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ABSTRACT

The concept of diversity is widely used in various applications: from image or
molecule generation to recommender systems. Thus, being able to properly mea-
sure diversity is important. This paper addresses the problem of quantifying diver-
sity for a set of objects. First, we make a systematic review of existing diversity
measures and explore their undesirable behavior in some cases. Based on this
review, we formulate three desirable properties (axioms) of a reliable diversity
measure: monotonicity, uniqueness, and continuity. We show that none of the
existing measures has all three properties and thus these measures are not suit-
able for quantifying diversity. Then, we construct two examples of measures that
have all the desirable properties, thus proving that the list of axioms is not self-
contradicting. Unfortunately, the constructed examples are too computationally
complex for practical use, thus we pose an open problem of constructing a diver-
sity measure that has all the listed properties and can be computed in practice.

1 INTRODUCTION

Diversity of a collection of objects is a concept that is widely used in practice: image generation
models are required to generate a diverse sample of images for a given prompt, recommender sys-
tems are required to output a diverse set of suggestions for a query, molecule generation models often
aim at generating a collection of structurally diverse molecules with a given property. Diversity can
also play an important role in assessing how representative is a given dataset, e.g., in molecule gen-
eration (Xie et al., 2023) or neural algorithmic reasoning (Veličković & Blundell, 2021; Mahdavi
et al., 2023). Thus, being able to quantify diversity is important.

Traditional methods of assessing diversity may differ across domains and tasks. In the image gener-
ation domain, diversity ensures that at least some of the generated images can fit a user’s preference.
The average of pairwise distances between the output images is commonly used as a measure of di-
versity. For instance, Ruiz et al. (2023) compute diversity as the average LPIPS similarity between
the output objects, while Saharia et al. (2022) compute the average pairwise SSIM between the first
output sample and the remaining samples. Similarly, in recommender systems, diversity ensures that
at least some of the model outputs can fit a user’s preference. The average pairwise distance between
the outputs is a popular diversity measure in this domain (Alhijawi et al., 2022). Another way of
assessing diversity is via the determinantal point process (DPP) approach that defines diversity as
the determinant of the similarity matrix (Wilhelm et al., 2018). In the molecule generation domain,
the typical task is to generate a diverse collection of molecules with some predefined properties. The
underlying goal is to explore the whole space of such possible molecules and pick the best candi-
dates, so diversity of the output collection ensures that generated molecules are not clustered in one
area, while other areas are unexplored. A common diversity measure here is also the average pair-
wise distance between the outputs (Du et al., 2022), although sometimes the percentage of unique
generated molecules is reported (Hoogeboom et al., 2022). Finally, in a recent paper on generating
structurally diverse graphs (Velikonivtsev et al., 2024), a new measure called energy is proposed as
a better and more reliable alternative to the average pairwise distance.

Note that in all the examples above, diversity can also be thought of as coverage: the goal is to cover
different areas of the space of potentially valid outputs. Thus, in this paper, we use the terms diversity
and coverage interchangeably. In the literature, there have been a few attempts to analyze, compare,
or suggest better measures of diversity (Xie et al., 2023; Friedman & Dieng, 2023; Velikonivtsev
et al., 2024). However, as we show in this paper, the problem is still underexplored.
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We limit the scope of our research to the following setup: we are given a collection of abstract
objects and their pairwise distances (or pairwise similarities). We define diversity measure as a
function that takes this collection as an input and returns some value as an output.

First, we examine the existing diversity measures by providing examples of their undesirable behav-
ior. Namely, we show that existing measures may either lead to unexpected results when comparing
diversity of two datasets (i.e., assigning a higher score to a clearly less diverse dataset) or lead to de-
generate solutions when being optimized. Motivated by these observations and previous studies on
diversity, we formulate three properties (axioms) that a good diversity measure should have. Mono-
tonicity requires that increasing pairwise distances between the objects increases diversity value.
Uniqueness requires that having a duplicate in the collection is worse for diversity than having any
non-duplicate object instead. The last property is continuity which requires diversity to be a contin-
uous function of pairwise distances. We support the necessity of these properties with examples of
abnormal behavior of diversity measures that do not have some of them. After that, we check which
of the existing measures have what properties, and find out that none has all three. Then, we prove
that the list of axioms is not self-contradicting by constructing two examples of measures that satisfy
all of them. Unfortunately, the proposed measures are too computationally expensive (NP-hard) to
be used in practice. Finally, we discuss why finding a diversity measure that has all three desirable
properties and is computationally manageable is a non-trivial task. We leave the question of whether
there exists a computationally feasible measure satisfying all the required axioms for future studies.

2 MEASURING DIVERSITY Table 1: Known diversity measures

Measure Formula

Average 2
n(n−1)

∑
i<j

dij

SumAverage 1
n

∑
i<j

dij

Diameter max
i<j

dij

SumDiameter
∑
i

max
j ̸=i

dij

Bottleneck min
i<j

dij

SumBottleneck
∑
i

min
j ̸=i

dij

Energy(γ), γ > 0 − 1
n(n−1)

∑
i<j

1
d
γ
ij

#Circles(t), t ≥ 0 max
C⊆[n]

|C| s.t. dij>t ∀ i̸=j ∈ C

Unique max
C⊆[n]

|C|
n

s.t. dij>0∀ i̸=j ∈ C

Vendi Score exp

(
−

n∑
i=1

λi log(λi)

)
DPP det(S)

RKE − log

(
1
n2

n∑
i,j

s2ij

)
Species(q), 1̸=q≥0

( n∑
i=1

(
n∑

j=1

sij)
q−1
) 1

1−q

In this section, we describe existing diver-
sity measures. We assume that we are given
a collection of n (possibly duplicated) ob-
jects X = (x1, . . . , xn) and pairwise dis-
tances (dissimilarities) between them such
that dij ≥ 0 and dij = 0 iff xi and xj co-
incide. For generality purposes, we do not
require the triangle inequality to be satisfied
by dij .

Table 1 lists existing diversity measures
that we cover in our study. As discussed
above, arguably the most straightforward
and widely-used way to quantify diversity
is via the average pairwise distance be-
tween the elements. Other simple alterna-
tives are the minimum and maximum pair-
wise distances (often referred to as Bottle-
neck and Diameter, respectively). Xie et al.
(2023) argue that none of the simple mea-
sures are suitable for diversity quantifica-
tion and propose #Circles(t) that is defined
as the maximal number of non-intersecting
circles of radius t/2 (for some t > 0) with centers in elements of X . A measure called Energy(γ)
is proposed by Velikonivtsev et al. (2024) as a better alternative to the above measures. For γ = 1,
this measure equals the energy of a system of equally charged particles.

The remaining four measures are defined in terms of pairwise similarities sij instead of pairwise
distances. All these measures require sij to be a positive semi-definite similarity function and usu-
ally require sii = 1. Vendi Score is proposed by Friedman & Dieng (2023) and is calculated via the
formula specified in Table 1, where λ1, . . . , λn are the eigenvalues of the scaled similarity matrix
S/n and S is the n×n matrix with entries sij . The simplest DPP-based measure is computed as the
determinant of the similarity matrix S.1 The Rényi Kernel Entropy Mode Count (RKE) is proposed

1In practice, more complex DPP-based diversity measures can be used (Wilhelm et al., 2018). For instance,
when such measures are applied to recommender systems, the relevance scores of objects w.r.t user queries are
usually mixed into the similarity matrix, which we do not do here since we only consider diversity.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

by (Jalali et al., 2023) and is defined as the negative logarithm of the average squared similarity.
Finally, diversity of order q is proposed by Leinster & Cobbold (2012) to measure the diversity of
a population consisting of several species. In our work, we refer to this measure as Species(q).
Here, the parameter q is any nonnegative number not equal to 1. When applied to our setup (all
elements having equal weights), the measure Species(q) can be written as specified in Table 1 (up
to a constant multiplier).

Some previous works on measuring diversity analyze and compare measures based on properties
they do or do not satisfy. We review these works in Section 4.4.

3 DRAWBACKS OF POPULAR DIVERSITY MEASURES

In this section, we discuss why none of the measures defined above can be reliably used to quantify
diversity. For this, we show intuitive examples of an undesirable behavior for each measure. These
examples serve as the main motivation for our research and for the axioms we choose.

We start with discussing two usage scenarios of diversity measures. First, a diversity measure can be
applied to a given dataset to quantify its diversity. Thus, it should be able to identify which dataset
is more diverse. For instance, when choosing between two recommendation algorithms, one can be
interested in comparing diversity of the retrieved sets of items. Second, diversity can be used as a
goal of an optimization process. For instance, Velikonivtsev et al. (2024) generate sets of graphs
that are maximally diverse. During the generation process, the authors iteratively modify the set of
graphs by accepting modifications that improve a given diversity measure. Thus, a good diversity
measure should lead to diverse configurations of elements when being optimized.

Below we examine the diversity measures listed in Table 1 from these two perspectives: comparison
and optimization. We say that a measure exhibits undesirable behavior w.r.t. comparison if there
exists a pair of datasets, such that the first one is more diverse according to our intuitive perception of
diversity, yet the diversity measure assigns the higher value to the second one. We say that a measure
exhibits undesirable behavior w.r.t. optimization if the dataset with maximal diversity according to
this measure is not maximally diverse according to our intuitive perception of diversity. Note that
if a measure exhibits undesirable behavior w.r.t. optimization, it also exhibits undesirable behavior
w.r.t. comparison. Indeed, if a measure assigns the highest value to some not intuitively diverse set,
this means that it assigns a lower value to some dataset that is intuitively diverse, thus exhibiting
undesirable behavior w.r.t. comparison. The opposite is not necessarily true: some measures can be
suitable for optimization while being unable to reliably compare two non-optimal configurations.

Note that we limit our research to the simple case when the number of elements n is fixed, thus in
the examples below all the configurations are of the same size.

Average and SumAverage Since Average and SumAv-
erage differ only by a constant factor, we consider them
together. Consider two configurations of 16 points in the
unit square with Euclidean distance (in the configuration
on the left, each of the square’s angles contains 4 coin-
ciding points). For the left configuration, Average equals
0.91, which is the maximal value among all possible con-
figurations. For the right configuration, Average equals
0.71. Since the right configuration is intuitively more diverse, this example shows undesirable be-
havior of Average w.r.t. both comparison and optimization. Informally, maximizing Average pushes
all points to the boundary of the space, leaving central areas empty.

Diameter and SumDiameter Again, consider two
configurations of 16 points in the unit square (in the left
configuration, two of the square’s angles contain 8 co-
inciding points each). Diameter for both configurations
is 1.41, which is the maximal value among all possible
configurations. Since the right configuration is intuitively
more diverse, this example shows undesirable behavior of
Diameter w.r.t. both comparison and optimization. Note
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that once a configuration contains two points at the maximal distance from each other (in our case
1.41), the positions of all other points do not influence Diameter. While SumDiameter is expected
to be a better diversity measure (it takes more distances into account), the same example works to
show its undesirable behavior w.r.t. comparison and optimization since the left configuration has the
maximal possible SumDiameter value. Indeed, if there are points x1 and x2 with maximal distance
between them, we can make all other points coincide with x1 or x2, thus maximizing SumDiameter.

Bottleneck Bottleneck assigns any configuration with-
out duplicates a higher diversity value than any config-
uration with duplicates. Consider two configurations of
16 points in the unit square (in the right configuration,
the bottom-left angle contains 2 coinciding points). For
the left configuration, Bottleneck equals 0.11, and for the
right configuration, Bottleneck equals 0. Since the right
configuration is intuitively more diverse, we see undesir-
able behavior of Bottleneck w.r.t. comparison.

SumBottleneck To a lesser extent, SumBottleneck has
the same drawbacks as a Bottleneck. Consider two con-
figurations of 16 points in the unit square (in the left con-
figuration, 15 points coincide in the corner of the square,
and in the right configuration, each point has one dupli-
cate). For the left configuration, Bottleneck equals 0.1,
and for the right configuration, Bottleneck equals 0. Since
the right configuration is intuitively more diverse, we see
undesirable behavior of Bottleneck w.r.t. comparison.

Energy(γ) The drawback of this measure is that in the presence of a duplicate, it has value −∞
and is insensitive to all other pairwise distances. The same example as for Bottleneck demonstrates
undesirable behavior of Energy w.r.t. comparison.

Note that the examples for Bottleneck, SumBottleneck, and Energy demonstrate their undesirable
behavior only w.r.t. comparison. Intuitively, all these measures behave well w.r.t. optimization since
maximizing them enforces more uniform distribution by pushing away the closest elements (the
examples for Energy optimization can be found in Velikonivtsev et al. (2024)).

#Circles(t) To use this measure for a reasonable comparison of two collections, one needs to
somehow find an appropriate value of t. Indeed, if t is too high, both collections will have diversity
1, and if t is too low, both collections will have diversity equal to their number of unique elements.
This complicates the usage of this measure for both comparison and optimization. Also, this measure
is discrete and thus difficult to optimize. Finally, the value of this measure is NP-hard to compute,
which makes it impractical.

Unique Since this measure does not take into account the pairwise distances between objects, it is
essentially unsuitable for comparison or optimization. Indeed, all collections with pairwise distinct
objects have the same diversity value 1.

Vendi Score Consider points on a circle with cosine
similarity. Suppose the points x1, x2, x3 are arranged on
a circle in this order, the distance from x1 to x2 is 0.6 ra-
dians, the distance from x2 to x3 is 1.4 radians. Now, we
move x3 by 0.1 away from x1 and x2. Intuitively, we ex-
pect that decreasing the similarity between x3 and other
elements must increase diversity. But the Vendi Score
decreases from 1.941 to 1.916, which is an example of
undesirable behavior w.r.t. comparison.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

DPP Consider two positive semidefinite symmetric matrices:

K1 =

(
1 0.2 0.6
0.2 1 0.7
0.6 0.7 1

)
, K2 =

(
1 0.3 0.6
0.3 1 0.7
0.6 0.7 1

)
. (1)

The matrices K1 and K2 differ by increasing s12 from 0.2 to 0.3. Intuitively, we expect that in-
creasing similarity between any two elements must decrease diversity. But det(K1) = 0.278 and
det(K2) = 0.312 > 0.278, which is an example of undesirable behavior of the DDP-based measure
w.r.t. comparison.

RKE and Species(q) Consider points on a circle with
cosine similarity. Suppose the points x1, x2, x3 are ar-
ranged on a circle in this order, the distance from x1 to x2

is 1.1 radians, the distance from x2 to x3 is 0.4 radians.
Now, we make x2 to be a duplicate of x3. Intuitively, we
expect that such change must decrease diversity. But the
RKE increases from 0.564 to 0.584, which is an exam-
ple of undesirable behavior w.r.t. comparison. The same
example illustrates the undesirable behavior w.r.t. com-
parison for Species(q) for various q (see Appendix B).

4 AXIOMATIC APPROACH TO DIVERSITY MEASURES

Motivated by our analysis in Section 3, we formulate a list of properties (axioms) that a reliable
diversity measure is expected to satisfy. First, we formally define diversity measures, then formulate
the desirable properties and discuss which existing measures satisfy which properties, and finally
review desirable properties suggested in previous studies and discuss how they relate to our setup.

4.1 FORMAL DEFINITION OF DIVERSITY MEASURE

Assume that we are given a collection of n (possibly duplicating) objects X = (x1, . . . , xn) and
pairwise distances between them dij , which satisfy the following conditions:

1. ∀i, j : dij ≥ 0 and ∀i : dii = 0;

2. if dij = 0, then ∀k : dik = djk;

3. ∀i, j : dij = dji.

In terms of objects, the first property requires that the distance between any two objects is nonneg-
ative, and distance from an object to itself is 0. The second property requires that if two objects
coincide, then they must have equal distances to any other object. The third property is symmetry of
distance. Note that for generality, we do not require the triangle inequality to be satisfied by dij .

A diversity measure is a function that takes as input any such set of n objects and their pairwise
distances and outputs a real number. We assume that diversity depends only on distances dij and
does not depend on the nature of the objects xi itself. So, the input of our function can be fully
described as n×n matrix D with entries dij . Denote by Dn a subset of all n×n matrices satisfying
the three properties described above. Then, the diversity function is a function from Dn to R. Since
diversity is usually measured for a multiset of objects, we also require permutation invariance: if
we permute (or rename) the objects in X (with correspondingly permuting the rows and columns of
D), the value of diversity should not change. Thus, we get the following definition.

Definition 4.1. A diversity function is a permutation invariant function from Dn to R.

Note that we assume the number of elements n to be fixed. Thus, we do not aim to determine how
diversity should behave when the size of the dataset changes. Our paper shows that even for this
(simpler) case is non-trivial to construct a suitable diversity measure.
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4.2 AXIOMS FOR DIVERSITY

In this section, we formulate three axioms that we require for a reliable diversity measure.

Axiom 1 (Monotonicity). A diversity function must be strictly monotonously increasing with respect
to all its arguments.

In other words, if we increase one or several pairwise distances while keeping all other distances
fixed, the value of diversity must increase. This axiom is natural to require since it represents
the meaning of diversity: the more objects x1, . . . , xn differ from each other, the higher diversity
we expect. This property is analogous to monotonicity in Velikonivtsev et al. (2024), but has one
important difference: we do not require the objects of X to be pairwise distinct for monotonicity to
hold. This difference is critical for being able to compare datasets: we want to be able to tell which
configuration is more diverse even if they have duplicates. Otherwise, we may get a measure with
undesirable behavior, as shown by the example for Bottleneck and Energy in Section 3.

Axiom 2 (Uniqueness). Suppose we are given two collections of objects (and their pairwise dis-
tances) which differ only by one element: x1, . . . , xn−1, xn and x1, . . . , xn−1, x

′
n. Suppose x′

n
coincide with at least one of x1, . . . , xn−1, while xn does not coincide with any of x1, . . . , xn−1.
Then, the diversity of the first collection must be higher than the diversity of the second collection.2

This property reflects our intuition that having a duplicate (x′
n) in the multiset is worse for diversity

than having a unique element (xn) instead. Informally, we can say that having x′
n does not help the

multiset to cover any new part of the space since a copy of x′
n is already present, while having xn

covers some new area. Uniqueness allows one to avoid an undesirable behavior when the collection
with duplicates has higher diversity than an intuitively more diverse collection without duplicates
or even when the maximal diversity is achieved by a degenerate configuration (which happens to
Average and Diameter, as shown in Section 3). Let us note that the difference between our variant
of Uniqueness and the analogous property in Velikonivtsev et al. (2024) is that we do not require
all objects in X to be distinct. As for monotonicity, this modification is important for being able to
compare datasets even when they have duplicated elements.

Axiom 3 (Continuity). A diversity function must be continuous.

This property was not present in previous works, but it is natural to require and we find it critical for a
reliable diversity measure. Indeed, in Appendix A we show that there are examples of discontinuous
functions that satisfy monotonicity and uniqueness while still exhibiting undesirable behavior. Thus,
having only monotonicity and uniqueness is not sufficient.

4.3 PROPERTIES OF EXISTING MEASURES

Table 2 shows which axioms are satisfied by the existing measures (the proofs can be found in
Appendix B). It can be seen that none of the existing measures has all three desirable properties.3
This leads us to the main question of the paper: does there exist a diversity measure with all three
desirable properties? In the next section, we construct two examples of such measures, thus giv-
ing a positive answer to this question. We include these measures as well as the computational
complexities of all the measures in Table 2.

4.4 DESIRABLE PROPERTIES IN PREVIOUS WORKS

Several papers analyze and compare diversity measures in terms of properties they do or do not
satisfy. For instance, Xie et al. (2023) formulate three axioms. The first one requires that diversity
of a union of two sets must be higher than the diversity of each of these two sets. The second requires
that diversity of a union of two sets should be at most the sum of their diversities. Note that both of
these axioms constrain the behavior of diversity when the number of objects changes and thus are

2For simplicity, we formulate this property in terms of objects, but it can be straightforwardly reformulated
in terms of pairwise distances.

3Note that Energy was reported in Velikonivtsev et al. (2024) as having Monotonicity and Uniqueness, but
it does not in our case since we have stronger versions of these properties that require them to hold even in the
presence of duplicated elements.
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Table 2: Properties of diversity measures
Measure Monotonicity Uniqueness Continuity Complexity

Average ✓ ✗ ✓ O(n2)
SumAverage ✓ ✗ ✓ O(n2)
Diameter ✗ ✗ ✓ O(n2)
SumDiameter ✗ ✗ ✓ O(n2)
Bottleneck ✗ ✗ ✓ O(n2)
SumBottleneck ✗ ✗ ✓ O(n2)
Energy(γ), γ > 0 ✗ ✗ ✓ O(n2)
#Circles(t), t ≥ 0 ✗ ✗ ✗ NP-hard
Unique ✗ ✓ ✗ O(n)
Vendi Score ✗ ✗ ✓ O(n3)
DPP ✗ ✗ ✓ O(n3)
RKE ✓ ✗ ✓ O(n2)
Species(q) ✓ ✗ ✓ O(n2)

MultiDimVolume ✓ ✓ ✓ NP-hard
IntegralMaxClique ✓ ✓ ✓ NP-hard

not applied in our setting with a fixed number of objects. The last axiom requires that if we have
only two objects in X , then diversity must be strictly monotone w.r.t. the pairwise distance between
these objects. Note that one of our requirements (monotonicity, see below) generalizes this axiom.

Friedman & Dieng (2023) propose Vendi Score and list four its properties. One of the properties is
called symmetry and it is equivalent to our permutation invariance that we require for all diversity
measures. Another property requires that a diversity measure is maximized when all pairwise sim-
ilarities are 0 and minimized when all pairwise similarities are 1. This property is generalized by
our monotonicity axiom. The remaining two properties consider weighted elements or samples of
different sizes and thus do not apply to our setup.

Velikonivtsev et al. (2024) address the problem of generating structurally diverse graphs and dis-
cuss what measures of diversity are suitable for optimization. The authors formulate two properties:
monotonicity and uniqueness. Monotonicity requires that for a collection of pairwise different ob-
jects increasing any pairwise distance dij also increases the diversity value. Uniqueness requires that
if in the collection of pairwise different objects we replace one object with a duplicate of another
object from the collection the diversity must decrease.

Leinster & Cobbold (2012) list several groups of useful properties of diversity of order q. Partition-
ing properties are not applied to our case since we consider the diversity only for a fixed number of
objects. From Elementary properties group Symmetry property corresponds to our requirement of
diversity function to be permutation invariant, and Absent species and Identical species properties
are not applicable in our case (since we consider n objects with equal weight and not n probabilities
summing to 1). From the group of properties named Effect of species similarity on diversity, the only
property applicable in our case is Monotonicity, which is equivalent to our Monotonicity axiom.

To sum up, among the properties from previous works, the ones applicable in our setting are mono-
tonicity (in stronger form from Velikonivtsev et al. (2024) and Leinster & Cobbold (2012) or weaker
forms from Xie et al. (2023) and Friedman & Dieng (2023)) and uniqueness, given that permutation
invariance is already incorporated in our definition of a diversity function.

5 DIVERSITY MEASURES WITH ALL DESIRABLE PROPERTIES

In this section, we construct two different examples of permutation-invariant measures that have all
three desirable properties.

MultiDimVolume For a given k, 2 ≤ k ≤ n, and a given submultiset S of size k of the multiset
X = (x1, . . . , xn), calculate the product of all pairwise distances between the elements of S. Note

7
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that this product equals zero if at least two elements of S coincide. Then, for a given k, we take
the maximum of such products over all submultisets of size k of X and denote this maximum as

mk(X). We define the diversity of X as
n∑

k=2

mk(X). Putting the above into one formula, we get:

Diversity(X) :=

n∑
k=2

max
S⊆X
|S|=k

 ∏
xi,xj∈S

i<j

dij

 . (2)

The intuition behind this formula is that for a set S of size k, the product of all pairwise distances
between the elements of S can be thought of as an analog of k-dimensional volume of S (analogy
comes from the fact that if two elements of S coincide, then the volume degrades to zero). Thus,
mk(X) is the maximal ‘volume’ of a k-dimensional subset of X .

In Appendix C, we prove that MultiDimVolume satisfies all the axioms. Unfortunately, computing
Diversity(X) in Equation (2) is NP-hard since calculating MultiDimVolume allows one to solve
the problem of finding the size of the maximal clique in a graph, and this problem is known to be
NP-hard. We refer to Appendix C for the formal proof.

Let us also note that there are multiple ways to define diversity based on the values mk(X). In-

deed, we can consider
n∑

k=2

f(mk(X)), where f is an arbitrary continuous monotone function. In

particular, one may consider Diversity(X) =
n∑

k=2

mk(X)
2

k(k−1) . This modification is natural since

each summand is a product of k(k − 1)/2 terms. We call this modification a Normalized Multi-
DimVolume, or Normalized MDV for short. It follows from the proof in Appendix C that all such
modifications satisfy all the desirable properties.

IntegralMaxClique For a given threshold t ≥ 0, we construct the following graph. The nodes
are x1, . . . , xn. Two nodes xi and xj are connected by an edge iff dij ≥ t, and we assign dij as a
weight of this edge. We find a clique (complete subgraph) in this graph with the maximal number
of nodes. If there are several such cliques, we pick the one with the maximal total weight of edges.
For the chosen clique, we calculate the total weight of its edges and denote it by wt(X). Then, we
define diversity as

Diversity(X) :=

∫ +∞

0

wt(X) dt. (3)

This integral is finite since wt(X) is bounded by
∑
i<j

dij , and if t > max
i<j

dij , then the constructed

graph has no edges and wt(X) = 0.

The intuition behind this formula is that mt(X) can be interpreted as the maximal diversity of a
subset of X with the restriction that its elements should be at distance t or more from each other.

In Appendix D, we prove that IntegralMaxClique satisfies all the axioms. Unfortunately, computing
Diversity(X) in Equation (3) is NP-hard since, similarly to MultiDimVolume, calculating Integral-
MaxClique allows one to solve the problem of finding the size of the maximal clique in a graph. We
refer to Appendix D for the formal proof.

By constructing the two examples above, we prove that three desirable properties from our list do
not contradict each other. Unfortunately, the constructed examples are too computationally complex
for most practical applications.

As shown above, there are various (NP-hard) diversity measures satisfying all the axioms. While
none of them can be ruled out based on their theoretical properties, these measures are different
and thus may disagree in some cases. However, we expect them to better agree with our intuition
of diversity. To show that this is indeed the case, we analyze how MultiDimVolume, Normalized
MDV and IntegralMaxClique work on synthetic examples shown to be difficult for other measures
in Section 3. The results can be found in Appendix G.

8
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6 DISCUSSION

In the previous section, we prove that the three axioms listed in Section 4.2 are not self-contradicting.
However, we have not been able to construct a measure that satisfies these axioms and is computa-
tionally feasible to be applied in practice. We pose this as an important open problem to be addressed
in future studies.

Let us provide some intuition on why it is hard to combine monotonicity, uniqueness, and continuity
in one function. We first formulate the following proposition that shows an additional restriction
that these three axioms imply.

Proposition 6.1. Suppose a diversity function has uniqueness and continuity. Let x1, . . . , xk be a
set of k pairwise different objects. Let C be a multiset of n−k objects, each of which coincides with
one of x1, . . . , xk. Then, diversity of the multiset {x1, . . . , xk} ∪ C is the same for all such C.

We prove this proposition in Appendix E. Informally, Proposition 6.1 states that the diversity of a set
does not depend on which elements are duplicated. This agrees well with our intuition: duplicates
do not give any additional elements and thus are not supposed to affect diversity. On the other hand,
constructing a measure that is continuous while ‘ignoring’ duplicates is tricky since the object’s
property of being a duplicate is discontinuous. Indeed, we can move a duplicate by any small ϵ > 0
and it stops being a duplicate, so our measure should no longer ‘ignore’ it. In MultiDimVolume,
we address this problem by incorporating products of pairwise distances within subgraphs: any
duplicate zeros the corresponding products and thus the placement of a duplicate does not affect the
result. In IntegralMaxClique, we use a threshold t to filter out small edges, and thus duplicates do
not affect the value for all t > 0.

The next proposition states that a diversity function satisfying all the axioms cannot be expressed
in a certain form. This particular form is motivated by the approach in Velikonivtsev et al. (2024):
the authors iteratively improve diversity of a set by updating one element at a time. Thus, they
decompose a considered diversity function into the fitness of one element and diversity of the rest
of the elements. Such decomposition would allow one to make quick updates of diversity (in linear
time) when only one element is updated. In the proposition below, we show that for a proper diversity
measure such decomposition cannot exist if we assume additive aggregation.

Proposition 6.2. Assume that a diversity function can be decomposed in the following way:

Diversity(X) = F (d12, d13, . . . , d1n) +G(x2, . . . , xn),

that is, the first term depends only on distances from one object x1 to all other objects, and the
second term depends only on pairwise distances between the objects x2, . . . , xn. Then, such a
diversity function cannot simultaneously satisfy monotonicity, uniqueness, and continuity axioms.

We prove this proposition in Appendix F. This is a negative result showing why it can be difficult
to construct a proper diversity measure that is convenient for optimization. Note that, however, this
proposition is only proven for the additive aggregations, thus other options are potentially possible.

NP-hard measures in practice Finally, let us note that NP-hard diversity measures can still be
used in practice if a set of items that need to be evaluated is sufficiently small. For instance, if
a recommender service returns a set of k = 100 items and we want to measure diversity of this
set, then an NP-hard measure having all the desirable properties can potentially be used. Examples
of diversity measures constructed in Section 5 demonstrate that there are several different options
that can be used (since there are two measures that may also have variations still satisfying all the
properties). We cannot rule out any of these measures based on their theoretical properties. Thus, a
decision on which measure should be used may depend on a particular application.

7 CONCLUSION

In this paper, we reviewed existing diversity measures and demonstrated via intuitive examples
that these measures cannot be reliably used for evaluating diversity. Based on these examples and
previous research on diversity measures, we formulated three simple axioms (desirable properties)
for a reliable diversity measure: monotonicity, uniqueness, and continuity. It turns out that none
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of the previously known measures has all these properties. We constructed two diversity measures
that have all the desirable properties, thus proving that the axioms do not contradict each other.
Unfortunately, the constructed examples are too computationally complex for practical use.

We leave for future research an important open problem of constructing a diversity measure that has
all three desirable properties and is computationally feasible or proving that such a measure cannot
exist. While our study does not answer this question, we believe that it gives some important insights
into measures of diversity that are frequently used in practice. Being aware of what shortcomings a
particular measure has, one can use it more wisely. For instance, we cannot advise using Energy for
comparing diversities of arbitrary datasets, while it can be safely used as a target for optimization.
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A THE NECESSITY OF CONTINUITY AXIOM

Let us give an example of a discontinuous diversity measure that has both monotonicity and unique-
ness properties but still demonstrates undesirable behavior:

Diversity(X) = Unique(X) +
(
1− e−Average(X)

)
. (4)

Note that the second term belongs to [0, 1) and equals zero iff Average(X) = 0.

Monotonicity Since the first term is non-strictly monotone and the second term is strictly mono-
tone, the constructed function has the monotonicity property.

Uniqueness Suppose X has a duplicate, and we replace it with any new object not present in X .
Then, the first term increases by 1 and the second term changes by less than 1, thus Diversity(X)
increases.

Discontinuity Diversity(X) (4) is the sum of a discontinuous and a continuous functions and thus
is discontinuous.

Undesirable behavior For any configuration, this mea-
sure assigns a higher value than to any other configura-
tion with more duplicates. Consider two configurations
of 16 points in the unit square (in the right configuration,
the bottom-left angle contains 2 coinciding points). For
the left configuration, the diversity value is in the inter-
val [16, 17), and for the right configuration, the diversity
value is in the interval [15, 16), thus the right configura-
tion has a lower value. Since the right configuration is
intuitively more diverse, we see undesirable behavior of
the measure w.r.t. comparison.

B PROPERTIES OF DIVERSITY MEASURES: PROOFS

Let us prove the statements about what measures have what properties, which we indicate in Table 2.
Note that for some of the measures, their monotonicity and uniqueness were analyzed in Velikonivt-
sev et al. (2024). However, since we modified these properties, we need to formally check the new
ones.

Average and SumAverage Monotonicity and continuity are trivial. The complexity O(n2) is also
trivial. To prove that uniqueness does not hold, consider the example from Section 3: given 16 points
in a square with Euclidean distance, the maximal diversity is achieved when every angle contains 4
objects, and replacing any of these duplicates by any other object will decrease diversity.

Diameter and SumDiameter Consider a collection of three objects with pairwise distances
2, 2, 1. Increasing distance 1 to 2 does not change the diversity value, thus proving that mono-
tonicity does not hold. For uniqueness, consider the example from Section 3: given 16 points in a
square with Euclidean distance, the maximal diversity is achieved when two opposing angles contain
8 objects each, and replacing any of these duplicates by any other object will not increase diversity.
Continuity is trivial. Complexity O(n2) is also trivial.

Bottleneck and Energy(γ) Consider a collection of three objects, where x1 and x2 coincide, and
d13 = 1. Increasing d13 to 2 will not change the diversity value, thus proving that monotonicity
does not hold. Consider a collection of three coinciding objects. Replacing one of them with any
other object does not change diversity value, thus proving that uniqueness does not hold. Continuity
is trivial. Complexity O(n2) is also trivial.
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SumBottleneck Consider a collection of four objects, where x1, x2 coincide, x3, x4 coincide, and
d13 = 1. Increasing d13 = d23 = d14 = d24 from 1 to 2 (while keeping d12 = d34 = 0) will not
change diversity value, thus proving that monotonicity does not hold. Consider a collection of four
objects, where x1, x2, x3 coincide and d14 = 10. Replacing x3 with a new object that has distance
1 to x4 will decrease diversity from 10 to 2, thus proving that uniqueness does not hold. Continuity
is trivial. Complexity O(n2) is also trivial.

#Circles(t) Consider a collection of three objects with pairwise distances 4, 3, 2. Increasing dis-
tance 3 to 4 will not change the diversity (for any t), thus proving that monotonicity does not hold.
For a given t, consider a collection of two coinciding objects. Replacing the second of them with an
object at distance t

10 from the first one does not change the diversity value, thus proving that unique-
ness does not hold. The lack of continuity is trivial. Let us prove that the complexity of calculating
#Circles(t) is NP-hard. The problem of finding the size of the maximal complete subgraph (clique)
in an unweighted undirected graph is known to be NP-hard. Consider any unweighted undirected
graph G with n nodes. Construct a collection X with n objects corresponding to the nodes of G, the
distance between two objects being t if the corresponding nodes are connected and 0.9t otherwise.
Suppose we computed #Circles(t), then obviously this value is also a size of the maximal clique in
G. This proves that calculating #Circles(t) is NP-hard.

Unique Monotonicity, uniqueness, and continuity are trivial. Complexity is also trivial.

To prove the results for Vendi Score, DPP, and DKE, we first need to formulate the axioms in terms
of similarities. Monotonicity requires that the measure monotonically increases when some of the
pairwise similarities decrease. Uniqueness is formulated in terms of objects, and two objects being
duplicates means that they have the maximal similarity value. Finally, continuity can be trivially
reformulated.

Vendi Score We first elaborate on the example of a violation of monotonicity from Section 3.
Consider points on a circle with cosine similarity. Suppose the points x1, x2, x3 are arranged on a
circle in this order, the circle distance from x1 to x2 is 0.6 radians, the distance from x2 to x3 is 1.4
radians. Now we move x3 by 0.1 away from x1 and x2. Let us see what similarity matrices we have
before and after this move:

K1 =

(
1 cos(0.6) cos(2.0)

cos(0.6) 1 cos(1.4)
cos(2.0) cos(1.4) 1

)
, K2 =

(
1 cos(0.6) cos(2.1)

cos(0.6) 1 cos(1.5)
cos(2.1) cos(1.5) 1

)
. (5)

Vendi Score of K1 is 1.941 and Vendi Score of K2 is 1.916 < 1.941, which is a violation of
monotonicity property.

Now suppose the points x1, x2, x3 are arranged on a circle in this order, the circle distance from x1

to x2 is 0.2 radians, the distance from x2 to x3 is 0.3 radians. We replace x2 by a duplicate of x1.
Let us see what similarity matrices we have before and after this replacement:

K1 =

(
1 cos(0.2) cos(0.5)

cos(0.2) 1 cos(0.3)
cos(0.5) cos(0.3) 1

)
, K2 =

(
1 1 cos(0.5)
1 1 cos(0.5)

cos(0.5) cos(0.5) 1

)
. (6)

The corresponding collections of objects differ by replacing x2 with a copy of x1, that is, K1 cor-
responds to (x1, x2, x3) and K2 corresponds to (x1, x1, x3). Vendi Score of K1 is 1.187 and Vendi
Score of K2 is 1.233 > 1.187, which is a violation of the uniqueness property.

Continuity holds since exp

(
−

n∑
i=1

λi log(λi)

)
continuously depends on λ1, . . . , λn, which contin-

uously depend on the similarity matrix. It is known that the complexity of finding the eigenvalues
of a general (positive-semidefinite) matrix is O(n3), thus the complexity of calculating Vendi Score
is also O(n3).

DPP The example of a violation of monotonicity is shown in Section 3. To obtain the matrix K1,
we can consider three points A, B, C on a unit 2D sphere with pairwise spherical distances between
A and B equal to arccos(0.6) = 0.927, between B and C equal to arccos(0.7) = 0.795 and between
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A and C equal to arccos(0.2) = 1.369. The similarity is given by the cosine function. For the
matrix K2 we decrease the distance between A and C from arccos(0.2) = 1.369 to arccos(0.3) =
1.266, while keeping the distance between A and B unchanged, and the distance between B and C
unchanged.

To prove that uniqueness is violated, consider a collection of three coinciding objects. Replacing
one of them with any other object does not change the diversity value, thus proving that uniqueness
is violated. Continuity is trivial. It is known that the complexity of finding the determinant of a
general (positive-semidefinite) matrix is O(n3), thus the complexity of calculating det(S) is also
O(n3).

RKE Monotonicity, continuity, and complexity O(n2) are trivial. To prove that uniqueness is
violated, we elaborate on the example from Section 3. Consider points on a circle with cosine
similarity. Suppose the points x1, x2, x3 are arranged on a circle in this order, the distance from x1

to x2 is 1.1 radians, the distance from x2 to x3 is 0.4 radians. Now, we make x2 to be a duplicate of
x3. We get the following similarity matrices before and after the modification:

K1 =

(
1 cos(1.1) cos(1.5)

cos(1.1) 1 cos(0.4)
cos(1.5) cos(0.4) 1

)
, K2 =

(
1 cos(1.5) cos(1.5)

cos(1.5) 1 1
cos(1.5) 1 1

)
. (7)

The corresponding collections of objects differ by replacing x2 with a copy of x3, that is K1 corre-
sponds to (x1, x2, x3) and K2 corresponds to (x1, x3, x3). RKE of K1 is 0.564 and RKE of K2 is
0.584 > 0.564, which is a violation of the uniqueness property.

Species(q) Continuity and complexity O(n2) are trivial. Monotonicity is trivial for both cases
0 ≤ q < 1 and 1 < q. For violation of uniqueness, we consider the same example as for RKE.
We computed Species(q) of the collection x1, x2, x3 and the collection x1, x3, x3 for all q in range
[0, 100] with step size 0.001 (excluding q = 1 when Species(q) is not defined). For all the considered
q, the first collection gets a lower value of Species(q) than the second collection, which is a violation
of the uniqueness property.

C PROPERTIES OF MULTIDIMVOLUME

Let us prove that MultiDimVolume has monotonicity, uniqueness, continuity and is NP-hard to
compute.

For convenience, we repeat the definition of MultiDimVolume. For a given k, 2 ≤ k ≤ n, and a
given submultiset S of size k of the multiset X = (x1, . . . , xn), calculate the product of all pairwise
distances between the elements of S. Note that this product equals zero if at least two elements of S
coincide. Then, for a given k, we take the maximum of such products over all submultisets of size k

of X and denote this maximum as mk(X). We define the diversity of X as
n∑

k=2

mk(X). Putting the

above into one formula, we get:

Diversity(X) :=

n∑
k=2

max
S⊆X
|S|=k

 ∏
xi,xj∈S

i<j

dij

 . (8)

Assume that we are given any distance matrix D (or, equivalently, a collection of objects X). Denote
by k̄ the maximal k such that mk(X) is non-zero. Note that by construction X includes exactly k̄
pairwise non-coinciding objects and mk̄(X) is the product of pairwise distances between these
objects.

Monotonicity We want to prove that MultiDimVolume is strictly monotone in D. Suppose we
increase the distance between two objects xi and xj by ϵ > 0; that is, we replace dij by dij +
ϵ. Obviously, for every k, the value of mk(X) has not decreased. Thus, to prove monotonicity,
it is sufficient to prove that at least one of mk(X) has increased. If xi and xj did not coincide
before increasing dij , then after increasing dij the term mk̄(X) has increased since dij is one of the
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multipliers in mk̄(X). If xi and xj has coincided before increasing dij , then after increasing dij the
collection X includes exactly k̄ + 1 non-coinciding objects, and mk̄+1(X) has increased from 0 to
some positive value.

Note that for some matrices D we cannot increase only one distance. For instance, if the objects
x1, x2, x3 coincide and we increase d12 by ϵ, we also need to simultaneously increase d13 or d23,
otherwise we have d13 = d23 = 0, d12 > 0, which implies that x1 coincides with x3 and x2

coincides with x3, but x1 and x2 do not coincide. Clearly, the proof above easily generalizes to the
case when we increase several distances simultaneously.

Uniqueness Suppose X includes at least one duplicate. We replace this duplicate with some new
object that was not present in X . Then, mk̄+1(X) has increased from 0 to some positive value.
Also, for any k ≤ k̄, the values of mk(X) have not decreased. Thus, Diversity(X) has increased.

Continuity Note that MultiDimVolume is a composition of product, maximum, and sum that are
all continuous functions. A composition of continuous functions is continuous. Thus, MultiDimVol-
ume is continuous.

NP-hard Let us first prove that finding mk(X) for all k is NP-hard. The problem of finding the
size of the maximal complete subgraph (clique) in an unweighted undirected graph is known to be
NP-hard. Consider any unweighted undirected graph G with n nodes. Construct a collection X
with n objects corresponding to the nodes of G, the distance between two objects being 3 if the
corresponding nodes are connected and 2 otherwise. Suppose we computed mk(X) for all k. Take
maximal k such that mk(X) = 3

k(k−1)
2 . Then k is the size of the maximal clique in G, which

concludes the proof.

Although we proved that finding mk(X) for all k is NP-hard, it does not directly imply that com-
puting MultiDimVolume is NP-hard. Indeed, maybe we can compute MultiDimVolume without
directly computing mk(X) for all k. Let us give a sketch of how to avoid this technical obstacle.

As above, consider a graph X for which we want to find the size of the maximal clique. Construct a
collection X with n objects corresponding to the nodes of G, the distance between two objects being
2 + ϵ if the corresponding nodes are connected and 2 otherwise, where ϵ > 0 is a small number (we
will specify later how small it should be). Consider mk(X) for some k. It is a product of pairwise
distances between some k objects of X . Denote by 0 ≤ rk ≤ k(k−1)

2 the number of their pairwise
distances which are equal to 2 + ϵ (so, the remaining k(k−1)

2 − rk distances are equal to 2). This is
equivalent to saying that:

mk(X) = (2 + ϵ)rk2
k(k−1)

2 −rk = 2
k(k−1)

2 + ϵrk2
k(k−1)

2 −1 +O
(
ϵ2
)
.

Therefore,

Diversity(X) =

n∑
k=2

mk(X) =

(
n∑

k=2

2
k(k−1)

2

)
+ ϵ

n∑
k=2

rk2
k(k−1)

2 −1 +O
(
ϵ2
)
.

Note that for a given n, the value of ϵ can be chosen sufficiently small so that the last term O(ϵ2) is
negligibly small compared to the other two terms.

Now suppose we know Diversity(X). We also know the term
n∑

k=2

2
k(k−1)

2 and we know ϵ. Thus,

we can compute
n∑

k=2

rk2
k(k−1)

2 −1.

We claim that knowing the value M =
n∑

k=2

rk2
k(k−1)

2 −1 we can recover r2, r3, . . . , rn. For this, we

note that for any k = 3, . . . , n:

2
k(k−1)

2 −1 >

k−1∑
i=2

i(i− 1)

2
· 2

i(i−1)
2 −1. (9)
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Indeed, this holds for k = 3 and it is easy to check that the left-hand side of the inequality grows
faster than the right-hand side.

Now, consider k = n and note that the left-hand side of (9) is equal to how much the value of M
changes if we change rn by 1. In turn, the right-hand side of (9) is the upper bound on the sum of all
other terms in M . Thus, knowing M we can find the value rn as the maximum integer number such
that rn2

k(k−1)
2 −1 ≤ M . After we found rn, we get rid of the term rn2

n(n−1)
2 −1 and can do the same

reasoning to find rn−1, and continue until we found all r2, . . . , rn. After that, we take the maximal
k such that rk = k(k−1)

2 , this is the size of the maximal clique in G, which concludes the proof.

D PROPERTIES OF INTEGRALMAXCLIQUE

Let us prove that IntegralMaxClique has monotonicity, uniqueness, continuity and is NP-hard to
compute.

For convenience, we repeat the definition of IntegralMaxClique. For a given threshold t ≥ 0, we
construct the following graph. The nodes are x1, . . . , xn. Two nodes xi and xj are connected by an
edge iff dij ≥ t, and we assign dij as a weight of this edge. We find a clique (complete subgraph)
in this graph with the maximal number of nodes. If there are several such cliques, we pick the one
with the maximal total weight of edges. For the chosen clique, we calculate the total weight of its
edges and denote it by wt(X). Then, we define diversity as

Diversity(X) :=

∫ +∞

0

wt(X) dt. (10)

Assume that we are given any distance matrix D (or, equivalently, a collection of objects X). Denote
by d̄ the lowest non-zero pairwise distance between the objects of X . If all pairwise distances are 0,
then monotonicity is trivial, so we can assume d̄ > 0. Note that for t ≤ d̄, the value of wt(X) is the
sum of pairwise distances between all pairwise non-coinciding elements of X .

Monotonicity Assume that we increase the distance between two objects xi and xj by ϵ > 0,
that is, we replace dij by dij + ϵ. Obviously, for every t, the value of wt(X) has not decreased. If
dij > 0, then for all t ≤ d̄ the term dij is a summand in wt(X), thus for every t ≤ d̄ the value of
wt(X) has increased at least by ϵ. Therefore, Diversity(X) has increased by at least d̄ϵ. If dij = 0,
then for all t ≤ ϵ, the value of wt(X) has increased by at least ϵ (since a new element is added to
the maximal clique). Thus, Diversity(X) has increased by at least ϵ2.

As for MultiDimVolume, the proof above easily generalizes to the case when we increase several
distances simultaneously.

Uniqueness Suppose X includes at least one duplicate. We replace this duplicate with some new
object which was not present in X . Suppose the distance from the new object to the nearest object
is r > 0. Then, for t ≤ r, the value of wt(X) has increased by at least r, and for every t > r, the
value of wt(X) has not decreased. Thus, Diversity(X) has increased by at least r2.

Continuity Assume that we increase the distance between two objects xi and xj by ϵ > 0, that is,
we replace dij by dij + ϵ. Let us see how much Diversity(X) could change. Obviously, for every
t, the value of wt(X) has not decreased. Let us estimate how much Diversity(X) could increase.
We decompose the integral into three parts:

Diversity(X) :=

∫ +∞

0

wt(X) dt =

∫ dij

0

wt(X) dt+

∫ dij+ϵ

dij

wt(X) dt+

∫ +∞

dij+ϵ

wt(X) dt. (11)

It is easy to prove that for t ≤ dij , the value of wt(X) could increase at most by ϵ, thus the first
part could increase at most by ϵdij (since we integrate from 0 to dij). For the second term, we

note that wt(X) is bounded from above by
(∑

k<l

dkl

)
+ ϵ, thus the second term is bounded by

ϵ

(∑
k<l

dkl

)
+ ϵ2 and could increase by at most this value. The third term does not change since for

t > dij + ϵ the value of wt(X) does not change.
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Therefore, Diversity(X) has increased by at most ϵdij + ϵ

(∑
k<l

dkl

)
+ ϵ2. So, if we increase dij

by ϵ, then Diversity(X) increases by at most ϵc, where c is some constant independent of ϵ (given
that ϵ < 1, so the term ϵ2 is bounded by ϵ). From this, the continuity follows.

NP-hard The problem of finding the size of the maximal complete subgraph (clique) in an un-
weighted undirected graph is known to be NP-hard. Consider any unweighted undirected graph
G with n nodes. Construct a collection X with n objects corresponding to the nodes of G, the
distance between two objects being 3 if the corresponding nodes are connected and 2 otherwise.
Suppose we computed Diversity(X). Let us show how to find the size of the maximal clique in
G. Note that for t ≤ 2, the value of wt(X) is the sum of all pairwise distances in X , that is,∑
k<l

dkl (which can be computed in O(n2) time). For 2 < t ≤ 3, the value of wt(X) is 3 s(s−1)
2 ,

where s is the size of the maximal clique in G. For t > 3, the value of wt(X) is 0. So, we get
Diversity(X) = 2

∑
k<l

dkl + 3 s(s−1)
2 , from which we can find s in constant time. Thus, once we

know Diversity(X), we can find s in O(n2) time. This proves that calculating Diversity(X) is
NP-hard.

E PROOF OF PROPOSITION 6.1

Let us first recall the statement of the proposition. Suppose a diversity function has uniqueness
and continuity. Let x1, . . . , xk be a set of k pairwise different objects. Let C be a multiset of
n − k objects, each of which coincides with one of x1, . . . , xk. Then, diversity of the multiset
{x1, . . . , xk} ∪ C is the same for all such C.

Consider the following lemma.
Lemma E.1. Suppose a diversity function has uniqueness and continuity. Let x1, . . . , xn−1 be any
collection of n − 1 objects. We denote by A1 the collection of n objects x1, . . . , xn−1, x1 and by
A2 the collection of n objects x1, . . . , xn−1, x2 (note that A1 and A2 differ only by the last object).
Then, Diversity(A1) = Diversity(A2).

Informally, this lemma says that we can remove the duplicate of x1 and add the duplicate of x2

without changing the value of the diversity function. The proposition trivially follows from this
lemma, so it is sufficient to prove it.

W.l.o.g., assume that Diversity(A1)−Diversity(A2) = ϵ > 0. Denote by A′
2 the following collec-

tion: take A2 and increase the distance from the last object to all objects by small δ > 0 in such a
way that diversity changes by less than ϵ

2 (note that the last object is no longer a duplicate). By con-
tinuity it is possible. Then, Diversity(A′

2) is less than Diversity(A2) +
ϵ
2 . Thus, Diversity(A′

2) <
Diversity(A1). However, by uniqueness, we have Diversity(A′

2) > Diversity(A1) since the last
object of A′

2 is not a duplicate, and the last object of A1 is a duplicate. So, we get a contradiction
which concludes the proof of the lemma.

F PROOF OF PROPOSITION 6.2

We need to prove that a diversity function satisfying all the axioms cannot be decomposed in the
following form:

Diversity(X) = F (d12, d13, . . . , d1n) +G(x2, . . . , xn).

Suppose we increase d12 (and d21) by some ∆. Then, diversity will increase by the following value:

F (d12 +∆, d13, . . . , d1n) +G(x2, . . . , xn)− F (d12, d13, . . . , d1n)−G(x2, . . . , xn) =

= F (d12 +∆, d13, . . . , d1n)− F (d12, d13, . . . , d1n). (12)

Note that by permutation invariance we can decompose Diversity(X) based not on x1, but on x2:

Diversity(X) = F (d21, d23, . . . , d2n) +G(x1, x3, . . . , xn). (13)
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Using this decomposition, we see that when we increase d12 (and d21) by ∆, the diversity increases
by the following value:

F (d21 +∆, d23, . . . , d2n) +G(x1, x3, . . . , xn)− F (d21, d23, . . . , d2n)−G(x1, x3, . . . , xn) =

= F (d21 +∆, d23, . . . , d2n)− F (d21, d23, . . . , d2n) (14)

Combining the results of (13) and (14), we get:

F (d12+∆, d13, . . . , d1n)−F (d12, d13, . . . , d1n) = F (d21+∆, d23, . . . , d2n)−F (d21, d23, . . . , d2n).

Note that the left part depends on d13, . . . , d1n, while the right part does not depend on these vari-
ables. Similarly, the right part depends on d23, . . . , d2n, while the left part does not depend on these
variables. This means that both parts actually do not depend on any of d13, . . . , d1n and d23, . . . , d2n,
so they depend only on d12 (or d21, which is the same) and ∆. Thus, we proved that if we increase
d12 by ∆, the diversity changes by some value that depends only on d12 and ∆ and does not depend
on other pairwise distances. By permutation invariance, for any dij the analogous statement is true.
From these statements, it easily follows that

Diversity(X) = h(d12) + h(d13) + . . . =
n∑

i<j

h(dij),

where we have the same function h applied to all distances by permutation invariance.

Consider the following collection: the first n − 1 objects are duplicates of one element, and the
last object is at distance 1 from them. So, there are n − 1 pairwise distances of 1 and (n−1)(n−2)

2

distances of 0. Thus, diversity is (n − 1)h(1) + (n−1)(n−2)
2 h(0). Using Proposition 6.1, we can

move one of the duplicates in such a way that now it duplicates the last object, and diversity should
not change. Now, there are 2(n − 2) pairwise distances of 1, and (n−2)(n−3)

2 + 1 distances of 0.

Thus, diversity is 2(n− 2)h(1) +
(

(n−2)(n−3)
2 + 1

)
h(0). So, we get

(n− 1)h(1) +
(n− 1)(n− 2)

2
h(0) = 2(n− 2)h(1) +

(
(n− 2)(n− 3)

2
+ 1

)
h(0),

from which we get (n − 3)h(1) = (n − 3)h(0), which implies h(1) = h(0) (given that n > 3).
Monotonicity implies that h is strictly monotone, which contradicts h(1) = h(0), which concludes
the proof.

G COMPARING THE MEASURES ON SYNTHETIC EXAMPLES

In this section, we show how MultiDimVolume, Normalized MDV, and IntegralMaxClique work on
synthetic examples shown to be difficult for other measures in Section 3. Our intuition is that in
Figure 1, the diversity of Example 1 is greater than the diversity of examples 2 and 3, the diversity
of Example 4 is greater than the diversity of Example 5, and the diversity of Example 6 is greater
than the diversity of Example 7. We report the values of MultiDimVolume, Normalized MDV, and
IntegralMaxClique in Figure 1. All three new measures correctly compare each pair of the examples
mentioned above, as we report in Table 3, where we also report the results for other distance-based
measures. We do not include similarity-based measures since there is no uniquely defined similarity
function for the collections of points in Figure 1. We also do not report the results for #Circles(t)
since they depend on the choice of t.
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Table 3: Behavior of measures for examples in the Figure 1

Measure 1 > 2 1 > 3 4 > 5 6 > 7

Average ✗ ✗ ✓ ✓
SumAverage ✗ ✗ ✓ ✓
Diameter ✗ ✗ ✓ ✓
SumDiameter ✗ ✗ ✓ ✓
Bottleneck ✓ ✓ ✗ ✗
SumBottleneck ✓ ✓ ✓ ✗
Energy(γ), γ > 0 ✓ ✓ ✗ ✗
Unique ✓ ✓ ✗ ✓

MultiDimVolume ✓ ✓ ✓ ✓
Normalized MDV ✓ ✓ ✓ ✓
IntegralMaxClique ✓ ✓ ✓ ✓

Figure 1: Values of MultiDimVolume, Normalized MDV, and IntegralMaxClique for several distri-
butions
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