2$ , as otherwise the proposer  $p_i$  submitting the lower cost would benefit from increasing  $c_i$ . Hence, in this case  $c_1 = c_2 = 6$ . But then  $p_1$  would also be funded under (12,6), and hence  $(c_1, c_2)$  is not an MES-Apr-NE.

It follows that there is no MES-Apr-NE in G.

Table 3: Additional PB instances that we analyze in the experiments. Vote Len. means the average number of approvals in a ballot. Rule indicates the PB rule that was used in the original election.

| Instance | P  | V    | Budget  | Vote Len. | Rule    |
|----------|----|------|---------|-----------|---------|
| Bemowo   | 83 | 5181 | 4854279 | 10.8      | BasicAV |
| Bielany  | 98 | 4957 | 5258802 | 9.8       | BasicAV |
| Wilanow  | 35 | 2359 | 1516962 | 9.59      | BasicAV |
| Wlochy   | 43 | 2221 | 1719224 | 9.51      | BasicAV |

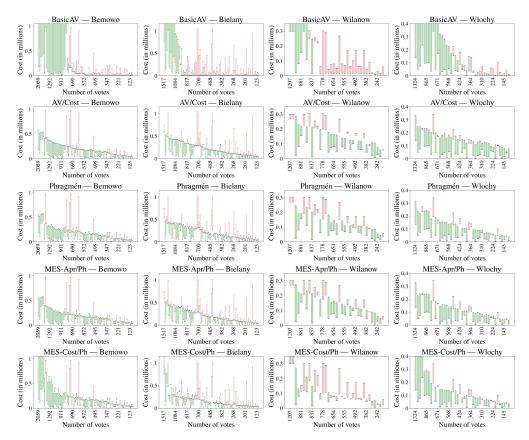


Figure 5: Winning (green bars) and losing (red bars) margins in real-life PB. Projects ordered by decreasing approval scores (on the x-axis) are represented by bars. Tacks and crosses show, respectively, the original and best response costs.

## C Additional Experimental Results

Here, we present experimental results for four additional PB instances held in 2022 in different districts of Warsaw, Poland, i.e., in Bemowo, Bielany, Wilanow, and Wlochy. Details regarding these datasets are presented in Table 3. In Figure 5 we present the winning and losing margins in additional real-life PB instances, and in Figure 6 we present the strategy profiles after 10'000 iterations of our dynamics.

Moreover, in Table 4 we present comparison of the original winning and losing margins and those after 10'000 iterations. We observe that in most cases the size of the margins drastically decreased.

## D Dynamics With 80% Delivery Costs

In Figure 7 we show the results of the dynamics from Section 5.2 for the case where each project has delivery cost equal to the 80% of the cost it had in the original instance. We see that aside from

|               | D1-         | Original N      | Margins       | 10000 it. Margins |               |
|---------------|-------------|-----------------|---------------|-------------------|---------------|
|               | Rule        | Winning         | Losing        | Winning           | Losing        |
|               | BasicAV     | $1830 \pm 1283$ | $122 \pm 182$ | 0                 | $24 \pm 37$   |
| WO            | AV/Cost     | $150 \pm 104$   | $225 \pm 257$ | $1\pm3$           | $0.2 \pm 0.1$ |
| Bemowo        | Phragmén    | $141 \pm 91$    | $220 \pm 261$ | $3\pm3$           | $0.9 \pm 0.7$ |
| Be            | MES-Apr/Ph  | $150 \pm 95$    | $223 \pm 264$ | $3 \pm 4$         | $2\pm2$       |
|               | MES-Cost/Ph | $250 \pm 323$   | $205 \pm 244$ | $1\pm 2$          | $1\pm 2$      |
|               | BasicAV     | $1447 \pm 1355$ | $218 \pm 205$ | 0                 | $2\pm 2$      |
| ny            | AV/Cost     | $157 \pm 128$   | $171\pm150$   | $0.9 \pm 2$       | $0.2 \pm 0.3$ |
| Bielany       | Phragmén    | $146 \pm 121$   | $176\pm154$   | $4\pm3$           | $0.9 \pm 0.9$ |
| B             | MES-Apr/Ph  | $148 \pm 121$   | $176\pm151$   | $3 \pm 4$         | $1\pm2$       |
|               | MES-Cost/Ph | $172 \pm 193$   | $180 \pm 154$ | $3 \pm 6$         | $3 \pm 4$     |
|               | BasicAV     | $265 \pm 249$   | $64 \pm 51$   | 0                 | 0             |
| ola           | AV/Cost     | $86 \pm 27$     | $55 \pm 31$   | $0.3 \pm 0.4$     | $0.2 \pm 0.1$ |
| Wesola        | Phragmén    | $69 \pm 31$     | $51\pm37$     | $2\pm1$           | $0.9 \pm 1$   |
| =             | MES-Apr/Ph  | $79 \pm 33$     | $43 \pm 37$   | $2\pm1$           | $0.7 \pm 0.7$ |
|               | MES-Cost/Ph | $70 \pm 56$     | $65 \pm 45$   | $0.1 \pm 0.1$     | $0.4 \pm 0.5$ |
|               | BasicAV     | $536 \pm 399$   | $87 \pm 80$   | 0                 | 0             |
| O.W           | AV/Cost     | $87 \pm 59$     | $51 \pm 34$   | $2\pm 2$          | $0.1\pm0.0$   |
| Wilanow       | Phragmén    | $77 \pm 52$     | $66 \pm 41$   | $2\pm 2$          | $0.3 \pm 0.2$ |
|               | MES-Apr/Ph  | $89 \pm 56$     | $58 \pm 37$   | $2\pm1$           | $0.7 \pm 0.8$ |
|               | MES-Cost/Ph | $79 \pm 120$    | $95 \pm 64$   | $1\pm 2$          | $2 \pm 4$     |
| Wlochy        | BasicAV     | $532 \pm 524$   | $46\pm35$     | 0                 | 0             |
|               | AV/Cost     | $107 \pm 49$    | $56 \pm 48$   | $0.8 \pm 1.0$     | $0.1\pm0.1$   |
|               | Phragmén    | $83 \pm 52$     | $62 \pm 42$   | $3\pm3$           | $2\pm1$       |
|               | MES-Apr/Ph  | $85 \pm 53$     | $64 \pm 45$   | $2\pm 2$          | $1\pm1$       |
|               | MES-Cost/Ph | $138 \pm 186$   | $56 \pm 46$   | $0.2 \pm 0.2$     | $0.4 \pm 0.5$ |
| ld.           | BasicAV     | $117 \pm 78$    | $14 \pm 11$   | 0                 | $1.0 \pm 0.0$ |
| Vere          | AV/Cost     | $12 \pm 8$      | $12\pm12$     | $0.1 \pm 0.1$     | $0.1\pm0.0$   |
| ie 🛚          | Phragmén    | $10 \pm 8$      | $10\pm11$     | $0.5 \pm 0.6$     | $0.2 \pm 0.2$ |
| Kleine Wereld | MES-Apr/Ph  | $11 \pm 7$      | $11\pm11$     | $0.4 \pm 0.6$     | $0.2 \pm 0.2$ |
| <b>Y</b>      | MES-Cost/Ph | $26 \pm 34$     | $11\pm11$     | $2\pm1$           | $0.1 \pm 0.0$ |

Table 4: Comparison of winning and losing margins in the original elections and after 10000 iterations of the game. (All the values are in 1000 PLN\EUR). In each entry the first value denotes the average and the second value (i.e., the one after  $\pm$  sign) denotes the standard deviation.

fairly expensive projects, whose cost could not drop below the delievery cost, the overall behavior of our rules is as with zero delivery costs.

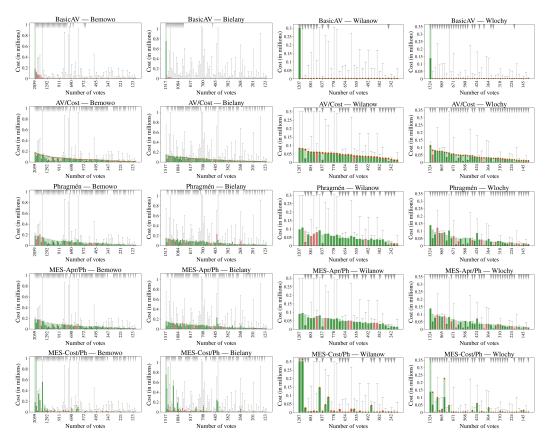


Figure 6: Strategy profiles after  $10\,000$  iterations of our dynamics. Projects ordered by decreasing approval scores (x-axis). Final projects' costs shown by bars; the original costs shown as dashed lines. Red and green bars indicate, respectively, losing and winning projects; brighter parts are the increases over the original cost. The triangles at the top mark the originally winning projects. Brown circles denote the equilibrium costs (for rules for which we can compute it).

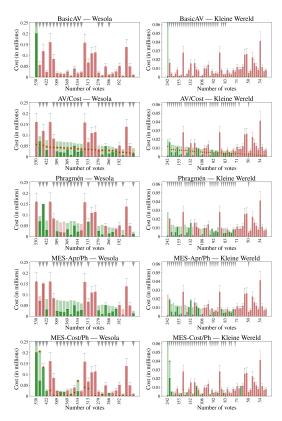


Figure 7: Strategy profiles after  $10\,000$  iterations of our dynamics. for the case where each project has delivery cost equal to 80% of its original cost in the instance. Projects ordered by decreasing approval scores (x-axis). Final projects' costs shown by bars; the original costs shown as dashed lines. Red and green bars indicate, respectively, losing and winning projects; brighter parts are the increases over the original cost. The triangles at the top mark the originally winning projects. Brown circles denote the equilibrium costs (for rules for which we can compute it).