Under review as a conference paper at ICLR 2026

ON FINE-GRAINED I/O COMPLEXITY OF ATTENTION
BACKWARD PASSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
processing long-context information. However, the quadratic complexity of atten-
tion computation with respect to sequence length poses significant computational
challenges, and I/O aware algorithms have been proposed. This paper presents a
comprehensive analysis of the [/O complexity for attention mechanisms, focus-
ing on backward passes by categorizing them into small and large cache scenar-
ios. Using the red-blue pebble game framework, we establish tight bounds on
I/O complexity across all cache sizes. We confirm that the de facto standard I/O
aware algorithm FlashAttention is optimal for both forward and backward passes
for the large cache size scenario. For small cache sizes, we provide an algorithm
that improves over existing methods and achieves tight bounds. Additionally, we
extend our analysis to sparse attention, a mainstream speeding-up approach, de-
riving fine-grained lower bounds for both forward and backward passes and both
small and large caches. Our findings complete the theoretical foundation for I/O
complexity in attention mechanisms, offering insights for designing efficient al-
gorithms of LLM training and inference.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4 (Achiam et al., 2023)), Claude (Anthropic, |2024),
Llama (Llama Teaml [2024), and more recently ol (OpenAl, 2024) from OpenAl, have demon-
strated immense potential to enhance various aspects of our daily lives, including conversational
Al (Liu et al., |2024), Al agents (X1 et al., [2023; |Chen et al., |2024b), search Al (OpenAll |2024),
Al assistants (Kuo et al.| 2024} Feng et al.| |2024b)), and many others. One of the most emergent
abilities of LLMs is dealing with long-context information, which is crucial for processing materials
such as academic papers, official reports, and legal documents. LLMs have proven adept at tack-
ling long-context tasks, such as zero-shot summarization (Chhabra et al., 2024} Zhao et al.| [2024)
and maintaining very long-term conversations (Xu et al., |2022; Maharana et al., 2024). OpenAl’s
ol model (OpenAll 2024) serves as a significant advancement in this area. It leverages Chain-of-
Thought (CoT) reasoning (Wei et al.l 2022} Kojima et al.| 2022) and employs Retrieval Augmented
Generation (RAG) (Lewis et al., 2020; |Gao et al., 2023) to exhibit PhD-level abilities, where both
techniques require long context inputs for generation. This proficiency underscores the necessity for
developing long-context modeling capabilities within LLMs.

LLMs are primarily based on the Transformer architecture (Vaswani et al., 2017), whose core com-
ponent is the self-attention mechanism. However, the quadratic complexity of attention computation
with respect to sequence length dominates the computational FLOPs during long-context training
and inference. To address this issue, FlashAttention (Dao et al., [2022; Daol [2023; |Shah et al., [2024)
accelerates attention computation and has become the de facto standard in the industry of LLM
training and inference deployment. The success of FlashAttention lies in its I/O awareness (Ag-
garwal & Vitter, |1988)), accounting for reads and writes to different levels of fast cache (e.g., GPU
on-chip SRAM) and slow memory (e.g., GPU high-bandwidth memory) within the hardware hierar-
chy. Leveraging modern hardware design in GPUs, e.g., NVIDIA A100 and H100, efficiently allows
FlashAttention to be integrated as a go-to method for LLM training and inference.

Under review as a conference paper at ICLR 2026

For the 1/0 complexity of exact attentiorﬂ forward computation, the theoretical analysis of FlashAt-
tention in|Dao et al.|(2022) only provides upper and lower bounds when the cache size M € [d, nd).
Their bounds are only tight in the range of M = ©(nd), where n is the input sequence length and d
is the hidden dimension. By fine-grained analysis, a recent work (Saha & Yel [2024) provides match-
ing upper and lower I/O complexity bounds of the attention forward passes for any cache size M.
For the I/0 complexity of attention backward passes, existing work only provides an upper bound
for FlashAttention for the cache size M € [d, nd] (Dao et al., 2022)), without known lower bounds.
Thus, the tight bounds for the I/O complexity of attention backward passes are lacking. This raises
a natural question:

What is the optimal I/O complexity of attention backward computations for any cache size?
In this paper, we address this question and provide matching upper and lower I/O complexity bounds

for backward passes of exact attention computation for all cache sizes, completing the picture of I/O
complexity for the attention mechanism.

1.1 OUR CONTRIBUTIONS Attention Backward 1/0 Complexity

mem= Qur Theorem 1.1
= = FlashAttention I/0 Complexity

In this work, we analyze the I/O complexity in the same
setting as the existing work of FlashAttention (Dao et al.|
2022) and [Saha & Ye| (2024). We consider a two-level
memory hierarchy consisting of a small but fast layer
called the cache and a large but slower layer referred to
as memory. The I/O complexity quantifies the data trans- K
fer between these two layers, which can be formally de- e e i

fined as a red-blue pebble game (Hong & Kung, |1981)) as d ache size
in Definition [3.4 We study the exact attention compu-
tation using standard matrix multiplication as the exist-
ing workE] and focus on backward gradient computation. : e
We establish matching I/O complexity upper and lower cache s1ze, and the Y-axis 18 the /O
bounds for attention backward computation (formalized c_omplex1ty. The red line represents our
in Theorem [I.I]and illustrated in Fig.[T). Combined with tight upper/lower bound (Theorem|[L.1),
the attention forward results from Saha & Ye|(2024)), this and the blue dash depotes the upper
completes the theory of I/O complexity in the attention 2ound for FlashAttention (Dao et al)

e = 5
mechanism. Our main result is stated as follows: 2022). The cross point is M = o(d?),

. the dividing point of large cache and
Theorem 1.1 (Main result). Let n be the sequence (-1 cache settings. The results show

length, d the head dimension, and M the cache that FlashAttention is optimal when
size. The I/O complexity of attention backward 5 _ Q(d?).
computation under standard matrix multiplication is

. 2 52 3 2 2
() (IHIII{” d]\}—nd 7n d+nd }))

T
1
\
\
\

-

1/0 Complexity

Figure 1: Attention backward I/O com-
plexity comparison. The z-axis is the

VM

To interpret our main result, we categorize the cache size M into two cases: the small cache case
where M = 0(d?) and the large cache case where M = Q(d?) (see Fig.[I]for illustration).

In the small cache scenario, M = o(d?), by computation graph Fig. and Algorithm@ we show that

the upper bound of the I/O complexity is O(n? %dz). In detail, Algorithm [6[explicitly read/write

the n x n attention matrix and other n X d intermediate matrices from/to memory. Note that, when
M = o(d?), our Algorithm @ has a better upper bound than FlashAttention, whose upper bound

is O(W). Furthermore, to establish a lower bound on the I/O complexity, we show that the
I/O complexity of attention backward computation is equivalent to the I/O complexity of matrix
multiplication when M = o(d?), which matches the upper bound of Algorithm@

In the more practical large cache case, M = €(d?), we prove an upper bound O(W) on
the 1/0 complexity for the attention backward algorithms (Algorithm [9), which matches that of

'In this work, we only consider exact attention computation without any approximation.

2Note that there are many fast matrix multiplication methods. We do not study them, as they are hard to be
parallelized. Standard matrix multiplication is still the most popular implementation on GPU, e.g., PyTorch.
We refer readers to SectionE] for more details.

Under review as a conference paper at ICLR 2026

Table 1: Summary of our contributions. We categorize the cache size M into two cases: (1) Large
cache M = Q(d?); (2) Small cache M = o(d?). Assume n > d. We list our contributions for
general and sparse attention below. Zi,,. and Zqk denote the number of nonzero entries of the
input matrix and the key-query matrix, respectively.

Attention Algorithm | Large Cache Reference | Small Cache Reference
Forward Upper | O(n%d?>/M) |Dao et al.|(2022) O(n%d/vVM) Saha & Ye|(2024)
General Forward Lower Q(n%d?/M) |Saha & Ye|(2024) Q(n2d/vVM) Saha & Ye|(2024)
Backward Upper | O(n2?d?/M) |Dao et al.|(2022) O(n2d/vVM) Theorem .3
Backward Lower | Q(n2d?/M) Theorem 4.2 Q(n2d/vV'M) Theorem 4.4

Sparse Forward Lower | Q(Z2,,./M) Theorem ‘ QU Zinpus v/ Zqr /VM) Theorem%

Backward Lower Q(anput /M) Theorem QZinpus v/ Zqr /VM) Theorem 4.

FlashAttention (Dao et al., [2022; Daol 2023}, |Shah et al.,|2024). We prove that this upper bound is
tight by providing a matching lower bound for the I/O complexity of attention backward using the
red-blue pebble game analysis framework from Hong & Kung|(1981).

Therefore, we provide the optimal bounds and algorithms for backward passes for all cache sizes.
This fully characterizes the I/O complexity of attention forward/backward when combined with
existing results on forward passes (Saha & Yel [2024). Notably, we confirm that FlashAttention is
optimal for both the forward and backward passes when the cache size is large enough M = (d?).
Moreover, in recent years, sparse attention has become another mainstream method for speeding up
the training process of transformer-based models (Child et al., 2019} [Zaheer et al) 2020} Beltagy
et al.l 2020). These approaches mainly focus on techniques for sparsifying the attention matrix,
thereby reducing the quadratic bottleneck in running time. However, it remains unknown whether
this method can be integrated with I/O-aware algorithms like FlashAttention. Consequently, we
further analyze the I/O complexity of sparse attention to provide theoretical guarantees, offering
fine-grained lower bounds.

Theorem 1.2 (Lower bound for sparse attention forward and backward, informal version of Theo-
rem@. Let Zinput and Zqx be the number of nonzero entries of the input matrix and the key-query
matrix, respectively. Then, any algorithm for both attention forward and backward computation us-
ing sparse semi-ring matrix multiplication has I/O complexity

2
Q| min Zinput Zinput vV ZQK)
M’ VM

Our I/O complexity lower bound for sparse attention recovers the lower bound for both attention
forward and backward passes when matrices involved in attention computation are dense, i.e.,

Zinput = Q(nd), Zqgk = Q(n?). In such case, our lower bound reads as Q(min{"jwdz , %),
matching Theorem [I.T] The dividing point between small and large cache for sparse attention is

M = Z7 ../ Zqx, which also matches the dense case.

We summarize our contributions in Table[I]and also conclude as follows:

* For small cache sizes M = o(d?) in the backward pass, we present optimal upper and
lower bounds and propose an algorithm achieving the optimal (Algorithm [6). Notably,
FlashAttention is not optimal in this setting, and our algorithm outperforms it.

e For large cache sizes M = (d?) in the backward pass, we establish an optimal lower
bound that matches the existing upper bound. We also prove the optimal upper bound and
introduce an optimal algorithm (Algorithm [9), matching the existing results for FlashAt-
tention but providing a different analysis.

* For sparse attention, we offer fine-grained lower bounds for both forward and backward
passes and across all cache sizes (Theorem [.5)).

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Learning with Bounded Memory and I/0O Complexity. A common memory model in computa-
tional systems is the two-level memory hierarchy. In this model, there are two layers of memory:
a small but fast layer called the cache, and a large but slower layer called the memory. The I/O
(input/output) complexity of an algorithm measures its efficiency based on the number of data trans-
fer operations it performs between the cache and the memory. The early work of Hong & Kung
(1981) formulated the I/O complexity mathematically using the language of graph theory. Learn-
ing with bounded memory has been studied in various fields in machine learning such as online
learning (Srinivas et al., 2022; |Peng & Rubinstein) 2023 |Peng & Zhang, |2023)), convex optimiza-
tion (Marsden et al., 2022} [Chen & Peng} 2023)), active learning (Hopkins et al., 2021])), attention
computation (Addanki et al.l[2023)), and continual learning (Chen et al., 2022; [Ermis et al., [2022).

Due to space constraints, we move some related works to the Appendix [A]

3 PRELIMINARY

In this work, we consider using a standard algorithm for matrix multiplication, which means that
for any two matrices A € R™*4 B € R¥*"2 each entry of AB is computed by (AB);; =

22:1 A; By,j fori € [n1],j € [ng]. Note that this setting is also used in FlashAttetnion (Dao
et al.,|2022) and [Saha & Ye (2024). Although certain “fast” algorithms, such as Strassen (Strassen),
1969)) or Coppersmith—Winograd (Coppersmith & Winograd, [1987), have lower asymptotic compu-
tational complexity, they typically incur significantly large hidden constants and do not parallelize
as efficiently on modern GPUs. In practice, libraries such as cuBLAS and CUTLASS optimized
for standard GEMMSs (General matrix multiplications), often outperform any known fast-matrix
approach on the matrix sizes relevant to deep learning. Therefore, assuming standard matrix mul-
tiplication offers an accurate reflection of how attention computation is commonly carried out in
real-world systems. Now, we introduce some key concepts needed for this paper.

3.1 KEY CONCEPT OF ATTENTION

Before formally stating our results, we begin by precisely defining the problems we study. We define
the following computation of the general Softmax attention forward layer.

Definition 3.1 (Attention forward computation). Let n be the input length and d be the head dimen-
sion. Let Ay, Ay, Az € R™" % be the inputs of previous layer. Given query, key and value weights
matrix Wo, Wi, Wy € R4 e have the Softmax attention forward computation being

Attn(1417 AQ, A3) = l)_1 eXp(A1WQW;A;)A3WV,

where (1) D := diag(exp(A1WoW L AJ) - 1,,), (2) exp denotes the exponential function and is
applied entry-wisely, (3) diag() operation takes a vector and outputs a diagonal matrix with the
entries of that vector, and (4) 1,, denotes the length-n all ones vector.

To simplify and focus more clearly on the core computational aspects of the problem, we set X =
WoWiE € R4 and Y = Wy, € RX4,

Note that, we have
Softmax(A; XAJ) = D texp(A1 X AJ) € R™*™,

and usually we call it the attention matrix. The above definition is general and encompasses
both self-attention and cross-attention mechanisms in Transformer architectures. Specifically, self-
attention occurs when A; = A, = Ajs, meaning that the queries, keys, and values are all derived
from the same source. In contrast, cross-attention happens when A, = Ag, indicating that the keys
and values come from one source while the queries come from the other.

Notably, FlashAttention (Dao et al., 2022; Daol 2023} [Shah et al.| 2024) and Saha & Ye| (2024)
consider Q, K,V € R™* after applying the linear layer to the previous inputs, while we consider
a more detailed structure as Q = A1 Wq, K = AWk, V = A3Wy (Definition explicitly
calculating module-wise gradients on attention weights. This explains why our I/O complexity

Under review as a conference paper at ICLR 2026

D = diag(4- 1,)
B D=/ °q p, = diag(p; - 1,,) - f A = exp(4, XA7)

o &

Figure 2: The computational graph for attention forward and backward. The blue boxes are input
matrices, the gray boxes are intermediate matrices, the green box is the forward output, and the
orange box is the final gradient matrix. Here, Ay, Ao, A3 denote the previous inputs, dO denotes
the upstream gradient, and X, Y denote the attention weights. More detailed definitions of each
variables can be found in Section [3]and [B]

bound O (min{ ”Zdi\}r"d3 , ”2‘\1/%“12 })in Theoremuhas an additional term nd? in the small cache

case and nd? in the large cache case. When n > d, the additional term will disappear.

Mathematically, optimizing the attention computation involves adjusting the attention weight matri-
ces X, and Y. Using the previous results on attention gradients from [Alman & Song| (2024a)) and
Liang et al.| (2024c), we have the following definition of attention gradient:

Definition 3.2 (Attention backward gradient). Let A1, Ay € R™*%. Let p(X) € R " be defined

in Definition @ (see Fig. IZl Sor an illustration). Let L(X) be some loss function. The attention
; . dL(X

backward gradient for X € R4 js d—(Xz = Al p(X)As.

Remark 3.3. Since the attention module depends only linearly on'Y, it is straightforward to incor-

porate it into an algorithm, and it is not a complexity bottleneck. Thus, we focus on the case where
X is variable and Y is a fixed input.

(A1XAZ);)

level-2
nodes

level-1
nodes

(Al)i.l XLJ' (Al)i.z XZ,J' (A1X)i,1(A;r)1,j (Alx)i,z(A;r)z,j

(A,

Figure 3: This diagram shows a summation tree with d = 2 in the computational graph for the
backward passes of attention using standard matrix multiplication. The orange and green nodes
represent the input nodes of the level-1 summation tree. The brown nodes, along with the blue
nodes (output from the level-1 summation tree), serve as inputs for the level-2 summation tree. The
purple nodes represent the target output. When d gets larger, the summation tree will expand with
additional layers, where each new layer introduces intermediate nodes that represent the sums of
pairs of nodes from the previous layer, i.e., there will be a total 1 + log, d layer in total.

3.2 SUMMATION TREE

In this subsection, we need to introduce the computational graph of the attention backward gradient,
which is the key concept in our I/O complexity analysis.

In the computational graph shown in Fig.[2} we can first compute A; X and then compute (A; X)AJ ,
or first compute X A5 and then compute A; (X AJ). In either case, we perform two matrix multi-

Under review as a conference paper at ICLR 2026

plications: one between an n X d matrix and a d X d matrix, and the other between an n X d matrix
and a d X n matrix. Without loss of generality for illustration, we consider the first case. To compute
A, X, we need to calculate the products {(A1); x Xk, ;} foralli € [n], k € [d], j € [d]. Each en-
try (A1X); ; is then obtained by summing these products over k: (41 X); ; = ZZ:1(A1)i,ka,j-
In the computational graph, this summation is represented by a summation tree that connects the
product nodes (A1); x X, ; to the sum node (A,X); ;. We define the product nodes (A1); 1 Xk j,
the nodes corresponding to the sums (A; X), ;, and all intermediate nodes in the summation trees
as level-1 nodes. Similarly, we define level-2 nodes as these nodes in the summation trees involved
in computing (A; X)A, . We give an example of the summation tree with d = 2 in Fig.

3.3 1/0 COMPLEXITY

There are various ways to define the two-level memory hierarchy and the I/O complexity. We state
the definition in Hong & Kung| (1981)), which formulates the two-level memory hierarchy as a red-
blue pebble game played on a computational graph. Very recently, [Saha & Ye| (2024) proved that
the I/O complexity of forward computation of FlashAttention is optimal by analyzing the red-blue
pebble game on an attention forward computational graph.

Definition 3.4 (Red-blue pebble game (Hong & Kungl |1981)). Consider a game played on a di-
rected acyclic graph that has a limited number of red pebbles and an unlimited number of blue
pebbles. Initially, each input node (a node with no parents) is marked with a blue pebble, while all
other nodes have no pebbles. The player is allowed to perform the following operations:

 Input: Replace a blue pebble on a node with a red pebble.
* Qutput: Replace a red pebble on a node with a blue pebble.
* Compute: Place a red pebble on a node if all its parent nodes have red pebbles.

e Delete: Remove a pebble from a node.

The objective of the game is to place blue pebbles on all output nodes (i.e., nodes with no children)
while minimizing the total number of input and output operations used throughout the process.

In the red-blue pebble game, each node represents a computational task. A red pebble denotes a
unit in the small but fast layer known as cache, while a blue pebble represents a unit in the large but
slower layer called memory. A task can only be computed once all its dependent tasks are completed.
All computations are assumed to occur within the cache. Hence, efficient use of cache plays a critical
role in reducing the I/O operations of an algorithm to minimize the cost associated with data transfer
between memory and cache. We can define the I/O complexity by using the red-blue pebble game.

Definition 3.5 (I/O complexity (Hong & Kungl [1981))). Consider the red-blue pebble game played
on a directed acyclic graph G. Let M be a positive integer. The I/O complexity, denoted as
Q(G, M), is the minimum number of input and output operations to complete the objective of the
game with the restriction that no more than M red pebbles are present on the graph at any time. We
omit G when it is clear in the context.

The red-blue pebble game provides insight into cache management by modeling the limited cache
size through the number of red pebbles. The maximum number of red pebbles corresponds to the
size of the cache, which means that there can be at most M items in the cache at any given time.

4 MAIN RESULTS

In Theorem [I.T| we provide matching upper and lower bounds for the I/O complexity of attention
gradient computation in the backward passes. In detail, Theorem states that the I/O complexity

. 242 3 2 . . .
of the attention gradient computation is ©(min{ 24 A‘}"d , %d), which splits the cache size

into two cases: (1) small cache M = o(d?); (2) large cache M = §2(d?). At the cross point M = d?,

2 42 3 2 2
we have 24 J”d =1n ‘\ifﬁnd = n? + nd. An intuitive figure of the asymptotic I/O complexity is

shown in Fig.

Under review as a conference paper at ICLR 2026

Here, we discuss two implications of Theorem [I.1} First, through the fine-grained analysis, our
result identifies a critical point at M = d?, where the I/O complexity changes its behavior. For
M = o(d?), we establish better upper and lower bounds compared to existing results, demonstrating
that FlashAttention is not optimal in this regime. Second, when M = Q(d?), Theoremprovides a
tighter lower bound than existing work using red-blue pebble game (Definition[3.4)), offering insights
of algorithm design.

Moreover, by combining the results of |Saha & Ye| (2024) with our findings, we provide a more
general and tighter I/O complexity characterization of FlashAttention 1/2 (Dao et al.| [2022; Dao,
2023). In the large cache scenario where M = €2(d?), the attention forward I/O complexity is

@(%), as discussed in Theorem 5.1 of|Saha & Ye|(2024)). Combining this result with our attention
backward I/O complexity @(W) (Theorem , we conclude that the overall complexity is
@(W). Thus, given the cache size is sufficiently large, i.e., M = Q(d?), the I/O complexity
of the forward and backward computation for FlashAttention 1/2 is optimal.

Our main result Theorem|[I.T]is a summary of our results for different cache sizes (Theorem[4.1]
[43] and[4.4), which will be discussed in the later subsections.

4.1 LARGE CACHE

The large cache scenario is more interesting and practical. We now prove an upper bound below.

Theorem 4.1 (Large cache upper bound, informal version of Theorem |D.5). Suppose n is the input

length, d is the head dimension, and M = Q(d?) is the cache size. There is an algorithm (see

Algorithm@) outputs a d X d matrix g = dﬁ()?) (Deﬁnition with I/O complexity O(LA}F"‘P).

We then demonstrate that this upper bound is tight by providing a matching lower bound for the I/O
complexity of the attention backward passes. To achieve this, we employ the framework developed
in Hong & Kung (1981)), which shows that executing an algorithm on a machine with a two-level
memory hierarchy can be modeled by a red-blue pebble game (Definition [3.4) on a directed acyclic
graph. We present the large cache lower bound below, which shows as long as the cache size

M = Q(d?), the I/O complexity is at least Q(W).

Theorem 4.2 (Large cache lower bound, informal version of Theorem @D Suppose n is the input

length and d is the head dimension. Suppose the cache size M = Q(d®). Then the I/O complexity

. e 202 4B
of attention gradient computation using standard matrix multiplication is always Q(%).

4.2 SMALL CACHE

In the small cache case, we provide an upper bound below. Notice that this is better than the I/O

complexity of FlashAttention since O("2d2;;}"d3) > O(”Q%dz) when M = o(d?).

Theorem 4.3 (Small cache upper bound, informal version of Theorem [C.12). Suppose n is the
input length, d is the head dimension, and M = o(d?) is the cache size. There is an algorithm (see

Algorithm @) outputs a d X d matrix g = %)‘?) (Definition with 1/O complexity O("QL\/#),
time complexity O(n?d + nd?), and space complexity O(n? + d?).

Furthermore, we show that attention gradient computation can be reduced to matrix multiplication,
establishing a matching lower bound.

Theorem 4.4 (Small cache lower bound, informal version of Theorem|E.10). Suppose n is the input

length and d is the head dimension. Suppose the cache size M = o(d?). Then the I/O complexity of

. 2 2
attention gradient computation using standard matrix multiplication is always Q(%).

Our theory suggests that, when the commonly used hidden dimension size increases while some
commercial GPU cache sizes remain insufficiently large, our algorithm designed for small cache
sizes would become relevant and useful. For example, the current network architectures usually
set d = 128, so the dividing point is approximately d? x size_of(data type), e.g., 16,384 x 32-
bit = 65.5 KB for float32. For the NVIDIA A100 GPU, the size of each streaming multiproces-
sor (SM/L1 cache) is 192KB, so we can choose FlashAttention. However, for old GPUs such as

Under review as a conference paper at ICLR 2026

NVIDIA GTX1060, the size of each SM is 48 KB, so the algorithm for the small cache size is suit-
able. Whether a cache is large or small depends on the relation between M and d, not the absolute
size. We can also view the small-cache case as a high-dimensional scenario, which may apply to
other settings. Hence, our work provides theoretical insights and could guide future developments
in attention mechanisms tailored to evolving hardware limitations.

4.3 LOWER BOUND OF SPARSE ATTENTION FORWARD AND BACKWARD PASSES

Sparse attention is a generalization of standard attention and has been popular in practical applica-
tions. We refer readers to Section[2]for more discussion. To state our results, we first introduce some
notations. For any matrix A, we use nnz(A) to denote the number of non-zero entries in the matrix
A. We assume that sparse matrices are stored by listing only their non-zero entries along with their
coordinates. We assume sparse semi-ring matrix multiplication, which restricts operations to the
addition and multiplication of these entries. Each output entry (AB); ; can only be computed as the
sum of products given by >, A; By ;.

Theorem 4.5 (Lower bound for sparse attention forward and backward, formal version of Theo-
rem[1.2). Suppose n is the input length, d is the head dimension, and M is the cache size. Let Z 5 =
min{nnz(A4;),mmz(4s)}, Zx = nnz(X),Zax = min{nnz(A4;X),nnz(XAJ)}, Zaxa =
nnz(A1 X Ay). Then any algorithm for both attention forward and backward computation using
sparse semi-ring matrix multiplication has I/O complexity

QO () {ZEH-ZAZX ZA\/ZAXA+\/ZAZXZAX}>

min , .
M vM

Remark 4.6. When matrices involved in attention computation are dense, i.e., Zy = Q(nd), Zx =

Ad?), Zax = Qnd), and Zaxa = Qn?). In such case, our lower bound reads as

X 2 52 3 2 2 . .
Q(min{ 24 A}r”d , B %d }). Hence, it matches the result of lower bounds in the dense case.

Remark 4.7 (The dividing point for sparse attention). The dividing point of small cache and large
Zi+ZaZx _ ZavZaxat+VZaZxZax
M - ‘

cache can be computed by equaling two lower bounds, i.e.,

) VM
. . . Za+ZaZx i
Rearr = 4 . T T
earranging the equation gives / J2\4 VT TEN I T Note that when matrices are dense,
_ n?d*>4nd® _ d+d*/n ¢ . g
we have v M = 2dindE = T+d/n - Since we assume that n > d, this is exactly v M = d, i.e.,

M = d2, which matches the dividing point of the dense case.

5 TECHNICAL OVERVIEW

Upper Bound of Small Cache. In Section [C| we present algorithms for the backward passes of
attention in the small cache case, where M = o(d?). We observe that when M = o(d?), we have
rLde—i-nd3 > n2d+nd2
M \/M 2 72 3

complexity better than %, by reading/writing the n X n attention matrix and other n X d in-
termediate matrices from/to memory. In detail, our small cache algorithm (Algorithm [6]) follows the
computational graph in Figure[2]and is divided into four phases. In Phase 1 (Algorithm 2, we com-
pute the attention matrix f (Definition and write it to memory. In Phase 2 (Algorithm [3), we
compute ¢ (Definition [B.8)), incorporating the information from the upstream gradient dO. Phase
3 (Algorithm [)) computes the gradient component matrix p (Definition [B.9). Finally, in Phase 4
(Algorithm , we compute the final gradient g = A;'—pAg (Definition At a high level, our
algorithm splits the input and output matrices into blocks of size v/M x v/M. On the other hand,
FlashAttention divides the n x d input matrices into multiple k£ x d matrices, where k£ < n. Compared
to our upper bound, we can see that FlashAttention is not optimal in this case. Following the com-
putational graph in Figure 2| we perform the backward passes of attention using each v/M x v/ M
block as basic elements in standard matrix multiplication. Compared to forward passes, the com-
putational graph of backward passes is more complicated and requires more fine-grained analysis,
e.g., the four phases mentioned above. Through a detailed analysis of Algorithm [6] we establish
Theorem [£.3]

Upper Bound of Large Cache. In Section [D] we present algorithms for attention backward in
the large cache case, where M = Q(d?). Similar to FlashAttention, the n x n attention matrix

> n? 4+ nd. Then we can exploit this to design a better algorithm with I/O

Under review as a conference paper at ICLR 2026

f (Definition [B.5) cannot be directly loaded into the cache, even though it has been computed
and can be stored in memory. The overall algorithm (Algorithm [9) consists of two phases. In
Phase 1 (Algorithm , we compute S = A; X and h = A3zY, and these two matrices are then
passed to Phase 2. In Phase 2 (Algorithm , the inputs are matrices A1, Ao, S, h, O,dO € R™*¢
(Definitions and B.§), and vector [€ R™ (Definition [B.4). We vertically divide
the inputs into row block matrices of size B, x d or B. X d, where B,, = min{[M/4d],d} and
B. = [M/4d)]. Using these row block matrices as computation units, we follow the computational
graph (Fig. [2) and FlashAttention’s procedure. After accounting for the reads and writes of the
overall algorithm (Algorithm @]), we prove Theorem When the cache size is as large as O(nd),
the 1/O complexity can be reduced to O(nd + d?), which corresponds to the size of the input and
output of the algorithm.

Lower Bound of Large Cache and Small Cache. In Section [E| we establish the lower bounds for
the I/O complexity of attention gradient computation in both large and small cache cases. Following
Definitions and we analyze the red-blue pebble game on the computational graph of any
attention backward algorithm using standard matrix multiplication. More specifically, the key con-
cept is the M -partition, which decomposes the graph into subgraphs, ensuring that each subgraph
satisfies conditions related to dominator and minimum sets (Definitions and[E3).
Our proofs for the lower bound of backward passes builds upon the lemmas (Lemmas and [E.§)),
which provide the foundation for relating the number of subgraphs to the I/O operations required.
For the large cache scenario, M = Q(d?), we demonstrate that the I/O complexity scales with the
need to compute matrix products efficiently. In the small cache case, M = o(d?), we show that
higher I/O complexity is unavoidable due to the data transfers between cache and memory by re-
ducing to the standard matrix multiplication. These analyses are formally established in the proofs
of Theorems and [E-T0] Our Theorems [E.I0] the small cache lower bound case, requires a new
analysis of deviation.

Remark 5.1. The Softmax in Definition[3.1|can be changed to other non-linear activation functions
and our lower bound still holds. It is because we must compute matrix multiplication of size nxd and
d x m in non-linear attention. However, for linear attention, that is, A1 X A;AgY, our lower bound

is loose. This is because we can compute A;— As first, and then compute A, X A;—A:; Y .
~— —~— '

dxn nxd nxd dxd gxq dxd

Lower Bound of Sparse Attention Forward and Backward Passes. In Section [F|, we establish
lower bounds on the I/O complexity of sparse attention computation for both forward and backward
passes. Sparse matrix multiplication is considered, where only non-zero entries are stored and used
in computations. We derive I/O complexity bounds based on the non-zero counts of input matrices
and the I/O operations required for sparse matrix multiplication (Lemma [F.I). We extend these
bounds to the matrix products involved in the attention mechanism (Lemma [F.2), which requires
multiple sparse matrix multiplication analysis. We analyze scenarios where matrices are stored
in cache or require intermediate I/Os during computation to obtain the I/O complexity bounds for
both forward and backward passes (Theorems [F.3] and [F4), and Theorem [4.5] directly holds as a
consequence.

6 CONCLUSION

In this work, we established tight bounds on I/O complexity for both small and large caches. Our
results confirm that FlashAttention is optimal for both forward and backward on large cache sizes.
For small cache sizes, we provided improved upper and lower bounds compared to existing meth-
ods. Additionally, we derived lower bounds for sparse attention for both forward and backward and
across cache sizes. Our findings complete the theoretical foundation for I/O complexity in attention
mechanisms and provide a deeper understanding of memory efficiency in attention computations,
offering the insights for optimizing implementations in future deep learning architecture, and speed-
ing up training and inference of large language models.

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Jayadev Acharya, Sourbh Bhadane, Piotr Indyk, and Ziteng Sun. Estimating entropy of distributions
in constant space. Advances in Neural Information Processing Systems, 32, 2019.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Raghav Addanki, Chenyang Li, Zhao Song, and Chiwun Yang. One pass streaming algorithm for
super long token attention approximation in sublinear space. arXiv preprint arXiv:2311.14652,
2023.

Alok Aggarwal and S Vitter, Jeffrey. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116-1127, 1988.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity Con-
ference, pp. 1-23, 2022.

Maryam Aliakbarpour, Andrew McGregor, Jelani Nelson, and Erik Waingarten. Estimation of en-
tropy in constant space with improved sample complexity. Advances in Neural Information Pro-
cessing Systems, 35:32474-32486, 2022.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b0lc9ab7cbabf5¢c33b80b7bbc618857627/Model__
Card_Claude_3.pdf.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Michael A Bender, Rezaul Chowdhury, Alexander Conway, Martin Farach-Colton, Pramod Ganap-
athi, Rob Johnson, Samuel McCauley, Bertrand Simon, and Shikha Singh. The i/o complexity of
computing prime tables. In LATIN 2016: Theoretical Informatics: 12th Latin American Sympo-
sium, Ensenada, Mexico, April 11-15, 2016, Proceedings 12, pp. 192-206. Springer, 2016.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

Under review as a conference paper at ICLR 2026

Gianfranco Bilardi and Lorenzo De Stefani. The i/o complexity of toom-cook integer multiplication.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2034—
2052. SIAM, 2019.

Gavin Brown, Mark Bun, and Adam Smith. Strong memory lower bounds for learning natural
models. In Conference on Learning Theory, pp. 4989-5029. PMLR, 2022.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1-45, 2024.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration, 2024a.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024b.

Xi Chen and Binghui Peng. Memory-query tradeoffs for randomized convex optimization. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1400-1413.
IEEE, 2023.

Xi Chen, Christos Papadimitriou, and Binghui Peng. Memory bounds for continual learning. In
2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 519-530.
IEEE, 2022.

Anshuman Chhabra, Hadi Askari, and Prasant Mohapatra. Revisiting zero-shot abstractive summa-
rization in the era of large language models from the perspective of position bias. arXiv preprint
arXiv:2401.01989, 2024.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pp. 1-6, 1987.

Yi Cui, Di Xiao, Daren BH Cline, and Dmitri Loguinov. Improving i/o complexity of triangle
enumeration. /[EEE Transactions on Knowledge and Data Engineering, 34(4):1815-1828, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344-16359, 2022.

Lorenzo De Stefani. The i/o complexity of hybrid algorithms for square matrix multiplication. arXiv
preprint arXiv:1904.12804, 2019a.

Lorenzo De Stefani. On the i/o complexity of hybrid algorithms for integer multiplication. arXiv
preprint arXiv:1912.08045, 2019b.

Erik D Demaine and Quanquan C Liu. Red-blue pebble game: Complexity of computing the trade-
off between cache size and memory transfers. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures, pp. 195-204, 2018.

11

Under review as a conference paper at ICLR 2026

Erik D Demaine, Andrea Lincoln, Quanquan C Liu, Jayson Lynch, and Virginia Vassilevska
Williams. Fine-grained i/o complexity via reductions: New lower bounds, faster algorithms,
and a time hierarchy. arXiv preprint arXiv:1711.07960, 2017.

Shiyuan Deng and Yufei Tao. Subgraph enumeration in optimal i/o complexity. In 27th Inter-
national Conference on Database Theory (ICDT 2024). Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2024.

Yichuan Deng, Zhao Song, Zifan Wang, and Han Zhang. Streaming kernel pca algorithm with small
space. arXiv preprint arXiv:2303.04555, 2023.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. arXiv preprint arXiv:2404.02690, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, and Cedric Archambeau. Mem-
ory efficient continual learning with transformers. Advances in Neural Information Processing
Systems, 35:10629-10642, 2022.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Mohamed Osama Ahmed, Yoshua Bengio, and
Greg Mori. Attention as an rnn. arXiv preprint arXiv:2405.13956, 2024a.

Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and
Jiaxuan You. How far are we from agi. arXiv preprint arXiv:2405.10313, 2024b.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for learning.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 990—
1002, 2018.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Alon Gonen, Shachar Lovett, and Michal Moshkovitz. Towards a combinatorial characterization of
bounded-memory learning. Advances in Neural Information Processing Systems, 33:9028-9038,
2020.

William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk. Using advanced MPI: Modern
features of the message-passing interface. MIT Press, 2014.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp- 12098-12107. PMLR, 2023.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Weihua He, Yongyun Wu, and Xiaohua Li. Attention mechanism for neural machine translation:
a survey. In 2021 IEEE 5th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), volume 5, pp. 1485-1489. IEEE, 2021.

Jia-Wei Hong and Hsiang-Tsung Kung. I/o complexity: The red-blue pebble game. In Proceedings
of the thirteenth annual ACM symposium on Theory of computing, pp. 326-333, 1981.

12

Under review as a conference paper at ICLR 2026

Max Hopkins, Daniel Kane, Shachar Lovett, and Michal Moshkovitz. Bounded memory active
learning through enriched queries. In Conference on Learning Theory, pp. 2358-2387. PMLR,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurlIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits
of low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136,
2024d.

Saachi Jain and Matei Zaharia. Spectral lower bounds on the i/0 complexity of computation graphs.
In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, pp.
329-338, 2020.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Yuli Jiang, Xin Huang, and Hong Cheng. I/o efficient k-truss community search in massive graphs.
The VLDB Journal, 30(5):713-738, 2021.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

Tzu-Sheng Kuo, Aaron Lee Halfaker, Zirui Cheng, Jiwoo Kim, Meng-Hsin Wu, Tongshuang Wu,
Kenneth Holstein, and Haiyi Zhu. Wikibench: Community-driven data curation for ai evaluation
on wikipedia. In Proceedings of the CHI Conference on Human Factors in Computing Systems,
pp- 1-24,2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, Zhuoyan Xu, and Junze Yin. Conv-basis: A
new paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

13

Under review as a conference paper at ICLR 2026

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear approxi-
mations: A novel pruning approach for attention matrix, 2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024c.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in trans-
former. arXiv preprint arXiv:2406.14036, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024e.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024f.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang Chen, and Ming Cui. From 1lm to conversa-
tional agent: A memory enhanced architecture with fine-tuning of large language models. arXiv
preprint arXiv:2401.02777, 2024.

S Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-efficient interior
point method, with applications to linear programming and maximum weight bipartite matching.
arXiv preprint arXiv:2009.06106, 2020.

Al @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and
Yuwei Fang. Evaluating very long-term conversational memory of 1lm agents. arXiv preprint
arXiv:2402.17753, 2024.

Arnab Maiti, Vishakha Patil, and Arindam Khan. Multi-armed bandits with bounded arm-memory:
Near-optimal guarantees for best-arm identification and regret minimization. Advances in Neural
Information Processing Systems, 34:19553-19565, 2021.

Annie Marsden, Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Efficient convex optimization
requires superlinear memory. In Conference on Learning Theory, pp. 2390-2430. PMLR, 2022.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Sudrez, Yoann Dupont, Laurent Romary,

Eric Villemonte de La Clergerie, Djamé Seddah, and Benoit Sagot. Camembert: a tasty french
language model. arXiv preprint arXiv:1911.03894, 2019.

Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and Thomas
Kollar. Linearizing large language models. arXiv preprint arXiv:2405.06640, 2024.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Michal Moshkovitz and Naftali Tishby. A general memory-bounded learning algorithm. arXiv
preprint arXiv:1712.03524, 2017.

Roy Nissim and Oded Schwartz. Revisiting the i/o-complexity of fast matrix multiplication with
recomputations. In 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 482-490. IEEE, 2019.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAl Introducing openai ol-preview. https://openai.com/index/
introducing-openai-ol-preview/} 2024. Accessed: September 12.

Rasmus Pagh and Morten Stockel. The input/output complexity of sparse matrix multiplication. In
European Symposium on Algorithms, pp. 750-761. Springer, 2014.

14

 https://openai.com/index/introducing-openai-o1-preview/
 https://openai.com/index/introducing-openai-o1-preview/

Under review as a conference paper at ICLR 2026

Binghui Peng and Aviad Rubinstein. Near optimal memory-regret tradeoff for online learning. In
2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1171—
1194. IEEE, 2023.

Binghui Peng and Fred Zhang. Online prediction in sub-linear space. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1611-1634. SIAM, 2023.

Ran Raz. A time-space lower bound for a large class of learning problems. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 732-742. IEEE, 2017.

Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
Journal of the ACM (JACM), 66(1):1-18, 2018.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Barna Saha and Christopher Ye. I/o complexity of attention, or how optimal is flashattention? In
Forty-first International Conference on Machine Learning, 2024.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for linear regression
with small error. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pp. 890-901, 2019.

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422, 2024a.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? In Forty-first International Conference on Machine Learning, 2024b.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pp. 31613-31632. PMLR, 2023.

Tanmay Singh, Harshvardhan Aditya, Vijay K Madisetti, and Arshdeep Bahga. Whispered tuning:
Data privacy preservation in fine-tuning llms through differential privacy. Journal of Software
Engineering and Applications, 17(1):1-22, 2024.

Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: o(y/n) passes,
small space and fast runtime. arXiv preprint arXiv:2309.05135, 2023.

Vaidehi Srinivas, David P Woodruff, Ziyu Xu, and Samson Zhou. Memory bounds for the experts
problem. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pp- 1158-1171, 2022.

Jacob Steinhardt and John Duchi. Minimax rates for memory-bounded sparse linear regression. In
Conference on Learning Theory, pp. 1564—-1587. PMLR, 2015.

Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical
queries. In Conference on Learning Theory, pp. 1490-1516. PMLR, 2016.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354-356,
1969.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. arXiv preprint arXiv:1905.07799, 2019.

15

Under review as a conference paper at ICLR 2026

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Yael Tauman Kalai, Ran Raz, and Oded Regev. On the space complexity of linear programming
with preprocessing. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pp. 293-300, 2016.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
International Conference on Machine Learning, pp. 9438-9447. PMLR, 2020.

Mohd Usama, Belal Ahmad, Enmin Song, M Shamim Hossain, Mubarak Alrashoud, and Ghulam
Muhammad. Attention-based sentiment analysis using convolutional and recurrent neural net-
work. Future Generation Computer Systems, 113:571-578, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jeffrey Scott Vitter. External memory algorithms and data structures: Dealing with massive data.
ACM Computing surveys (CsUR), 33(2):209-271, 2001.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture worth
a thousand words? delving into spatial reasoning for vision language models. arXiv preprint
arXiv:2406.14852, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. Advances
in neural information processing systems, 35:24824-24837, 2022.

Blake Woodworth and Nathan Srebro. Open problem: The oracle complexity of convex optimization
with limited memory. In Conference on Learning Theory, pp. 3202-3210. PMLR, 2019.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024b.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan,
and Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse
modern hopfield model. In Forty-first International Conference on Machine Learning (ICML),
2024a.

Xinchao Xu, Zhibin Gou, Wenquan Wu, Zheng-Yu Niu, Hua Wu, Haifeng Wang, and Shihang
Wang. Long time no see! open-domain conversation with long-term persona memory. arXiv
preprint arXiv:2203.05797, 2022.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In First Conference on Language Modeling,
2024b.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-transformer: Modelling
long-range context via binary partitioning. arXiv preprint arXiv:1911.04070, 2019.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and San-
jiv Kumar. O (n) connections are expressive enough: Universal approximability of sparse trans-
formers. Advances in Neural Information Processing Systems, 33:13783—-13794, 2020.

16

Under review as a conference paper at ICLR 2026

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283-17297, 2020.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In /CML. arXiv preprint arXiv:2302.02451, 2023.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024.

Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. In-memory big data
management and processing: A survey. IEEE Transactions on Knowledge and Data Engineering,
27(7):1920-1948, 2015.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024a.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the por-
cupine: Expressive linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347,
2024b.

Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Self-
guide: Better task-specific instruction following via self-synthetic finetuning. arXiv preprint
arXiv:2407.12874, 2024.

17

Under review as a conference paper at ICLR 2026

Appendix

Roadmap. In Section|A] we present a more comprehensive overview of related work pertinent to
our study. In Section [B] we introduce additional preliminaries, including notations and definitions
of intermediate variables. Section [C] provides algorithms and establishes an upper bound theorem
for the attention backward pass in small cache case M = o(d?). In Section @], we offer algorithms
and an upper bound theorem for the attention backward pass in large cache case M = Q(d?). In
Section [E] we provide proofs for our attention backward I/0O complexity lower bound results. In
Section [F| we prove the I/O complexity lower bounds for sparse attention. In Section[G] we discuss
the social impact of our work.

A MORE RELATED WORK

Large Language Models. The exceptional success of generative large language models (LLMs),
such as GPT-4 (Achiam et al., 2023), Claude 3 (Anthropic, [2024)), Gemini 1.5 (Reid et al.| [2024)),
Llama 3.1 (Llama Team, |2024), Mistral Nemo (Jiang et al.| 2023)), Phi 3.5 (Abdin et al.| [2024), is
fundamentally attributed to the transformer architecture introduced by [Vaswani et al.|(2017) and all
support at least 128k input token length. The transformer architecture and its self-attention mech-
anism have become indispensable in leading natural language processing (NLP) models (Chang
et al.| [2024), demonstrating remarkable capabilities across a diverse array of applications, including
language translation (He et al.| 2021), sentiment analysis (Usama et al.l [2020), language model-
ing (Martin et al) [2019), the integration of differential privacy (Singh et al., [2024; Liang et al.,
2024e)), and multi-modal tasks (Zhang et al., [2024a; |Liang et al., 2024f; Wang et al., 2024). Trans-
formers’ emergent compositional abilities (Dzir1 et al.| [2024; |Xu et al., 2024b) and proficiency in
in-context learning (Olsson et al.,[2022; [Min et al.| |2022; Shi et al.,[2024b)) have led some to consider
them as early indicators of Artificial General Intelligence (AGI) (Bubeck et al.,[2023). As such, the
transformer architecture plays a pivotal role in advancing the field of Al

Attention Computation Acceleration. The quadratic time complexity of attention computation
with respect to the length of the input sequence (Vaswani et al.| [2017) poses significant computa-
tional challenges, especially for long sequences. Consequently, accelerating attention computation
has become a crucial research area. From a theoretical standpoint, numerous works focus on ap-
proximating the attention matrix to accelerate computation (Han et al., 2024; Alman & Song, [2023;
2024a;Liang et al., 2024c;/Alman & Song,,|2024b; Liang et al., [2024f)). Experimental approaches in-
volve modifying model architectures and optimizing implementations to accelerate inference. Meth-
ods such as Mamba (Gu & Daol 2023} |Dao & Gu, 2024), Linearizing Transformers (Zhang et al.,
2024b; |[Mercat et al.|, 2024)), Hopfield Models (Hu et al., [2023; Wu et al., 2024b; |Hu et al.| [2024c;
Xu et al.| 2024a; Wu et al.| [2024a; Hu et al., 2024alb) and PolySketchFormer (Zandieh et al., 2023
Kacham et al., 2023)) aim to improve model performance and inference speed. System-level opti-
mizations, such as FlashAttention (Dao et al., 2022 |[Daol, 2023} [Shah et al.| 2024)) and block-wise
parallel decoding (Stern et al., 2018)), address bottlenecks in attention mechanisms and enhance
inference speed through efficient implementation strategies. Collectively, these advancements con-
tribute to making attention mechanisms more scalable and efficient, facilitating the deployment of
large-scale language models. (Shi et al.,2024a)) accelerates inference by compressing the input text.

More about Attention Computation Acceleration. The quadratic time complexity of attention
computation with respect to the length of the input sequence (Vaswani et al.,|2017) poses significant
computational challenges, especially for long sequences. Consequently, accelerating attention com-
putation has become a crucial research area, with approaches broadly divided into two categories:
(1) theoretical optimization of computational complexity (Alman & Song, 2023} [2024a), and (2)
experimental improvements to model performance (Dao et al.l 2022} [Dao, [2023; [Shah et al., 2024;
Ge et al., 2023 [Feng et al., 2024a).

From a theoretical standpoint, numerous works focus on approximating the attention matrix to ac-
celerate computation. For example,|Alman & Song|(2023;2024a) utilize polynomial kernel approx-
imation techniques (Aggarwal & Alman, 2022) to speed up both training and inference of a single
attention layer, achieving almost linear time complexity, and extend this approach to multi-layer
transformer (Liang et al.l [2024c)) and tensor attention (Alman & Song} [2024b; |Liang et al.|, 2024f)).
Other theoretical contributions include the conv-basis method introduced by |[Liang et al.| (2024al)

18

Under review as a conference paper at ICLR 2026

and a near-linear time algorithm proposed by Han et al.| (2024)) under the assumptions of uniform
softmax column norms and sparsity.

Experimental approaches involve modifying model architectures and optimizing implementations
to accelerate inference. Methods such as Mamba (Gu & Dao, 2023} [Dao & Gu, 2024)), Lineariz-
ing Transformers (Zhang et al., 2024bj; Mercat et al, 2024), PolySketchFormer (Zandieh et al.,
2023} [Kacham et al.,2023)), and various implementations of the Hopfield Model (Hu et al.,[2024b;aj;
Wu et al.l 2024a; [Xu et al.l 2024a; Hu et al., 2024c; Wu et al., [2024b; [Hu et al.l 2023) aim to im-
prove model performance and inference speed. Additionally, specific techniques like weight pruning
(Liang et al.,|2024b; [Li et al.,2024)) have been developed to accelerate LLM generation. Some other
techniques are introduced for efficient adaptation, such as LoRA (Hu et al., 2022} |Zeng & Lee, 2024;
Hu et al.,2024d) and prefix turning (L1 & Liang, 2021} Liang et al., [2024d). System-level optimiza-
tions, such as Flash Attention (Dao et al.,[2022; |Daol 2023} Shah et al.||2024) and block-wise parallel
decoding (Stern et al.| [2018), address bottlenecks in attention mechanisms and enhance inference
speed through efficient implementation strategies. Collectively, these advancements contribute to
making attention mechanisms more scalable and efficient, facilitating the deployment of large-scale
language models.

More about Learning with Bounded Memory and I/O Complexity. Learning with bounded
memory has been studied in various fields in machine learning such as online learning (Maiti et al.,
2021} Srinivas et al., 2022; |Peng & Rubinstein, 2023} Peng & Zhang| 2023)), parity learning (Stein-
hardt et al., [2016} |[Raz, [2017};|2018}; \Garg et al., 2018)), convex optimization (Woodworth & Srebro),
2019; [Marsden et al., 2022} |(Chen & Peng, [2023)), active learning (Hopkins et al.| [2021), learning
linear classifiers (Brown et al.l 2022), attention computation (Addanki et al., [2023)), linear regres-
sion (Steinhardt & Duchi, 2015} Sharan et al.l 2019; Brown et al.,|2022), linear programming (Tau-
man Kalai et al [2016; [Liu et al.| [2020), semi-definite programming (Song et al., 2023)), principal
component analysis (Deng et al.,|2023)), continual learning (Chen et al.| 2022} |[Ermis et al.,[2022)), en-
tropy estimation (Acharya et al., 2019; |Aliakbarpour et al.,|2022) and others (Moshkovitz & Tishby),
2017;|Gonen et al., 2020)).

A common memory model in computational systems is the two-level memory hierarchy. In this
model, there are two layers of memory: a small but fast layer called the cache, and a large but slower
layer called the memory. The 1/O (input/output) complexity of an algorithm measures its efficiency
based on the number of data transfer operations it performs between the cache and the memory.
In domains such as big data analytics and database management, these data transfers can become
significant performance bottlenecks because massive datasets cannot be entirely accommodated in
the cache, and thus optimizing I/O is essential for fast data retrieval and storage, directly impacting
query performance and system scalability (Gropp et al., [2014; Zhang et al.,[2015). The early work
of Hong & Kung| (1981)) formulated the I/O complexity mathematically using the language of graph
theory. |Vitter| (2001) provides a comprehensive survey of the I/O complexity of various batched
and online problems. There exists a substantial body of work on the I/O complexity of numerous
problems, including sorting (Aggarwal & Vitter, |1988)), graph algorithms (Cui et al., 2020; [Jain
& Zaharial 2020} Jiang et al., 2021; Deng & Taol 2024)), fine-grained I/O complexity (Demaine
et al.l 2017)), computational trade-off in data transfers (Demaine & Liuj [2018)), computing prime
tables (Bender et al.,[2016)), attention computation (Saha & Yel[2024)), integer multiplication (Bilardi
& De Stefani, |2019; [De Stefani, 2019b), and matrix multiplication (De Stefani, 2019a; [Nissim &
Schwartz, [2019).

Sparse Attention. Over the past few years, there has been extensive research on sparse Trans-
former/Attention models with weights pruning and inputs pruning, aimed at accelerating computa-
tion and training (Ye et al.,|2019; [Sukhbaatar et al., 2019} Beltagy et al.,|2020; Tay et al.l 2020} |Guo
et al.| 2023} Shirzad et al., [2023; |Sun et al.l 2024; |Li et al., 2024; Deng et al., 2024} |Chen et al.,
2024a)). In practice, the attention matrix is sparse, significantly reducing computational costs. Theo-
retical studies, such as|Yun et al.| (2020), have demonstrated that sparse transformers are expressive
enough and can achieve universal approximation properties.

19

Under review as a conference paper at ICLR 2026

B PRELIMINARY

In Section[B.T] we define some basic notation we will use. In Section[B.2] we introduce the memory
hierarchy we consider. In Section we state important facts related to fast matrix multiplication.
In Section[B.4] we define several intermediate functions which will arise in our algorithms.

B.1 NOTATIONS

For any positive integer n, we define [n] := {1,2,...,n}. For two same length vector z and y,
we use (z,y) to denote the inner product between z and y, i.e., (z,y) = > ., z;y;. We use o
to denote the Hadamard product i.e. the (4, j)-entry of A o B is A; ;B; ;. We use x o y to denote
vector that ¢-th entry is x;y;. Let 1,, denote the length-n all ones vector. It is not hard to see that
(xoy,1,) = (z,y). For a vector x, we use = ' to denote the transpose of z. For a matrix A, we use
AT to denote the transpose of matrix A. For a matrix A, we use exp(A) to denote the matrix that
(4, j)-th coordinate is exp(A; ;).

Given a matrix A € R"*™, we index an individual entry as A[i, j]. The i-th row is denoted A[i]
while the j-th column is denoted A[*,j]. A[i1 : 42,71 : jo| denotes a block of A consisting of
entries (i,7) where i € [i1,i2] and j € [j1, j2]. Given a block size B, the block A[(i —1)- B+ 1 :
i-B,(j—1)-B+1:j-B]isdenoted AP)[i, j].

For a vector v € R™, we similarly denote entries v[i], a contiguous block of entries as v[iy : i3], and
the i-th block of size B as v(®)[i]. Let diag(v) denote the matrix D € R™*" with D[i,i] = v[i].

B.2 MEMORY HIERARCHY

In this study, we consider a two-level memory hierarchy composed of a small but fast layer called
the cache and a large, slower layer referred to as the memory. We assume that the memory has
unlimited capacity, while the cache is constrained by a finite size M. Moreover, all computations
are performed exclusively within the cache.

B.3 MATRIX MULTIPLICATION

We define matrix multiplication notation and state some well-known facts here.

Definition B.1. Let nq, no, ns, denote any three positive integers. We use Tmat (11, na, n3) to denote
the time of multiplying an ny X no matrix with another ne X ng.

Then, we introduce a well-known fact.

Fact B.2. Let ni,no,n3, denote any three positive integers. Tmat(n1,n2,n3) =
O(Tmat(n1,n3,n2)) = O(Tmat(n2,n1,13)) = O(Tmat(n2,n3,n1)) = O(Tmat(n3,n1,n2)) =
O(ﬂnat(n&n%’nl))-

B.4 DEFINITIONS OF INTERMEDIATE VARIABLES

We start by some definitions about X € R%x¢,

Definition B.3 (Definition 3.4 in Alman & Song (2024a)). Let Ay, Ay € R™*? be two matrices. Let
X € R¥x4,

Let us define function A(X) to be:
A(X) :=exp(A1 XAJ).
—_——
nxn

Definition B.4 (Definition 3.5 in |Alman & Song| (2024a)). For A(X) € R"™*" defined in Defini-
tion we define the softmax normalizing vector [(X) € R to be

UX) = AKX)- 1, .

nxn nXx1

20

Under review as a conference paper at ICLR 2026

Definition B.5 (Definition 3.6 in |/Alman & Song| (2024a)). Suppose that [(X) € R™ is defined as
in Definition |B.4} Let A(X) € R"*"™ be defined as in Definition For a fixed jo € [n], let us
consider f(X);,

f(X)jo = Z(X);ol A(X>j0 :
———
scalar nx1
Let f(X) € R™ ™ denote the matrix where jo-th row is (f(X)j,) "
Furthermore, the matrix form of f(X) is
f(X) = diag(I(X))A(X)

We then define h(Y) related to Y € RI*4,
Definition B.6 (Definition 3.7 in |/Alman & Song| (2024a)). For A3 € R™ 4 gnd Y € R4X4 e
define h(Y) € R"*4 as:

hY):= A3 YV .

~—=
nxd dxd

Let us define the forward output matrix O.
Definition B.7. Let f(X),h(Y) be defined in Definition @ and @ We define the output of
attention as:

0 = f(X)h(Y)
nxn 7);;

where O € R™*4 is the output matrix of attention forward computation.

Now, we define ¢, which incorporates the information from upstream gradient.

Definition B.8 (Definition C.10 in|Liang et al. (2024c)). Let dO € R™*4 pe the upstream gradient,
the matrix resulting from the application of the chain rule. Define h(Y) € R"*4 as in Deﬁnition@

We define q(Y) € R™*™ as

Finally, we define the gradient component matrix p.
Definition B.9 (Definition C.5 in |Alman & Song (2024a)). For every index jo € [n], we define
p(X);, € R™as
P(X)jy = (diag(f(X)jo) = F(X)jo f(X)j)a(Y) jo-
We define p(X) € R™*™ in the sense thatp(X);z is the jo-th row of p(X). Additionally, p(X) has
matrix form as
p(X) = f(X) o q(Y) — diag((f(X) 0 q(Y)) - 1) f(X)
= f(X)oq(Y) — diag((0 0 dO) - 1,) f(X)
where f(X), O are defined in Definition|B.3|and|B.7} and q(Y'),dO are defined in Definition|B.8|

C 1/0 COMPLEXITY UPPER BOUND FOR SMALL CACHE

In this section, we prove the I/0 complexity upper bound (Theorem [C.12)) for small cache case M =
o(d?). Specifically, in Section we introduce an algorithm of attention gradient computation
without cache to guide our algorithm design. Section [C.2] presents algorithms and analyses for
attention gradient computation in the small cache setting. Finally, Section [C.3] provides the upper
bound theorem for the small cache case.

21

Under review as a conference paper at ICLR 2026

C.1 ALGORITHM FOR ATTENTION BACKWARD WITHOUT CACHE

Using results from |Alman & Song| (2024a), we can compute the gradient in Tiyat(n,d,n) +
Tmat (1, d, d) time.

Lemma C.1 (Attention gradient computation, Lemma C.8 in |Alman & Song| (2024a)). If it holds
that

s Define Ay, Ay, A3, dO € R™ % Define X,Y € R to be several input fixed matrices.

o Let X,Y € R¥*9 denote matrix variables (we will compute gradient with respect to X).
* Letg dL(X) € Rdxd (Deﬁmnon
Then, gradient g € R can be computed in Trar (0, d, 1) + Tras (1, d, d) time.

We first give a naive algorithm that have not utilized cache to compute the gradient (Algorithm T).

Algorithm 1 Attention gradient computation without cache. See more details in Section B and C of
Alman & Song|(2024a)) and Section F of [Liang et al.| (2024c).

1: procedure ATTENTIONGRADIENTNOCACHE(A, Ay, A3, dO € R™*% XY € R¥x4) >
Lemmal|C.2] Lemma

2: Read A1, Ao, X, 1n1t1ahze A < 0™*" compute A < A + A; X AJ, and delete X

3 Compute A < exp(A), initialize [< 0", and compute [<— [+ A -1

4 Initialize f + 0™*", compute f < f + diag(l)_lA, and delete A, d

5: Read As, Y, initialize h < 0"*%, compute h < h + A3Y, and delete A3,Y

6: Read dO, initialize ¢ +— 0™*"™, compute ¢ < ¢ + dOAT, and delete dO, h

7.

8

9

10:

Initialize p < 0™*", compute p < p + f o g — diag((f o ¢) - 1) f, and delete f, q
Initialize g <~ 0"*™, compute g <~ g + A] pAs, and delete Ay, Ay, p
: returng >g= %)f) € R¥4, see Deﬁnition
end procedure

Lemma C.2 (Correctness). The ATTENTIONGRADIENTNOCACHE (Algorithm|[I)) outputs a d x d
matrix dﬁ(;() defined in Deﬁnition

Proof. From Lemma|C.T] we know this holds. O

Lemma C.3 (Time/space complexity). There exists an algorithm (see Algorithm|[l) that can compute
the exact gradient in Deﬁnltlon in Tmat (n, d, 1) + Tmat (n, d, d) time and O(n?* + d?) space.

Proof. From Lemma [C.I] we can prove the time complexity. Since the stored matrices have three
sizes, namely n x d, n x n, d X d, the space complexity is O(n? + nd + d?) = O(n? + d?). O

C.2 ALGORITHMS FOR ATTENTION BACKWARD IN SMALL CACHE
We now give algorithms to compute the upper bound of small cache case M = o(d?) in attention
backward computation.

First, we give the algorithm and analysis for Phase 1 (see Algorithm [2)) to compute f defined in
Definition[B.3]

Lemma C.4 (Correctness of Phase 1). The ATTENTIONGRADIENTCACHEPHASE! (Algorithm 2))
outputs a n X n matrix f defined in Definition[B.3]

Proof. The algorithm first computes S = A; X. Then it computes A = SAJ, A = exp(A), and
[= A- 1. Finally, it outputs f = diag(l)~* A which is f defined in Deﬁnition O

Lemma C.5 (I/O complexity of Phase 1). The I/O complexity of ATTENTIONGRADIENTCACHEP-

HASE] (Algorithm is O(”ZL\/#).

22

Under review as a conference paper at ICLR 2026

Proof. InPhase 1 (Algorithm the number of items in cache is at most 382+ B < 4B2? < M. For
each iteration in computing S = A; X and A = SAJ, the algorithm reads O(B?) from memory
into cache. This is the dominating factor of the I/O complexity of the algorithm. Thus, the I/O

complexity of Phase 1is O(%5# B2) + O(%g5 B?) = (24l) — (ko). O

Algorithm 2 Attention gradient computation with cache phase 1. Compute f.

1: procedure ATTENTIONGRADIENTCACHEPHASE1(A;, Ay € R"*4, X ¢ R4 M € N,) >

Lemmal[C.4] Lemma[C.3]

2: B+ [\/M/4]

3: /*Phase 1: Compute f*/

4: for 1 <i<[n/B]do

5: for1 <j <[d/B]do

6: Initialize SB[, j] +- 0%* in cache

7 for1 <k <[d/B]do

8: Read A?)[i, k] and X Bk, j] into cache

9: Compute SB)[i, j] « SBV[i, j] + AP [i, k)X B[k, j] in cache > = 41 X
10 Delete AgB) [i, k] and X (P)[k, 5] from cache

11: end for

12: Write S®)[4, 5] in to memory, and delete S(7)]i, j] from cache
13: end for

14: end for
15: for 1 <i<[n/B]do

16: Initialize 1(®)[i] + 0 in cache

17: for1 <j <[n/B]do

18: Initialize A®)[4,] - 08*5 in cache

19: for1 <k <[d/B|do

20: Read S(P)[i, k] and (AJ)(B)[k, j] into cache

21: Compute AP)[i, j] < AB[i j] + SB[i, k](A;) P)[k, j] in cache >
A=SAJ

22: Delete SP)[i, k] and (Ag)(B)[k, j] from cache

23: end for

24: Compute AP)[i, 5] + exp(AP)[i, j]) in cache, and write AP)[4, 5] into memory

25: Compute [(B)[i] « 1(B)[i] + AB)[i, j] - 1 in cache pl=A-1

26: Delete A(P)[i, j] from cache

27: end for

28: for1 <j<|[n/B]do

29: Initialize f(P)[i, j] < 0B*B in cache

30: Read A(P)[i, j] into cache

31: Compute fB)i, j] « fB]i, j] + diag (1P [i]) "L AP i, j]

32: Write f(®)[4,] into memory, and delete A®)[i, j] and f(P)[i, j] from cache

33: end for

34: Delete I()[i] from cache

35: end for

36: return f > f € R" ™, where f is defined in Deﬁnition

37: end procedure

Second, we give the algorithm and analysis for Phase 2 (see Algorithm [3)) to compute ¢ defined in
Definition[B.8

Lemma C.6 (Correctness of Phase 2). The ATTENTIONGRADIENTCACHEPHASE?2 (Algorithm
outputs a n X n matrix q defined in Definition|B.8}

Proof. The algorithm first computes h = AzY. Then, it outputs ¢ = dOh' which is exactly the
same as ¢ defined in Definition|B.§ L]

23

Under review as a conference paper at ICLR 2026

Lemma C.7 (I/O complexity of Phase 2). The I/O complexity of ATTENTIONGRADIENTCACHEP-

HASE2 (Algorithm is O(”QL\/M"dz).

Proof. In Phase 2 (Algorlthm 3) the number of items in cache is at most 3B% < 4B2? < M. For
each iteration in computlng h = A3Y and ¢ = dOR', the algorithm reads O(BQ) from memory
into cache. This is the dommatmg factor of the I/O complexity of the algorithm. Thus, the I/O

complexity of Phase 2 is O(%55 ndp2y 4 O(”B—‘fBz) = O(w) = O(”zL\/ﬁndz). O

Algorithm 3 Attention gradient computation with cache phase 2. Compute q.

1: procedure ATTENTIONGRADIENTCACHEPHASE2(A3,dO € R™*?, f € R™*" Y € Rx9,
M e Ny) > Lemma|C.6] Lemma

22 B+ |\ /M/4]
3: /* Phase 2: Compute g */
4: for 1 <i < [n/B]do
5: for1 <j<[d/B]do
6: Initialize h(B)[i, j] - 0B*8 in cache
7: for1 <k < [d/B]do
8: Read A()[k] and Y (B)[k, j] into cache
9: Compute hB)[i, j] + hB)[i, j] + AP [i, k)Y B[k, j] in cache
10: Delete AS”[i, k] and Y (B)[k, 5] from cache
11: end for
12: Write h(P)[i, 5] in to memory, and delete 2(P)[i, j] from cache
13: end for
14: end for
15 forl1<i<[n/B]|do
16: for1 <j <[n/B]do
17: Initialize ¢(P)[i, j] < 05*5 in cache
18: for1 <k <[d/B|do
19: Read dOP)[i, k] and (hT)(B [k, 7] into cache
20: Compute ¢(B)[i, j] + ¢P]i,] +dOP)[i, k](hT)B)[k, j] in cache
21 Delete dOP)[i, k] and (hT))[k, §] from cache
22: end for
23: Write ¢(®)[4, 5] in to memory, and delete ¢(")[4, 5] from cache
24: end for
25: end for
26: return q > g € R™" where ¢ is defined in Deﬁniton

27: end procedure

Then, we give the algorithm and analysis for Phase 3 (see Algorithm [) to compute p defined in
Definition[B.9l

Lemma C.8 (Correctness of Phase 3). The ATTENTIONGRADIENTCACHEPHASE3 (AlgorithmH)
outputs a n X n matrix p defined in Definition|[B.9|

Proof. The algorithm first computes v = (f o ¢) - 1. Then it outputs p = f o ¢ — diag(v) f. O

Lemma C.9 (I/O complexity of Phase 3). The I/O complexity of ATTENTIONGRADIENTCACHEP-
HASE3 (AlgorithmH} is O(\;‘%)

Proof. Tn Phase 3 (Algorithm[4) the number of items in cache is at most 3B + B < 4B? < M. For
each iteration in computing v = (f o q) - 1 and p = f o ¢ — diag(v) f. The algorithm reads O(B?)

from memory into cache. This is the dominating factor of the I/O complexity of the algorithm. Thus,
the I/0 complexity of Phase 2 is O(g—iBQ) = O("T;) = O(\?QM) O

24

Under review as a conference paper at ICLR 2026

Algorithm 4 Attention gradient computation with cache phase 3. Compute p.

1: procedure ATTENTIONGRADIENTCACHEPHASE3(q € R™*"™, f € R™*"™ M € N,) >
Lemmal|C.8] Lemma[C.9]
2: B+ |\/M/4]
3: /* Phase 3: Compute p */
4: for 1 <i < [n/B]do
5: Initialize v(#)[i] <— 07 in cache
6: for 1 <j <[n/B]do
7: Read f(®)[i, j] and ¢'P) i, §] into cache
8: Compute v 2 [i] v [i] + (fP)[i, 5] 0 [, 5]) - 1 >v=(foq)-1
9: Delete f(®)[i, j] and ¢'®) i, j] from cache
10: end for
11: for1 <j <[n/B]do
12: Initialize p(®)[i, 5] + 0%*5 in cache
13: Read f(®)[i, j] and ¢P)]i, §] into cache
14: Compute p B[,] = pP)[i, j] + fP]i, j] 0 ¢P[i, 5] — diag(v P [i]) fP]i, j]
15: Delete f(®)[i, j] and ¢®) i, j] from cache
16: Write p(5)[i, j] in to memory, and delete p(Z)]i, j] from cache
17: end for
18: Delete v(?)[i] from cache
19: end for
20: return p > p € R™ ™ where p is defined in Deﬁniton

21: end procedure

Lastly, we give the algorithm and analysis for Phase 4 (see Algorlthm to compute dL(X) .

Lemma C.10 (Correctness of Phase 4). The ATTENTIONGRADIENTCACHEPHASE4 (AlgorithmE])
outputs a d X d matrix g = dL(X) (Deﬁmnon

Proof. The algorithm first computes 7' = A] p. Then it outputs g = T A,. O

Lemma C.11 (I/O complexity of Phase 4). The I/O complexity of ATTENTIONGRADIENTCACHEP-

HASE4 (Algorithm is O(%).

Proof. In Phase 4 (Algorithm |5)) the number of items in cache is at most 3B% < 4B? < M. For
each iteration in computlng T = Alpand g = TA,. The algorithm reads O(BZ) from memory
into cache. This is the dommatmg factor of the I/O complexity of the algorithm. Thus, the I/O

complexity of Phase 2 is O (%54 ndp2y 4 O("B—‘fBQ) = O(M) = O("zL\/ﬁmﬁ). O

C.3 UPPER BOUND FOR ATTENTION BACKWARD IN SMALL CACHE M = o(d?)

When cache size is not so big, i.e. M = o(d?), the attention backward is equivalent to matrix

multiplication, thus having O(2 ‘i\;;vl‘d) bound on the I/O complexity.

We show the upper bound theorem below for the overall algorithm (see Algorithm [6)) to solve the
attention backward in small cache case.

Theorem C.12 (Small cache upper bound, formal version of Theorem@.3). Suppose n is the input
length, d is the head dimension, and M is the cache size. There is an algomhm (see Algorithm [6)

outputs a d X d matrix g = dL X) (Deﬁmnon with I/O complexity O£ ‘f/ﬂld), time complexity
Tmat (1, d,n) + Tmat (0, d, d), and space complexity O(n? + d?).

Proof. Time/space complexity.

25

Under review as a conference paper at ICLR 2026

. dL(X)
Algorithm 5 Attention gradient computation with cache phase 4. Compute —7~.

1: procedure ATTENTIONGRADIENTCACHEPHASE4(A1, Ay € R™¥4, p e R"*", M € N,) >
Lemmal[C.10] Lemma|[C.11
B« [\/M/4]

; . dL(X)
/* Phase 4: Compute — 5 */

2

3

4: for1 <i < [d/B]do

5: for1 <j<|[n/B]do

6: Initialize T5)[i, 5] +~ 0%*5 in cache

7 for 1 <k <[n/B]do

8 Read (A)P)[i, k] and p'P)[E, j] into cache

9: Compute TB)[i, j] < TP)[i, j] 4+ (AT)P [i, k]pB) [k, j] in cache > T = A p
10: Delete (A])B)[i, k] and p®)[k, j] from cache
11: end for
12: Write T®)[i, j] in to memory, and delete T7?)[i, j] from cache
13: end for

14: end for
15: for1 <i < [d/B]do

16: for1 <j <[d/B]do

17: Initialize g(®)[4, j] - 0%*5 in cache

18: for 1 <k <[n/B]do

19: Read T®)[, k] and AL [k, j] into cache

20: Compute gB)[i, j] « ¢ B)[i, 5] + TP)i, k]AgB)[k,j] in cache >g=TA,
21: Delete 7B)[i, k] and AS®) [k, j] from cache

22: end for

23: Write ¢(®)[i, j] in to memory, and delete ¢‘?) i, j] from cache

24: end for

25: end for

26: returng >g= % € R¥™4 see Deﬁnition

27: end procedure

First, we notice that Algorithm [6] calculates the same gradients as the Algorithm [T] except that the
former utilize cache to speed up the computation and specify the standard matrix multiplication
computations in cache. Thus, the overall time complexity Trat(n, d, 1) + Tmat (1, d, d), and space
complexity O(n? + d?) should be the same as Lemma

I/O complexity.

From Lemma |C.5] |C.7, |C.9], and |C.11}, we know the overall I/O complexity is O n’d+nd’ +
prexity VM

n? _ n“d+nd
O(Ja7) = O(=75)-

Correctness.

From Lemma and the algorithm computes the correct dﬁg?) . O

Algorithm 6 Attention gradient computation with small cache.

1: procedure ATTENTIONGRADIENTCACHE(A, A, A3,dO € R™¥4, XY € R4 M € Ny)
> Theorem [C.12]

2 f < ATTENTIONGRADIENTCACHEPHASE1 (A1, Ay, X, M) > see Algorithm
3: q < ATTENTIONGRADIENTCACHEPHASE2(A3,dO, f,Y, M) > see Algorithm
4 p < ATTENTIONGRADIENTCACHEPHASE3(q, f, M) > see Algorithm 4|
5: g < ATTENTIONGRADIENTCACHEPHASE4 (A1, Ao, p, M) > see Algorithm
6: returng >g= % € R4, see Definition
7: end procedure

26

Under review as a conference paper at ICLR 2026

D 1/0 COMPLEXITY UPPER BOUND FOR LARGE CACHE

In this section, we establish the upper bound (Theorem[D.5)) for the I/O complexity in the case where
the cache size is large, specifically when M = Q(d?). Sectionpresents algorithms and analyses
for attention gradient computation in the large cache setting. Section provides the upper bound
theorem for the large cache case.

Since our goal is to compute the backward pass of the attention mechanism, and the forward pass has
already been performed, it is natural to assume that we have access to the softmax normalizing vector
[:=A-1cR" (Deﬁnition and the final attention forward output O = diag(l) "' AV € R"*4
(Definition where A = exp(A; X A5) (Definition .

By utilizing these precomputed quantities from the forward pass, we can efficiently proceed with
the backward computation while optimizing the I/O operations required.

D.1 ALGORITHMS FOR ATTENTION BACKWARD IN LARGE CACHE

We first give Algorithm [7|and its analysis in large cache case for computing intermediate variables
S, h

Algorithm 7 Attention gradient computation large cache phase 1. Compute 5, h.

1: procedure ATTENTIONGRADIENTLARGECACHEPHASEI(A;, A3 € R™¥4, XY € R4x?

M eNy) > Lemma|D.I] Lemma|D.2]
B, + min{[44],d} and B + [}

3: Vertically divide A; into T, = TB%] blocks Aj 1,..., A1 1, of size B, x d each, and
horizontally divide X into T, = [%-\ blocks X, 1,..., X« 1, of size d x B, each

4: Vertically divide A3z into T, = [£-] blocks Az 1,..., Az 1, of size B, x d each, and
horizontally divide Y into T, = [B%] blocks Y 1,..., Y, 1, of size d x B, each

5: > Here A, ;, As; € R5-*d means the i-th row block of Ay, A3 fori € [T}], and
X

»

j+Ya ; € R¥Be means j-th column block of X, Y for j € [T.]
6 for1 <i<T,do
7: Read A4, ;, A3, € RE%d into cache
8: for1 <j<T.do
9: Read X, ; € R?*Be into cache, and initialize Sij 0Br*Bc in cache
10: Compute S, j < S, ; + A1,; X, ;j in cache >S5S =A41X
11: Write S; ; to memory, and delete S; ;, X, ; from cache
12: Read Y, ; € R4 B« into cache, and initialize h; ; < 0B~*B¢ in cache
13: Compute h; ; < h; ; + A3 ;Y ; in cache >h =AY
14: Write h; ; to memory, and delete h; ;, Y, ; from cache
15: end for
16: Delete A, ;, Az ; from cache
17: end for
18: return S, h > S, h € R4

19: end procedure

Lemma D.1 (Correctness of Phase 1). The ATTENTIONGRADIENTLARGECACHEPHASEI (Algo-
rithm[7) outputs two n x d matrices S = A1 X (Definition[3.1) and h = AsY (Definition |B.6)).

Proof. The algorithm first divide A, A3, X, Y into row/column blocks of size B, x d or d X B,.
Then it reads the row/column block matrices to compute the corresponding small blocks of S, h by
standard matrix multiplication. Thus, it computes the exact value for S, h. O

Lemma D.2 (I/O complexity of Phase 1). Suppose the cache size satisfy nd > M > d. The I/O
complexity of ATTENTIONGRADIENTLARGECACHEPHASE] (Algorithm@) is O(% + ”—A‘f).

Proof. Why such conditions for B, B,.

27

Under review as a conference paper at ICLR 2026

The cache size has three constraints, because we need matrices A, ;, A3 ; € RE-xd X w1 Yej €
R4*Be and Sijrhij € RBrxBe to fit into cache. Thus, we have
B,.d =0(M)
B.d=0(M)
B,.B.=0(M)

Then, we need

By setting B, = O(M/d), we have
B, = ©(min{M/d, M/B.})
= O(min{M/d, d})

/O complexity. We know B, + min{[44],d} and B, + [24],also T}, = [g-land T, = [Bij.

d
Substituting B, into T;., we get T, = O(%‘}). Observe that T,.B, = O(n) and T.B. = O(d).

The I/O complexity can be computed by:

T,(B,d + T.(dB.)) = O(nd) + T,d*
nd
= O(nd) + O(=d?
(nd) + 0240 ?)
nd?
=0(nd+ —
(nd+ ")
where the first step follows from 7, B, = O(n) and T.B. = O(d), the second step follows from
T, = O(24), and the last step follows from simple algebra.

Because M < nd, we have

nd3 ndM nd®
Olnd + 3r) = 0=+ 37)
n?d®> nd3
= O -
Thus, the total I/O complexity is O(% + ”de) O

We then give Algorithm [§]along with its analysis for computing the gradient g.

Lemma D.3 (Correctness of Phase 2). The ATTENTIONGRADIENTLARGECACHEPHASE?2 (Algo-
rithm[8) outputs a d x d matrix g (Definition[3.2).

Proof. The algorithm first vertically divides the matrices S, Ao, [, O, dO, h, and A; into row blocks
of size B, x d or B, x d. Following the computational graph (Fig. 2) and the no-cache algorithm
(Algorithm [T)), we compute the gradient g exactly. It is important to note that, in algorithm design,
we need to avoid reading the attention matrix f € R™*™ directly—even though it has been computed
during the forward pass—or any matrices of size B, X n or B, X n. Doing so would result in an
O(n?) /O complexity, which cannot be improved through caching. O

Lemma D.4 (I/O complexity of Phase 2). Suppose the cache size satisfy nd > M > d>. The I/O
complexity of ATTENTIONGRADIENTLARGECACHEPHASE?2 (Algorithm is O(% + ”T”f).

Proof. The reason for conditions of B,., B, is the same as the proof of Lemma However, it
is important to note that updating the gradient g in the cache requires assuming a cache size of
M > d?. This is necessary because we fuse the key and query weight matrices into a single matrix
X € R4, The update to the corresponding gradient g in the cache is driven by the outer product
representation of the matrix, as shown in Line [21|of Algorithm

28

Under review as a conference paper at ICLR 2026

Algorithm 8 Attention gradient computation large cache phase 2. Compute g.

1: procedure ATTENTIONGRADIENTLARGECACHEPHASE2(A;, Ay, S, h,0,dO € R4, | ¢
R", M € N,) > Lemma[D.3] Lemma|D.4]

2: B, «+ min{[2], d} and B, + [41]

3: Vertically divide S into T, = [BLT] blocks Si,...,ST,. of size B, x d each, vertically
divide A, into T, = (BLL] blocks As 1,..., Ay 1, of size B, x d each, and vertically divide /
into T, = (BLT] blocks Iy, ..., of size B, each

4: Vertically divide O into T, = [E’TL] blocks O1,...,Or, of size B, x d each, vertically
divide dO into T, = (B%] blocks dOy,...,dOr, of size B, x d each, vertically divide A into
T. = [Bﬂﬂ blocks hi, ..., hr, of size B, x d each, and vertically divide A; into T, = [B%]
blocks A; 1,..., A1 1. of size B, X d each

5: Initialize g + 0%*¢ in cache
6: forl1 <i<T7T,do
7: Read S;, 0;,d0;, Ay ; € RB-*d and [; € R into cache
8: Initialize v; < 05" and compute v; < v; + (dO; 0 O;) - Lin cache > v = (dO 0 O) - 1
9: Delete O; from cache
10: for1 <j <T.do
11: Read h; € RB-*4 and initialize q; ; + 0P~* B¢ in cache
12: Compute ¢; ; +— dO;h; in cache >g=dOh"
13: Read A, ; € RB<*4 into cache, and initialize A; ; < 057 *B< in cache
14: Compute A; ; < A; ; + S;AjJ ; in cache > A=SA]
15: Compute A4; ; < exp(4; ;) in cache, and initialize f; ; +— 05~*B¢ in cache
16: Compute f; ;j + f;; + diag(l;) ' A, ; in cache > f = diag(l)A
17: Delete A; ; from cache, and initialize p; ; <— 08*P¢ in cache
18: Compute p; ; < p; ; + fi,j © ¢ij — diag(v;) f; j incache >p = foq — diag(v)f
19: Delete f; ;, g; ; in cache, and initialize T, ; < 04%Be in cache
20: Compute T, ; < T, ; + A ;p; j in cache >T =Alp
21: Compute g < g + T j Az ; >g=TA,
22: Delete T, ;, Ao j from cache
23: end for
24: Delete S;, Ay ;,d0O;, l;, v; from cache
25: end for
26: Write g into memory
27: returng bg= % € R¥4, see Deﬁnition

28: end procedure

Next we show the I/O complexity. Since B, < min{[4%],d} and B, « [{%],also T, = [-] and
T.=[2], we get T, = O(22). Also, we observe that T}, B, = O(n) and T. B, = O(n).
The I/O complexity can be computed by:
T,(B.d + T.B.d) + d* = O(nd) + T,nd + d*
= O(Tynd) + d?
n2d?
=0(——) +d*
Lo

where the first step follows from T,.B, = O(n) and T.B. = O(n), the second step follows from
T, > 1, and the last step follows from 7. = O("—f).

Then, because M < nd, we can show

2 12 2 2 72

o, n°d* _ d*M n*d
O(d* + M)—O(M + M)
nd® n2d?

OGr)

29

Under review as a conference paper at ICLR 2026

Thus, the total I/O complexity is O(% + "st) O

D.2 UPPER BOUND FOR ATTENTION BACKWARD IN LARGE CACHE M = (d?)

In the large cache scenario, while it is feasible to precompute and store the n X n attention matrix,
reading it will result in an unavoidable O(n?) I/O complexity. Inspired by FlashAttention (Dao
et al.| [2022; [Dao, 2023}, [Shah et al.l |2024), we present the following theorem, which provides an

upper bound O(M) on the I/O complexity of the attention gradient algorithm in the large
cache (Algorithm[J).

Theorem D.5 (Large cache upper bound, formal version of Theorem {.1). Suppose n is the input

length, d is the head dimension, and nd > M > d? is the cache size. There is an algorithm (see

AlgorithmEl) outputs a d X d matrix g = dﬁ()?) (Deﬁnition with I/O complexity O(W).

Proof. Correctness. Combining Lemma[D.T|and [D.3] we finish the proof.
I/0 complexity. Combining Lemma|[D.2]and we finish the proof. O

Algorithm 9 Attention gradient computation with large cache.

1: procedure ATTENTIONGRADIENTLARGECACHE(A1, Ay, A3, 0,dO € R"*4, XY € R4¥9,

leR*, M € Ny) > Theorem [D.3]

2: S, h + ATTENTIONGRADIENTLARGECACHEPHASE1 (A4, A3, X,Y, M) > see
Algorithm 7]

3: g < ATTENTIONGRADIENTLARGECACHEPHASE4 (A1, A2, h, S,0,dO, 1, M) > see
Algorithm [g]

4: returng >g= % € R¥4 see Deﬁnition

5: end procedure

E LOWER BOUND FOR ATTENTION BACKWARD COMPUTATION

In this section, we prove the lower bound of the attention gradient computation. In Section [E.T]
we state some definition in graph theory that will be used to establish the framework of (Hong &
Kung, |1981) that will be used to analyze the I/O complexity. In Section we state some tools
from previous works from I/O compleixty of standard matrix multiplication and attention forward
computation. In Section we will establish our lower bounds of I/O complexity for attention
backward passes in both large cache case and small cache case.

E.1 BASIC DEFINITION IN GRAPH THEORY

Hong & Kung (1981) introduces a method for analyzing I/O complexity using the concept of an
M -partition on a graph. Before we define it, we first provide some definitions from graph theory.

Definition E.1 (Dominator set). Let G = (V, E) be a directed acyclic graph and S C V. We define
a set D C 'V as a dominator set of S if, for every path in G from a input node to any node in S,
there exists at least one node in D on that path.

Definition E.2 (Minimum set). Ler G = (V, E) be a directed acyclic graph and S C V. We say
that a set M C S is a minimum set of S if M contains all nodes in S that have no children in S.

Definition E.3 (Vertex subset dependence). Let G = (V, E) be a directed acyclic graph. Let
Vi,V C V be two disjoint subsets. We say that Vo depends on V1 if there is a directed edge from a
node in V1, to a node in V5.

Definition E.4 (Cyclic dependence). Let G = (V, E) be a directed acyclic graph. Let V1, ..., V;, C
V be h disjoint subsets of V. We say that there is a cyclic dependence among {V1, ...,V } if there
exists a permutation (iy, ..., 1) of [h] such that V;, depends on V;,, and for every j € {2,...,h},
Vi, depends on'Vy,_,.

30

Under review as a conference paper at ICLR 2026

Now, we are ready to define M -partitons. In fact, the minimum number of sets in any M -partition
provides a lower bound on the I/O complexity.

Definition E.5 (M -partition (Hong & Kung, [1981)). Let G = (V, E) be a directed acyclic graph.
Let Vi,...,V, C V be h disjoint subsets of V. We say that {V1,...,Vy} is a M-partition of G if
the following conditions are satisfied

o {V1,..., W} is apartition of V, i.e., Vi, ..., V), are disjoint and V = U?Zl V.
e For each V;, there exists a dominator set D; of V; such that D; has at most M nodes.
* For each V;, there exists a minimum set M; of V; such that M; has at most M nodes.

* There is no cyclic dependence among {V1,...,Vj}.

We use P(G, M) to denote the minimum number of sets in any M-partition of G.

E.2 PREVIOUS TOOLS FOR I/0O COMPLEXITY

Now, we are ready to introduce some tools for I/O Complexity from|Hong & Kung|(1981)) by using
an M -partition on a graph.

Lemma E.6 (Lemma 3.1 of [Hong & Kung| (1981)). For any directed acyclic graph G and any
positive integer M, we have

We omit G when it is clear in the context.

We state two useful lemmas from previous works as follows.

Lemma E.7 (Lemma 3.3 of [Saha & Ye|(2024)). Suppose that M = Q(d?) and A € R™* B ¢
R¥*"2 Let P be an M-partition of the computational graph of any algorithm that computes AB

using standard matrix multiplication. Then for each V' € P, V' contains at most O(%) product
nodes A; By, j, sum nodes (AB)M, and all intermediate nodes in the summation trees.

In [Saha & Ye| (2024), the matrices A and B in the above lemma are of sizes n X d and d X n,
respectively. We note that with slight modifications to the proofs, the result also holds when A and
B have different sizes, specifically n; X d and d x ns.

The next lemma gives the lower bound of I/O compleixty of standard matrix multiplication.

Lemma E.8 (Corollary 6.2 of Hong & Kung|(1981)). Let A € R™*4 B € RY*"2. The standard

matrix multiplication algorithm computing AB has I/0O complexity Q(M) = Q(L\/Mm)

E.3 PROOF OF OUR LOWER BOUND

We establish the lower bounds of I/O complexity of attention gradient computation in both large
cache case and small cache case. We first give the lower bound in the large cache case, i.e., the
cache size M = Q(d?).

Theorem E.9 (Large cache lower bound, formal version of Theorem 4.2). Suppose n is the input
length and d is the head dimension. Suppose the cache size M = Q(d®). Then the I/O complexity

. e 202 4 nd?
of attention gradient computation using standard matrix multiplication is Q)(%).

Proof. Any algorithm that computes the attention gradient needs to compute the matrix product
A; X AJ using standard matrix multiplication. Note that we compute A; X AJ using standard matrix
multiplication, so we either first compute 4; X and then compute (A; X)A, , or first compute X A
and then compute A; (X AJ). In either case, we perform two matrix multiplications: one between
an n X d matrix and a d x d matrix, and another between an n x d matrix and a d x n matrix. Without
loss of generality, we assume the first case where we first compute A; X.

Recall that the level-1 nodes are the product nodes (A;); X5, ;, the sum nodes (A;X); ;, and all
intermediate nodes in the summation trees. For every V' in an M -partition P, by Lemrna there

31

Under review as a conference paper at ICLR 2026

are at most O(MTZ) level-1 nodes in V’. Since the number of sum nodes (A; X); ; is nd?, the number
of parts in th2e M -partition P is at least Q(%) By Lemma the I/O complexity for computing
A1 X is Q(%).

Similarly, we recall that level-2 nodes are the product nodes (AlX)Lk(A;)k,j, the sum nodes
((A1X)AJ); ;, and all intermediate nodes in the summation trees. For every V' in an M-partition
P, by Lemma , there are at most O(%Q) level-2 nodes in V’. Since the number of sum nodes
((A1X)AJ); ; is n?d, the number of parts in the M -partition P is at least {(";[‘122)- By Lemma
the /O complexity for computing (A, X)AJ is Q(%L).

. 3 2 52
Therefore, the I/O complexity of attention gradient computation is at least Q(W). O

Next, we give the lower bound in the small cache case, i.e., the cache size M = o(dz).

Theorem E.10 (Small cache lower bound, formal version of Theorem .4). Suppose n is the input
length and d is the head dimension. Suppose the cache size M = o(d?). Then the I/O complexity of

2 2
attention gradient computation using standard matrix multiplication is Q(%).

Proof. We show that when M = o(d?), the attention gradient computation can be reduced to com-
puting the matrix product A; X AJ . Note that we compute A; X AJ using standard matrix multi-
plication, so we either compute A; X first and then compute (A; X)AJ , or we first compute X A
and then A; (X A,). However, both cases require performing one matrix multiplication between an
n X d matrix and a d x d matrix, and one matrix multiplication between an n X d matrix andad X n
matrix. Hence, without loss of generality, we assume that A; X is computed first. By Lemma [E.8]

the I/O complexity of computing A; X is Q(\’}%), and the /O complexity of computing (A4; X)A,

is Q(\"/Lﬂd) Hence, the total I/O complexity of computing A; X A is (”Z%dz).

Suppose that there is an algorithm A for attention gradient computation which has I/O complexity

0(%) We construct an algorithm B that computes the matrix product A; X A5 with I/O
complexity O(M). Since M < o(d?), we have nldind® w(n?+nd) > w(n?), so algorithm

VM VM
A is able to transfer the all entries of matrix product (A; X)AJ] from cache to memory. In the
language of the red-blue pebble game, algorithm 5 works as follows: whenever algorithm A delete
a blue pebble from a node in (A; X)AJ , do not delete it; whenever algorithm A place a red pebble
on a node in (A4; X) A, , also place a blue pebble on it. Since the I/O complexity of algorithm A is

2 2
o(%) and we need an additional n? I/O operations to transfer the entries of the matrix product

(A1 X)Ag from cache to memory. Since n? < o(\’}%), the overall I/O complexity of B is still

("QL\/ﬁdz). However, this contradicts the fact that the I/O complexity of computing A; X A] is

Q(”QL\/M”JZ). Therefore, the I/O complexity of attention gradient computation using standard matrix
s 1 : : n%d4nd>

multiplication is ©() O

F SPARSE ATTENTION COMPUTATION

In this section, we provide the lower bounds of sparse attention computation for both forward and
backward passes. In Section we state previous tools of sparse matrix multiplication. In Sec-
tion[F.2] we provide the proofs of the lower bounds of sparse attention.

F.1 PRrREvVIOUS TOOLS FOR I/O COMPLEXITY OF SPARSE MATRIX MULTIPLICATION

We assume that sparse matrices are stored by listing only their non-zero entries along with their co-
ordinates. Sparse semi-ring matrix multiplication restricts operations to addition and multiplication
of these entries, which means that each output entry (AB); ; can only be computed as the sum of
products given by >, A; 1 By ;.

32

Under review as a conference paper at ICLR 2026

Lemma F.1 (Theorem 2 of (Pagh & Stockel, 2014)). Let A € R™*? and B € R™™ be two
matrices such that Ry := nnz(A) + nnz(B) and Ry := nnz(AB). The sparse semi-ring matrix

R? R1¢E})
MM S

multiplication that computes AB has I/O complexity Q(min{

Note that in this statement, the I/O complexity also separates into the large cache case and the small
cache case, but the dividing point may not be d2. It depends on whether all the necessary values for
computing each output entry can be stored in the cache during the computation.

F.2 OUR LOWER BOUNDS FOR SPARSE ATTENTION COMPUTATION

We first prove a useful lemma which state the lower bound of I/O complexity of computing the
attention matrix.

Lemma F2. Let A, € R4 X ¢ R¥>% A, € RY*™ pe three matrices. Let Zs :=
min{nnz(A4;),nnz(A2)}, Zx := mnz(X),Zax = min{nnz(A4;X),nnz(X A7)}, Zaxa =
nnz(A; X AJ). Then the sparse semi-ring matrix multiplication that computes Ay X Ay has I/O

ZA+ZaZx ZaVZaxatVZaZxZax })
M ’ VM ’

complexity Q(min{

Proof. We first consider the case where all the necessary values for computing each output entry can
be stored in the cache during the computation. Suppose that A; X is computed first, by Lemma[F. T}
computing A; X has I/O compleixty

(nnz(A;) + nnz(X))?, ~ nnz(A;)? 4+ 2nnz(A;) nnz(X) + nnz(X)?

7% + 2747 x + A
> A X
> At 7k
2%+ 2747
> a4 000
> oAt 2alx,

where the first step follows by the basic algebra, the second step uses the definition of Z4, Zx,
and the last step follows from the basic algebra. Then we compute the product (4;X)A], by
Lemma[F1] computing A; X has I/O compleixty
(nnz(A; X) + nnz(As))? nnz(A; X)? + 2nnz(A; X) nnz(Ay) + nnz(Az)?
o) =)
M M
nnz(Ay)?
>Q(————
> ()
Z2
=Q(ZA
(54)

where the first and second steps follow by the basic algebra, and the last step uses the defini-
225+22122)
M

tion of Z4. Therefore, computing A; X AJ in this way has I/O complexity Q(

Q(%) Similary, suppose that X A] is computed first. Then we can also get the /O com-
. 2247, 2
plexity Q(=5772).

Next, we consider the case where some elementary products of matrix multiplication needs to be
written in the memory during the computation. Suppose that A; X is computed first, and then
(A1 X)Ag is computed. By Lemma computing (A; X) has I/O compleixty
o (nnz(A4;1) + nnz(X)) nnz(AlX))) - Q(2\/I1nz(Al) nnz(X)/nnz(A4; X)
vM - vM
2V ZaZxZax)
vM

where the first step uses Cauchy-Schwarz inequality, the second step uses the definition of Z4, Zx
and Z AXA-

By Lemma computing (A; X)AJ has I/O compleixty
o (nnz(A; X) + nnz(As))y/nnz(A4; X A;)
vM

)

> 0

nnz(As)/nnz(A; X Aj)
VM

) =)

33

Under review as a conference paper at ICLR 2026

> o(ZAvZaxa f”f\;‘“)-

where the first step follows by the basic algebra, the second step uses the definition of Z4 and

ZavVZaxat ZAZXZAX)

T .

Similary, suppose that X A] is computed first. Then we can also get the /O complexity
Q(ZA\/ZAXA+\/ZAZXZAX)

Z ax A. Therefore, computing A; X A; in this way has I/O complexity £(

VM
Therefore, the sparse semi-ring matrix multiplication that computes A; X AJ has I/O complexity
. (Z34ZaZx ZaNZ +VZaZx 2
Q(mln{ Am , A AXA \/MA XZAX }) O

Next, we can apply Lemma to get the lower bound of sparse attention forward and backward
passes.

Theorem F.3 (Lower bound for sparse attention forward). Suppose n is the input length, d is
the head dimension, and M is the cache size. Let Z, = min{nnz(A;),nnz(42)}, Zx =
mz(X), Zax = min{nnz(A; X),mz(XAJ)}, Zaxa = nnz(A1 XA,). Then any algorithm
for attention forward computation using sparse semi-ring matrix multiplication has I/O complexity

2
Q(Inin{ ZAJFAZfZX, ZA\/ZAXAj/’MZAZXZAX })

Proof. Any algorithm for attention forward computation needs to compute the matrix product
A1 X AJ to obtain the attention matrix. Thus by applying Lemma we complete the proof. [

Theorem F.4 (Lower bound for sparse attention backward). Suppose n is the input length, d
is the head dimension, and M is the cache size. Let Z4 := min{nnz(A;),nnz(A4s)}, Zx =
nnz(X), Zax = min{nnz(A; X),nnz(X AJ)}, Zaxa := nnz(A; X AJ). Then any algorithm for
attention backward computation using sparse semi-ring matrix multiplication has I/O complexity

2
Q(min{ ZAJFAZ/[AZX 7 ZA\/ZAXA\‘;%ZAZXZAX })

Proof. Any algorithm for attention backward computation needs to compute the matrix product
A1 X AJ to obtain the attention matrix. Thus by applying Lemma we complete the proof. [

G BROADER IMPACTS

This paper presents work whose goal is to understand the theory of attention mechanisms. Our
findings provide a theoretical foundation for designing efficient algorithms that improve the scal-
ability and performance of modern Al systems. Although the primary contributions are technical,
this work has the potential to impact a broad range of applications, from accelerating model training
and inference to enabling resource-efficient deployment in real-world settings. While our work has
many potential societal consequences, including advancements in natural language understanding
and accessibility of Al technologies, none of which we feel must be specifically highlighted here.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

34

	Introduction
	Our Contributions

	Related Work
	Preliminary
	Key Concept of Attention
	Summation Tree
	I/O Complexity

	Main Results
	Large Cache
	Small Cache
	Lower Bound of Sparse Attention Forward and Backward Passes

	Technical Overview
	Conclusion
	More Related Work
	Preliminary
	Notations
	Memory Hierarchy
	Matrix Multiplication
	Definitions of Intermediate Variables

	I/O Complexity Upper Bound for Small Cache
	Algorithm for Attention Backward Without Cache
	Algorithms for Attention Backward in Small Cache
	Upper Bound for Attention Backward in Small Cache

	I/O Complexity Upper Bound for Large Cache
	Algorithms for Attention Backward in Large Cache
	Upper Bound for Attention Backward in Large Cache

	Lower Bound for Attention Backward Computation
	Basic Definition in Graph Theory
	Previous Tools for I/O Complexity
	Proof of Our Lower Bound

	Sparse Attention Computation
	Previous Tools For I/O complexity of Sparse Matrix Multiplication
	Our Lower Bounds for Sparse Attention Computation

	Broader Impacts

