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Abstract

The ever increasing sizes of Large Language Models (LLMs) beyond hundreds of1

billions of parameters have generated enormous pressure on the manufacturers of2

dedicated hardware accelerators and made the innovative design of the latter one3

of the most rapidly expanding fields of the AI industry. Various approaches have4

been explored to enable efficient and accurate processing of LLMs on the avail-5

able accelerators given their computational and storage limitations. Among these,6

various quantization techniques have become the main focus of the community7

as a means of reducing the compute, communication and storage requirements.8

Quantization to lower precision formats naturally poses a number of challenges9

caused by the limited range of the available value representations. When it comes10

to processing the popular Transformer models on hardware, one of the main is-11

sues becomes calculation of the LayerNorm simply because accumulation of the12

variance requires a much wider dynamic range than the hardware enables. In13

this article, we address this matter and propose a computationally-efficient scaling14

technique that can be easily applied to Transformer models during inference. Our15

method suggests a straightforward way of scaling the LayerNorm inputs based on16

the static weights of the immediately preceding linear layers. The scaling factors17

are computed offline, based solely on the linear layer weights, hence no latency18

or computational overhead is added during inference. Most importantly, our tech-19

nique ensures that no numerical issues such as overflow or underflow could happen20

during the compute. This approach offers smooth, accurate and resource-effective21

inference across a wide range of hardware architectures. The article provides the-22

oretical justification as well as supporting numerical simulations.23

1 Introduction24

Large Language Models (LLMs) based on Transformers [1] have recently become the dominant25

Deep Neural Network (DNN) architecture due to their unprecedented performance results in all26

language modeling [2, 3], text processing [4], image and video generation [5], and many other27

tasks. However, this success comes at a cost of enormous volumes of compute, storage, and data28

transfer. A whole new industry of dedicated hardware accelerators has emerged in the last few years29

to accommodate the needs of LLM training and inference [6, 7]. Another major initiative targeted at30

making the inference feasible and sustainable involves the development of lower precision formats31

[8, 9, 10], efficient quantization techniques [11], algorithmic solutions [12], accurate approximations32

[13], and other software optimizations [14, 15].33

Efficient quantization techniques such GPTQ [16], AWQ [17], SmoothQuant [18], KVQuant [19],34

K-sort [20], and numerous others enable storing and processing of LLMs in low-precision formats.35

Often, that would involve training the model in FP32 format and casting it to 4, 8 or 16-bit precision36

formats before deployment onto inference hardware [11, 21, 20]. The most popular approach is to37
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compress the static weights to 4 or 8-bit integers or floats and reduce the activations to FP16 or BF1638

[22]. In this paper, we focus on the wide family of accelerators operating on FP16 activations for39

their popularity [23, 24] and specifically for the relatively narrow dynamic range (the range of repre-40

sentable numbers) of FP16 which might pose significant computational challenges. The most critical41

manifestation of this problem occurs during the LayerNorm computation. Importantly, inclusion of42

dozens or even hundreds of LayerNorm operators in current Transformers is unavoidable since they43

prevent the gradients from exploding or decaying during training [25]. At inference, though, pro-44

cessing LayerNorms on accelerators is extremely challenging because they require accumulation of45

squares of the inputs for the sake of variance (and norm) calculation [26]. Accumulation of such a46

large number of positive values in FP16 is almost surely bound to overflow.47

In this work, we address this problem and propose an efficient, theoretically justified, and easy to48

implement scaling technique that leads to complete elimination of the FP16 overflow (or underflow)49

issue in LayerNorms. First, note that scaling of the LayerNorm input does not affect the output due50

to the homogeneity of the normalization operation but can very significantly shift the range of the51

accumulated numbers in the denominator computation. Based on this observation, we developed the52

SLaNC (Static LayerNorm Calibration) method which provides succinct closed formulae for scaling53

the inputs of all LayerNorms of any Transformer. Importantly, the SLaNC scales are computed54

solely based on the static weights of the preceding liner layers, and can be therefore computed55

offline without impacting the inference runtime. The formulae suggested by SLaNC are theoretically56

justified by derivations and detailed explanations and only involve norms of static weight matrices57

that can be directly and precisely computed using standard software.58

The rest of the article is organized as follows. First, we outline the notation, then in Section 2 we59

formulate the numerical problem caused by the LayerNorm computation in FP16. Section 3 presents60

the SLaNC technique together with its theoretical justification. Supporting numerical simulation on61

the Llama family of LLMs are demonstrated in Section 4. The concluding remarks can be found in62

Section 5.63

Notation. The following notation is used in the article. Matrices are denoted by capital bold letters64

M and vectors by lower case bold v. The operator product of matrices A and B of appropriate sizes65

is written as A ·B or AB, while their element-wise product would be denoted by A⊙B. For matrix66

M, we write ∥M∥F for its Frobenius norm and ∥M∥ for its spectral norm; for vector v, by ∥v∥ we67

denote its Euclidean norm. Given vector m, we denote by M = diag(m) the diagonal matrix with68

elements of m on the main diagonal.69

2 Problem Formulation70

Quantization of an LLM to a low-precision format (e.g., 4, 8 or 16-bit) can lead to a significant71

degradation of the output quality, and thus has to be applied together with some advanced technique72

capable of restoring the accuracy [16, 17, 18, 19, 20, 27, 28]. However, an even bigger challenge73

caused by casting models into low-precision formats is the limited dynamic range of such formats,74

which can completely ruin the compute flow if applied blindly. The most prominent example is the75

computation of LayerNorm, which becomes impossible on FP16 accelerators due to the unavoidable76

overflows and underflows as demonstrated next.77

2.1 LayerNorm Compute78

Layer Normalization (LayerNorm) has become one of the most ubiquitous non-linear operations in79

modern DNNs since it prevents the gradients from decaying or exploding during training. Extensive80

literature has demonstrated that the current DNN architectures cannot be practically trained without81

frequent normalization of hidden states [29, 30, 31]. State of the art Transformer models include82

dozens or even hundreds of LayerNorm operators which are introduced to facilitate training but83

make inference troublesome due to the numerical problems introduced by the computation of their84

denominators.85

Given a row input x ∈ Rd and fixed parameters γ, β ∈ Rd, the LayerNorm output reads as86

y(x) =

(
x− µ1

σ

)
∗ γ + β =

(
x− µ1

σ

)
Γ+ β ∈ Rd, (1)
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where 1 ∈ Rd is the vector of ones, Γ = diag(γ), and87

µ =
1

d

d∑
i=1

xi, and σ =

√√√√1

d

d∑
i=1

(xi − µ)2 =

√√√√1

d

d∑
i=1

x2
i − µ2. (2)
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Figure 1: Residual branching options.

As Eq. 2 suggests, the standard way of computing σ re-88

quires summing up the squares of the input vector elements.89

Depending on the range of these elements, such accumu-90

lation can easily lead to an overflow or underflow when91

performed in FP16 or FP8 formats. It is important to note92

that the majority of the available LLM accelerators process93

non-linear operations exclusively in FP16 format [32, 33].94

While some accelerators do support FP32 accumulation in95

non-linear modules, this option often comes at a high la-96

tency increase making FP32 regime impractical. Fig. 3a and97

Fig. 3c show the typical distributions of the sum of squares98

from Eq. 2 in one of the layers of Llama-2. We observe that99

in too many cases the resulting values exceed the range of100

FP16, leading to invalid inference.101

Note also that the Transformer architecture comes in two102

flavors based on the location of the residual branch-out. It103

can take off before the LayerNorm (pre-LN residual) or af-104

ter (post-LN residual), Fig. 1. Originally, the post-LN op-105

tion was suggested [1] but later the other one became quite106

popular since it was observed to speeds-up the training [34].107

To be specific and for lack of space below we focus on the108

post-LN desugn, however, we emphasize that the deriva-109

tions and conclusions equally apply to the pre-LN one.110

3 LayerNorm Scaling111

3.1 Dynamic Model Calibration112

The natural way of addressing the problem of overflow or underflow during computation of Layer-113

Norm would be to appropriately scale its input. Determining the correct scaling factors appears to114

be challenging because while avoiding overflow we also do not want to excessively dump the input115

causing underflow and vice versa. As a consequence, any reasonable scaling algorithm must take116

into account the actual LayerNorm input values and cannot set the scaling parameters blindly.117

A common solution would be to calibrate the scaling factors. This involves passing a test dataset118

through the Transformer to gauge the range of the input vector norms and setting the scaling factor119

based on some first-order statistic of this range (e.g., mean or median norm). This technique requires120

extra calibration data and significant computational overhead even for such a basic operation as121

LayerNorm, making this approach impractical.122

3.2 Analytical Static Scaling123

In this work, we propose a different methodology that enables analytical offline computation of the124

desired scaling factors. The scales are determined solely based on the static weights of the liner125

layers immediately preceding the LayerNorm at hand. This way we calibrate all the LayerNorm126

operators of a model statically, without using a calibration dataset or additional runtime resources127

— everything is computed preemptively during model compilation.128

The idea of the method is based on a simple observation that LayerNorms inside a Transformer oc-129

cur frequently and in a regular pattern since any large Transformer is a chain of dozens of identical130

decoders. Typically, two consecutive LayerNorms surround the attention or the Multi-Layer Percep-131

tron (MLP) block of every decoder. Eq. 1 suggests that we can treat a LayerNorm as a Euclidean132
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normalization followed by a diagonal matrix multiplication.1 From this natural decomposition of the133

LayerNorm operator we infer that immediately after normalization (the first step in LayerNorm), the134

norm of the hidden vector x is equal to one. Our goal is to trace the computational graph from this135

point to the next LayerNorm and gauge the orders of magnitude of ∥x∥ changes based on the trans-136

formations it undergoes along the way.137

3.3 SLaNC for Standard MLP Block138

To illustrate the idea, let us consider the MLP block of a standard Transformer, Fig. 2a. Since we139

neglect the additive bias β, the output of the MLP block can be expressed as140

y = F (xΓE)G+ xΓ, (3)

where the addition comes from the residual connection, and F(·) is an element-wise non-linearity141

which is usually a contraction function (e.g. ReLU, GeLU, etc.) making the norm of its argument142

smaller. Since usually, the maximal partial derivative of F(·) is bounded by a constant close to one,143

we can approximate the norm of y as144

∥y∥ ∝ ∥xΓEG+ xΓ∥F . (4)

Eventually, we conclude that145

∥y∥
∥x∥

∝ ∥Γ(EG+ I)∥F . (5)

Recall that x is the output of the normalization step of a LayerNorm (see Fig. 2a) and thus has unit146

norm. Therefore, it is natural to set the scaling factor of the following LayerNorm to the right-hand147

side of Eq. 5 and this should solve the overflow/underflow issue. In Section 4, we demonstrate by148

extensive simulations that this is actually the case. Note that the scale determined by Eq. 5 only149

involves static weights and can be computed offline.150

3.4 SLaNC for Llama MLP Block151

Using the same methodology, we derive an analogous formula for the scaling factors of the Layer-152

Norm following the modified MLP block designed for the decoders of the Llama family of models,153

Fig. 2b. Here, in addition to the two linear layers of the standard MLP block, we have another154

linear layer whose output is multiplied with the output of the non-linearity in the element-wise man-155

ner. The non-liner function itself is usually chosen to be GeLU. The input of the post-MLP block156

LayerNorm y reads as157

y = (F (xΓE)⊙ xΓB)G+ xΓ. (6)
Similar principles as above together with basic properties of matrix norms yield158

∥y∥ ∝ ∥∥ΓE∥xΓBG+ xΓ∥F , (7)

where we used the fact that ∥x∥ = 1. Finally, the scaling factor computes as159

∥y∥
∥x∥

∝ ∥Γ (∥ΓE∥BG+ I) ∥F . (8)

3.5 SLaNC for the Attention Block160

Next, we derive a formula for the scaling factor of the LayerNorm following the standard attention161

block with h heads. As it can be seen in Fig. 2c, the most critical observation here is that the product162

of the Softmax output Si of head i with Vi results in a convex combination of the rows of the163

latter. The outputs {SiVi}hi=1 are concatenated, hence, the norm of the concatenated vector can be164

approximated by the norm of the concatenation of {xΓWi
V}hi=1 which is precisely xΓWV. We get165

∥y∥ ∝ ∥xΓWVP+ xΓ∥F = ∥xΓ(WVP+ I)∥F , (9)

and conclude that the following scale should be used in the post-attention LayerNorm operator166

∥y∥
∥x∥

∝ ∥Γ(WVP+ I)∥F . (10)

1Since we are mainly focusing on the order of magnitude of the norms of the hidden states involved, without
impact on accuracy we discard the additive biases β of the LayerNorm operator.
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Figure 2: The compute flow between consecutive LayerNorms of various Transformers. Pink blocks
with capital letters stand for linear layers with the corresponding weight matrices, green F-blocks
represent non-linearities and S-block represents Softmax.

4 Experiments167

To demonstrate the power of our SLaNC scaling technique, we present simulation results for Llama168

models. Note that the Llama architecture replaces the LayerNorm by Root Mean Squared Layer169

Normalization (RMSNorm) [35], which differs from the former only by omitting the mean µ sub-170

traction in Eq. 2 and thus does not affect SLaNC scaling.171

In our first experiment, we collected empirical statistics of the sums of squares in the denominators172

of the RMSNorm operators without scaling and with SLaNC scaling. To this end, we applied Llama-173

2-7b to Wikitext 2 dataset. Fig. 3a and 3c feature typical histograms in two consecutive RMSNorms174

of this model. We see that in a significant number of cases, the sum of squares well exceeds the175

FP16 range and causes overflow. The SLaNC scaling changes the situation dramatically and not176

only shifts the histograms inside the FP16 range but also keeps safe margins on both edges of the177

range, as illustrated by Fig. 3b and 3d, respectively.178

Next, we compared the perplexities of Llama models on the same Wikitext 2 dataset with the default179

FP32 implementation of RMSNorm and with the sum of squared accumulated in FP16 (all other180

operations from the default setup intact). Table 1 shows a significant degradation when the accu-181

mulation happens in FP16 exactly due to numerous overflows. This problem is completely resolved182

when the SLaNC scaling is applied. We also note that in all standard models, a small constant ε is183

added to the variance of the input in the denominator of LayerNorm or RMSNorm operator. This184

way we can avoid division by zero in the case of underflow and improve the numerical stability.185

Since SLaNC scales are known ahead of time, we can easily apply them to the ε constants as well186

(in fact, we divide ε by the squared SLaNC scalings). As the bottom row of Table 1 demonstrates,187

now the FP16 SLaNC scaling can precisely reproduce the default FP32 values.188
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(a) post-attention RMSNorm input, unscaled

(b) post-attention RMSNorm input, SLaNC scaled

(c) post-MLP RMSNorm, unscaled

(d) post-MLP RMSNorm, SLaNC scaled

Figure 3: Empirical histograms of the sum of squares in RMSNorm layers of the 9th decoder in
Llama-2-7b, calculated on wikitext2. The red vertical cut-off line sets the maximal representable
FP16 value (65k) beyond which FP16 overflows, the blue line shows the minimal normal FP16
value. Histograms (b) and (d) show that after SLaNC scaling no overflow (or underflow) is detected
and the RMSNorm is computed precisely.

Table 1: Llama perplexity on Wikitext 2 with different RMSNorm computation modes.

accumulation format Llama-2-7b Llama-2-13b Llama-3-8b
FP32 5.116 4.574 5.538
FP16 19.105 10.521 16.013

FP16 + SLaNC 5.116 4.573 5.539

5 Conclusion189

In this paper, we present a novel SLaNC technique that makes LLM inference possible on FP16190

accelerators without the need to cast LayerNorm operators into FP32. This theoretically grounded191

approach provides easy-to-use formulae for an offline computation of scaling factors for the inputs of192

LayerNorms. The SLaNC scaling factors guarantee precise computation of the LayerNorm in FP16193

and provably avoid overflows and underflows. By keeping all the compute in FP16, the SLaNC194

algorithm enables low latency accurate compute, which is demonstrated by our extensive numerical195

simulations.196
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