
Entropic Desired Dynamics for Intrinsic Control

Steven Hansen∗
DeepMind

Guillaume Desjardins
DeepMind

Kate Baumli
DeepMind

David Warde-Farley
DeepMind

Nicolas Heess
DeepMind

Simon Osindero
DeepMind

Volodymyr Mnih
DeepMind

Abstract

An agent might be said, informally, to have mastery of its environment when it
has maximised the effective number of states it can reliably reach. In practice,
this often means maximizing the number of latent codes that can be discriminated
from future states under some short time horizon (e.g. [15]). By situating these
latent codes in a globally consistent coordinate system, we show that agents can
reliably reach more states in the long term while still optimizing a local objective. A
simple instantiation of this idea, Entropic Desired Dynamics for Intrinsic ConTrol
(EDDICT), assumes fixed additive latent dynamics, which results in tractable
learning and an interpretable latent space. Compared to prior methods, EDDICT’s
globally consistent codes allow it to be far more exploratory, as demonstrated
by improved state coverage and increased unsupervised performance on hard
exploration games such as Montezuma’s Revenge.

1 Introduction

Endowing reinforcement learning agents with the ability to learn effectively from unsupervised
interaction with the environment, i.e. without access to an extrinsic reward signal, has the potential
to make reinforcement learning practical in settings where the tasks the agent will face are initially
unknown or where task feedback is expensive. The natural question is: what should the agent learn
in the absence of extrinsic rewards? One appealing guiding principle is maximizing the number of
states the agent can reach and to which it can reliably return.

Intrinsic control methods have shown promise in this direction. By maximizing the mutual information
between a latent code z and future states reached by a policy conditioned on this code, intrinsic
control methods learn to map latent codes to behaviors from which the code can be inferred. One
major limitation of such approaches is that the latent codes z are usually sampled from a fixed prior
distribution p(z). Using a fixed prior means that such approaches are unable to learn codes that
correspond to states that cannot be reached in the time horizon T , since any code can be sampled in
any state. Simply increasing the time horizon T does not solve the problem since it leads to a sparser
learning signal. Learning a state-dependent prior has proven to be difficult and has been shown to
lead to fewer learned codes/goal states [15]. This inability to learn how to reach distant states limits
the usefulness of such intrinsic control approaches.

We propose to sidestep this limitation by replacing the fixed code distribution p(z) with a fixed
dynamics model over codes p(zt|zt−1). Our algorithm, Entropic Desired Dynamics for Intrinsic
ConTrol (EDDICT), learns to map sequences of latent codes sampled from this dynamics model to
behaviors for which the state transition dynamics in the environment match the latent code dynamics.
EDDICT learns to map each zt to a state that is reachable from the state corresponding to zt−1,

∗Correspondence to stevenhansen@deepmind.com

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

τ0 τ1

z0 z1

(a)

τ0 τ1

z1

(b)

τ0

z0

τ1

z1

(c)

τ0

z0

τ1

z1

(d)

Figure 1: Graphical models for various priors and posteriors of interest. Circles denote random
variables which are observed (shaded) or latent (white), with diamonds denoting deterministic
quantities. (a) Prior over a particular trajectory consisting of two sub-trajectories {τ0, τ1}, and
auxiliary variables {z0, z1}. (b) Posterior inference with independent codes, as in prior work. (c)
Naive posterior inference for the sub-trajectory {z1, τ1}, conditioned on the past. (d) Posterior
inference with hindsight. Despite z0 being observed, we infer z1 based on the most likely code z0 to
have generated τ0, using the variational reverse predictor (dashed line).

allowing it to reach states much farther than the time horizon T using sequences of codes z. We show
that even highly constrained latent dynamics (i.e. additive noise) are sufficient to both interpret latent
codes in terms of their corresponding locations in state space, and encourage exploratory behavior to
a far greater extent when compared to prior methods.

2 Notation

Our environment is a special case of a Markov Decision Process (MDP) without rewards or terminal
signals: M : (S,A, P, P0). S is the state space, A is the action space, P (st+1 | st, at) the
conditional distribution representing the state transition dynamics when taking action at ∈ A from
state st ∈ S and P0(s) the initial state distribution. For simplicity, we present our method in the
episodic setting with episodes of length T = MK, but relax this assumption in practice. Agents
interact with the environment according to a policy πθ(a | s) with parameters θ, yielding trajectories
τ = [s0, a0, s1, a1, · · · sT], and distributed as pπθ (τ) = P0(s0)

∏T−1
t=0 P (st+1 | st, at)πθ(at | st).

It will be useful for us to segment a given trajectory τ into sub-trajectories of length K, with
τ = [s0, τ0, τ1, · · ·], and τi = [aiK , siK+1, aiK+1, · · · a(i+1)K−1, s(i+1)K]. Note that τi is defined to
include s(i+1)K , but not the state siK from which aiK was sampled. With a slight abuse of notation
and denoting τ−1 := s0, we rewrite pπθ (τ) = P0(s0)

∏M−1
i=0 pπ(τi | τi−1), with M the number of

sub-trajectories per episode and pπθ (τi | τi−1) =
∏(i+1)K−1
t=iK P (st+1 | st, at)πθ(at | st). 2

Hierarchical agents sample a high-level goal or latent variable z ∼ p(z) every K steps, and interact
with the environment via a parametric conditional low-level policy πθ(a | s, z), which can be thought
of as a fixed duration option [42]. Composing p(z), πθ(a | s, z) and transition dynamics yields an
augmented trajectory Λ = [s0, z0, τ0, z1, τ1, · · ·] 3, whose distribution decomposes as pπθ (Λ) =

P0(s0)
∏M
i=0 p(zi)p

πθ (τi | τi−1, zi), with pπθ (τi | τi−1, zi) defined analogously to pπθ (τi | τi−1)
with conditional policy πθ(at | st, zi).

To simplify exposition, we index sequences at the timescale of sub-trajectories using index i, e.g.
[zi, τi, zi+1, τi+1, · · ·] and reserve index t for indexing sequences at the granular timescale of actions,
e.g. [st, at, st+1, at+1, · · ·]. Concretely, indexing by i should be interpreted as iK, as in si := siK .
For a general sequence x = [x0, x1, · · ·], we define x<t := [x0, · · · , xt−1] and extend this notation
to augmented trajectories as follows: Λ<i := [s0, z0, τ0, · · · , zi−1, τi−1].

3 Method

We would like to learn goal directed agents, which are capable of reaching any state s ∈ S, given
a goal or state embedding z ∈ Z. Extending earlier work on empowerment [40, 34], Variational

2The dependence on τi−1 is thus due to siK ∈ τi−1.
3We avoid introducing new notation for the corresponding semi-MDP, as our present notation allows us to

reason about sub-trajectories, for both standard policies π(a | s) and conditional policies π(a | s, z).

2

Intrinsic Control (VIC) [19] and related methods (e.g. [15]) propose to achieve this by learning a
conditional policy π(a | s, z) which maximizes I(z; τ), the mutual information between the latent
code z and (possibly a subset of) the resulting trajectory obtained by following π. Unfortunately, this
objective can be difficult to train in practice as we scale both the number of options and the horizon
over which the code is executed [1, 15]. Our method addresses both of these issues in a principled
manner by introducing temporal dependencies between a sequence of latent codes, evolving under
simple linear dynamics, which decomposes the full objective into a sum of local mutual information
lower-bounds, without loss of coherence of the global code.

Entropic Desired Dynamics for Instrinsic Control (EDDICT) can be understood from the perspective
of divergence minimization [20, 13, 27]. Concretely, we can define a prior policy µ which induces a
distribution pµ(Λ) over the space of augmented trajectories. We then learn a (posterior) policy π by
minimizing the KL-divergence between pπθ (Λ) and pµ(Λ).

3.1 VIC as Divergence Minimization

Given a prior policy µ, we construct a prior distribution over an augmented space (τ, z), with auxiliary
variables [3] z ∈ Z, as pµ(z, τ) = pµ(τ)qw(z | τ). The conditional qw(z | τ) is a learnt predictor,
with parameters w ∈ Ω, which aims to predict z from the underlying trajectory.

We can show that an entropy regularized version of VIC is obtained by maximizing Oent-VIC(θ, w) =

−KL
[
p(z)pπθ (τ | z)‖pµ(z, τ)

]
wrt. the parameters of πθ and qw, with p(z) a fixed or learnt

distribution over options. Intuitively, we seek a code conditioned policy which generates trajectories
having high probability under our trajectory prior, and from which z can be inferred in hindsight.
After some algebra, this simplifies to:

Oent-VIC(θ, w) = Ez∼p(z)
τ∼pπθ (τ |z)

[
log qw(z | τ)− log p(z)︸ ︷︷ ︸

a© Iq(z;τ)

−
T−1∑
t=0

log
πθ(at | st, z)
µ(at | st)︸ ︷︷ ︸

b© regularizer

]

In the above, Iq(z; τ) refers to the variational lower-bound [2, 34] to the mutual information I(z; τ) =
E[log pπθ (z | τ) − log p(z)] , using reverse predictor q trained to approximate the true posterior
distribution pπθ (z | τ) . In expectation, the regularization terms correspond to a sum of KL-
divergences between our conditional policy and the prior over actions.4 The original objective OVIC
is obtained by dropping this regularizer and choosing the reverse predictor qVIC

w := qw(z | s0, sT),
which predicts z from the first and last states of the trajectory.

Since we focus on discrete action spaces, we set µ to a uniform distribution over actions, causing
b© to revert to standard entropy rewards [48]. In practice, we optimize the above objective using a

value-based reinforcement learning algorithm and ε-greedy policies (in lieu of a Boltzmann policy),
and thus omit these terms. Note that the auxiliary variable perspective of VIC can also be found in
Hausman et al. [23].

3.2 Incorporating Temporal Dynamics

Instead of sampling a single goal to be reached within the duration of the episode, it may be preferable
to sample a sequence of codes either as relative (or local) goals, parameterized relative to the agent’s
current position, or as way points, a sequence of global goal coordinates which the agent should visit
in sequence.

Relative vs Global Codes. Local goals can be implemented for VIC by resampling a latent code
every K steps and maximizing a sum of local objectives of the type Iq(zi; si+1 | si), with option zi
initiated from state si. We describe these codes as having local semantics, as an option zi should only
be inferable in the context of the relationship between its initiation state si and final state si+1. In
essence, each zi represents a local displacement which the low-level policy should execute. In contrast,
the strategy of sampling way points in some global frame of reference would require maximizing

4The regularization terms emerge from the fact that the transition dynamics are shared by both pµ(τ) and
pπ(τ | z), and thus cancel out in the computation of the KL-divergence.

3

Iq(zi; si+1). Unfortunately, this would seem to require learning a state-dependent high-level policy
which gives higher probability to goals zi which are reachable (in K steps) from si.

Ours is a hybrid of these two approaches: by specifying goals relative to previously sampled codes,
in the form of a Markov chain with simple linear dynamics, EDDICT can recover codes with global
semantics while avoiding the need to explicitly train a high-level policy.

EDDICT Prior. As in Section 3.1, we specify a joint distribution over the set of sub-trajectories
{τi} and auxiliary variables {zi}, i∈[0,M−1]. Recall that τ−1 := s0. Our prior for an augmented
trajectory Λ is given by:

pµ(Λ | s0) =

M−1∏
i=0

pµ(τi | τi−1)qw(zi | τi),

again with µ a uniform distribution over actions. As we shall see, making the a priori assertion that
zi is conditionally independent of τi−1 given τi will ensure that our objective breaks down as a sum
of local objectives, amenable to greedy optimization. This prior is illustrated in Fig. 1a. Using the
reverse predictor qEDDICT

w := qw(zi | si+1), which predicts zi from si+1 alone (the last state of τi) will
then induce codes with global goal semantics.

EDDICT Posterior. We structure our posterior around goal-conditioned policies πθ(a | s, z), but
modified to account for the temporal structure of our prior. We incorporate temporal dependencies
between the latent codes in the form of a Markov chain p(zi | zi−1) with initial distribution p(z0).
Defining p(z0 | z−1) := p(z0), we write:

pπθ (Λ | s0) =

M−1∏
i=0

p(zi | zi−1)pπθ (τi | τi−1, zi)

We now expand the negative KL-divergence corresponding to this choice of prior, posterior and
reverse predictor:

−KL [pπθ (Λ | s0)‖pµ(Λ | s0)] = Epπθ (Λ|s0)

{M−1∑
i=0

log

[
qEDDICT
w (zi | si+1)

p(zi | zi−1)

pµ(τi | τi−1)

pπθ (τi | τi−1, zi)

]}

The objective is then obtained by dropping action entropy terms.

O(θ, w) =

M−1∑
i=0

Epπθ (Λ<i) Epπθ (zi,τi|Λ<i)

 c©︷ ︸︸ ︷
log qEDDICT

w (zi | si+1)− log p(zi | zi−1)

︸ ︷︷ ︸

O(i)(θ,w;zi−1,τi−1)

(1)

The objective thus breaks down as a sum of M terms, defined5 as O(i)(θ, w) =
E[O(i)(θ, w; zi−1, τi−1)]. It is worth pointing out that in expectation, c© constitutes a valid lower-
bound to I(zi; si+1 | zi−1) despite the reverse predictor not conditioning on zi−1.

3.3 EDDICT Objective

We obtain EDDICT by incorporating (i) greedy optimization, (ii) hindsight correction, and (iii) linear
dynamics into the objective of Equation 1.

Greedy Optimization. Define the effective entropy as the difference in log-probabilities given by
the reverse predictor and the high-level policy over options (cf. c©). As written, the objective aims
to maximize the long term sum of effective entropies: concretely, each code zi should seek to be
entropic and discernible from si+1 but also lead to states from which future options are themselves

5Note that we use O(i) to refer to the i-th term of Eq. 1, which is a function of a particular value of zi−1 and
τi−1. O(i) is reserved for the expected value of O(i) under pπθ (Λ<i).

4

discernible. The variance of any return estimator will thus increase with the number of option periods.
To avoid this issue, EDDICT optimizes Eq. 1 in a greedy-manner as:

OGREEDY(θ, w) =

M−1∑
i=0

Epπ(Λ<i)

[
O(i)(θ, w; zi−1, τi−1)

]
, (2)

where we have omitted the policy parameters from the sampling distribution pπ(Λ<i), which is thus
considered fixed with respect to the optimization process. Concretely, this can be implemented by
treating each option period as a pseudo-episode, i.e. using discount factors which are zero on option
boundaries as shown in Algorithm 1.

Hindsight Correction. Unfortunately, the above objective is rather brittle as the distribution over
zi is conditioned solely on zi−1, and ignores the underlying state in which the code is sampled. We
can improve on this open-loop formulation by reasoning in hindsight. From Eq. 2, O(i) is computed
in expectation under pπ(Λ<i) which includes the joint pπ(zi−1, τi−1 | Λ<i−1). We rewrite this joint
as pπ(τi−1 | Λ<i−1)pπ(zi−1 | τi−1) ≈ pπ(τi−1 | Λ<i−1)qEDDICT

w (zi−1 | si), since qw is a variational
approximation to the true posterior by construction. Incorporating this approximation to Eq. 2 yields
the final objective:

OEDDICT(θ, w) =

M−1∑
i=0

Epπ(Λ<i)EqEDDICT
w (zi−1|si)

[
O(i)(θ, w; zi−1, τi−1)

]
. (3)

Concretely, when sampling zi ∼ p(zi | zi−1), we thus condition on the code most likely to have
yielded state si, under the reverse predictor. Importantly, this objective induces a cross-entropy term
between the target distribution qEDDICT

w (zi−1 | si)p(zi | zi−1) and qEDDICT
w (zi | si+1). This ensures that

predictions made from si+1 are consistent with those from si, under our latent state dynamics.

Linear Dynamics The final piece of the puzzle concerns the choice of code distribution. We cannot
employ the VIC strategy of a fixed entropic distribution, since our codes form a Markov chain. We
would further like to avoid the full HRL problem, which would require us to have a parameterized
high-level policy over options. Choosing an AR(1) process as the conditional code distribution
satisfies both of these requirements and we thus set p(zi | zi−1) = zi−1 + ∆i, with ∆i sampled from
either an isotropic Gaussian or a uniform distribution on the disc. Another useful property of the
AR(1) process is that it ensures that the marginal code entropy increases monotonically with each
option period (more states visited) while the conditional entropy remains constant (same number of
states reachable from any given state), as shown in Fig. 4b. Finally, hard coding the dynamics to be
linear, versus learning a parametric policy over codes, naturally imposes an interpretable Euclidian
topology in code space, as shown in Fig. 4a.

3.4 Algorithm

We now provide a more mechanistic view of EDDICT. Algorithm 1 presents an online version of the
algorithm, with details of the distributed setup used in our experiments presented below.

We optimize our objective using a distributed deep reinforcement learning system [14], based on
Peng’s Q(λ) [37] and ε-greedy policies. The system consists of a centralized learner, a replay
buffer [32], and a set of distributed workers each interfacing with their own copy of the environment.
Given the latest parameter values and current state of the environment si (local to each worker), actors
sample zi and generate sub-trajectory τi by executing π(a | s, zi) for K steps in the environment.
The resulting (si,∆i, τi) is then fed back to the replay buffer, from which the learner consumes
data to perform off-policy updates. Storing the initiation state si and offset ∆i, allows the learner to
recompute the code zi as required using the most up-to-date version of the reverse predictor. Intrinsic
rewards derived from the reverse predictor are similarly computed on the learner.

In practice, the learner maximizes OEDDICT by summing two losses. The first implements policy
iteration by minimizing the mean-squared error between a target return, computed by Peng’s Q(λ)
under a target network [32], and the current Q-value estimates. Our greedy optimization procedure
yields a single non-zero reward, log qw(zi | si+1), which is received upon option termination.
The second loss corresponds to the cross-entropy loss of the reverse predictor found in Eq. 3.
With qw(z | s) := N (fw(s), 1) for some parametric function fw, this amounts to minimizing

5

Algorithm 1: EDDICT
Input : Environment dynamics P , initial state s0, policy πθ , code predictor qw(z | s) := N (fw(s),1),

option period K, discount γ, code dimension d.
τ ← [s0], i← 0
repeat

∆z ∼ U(Dd) // e.g. uniform over a disc, isotropic normal
zi ← fw(siK) + ∆z

for t← iK : (i+ 1)K − 1 do
at ∼ π(a|st, zi; θ) // parametric or epsilon-greedy
st+1 ∼ P (st+1|st, at)
// Compute intrinsic rewards. Note: entropy of code distribution is constant under linear dynamics.
rt+1 ← log qw(zi | st+1) if t=(i+1)K−1 else 0 // (optional) add entropy rewards.
γt+1 ← 0 if t=(i+1)K−1 else γ
st+1 ← [zi, st+1] // augment state with code
Append at, st+1, rt+1, γt+1 to τ .

Update θ with any reinforcement learning algorithm on the sub-trajectory τ .
// Minimize cross-entropy loss from Eq. 3, for linear dynamics and Gaussian reverse predictor.
Update w by gradient descent on ‖∆i − (fw(s(i+1)K)− fw(siK))‖22
τ ← [s(i+1)K], i← i+ 1

‖∆i − (fw(si+1)− fw(si))‖22. This loss is extremely intuitive: we train the reverse predictor such
that the inferred latent state from si, matches the inferred state from si+1 under our latent dynamics.
As in [41], we found that an uninformative prior performed best in practice (despite our choice of
isotropic Gaussian for the predictor), and thus sample ∆i from a uniform distribution on the disc 6.

Concretely, we parameterize the action-value function Qθ(s, a, z) as an MLP operating on state
embeddings, derived from a ResNet [24], and linear action and code embeddings. In our experiments,
the reverse predictor qw operates on the same state embeddings as the Q-function, with gradients
from both objectives being backpropagated into the ResNet. Complete details of the architecture can
be found in the Appendix.

4 Related Work

Intrinsic Control and Empowerment. EDDICT can best be thought as incorporating temporal
structure into intrinsic control algorithms [19, 15, 1, 21], which build on empowerment [26, 34].
Relative Variational Intrinsic Control (RVIC) [8] also extends an intrinsic control objective, but does
so by penalizing codes predictable from a single state, leading to codes representing state-agnostic
behaviors. In contrast, the parameterization of our reverse predictor, along with a fixed high-level
policy over options, ensure that EDDICT’s codes are reachable from the states in which they are
sampled while preserving global state semantics.

It is well known that the VIC objective is difficult to train when the code space is large [1]. At a
high-level, EDDICT tackles this issue by breaking down this single goal into a sequence of sub-goals.
This is orthogonal to the approach of Achiam et al. [1], which increases the number of available
options over time. HIDIO [51] proposes an objective similar to ours (discriminator rewards over
sub-trajectories, greedy-optimization), but sample options using a state-dependent high-level policy
trained to maximize extrinsic rewards over the semi-MDP induced by the low-level policy.

Skill Discovery and HRL. The notion of reusable behavior and hierarchy has a long history in the
RL literature [e.g. 42]. In comparison to EDDICT existing work can be broadly categorized with
respect to the signal that is used for behavior induction and the nature of the learned representation.
EDDICT bears similarity to unsupervised skill discovery methods that induce behavior in the absence
of external rewards usually for the use in downstream tasks, including [16, 36]. Other approaches learn
skills or behavior representations from demonstrations provided by humans or expert policies [e.g.

6Our variational bound is looser as a result, since our variational posterior is not matched to the prior.
Improving the modeling assumptions of the reverse predictor, e.g. by using a truncated Gaussian, is left for
future work.

6

Figure 2

Figure 3: Montezuma’s revenge. (left) Typical observations from the first (left) and second (right)
rooms. (right) Observations from a trained EDDICT agent, sorted by L2-norm of corresponding
code and aggregated into quartiles. Images are generated by taking the pixel-wise maximum

17, 31, 38], while optimizing the reward for one or multiple tasks [e.g. 6, 25, 23, 44, 49, 29, 18],
or via subgoals that are associated with explicit rewards in a predefined [e.g. 28, 35] or learned
space [e.g. 46, 47].

Methodology. Auxiliary variables have a long history in variational inference [3, 30], as a way
to obtain more expressive posteriors and serve a similar purpose in the context of EDDICT/VIC.
Tirumala et al. [45] incorporates an AR(1) process in the context of HRL and skill transfer, but did
so within the prior which served to regularize a set of task-specific high-level policies. In contrast,
the AR(1) process in EDDICT ensures that the high-level policy samples goals which are reachable
from the current state. AR(1) processes over latent temporal sequences have also been used to
prevent “posterior collapse” in VAEs with powerful autoregressive decoders [39], an analogous
phenomenon to “option collapse” in HRL. Hindsight reasoning has seen a multitude of applications
in reinforcement learning, improving credit assignment [22], training of goal-conditioned policies in
sparse reward settings [5] and off-policy learning of options in HRL [50].

5 Experiments

Here we evaluate EDDICT’s learned representations and behavior, and contrast them to prior work
in the space of intrinsic control (or skill discovery) methods. We assess the learned representations
qualitatively by looking at how well they correspond to privileged information known to be relevant
to down stream tasks. Namely, the state dimensions given in the DeepMind Control Suite [43] and
the avatar coordinates in the Atari Learning Environment (ALE) [9]. We stress that this privileged
information is not used during training in any way, with reverse predictors operating on the same
input as the Q-function.

The quality of learned behaviors is measured in terms of exploration; we posit that EDDICT explores
in the space of controllable outcomes, and that this style of exploration results in reaching many
states of interest. To assess this quantitatively, we compare unsupervised behavior policies in terms of
reward achievement on the Atari game Montezuma’s Revenge, which is known to require sophisticated
exploration in order to progress. Additionally, we look at the number of unique states visited per
episode using privileged environment information (i.e. the underlying RAM states in ALE), as this is
a proxy for state coverage that is agnostic to the specific reward function of the game [4]. To look
specifically at the claim that EDDICT explores the controllable states, we also measure an estimate
of the mutual information between the marginal code distribution and the marginal state distribution.

We consider the following baselines for evaluation: VIC [19], RVIC [8] and an ablated version of
EDDICT. VIC refers to a scalable variant introduced in [8], that uses a fixed Categorical distribution
over 50 outcomes. In the EDDICT ablation (EDDICT-∆) the code proposal mechanism is simplified
by substituting żi+1 := ∆i for EDDICT’s zi+1 := zi + ∆i. Note that the reverse predictor remains
unchanged, and thus tries to predict ∆i directly from si+1. All algorithms were implemented in the
same codebase and thus share the same network architecture and reinforcement learning method.

For the results on Montezuma’s Revenge, we further include results for a Q(λ) agent trained to
maximize the game score (which other methods do not have access to), again matched in terms of
network architecture.

7

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e8

2

2.25

2.5

2.75

3

3.25

3.5

3.75

M
ar

gi
na

l &
 C

on
di

tio
na

l C
od

e
En

tro
py

EDDICT
EDDICT-

(b)

Figure 4: (a) Point Mass. 2D codes colored by ground truth x (left) and y (right) coordinates of
the point-mass on a version of the environment with a ‘U’ shaped wall. (top) EDDICT-∆ (bottom)
EDDICT. (b) Montezuma’s Revenge. Estimated marginal code entropyH[zi] (solid) and conditional
entropyH[zi | si+1] (dashed). Despite codes being less predictable, EDDICT achieves higher mutual
information Ip(zi; si+1), as measured under the marginal code distribution (shaded).

5.1 Codes as Representations of State

Codes as state representations To illustrate EDDICT’s ability to map codes to the controllable
aspects of the environment, we have trained EDDICT on a simple continuous control task from the
DeepMind Control Suite [43]. This environment comes with a set of ground truth state dimensions
required to compute the dynamics, a subset of which are under the agent’s control. We can thus allow
EDDICT to train from raw pixels, and then evaluate the correspondence between the code values and
ground truth state dimensions.

Shown in Figure 4a, is the state representation learned on a version of the Control Suite point
mass domain which is modified to include 3 obstacle walls in the shape of a "U" to increase the
difficulty and exploration requirements of the domain. EDDICT successfully recovers the ground
truth coordinates of the point mass position (under the agent’s control), but not the target position
(randomly set per episode and not under the agent’s control). This property of not representing what
can not be controllable effectively solves the well known “noisy TV problem” [10].

Standard intrinsic control methods also have this property of only representing the controllable, but
they lack any incentive to represent states unreachable in a single unroll as being distinct. This is
clearly demonstrated by our ablation’s performance, wherein the relationship between nearby states
is much more tenuous.

Code norm as difficulty Since our desired latent dynamics consist of a sum of zero centered IID
variables, the marginal code distribution will be also centered at zero, with the probability density
dissipating as a function of the code norm. Assuming EDDICT manages to form a mapping between
latent codes and states, this implies that less frequently visited states will have a higher code norm.

We test this hypothesis empirically, by training EDDICT on Montezuma’s Revenge. In this game,
the agent is represented by an avatar who can move locally around the screen, but who can easily
die. When this occurs, the avatar is reborn on a platform in the middle of the screen. This means that
by construction, states where the avatar is near the center of the screen as easier to reach than those
farther out. Our hypothesis would thus suggest that EDDICT should assign center states with low
norm codes and more peripheral states with high norm codes. As Figure 2 shows, this is exactly what
happens in practice. One interesting subtlety is that the game actually contains several rooms, each
with a different background. These are exceedingly hard to reach and, as expected, this results in
EDDICT assigns these states the highest code norms of all.

5.2 Control to Explore

EDDICT’s representations only tell half of the story. Since codes represent states, and the marginal
code entropy increases monotonically, this suggests EDDICT’s fixed high-level policy should result
in exploratory behavior. But unlike most traditional work on the exploration problem, EDDICT
focuses its exploration only on what it can control.

8

Figure 5: Comparing exploratory behavior in Montezuma’s Revenge. (right) Game score. All
methods except Q(λ) did not have access to this during training. (left) Number of unique avatar
positions visited. This is a proxy for coverage of the controllable states.

Measuring control Intrinsic control methods can measure their control over the environment in
terms of the mutual information between a code and its downstream effects of the environment. For
episodic or resampled but independent codes, this can be estimated straightforwardly as the effective
code entropy (cf. c©, Eq. 1) averaged over a mini-batch. EDDICT however defines a Markov chain
over codes, and thus requires us to compute entropy over the marginal code distribution. To do so,
we fit an isotropic Gaussian to all of the codes in the batch, yielding mean and variance estimates
µ̂ and σ̂2. Our final estimate of Iqw(zi; si+1) is thenH

[
N (µ̂, σ̂2)

]
, plus the average log-prediction

reward log qw(zi | si+1) over the batch.

Since this is a lower bound, it is not an unbiased estimate, but the relative values should still be
meaningful when comparing models of the same architecture. This metric thus allows us to answer
the question: does EDDICT control the environment to a greater degree than its fixed code distribution
equivalent? As Figure 4b shows, this is very much the case. Interestingly, this is true despite the
codes in general being less predictable; the extra entropy from the sequential sampling more than
makes up for it.

Exploring what matters In order to evaluate EDDICT’s behavior policy, we must designate a
proxy metric for exploration quality. For Atari 2600, game score is an obvious candidate. But since
the methods under consideration learn without access to score or episode boundaries, this metric is
sometimes quite noisy. To give a more complete view of exploratory behavior, we also include two
‘coverage’ metrics which counts the number of unique RAM states the agent visits per episode and
over its lifetime. Using the information given in [4], we only count the RAM states corresponding
to the controllable avatar. We evaluate EDDICT on these 3 metrics across 6 amenable games, and
as shown in Table 1, we find that in the majority of cases EDDICT outperforms RVIC, VIC and its
ablation on one or more metrics. RVIC was the most competitive method, and suggests that global
codes are not the only way for intrinsic control methods to yield exploratory behavior.

Of particular interest is Montezuma’s Revenge, one of the hardest exploration games, as attested by
the numerous reinforcement learning papers that fail to receive non-zero scores (e.g. [33, 14]). As
shown in Figure 5, EDDICT outperforms other intrinsic control methods by a wide margin.

For additional context, we provide a broader set of baseline results on Montezuma’s Revenge in
Table 2 of the Supplemental. These span entropy or curiosity-based algorithms which learn a single
unified policy, instead of the code-conditional policies recovered by algorithms in the VIC family,
with Never-Give Up [7] and Random Network Distillation [11] greatly outperforming EDDICT on
the metric of average episodic reward.

6 Limitations and Discussion

Endowing agents with the ability to master the environment is an important step towards more general
purpose agents, as it allows learning in any circumstance without any requirement of a task specific

9

Game DIAYN RVIC Cat(16) EDDICT EDDICT-∆
Berzerk 1.75, 24.8, 365 0.156, 31.3, 138, 0.382, 61.3, 477, 0.562, 10.6, 584
Hero 1.82, 24.1, 1.35k 2.58, 35.2, 805, 2.1, 32.5, 1.34k, 0.856, 20.7, 68.7
Montezuma 0.379, 4.61, 0 0.577, 5.61, 0, 1.17, 8.07, 30.9, 0.674, 4.54, 0
Ms. Pacman 0.475, 1.72, 652 0.288, 1.72, 397, 0.349, 1.72, 587, 0.262, 1.72, 360
Private Eye 4.61, 87, 1.54k 5.41, 85.2, 886, 4.86, 86.8, 1.07k, 4.01, 74.5, -43.6
Seaquest 0.346, 10.9, 18.7 1.27, 10.9, 143, 1.91, 10.9, 400, 1.56, 10.9, 238

Table 1: Results on 6 Atari games at 1B frames. Each tuple A,B,C represents mean of: (A) Episodic
Coverage (·103) (B) Lifetime Coverage (·103) (C) Average return. For EDDICT-based agents, we pick
the best metric across code sizes. Metrics which are best across agents, based on mean performance
over 3 seeds, are shown in bold. In cases where there is a tie across all methods for a metric, none
are bolded. The full set of results, including VIC, random policy baselines, scores with standard
deviations and training curves can be found in the supplemental material.

reward function. EDDICT can both explore and control the environment by learning latent codes that
make sense of states in a globally consistent coordinate system. But in terms of pure exploration,
EDDICT falls short of state of the art methods that learn a single policy (e.g. [12, 11]). Understanding
what these advancements mean for learning code-conditional policies is a promising future direction.

Additive dynamics can not capture important aspects of some environments that we might wish for our
agents to represent, such as dynamics that are irreversible or state-dependent. Ideally, general purpose
function approximators (e.g. neural networks) could be used to specify more general dynamics,
but how to make such learning tractable while preserving the advantageous properties of EDDICT
remains an important open question.

In addition to its inherent merits for environment exploration and manipulation, EDDICT’s novel
state to code mapping and code transition function could be used to aid local planning, or could serve
as a compact representation on top of which to learn policies, or a good state similarity metric for
goal-based RL, or aid in many other unlisted tasks. All of these directions are left as future work.

7 Societal Impact

Unsupervised reinforcement learning in general, and intrinsic control methods in particular, are far
from being commercialized due to their insufficient data efficiency and lack of validation in real world
environments. However, when this is no longer the case, these methods could significantly reduce
the human cost of setting up systems that interact with humans (e.g. robotics), as these methods
limit the need for handcrafted reward functions and the collection of human preferences. But this
benefit comes with a cost to interpretability and safety. The information theoretic objectives of the
methods lead to behavior that can be very hard to predict a priori (e.g. what does ‘controlling your
environment’ look like?). Furthermore, safety constraints might be harder to specify in the absence
of a closed-form reward function. As these methods mature, the emphasis should shift from raw
performance to a more nuanced approach that addresses these societal concerns head on.

8 Acknowledgements

We would like to thank Stephen Spencer for providing engineering support. We further thank Yury
Sulsky and Arturo Bajuelos, who contributed to results found in Appendix B, showing how EDDICT
can be incorporated into the exploration policy of standard RL agents.

References
[1] J. Achiam, H. Edwards, D. Amodei, and P. Abbeel. Variational option discovery algorithms.

arXiv preprint arXiv:1807.10299, 2018.

[2] D. B. F. Agakov. The im algorithm: a variational approach to information maximization.
Advances in Neural Information Processing Systems, 16:201, 2004.

10

[3] F. V. Agakov and D. Barber. An auxiliary variational method. In International Conference on
Neural Information Processing, pages 561–566. Springer, 2004.

[4] A. Anand, E. Racah, S. Ozair, Y. Bengio, M.-A. Côté, and R. D. Hjelm. Unsupervised state
representation learning in atari. arXiv preprint arXiv:1906.08226, 2019.

[5] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in Neural
Information Processing Systems, volume 30, 2017.

[6] P. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 1726–1734, 2017.

[7] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kapturowski, O. Tieleman,
M. Arjovsky, A. Pritzel, A. Bolt, and C. Blundell. Never give up: Learning directed exploration
strategies. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=Sye57xStvB.

[8] K. Baumli, D. Warde-Farley, S. Hansen, and V. Mnih. Relative variational intrinsic control,
2020.

[9] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
06 2013.

[10] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-scale study of
curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

[11] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

[12] V. Campos, P. Sprechmann, S. Hansen, A. Barreto, S. Kapturowski, A. Vitvitskyi, A. P. Badia,
and C. Blundell. Coverage as a principle for discovering transferable behavior in reinforcement
learning. arXiv preprint arXiv:2102.13515, 2021.

[13] M. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics.

[14] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. arXiv preprint arXiv:1802.01561, 2018.

[15] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function, 2018. URL http://arxiv.org/abs/1802.06070.

[16] C. Florensa, Y. Duan, and P. Abbeel. Stochastic neural networks for hierarchical reinforcement
learning. arXiv preprint arXiv:1704.03012, 2017.

[17] R. Fox, S. Krishnan, I. Stoica, and K. Goldberg. Multi-level discovery of deep options, 2017.

[18] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta learning shared hierarchies. CoRR,
abs/1710.09767, 2017. URL http://arxiv.org/abs/1710.09767.

[19] K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. CoRR, abs/1611.07507,
2016. URL http://arxiv.org/abs/1611.07507.

[20] D. Hafner, P. A. Ortega, J. Ba, T. Parr, K. Friston, and N. Heess. Action and perception as
divergence minimization, 2020.

[21] S. Hansen, W. Dabney, A. Barreto, T. Van de Wiele, D. Warde-Farley, and V. Mnih. Fast task
inference with variational intrinsic successor features. arXiv preprint arXiv:1906.05030, 2019.

[22] A. Harutyunyan, W. Dabney, T. Mesnard, M. Gheshlaghi Azar, B. Piot, N. Heess, H. P. van
Hasselt, G. Wayne, S. Singh, D. Precup, and R. Munos. Hindsight credit assignment. In
Advances in Neural Information Processing Systems, volume 32, 2019.

[23] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller. Learning an embedding
space for transferable robot skills. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rk07ZXZRb.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015.

[25] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, and D. Silver. Learning and transfer
of modulated locomotor controllers. arXiv preprint arXiv:1610.05182, 2016.

11

https://openreview.net/forum?id=Sye57xStvB
https://openreview.net/forum?id=Sye57xStvB
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1710.09767
http://arxiv.org/abs/1611.07507
https://openreview.net/forum?id=rk07ZXZRb

[26] A. S. Klyubin, D. Polani, and C. L. Nehaniv. Empowerment: A universal agent-centric measure
of control. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pages 128–135.
IEEE, 2005.

[27] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review,
2018.

[28] A. Levy, R. Platt, and K. Saenko. Hierarchical reinforcement learning with hindsight. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ryzECoAcY7.

[29] A. Li, C. Florensa, I. Clavera, and P. Abbeel. Sub-policy adaptation for hierarchical rein-
forcement learning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=ByeWogStDS.

[30] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative models.
In International conference on machine learning, pages 1445–1453. PMLR, 2016.

[31] J. Merel, L. Hasenclever, A. Galashov, A. Ahuja, V. Pham, G. Wayne, Y. W. Teh, and
N. Heess. Neural probabilistic motor primitives for humanoid control. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=BJl6TjRcY7.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. In Advances in Neural Information Processing
Systems (NIPS)—Proceedings of the deep learning workshop, 2013.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

[34] S. Mohamed and D. J. Rezende. Variational information maximisation for intrinsically motivated
reinforcement learning. In Advances in neural information processing systems, pages 2125–
2133, 2015.

[35] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement
learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf.

[36] O. Nachum, S. Gu, H. Lee, and S. Levine. Near-optimal representation learning for hierarchical
reinforcement learning. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1emus0qF7.

[37] J. Peng and R. J. Williams. Incremental multi-step Q-learning. Machine Learning, 22:283–290,
1996.

[38] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. Mcp: Learning composable hier-
archical control with multiplicative compositional policies. arXiv preprint arXiv:1905.09808,
2019.

[39] A. Razavi, A. van den Oord, B. Poole, and O. Vinyals. Preventing posterior collapse with
delta-VAEs. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=BJe0Gn0cY7.

[40] C. Salge, C. Glackin, and D. Polani. Empowerment–an introduction. In Guided Self-
Organization: Inception, pages 67–114. Springer, 2014.

[41] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HJgLZR4KvH.

[42] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112(1), 1999.

[43] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[44] Y. W. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. Heess, and R. Pas-
canu. Distral: Robust multitask reinforcement learning. In Advances in Neural Information
Processing Systems (NIPS), pages 4499–4509, 2017.

12

https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ByeWogStDS
https://openreview.net/forum?id=BJl6TjRcY7
https://openreview.net/forum?id=BJl6TjRcY7
https://proceedings.neurips.cc/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
https://openreview.net/forum?id=H1emus0qF7
https://openreview.net/forum?id=BJe0Gn0cY7
https://openreview.net/forum?id=BJe0Gn0cY7
https://openreview.net/forum?id=HJgLZR4KvH

[45] D. Tirumala, H. Noh, A. Galashov, L. Hasenclever, A. Ahuja, G. Wayne, R. Pascanu, Y. W. Teh,
and N. Heess. Exploiting hierarchy for learning and transfer in kl-regularized rl, 2020.

[46] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu.
FeUdal networks for hierarchical reinforcement learning. In Proceedings of the International
Conference on Machine Learning (ICML), pages 3540–3549, 2017.

[47] D. Warde-Farley, T. Van de Wiele, T. Kulkarni, C. Ionescu, S. Hansen, and V. Mnih. Unsuper-
vised control through non-parametric discriminative rewards. arXiv preprint arXiv:1811.11359,
2018.

[48] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

[49] M. Wulfmeier, A. Abdolmaleki, R. Hafner, J. T. Springenberg, M. Neunert, T. Hertweck,
T. Lampe, N. Siegel, N. Heess, and M. Riedmiller. Compositional transfer in hierarchical
reinforcement learning, 2020.

[50] M. Wulfmeier, D. Rao, R. Hafner, T. Lampe, A. Abdolmaleki, T. Hertweck, M. Neunert,
D. Tirumala, N. Siegel, N. Heess, and M. Riedmiller. Data-efficient hindsight off-policy option
learning, 2020.

[51] J. Zhang, H. Yu, and W. Xu. Hierarchical reinforcement learning by discovering intrinsic
options. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=r-gPPHEjpmw.

13

https://openreview.net/forum?id=r-gPPHEjpmw
https://openreview.net/forum?id=r-gPPHEjpmw

	Introduction
	Notation
	Method
	VIC as Divergence Minimization
	Incorporating Temporal Dynamics
	EDDICT Objective
	Algorithm

	Related Work
	Experiments
	Codes as Representations of State
	Control to Explore

	Limitations and Discussion
	Societal Impact
	Acknowledgements

