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ABSTRACT

Deep learning algorithms have depicted commendable performance in a variety
of computer vision applications. However, training a robust deep neural network
necessitates a large amount of labeled training data, which is time-consuming and
labor-intensive to acquire. This problem is even more serious for an application
like image segmentation, as the human oracle has to hand-annotate each and ev-
ery pixel in a given training image, which is extremely laborious. Active learn-
ing algorithms automatically identify the salient and exemplar samples from large
amounts of unlabeled data, and tremendously reduce human annotation effort in
inducing a machine learning model. In this paper, we propose a novel active
learning algorithm for image segmentation, with the goal of further reducing the
labeling burden on the human oracles. Our framework identifies a batch of infor-
mative images, together with a list of semantic classes for each, and the human
annotator merely needs to answer whether a given semantic class is present or
absent in a given image. To the best of our knowledge, this is the first research ef-
fort to develop an active learning framework for image segmentation, which poses
only binary (yes/no) queries to the users. We pose the image and class selection
as a constrained optimization problem and derive a linear programming relaxation
to select a batch of (image-class) pairs, which are maximally informative to the
underlying deep neural network. Our extensive empirical studies on three chal-
lenging datasets corroborate the potential of our method in substantially reducing
human annotation effort for real-world image segmentation applications.

1 INTRODUCTION

Semantic segmentation (labeling every pixel in an image to the category it belongs to) is one of
the core tasks of visual recognition and is extensively used in a variety of applications, including
autonomous driving, medical imaging and video surveillance among others (Ghosh et al., 2020).
With the advent and popularity of deep learning, several deep architectures have been studied for
image segmentation, which have depicted state-of-the-art results (Zhu et al., 2019; Yuan et al., 2020;
Liu et al., 2021). However, for these models to work reliably, a large amount of training data (in the
form of pixel-level annotated images) is required, which requires significant time and human labor.
Thus, an algorithm to reduce human annotation effort is critically important to train deep learning
models for image segmentation applications.

Active Learning (AL) algorithms identify the most informative samples from vast amounts of un-
labeled data (Settles, 2010). This tremendously reduces the human annotation effort in training a
machine learning model, as only the samples that are selected by the algorithm need to be labeled
manually. Further, since the model gets trained on the exemplar samples from the data, it typically
depicts better generalization performance than a passive learner, where the training data is sampled at
random. AL has been successfully used in a variety of applications, including computer vision (Yoo
& Kweon, 2019), text analysis (Tong & Koller, 2001), bioinformatics (Osmanbeyoglu et al., 2010)
and medical diagnosis (Gorriz et al., 2017) among others. The growing popularity of deep learning
has motivated research in the field of deep active learning, to efficiently train the data-hungry deep
learning models (Ren et al., 2021).

The paucity of human labor and the need to use it more efficiently is even more pronounced for an
application like image segmentation, due to the enormous time and effort associated with labeling
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every pixel in an image. This necessitates specialized query and annotation mechanisms for the AL
algorithms to be feasible in a real-world setting. In this paper, we propose a novel AL algorithm
to address this challenging problem, in an effort to alleviate the labeling burden on human oracles
1 while inducing a deep learning model for image segmentation. Our algorithm queries a batch of
(image-class) pairs and for each pair, poses the question: “Does the image i contain the semantic
class j?” 2 The human annotator merely has to provide a binary “yes / no” feedback for each
query. This is depicted in Figure 1. Providing such feedback is extremely easy and less prone to
annotation errors; it is also significantly less time-consuming and burdensome than providing pixel-
level annotations. Our contributions in this paper can be summarized as follows:

• We present a novel AL framework for image segmentation, which poses only binary (“yes
/ no” ) queries regarding the presence / absence of a semantic class in a given image. To
our knowledge, this is the first active learning framework for semantic image segmentation
which poses only binary queries to the human annotators.

• We pose the image and class selection as a constrained optimization problem, and derive a
linear programming relaxation to select a batch of (image-class) pairs, which are maximally
informative to the underlying deep neural network.

• We conduct user studies to estimate the time and human effort required to annotate an image
at the pixel-level, region-level and binary-level (our method). This can provide valuable
insights and enable us to study the trade-off between the human annotation effort and the
generalization capability of the trained deep neural network, for different categories of
annotation strategies.

• We conduct extensive empirical studies on three benchmark datasets to study the perfor-
mance of our framework against competing baselines.

Figure 1: Figure showing the conventional active learning query (left) and the proposed binary query
mechanism (right). Best viewed in color.

2 RELATED WORK

Active Learning: AL is a well-researched problem in the machine learning community (Settles,
2010; Zhan et al., 2022). Uncertainty sampling is the most common strategy for active learning,
where unlabeled samples with the highest prediction uncertainties are queried for annotation. Sev-
eral strategies have been explored to quantify uncertainty, such as Shannon’s entropy (Li & Guo,
2013; Joshi et al., 2010), disagreement among a committee of classifiers regarding the label of a
sample (Freund et al., 1997), the Fisher information matrix (Hoi et al., 2006), mutual information
between the labeled and unlabeled samples (Guo & Greiner, 2007) among others. The growing
success and popularity of deep learning have motivated researchers to explore the problem of deep
active learning (DAL), where the goal is to select the informative unlabeled samples to train a deep
neural network (Ren et al., 2021). Common DAL techniques include incorporating a loss prediction
module to predict the loss value of an unlabeled sample and querying samples accordingly (Yoo &
Kweon, 2019), selecting informative unlabeled samples for AL and simultaneously, searching for
the best neural architectures on-the-fly (Geifman & El-Yaniv, 2019), a sampling technique based
on diverse gradient embeddings (BADGE) (Ash et al., 2020), a technique which captures the in-
formation balance between the uncertainty of underlying softmax probability and the label variable
and queries samples accordingly (Woo, 2023) and a technique to select a coreset of samples, such
that the model learned over the selected subset is competitive for the remaining data points (Sener
& Savarese, 2018). Techniques based on adversarial learning have depicted particularly impressive

1the terms user, annotator, oracle and labeler are used interchangeably in this paper
2the term class is used to mean semantic class in this paper
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performance in this context (Sinha et al., 2019; Mayer & Timofte, 2020; Zhang et al., 2020). A
segment of AL research has focused on weak / noisy labels, where annotators can provide noisy
annotations or can provide annotations at different levels of precision (Olmin et al., 2023; Wu et al.,
2017; Younesian et al., 2021; Lu et al., 2017).

Beyond the conventional label query, a body of research in AL has focused on the development
of novel query and annotation mechanisms to further reduce the labeling burden on human users.
Binary feedback mechanism has been studied, where the active learner queries a pair of images, and
the human annotator has to specify whether or not the two images belong to the same category (Joshi
et al., 2010; Fu et al., 2014). In another variant, the learner queries an unlabeled image together with
a class label, and the human annotator has to specify whether the selected image belongs to that class
(Hu et al., 2019; Bhattacharya & Chakraborty, 2019). Along similar lines, AL has been exploited
in clustering, where a pair of samples is queried and the oracles need to specify whether or not
the samples in a pair correspond to the same cluster (Biswas & Jacobs, 2012). Although the query
mechanism is binary, these methods query the label of an image as a whole, and not the presence
of a semantic class within an image, and hence are not directly applicable to the problem of image
segmentation.

Active Learning for Image Segmentation: Providing pixel-level annotations to train an image
segmentation model is a time-consuming and expensive process. To address this challenge, weakly
supervised semantic segmentation techniques have been developed, such as providing the presence
or absence of classes in an image during training (Xu et al., 2014; Pinheiro & Collobert, 2015),
pointing to an object of interest (Bearman et al., 2016), bounding box annotations (Papandreou et al.,
2015), free-form squiggles (Lin et al., 2016) and noisy web tags (Ahmed et al., 2014). However,
these methods utilized the weak supervision only during model training (as a term in the training
loss function) and did not use active learning to identify the informative images or the semantic
classes within an image.

As in conventional AL, uncertainty and diversity based metrics have been exploited for AL in the
context of semantic segmentation (Yang et al., 2017). Metrics like view-point entropy have been
studied for multi-view datasets (Siddiqui et al., 2020). Xie et al. proposed DEAL, a difficulty aware
AL algorithm for image segmentation, which focused on the difficulty of different semantic areas in
selecting samples for annotation (Xie et al., 2020). A body of research has focused on identifying
the informative regions in an image and getting them annotated by the human labelers, rather than
the entire image. Various strategies have been explored to identify the informative regions, such
as deep reinforcement learning (Casanova et al., 2020), uncertainty quantification using superpixel
entropies (Kasarla et al., 2019), informativeness, combined with annotation cost and the spatial
coherency of an image (Mackowiak et al., 2018), margin-based sampling combined with diversity
(Shin et al., 2021) and self-consistency under equivariant transformations (Golestaneh & Kitani,
2020). Although annotating image regions is less strenuous than providing pixel-level annotations,
it still requires the human oracles to meticulously label all the pixels in the queried regions, which
can be quite time-consuming, particularly if the queried region involves multiple semantic classes.
In contrast, our framework requests only binary feedback regarding the presence / absence of specific
classes in an image, which requires much lesser annotation effort and facilitates an easier mode of
interaction between the user and the system. We now describe our framework.

3 PROPOSED FRAMEWORK

3.1 PROBLEM FORMULATION

Consider an active image segmentation problem where we are given a labeled training set L and
an unlabeled set U . Let N denote the number of unlabeled images, N = |U |. Images in L are
provided with pixel-level annotations. Let w be the deep neural network trained on L, and C be
the number of semantic classes in the dataset. We are given a query budget B and a parameter
Cmax which denotes the maximum number of classes that can be queried per image (to ensure that
the queries are distributed across a large number of images). Our objective is to select a batch of
images, together with a list of classes for each image for binary user query, such that the total number
of queries does not exceed the budget B, and the user response about the presence/absence of the
semantic classes augments maximal information to the deep learning model.
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In order to identify the optimal set of images and semantic classes to be queried, we need a metric
to quantify the utility score of a batch of (image-class) pairs. We used a criterion based on class
presence uncertainty and image redundancy for this purpose. The first criterion ensures that we
query those (image-class) pairs where there is maximal uncertainty regarding the presence of the
given class in the given image; the redundancy criterion ensures that we query a diverse set of
images in our batch and avoid duplicate image queries. These are detailed below.

Computing Class Presence Uncertainty: Let pij denote the probability that image i contains the
semantic class j (computed using the current deep neural network w, as the average probability of
pixels belonging to the semantic class j within image i). We used Shannon’s entropy to compute the
prediction uncertainty of the presence of semantic class j in image i:

Hij = −pij log pij − (1− pij) log(1− pij) (1)

Using this, we computed a confidence matrix G ∈ <C×N , where G(j, i) denotes the confidence of
the deep model in predicting the presence of class j in image i (high entropy corresponds to low
confidence and vice versa):

G(j, i) =
α

Hij
i = 1, . . . N, j = 1, . . . C (2)

where α is a constant.

Computing Image Redundancy: We computed a redundancy matrix R ∈ <N×N , where R(i, j)
denotes the redundancy between images xi and xj in the unlabeled set. The cosine similarity was
used to quantify the redundancy between a pair of samples; negative values were replaced with 0,
so that R contains only non-negative entries:

R(i, j) = max(0, cos(F(xi),F(xj))) (3)

where cos(F(xi),F(xj)) = F(xi)
>F(xj)

||F(xi)||.||F(xj)|| and F(x) denotes the deep feature representation of
image x. A low value of R(i, j) implies that images xi and xj have low redundancy between them.
Cosine similarity has been previously used to compute similarity in AL research, with promising
results (Coleman et al., 2022). Depending on the application, other metrics can be used to compute
the uncertainty and redundancy terms.

3.2 ACTIVE SAMPLING FRAMEWORK

GivenG andR, our objective is to query a batch of (image-class) pairs such that in each pair, the deep
model has low confidence in predicting the presence of the given class in the given image, and the
queried images have minimal redundancy among them. We define a binary matrixM ∈ {0, 1}N×C ,
where each row corresponds to an unlabeled image and each column corresponds to a semantic class.
A value of 1 in a row denotes that the image should be selected for annotation, and the position(s)
of 1 in a particular row of M denote the semantic class(es) that should be used to pose the binary
queries for this image. We also define a binary vector v ∈ {0, 1}N×1 where vi = 1 denotes that
image xi is selected for annotation, and vi = 0 denotes that it is not selected. The active selection
of (image-class) pairs can thus be posed as the following optimization problem:

min
M,v

Tr(MG) + λv>Rv

s.t. 〈M,E〉 = B

(M.e)i ≤ Cmax,∀i
vi = min(1, (M.e)i),∀i
vi,Mij ∈ {0, 1},∀i, j (4)

where λ > 0 is a weight parameter governing the relative importance of the two terms, E is a matrix
of size N × C (same size as M ) with all entries 1, e is a vector of size C × 1 with all entries
1, B is the labeling budget, 〈., .〉 denotes the inner product operator and Tr denotes the trace of
a matrix. The first term in the objective function denotes that the deep model has low confidence
in predicting the presence of the selected semantic classes in the corresponding selected images;
the second term ensures that the selected images have minimal redundancy among them. The first
constraint denotes the total number of queries posed by M is equal to the specified budget; the

4



Under review as a conference paper at ICLR 2024

second constraint ensures that the number of 1s in each row of M is less than or equal to Cmax, that
is, the number of queries posed for each image is less than or equal to the pre-specified limit Cmax;
the third constraint denotes that vi is equal to 1 if there is at least one entry with value 1 in row i of
M (image xi is selected for annotation), and vi is equal to 0 if all the entries in row i of M have
value 0 (image xi is not selected); the fourth constraint denotes that v is a binary vector and M is a
binary matrix. We now present a theorem to solve this optimization problem.

Theorem 1. The optimization problem defined in Equation (4) can be expressed as an equivalent
linear programming (LP) problem.

Please refer to Section A.1 of the Appendix for the proof of this theorem.

We relax the integer constraints into continuous constraints and solve the problem using an off-the-
shelf LP solver. After obtaining the continuous solution, we recover the integer solution using a
rounding approach where the B highest entries in M are reconstructed as 1 and the other entries as
0, observing the constraints. The pseudo-code of our algorithm is depicted in Algorithm 1 (for one
active learning iteration).

Algorithm 1 The Proposed Active Learning Algorithm with Binary User Feedback
Require: Labeled training set L, unlabeled set U , query budget B, parameters α,Cmax and λ, a

deep neural network architecture for image segmentation

1: Train the deep model on the training set L
2: Compute the confidence matrix G using the probabilities of the trained deep model (Equation

(2))
3: Compute the redundancy matrix R (Equation (3))
4: Solve the LP problem in Equation (8) in the Appendix after relaxing the integer constraints
5: Round the solution to derive the matrix M
6: Select the unlabeled images and the corresponding semantic classes to pose the binary queries

based on the entries in M
7: Update the deep model with the user response to the binary queries (detailed in Section F.1 in

the Appendix)

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

We used three challenging datasets to study the performance of our framework: (i) Flickr-
Landscapes (Park et al., 2019); (ii) Cityscapes (Cordts et al., 2016); and (iii) PASCAL VOC12
(Hariharan et al., 2011). All these are benchmark datasets commonly used to validate the perfor-
mance of image segmentation algorithms.

4.2 COMPARISON BASELINES

We used a total of five methods as comparison baselines that annotate images at the pixel-level,
region-level and binary-level. These are detailed below.

Pixel-level annotation: In this category, a batch of unlabeled images were queried and all the
pixels of all the queried images were annotated. We used two AL algorithms to query a batch of
unlabeled images: Entropy (Settles, 2010), a commonly used AL method which selects samples
with the highest degree of uncertainty as computed by entropy (the entropy of an image in our
image segmentation application, was computed as the average entropy of every pixel in the image,
obtained from the softmax probabilities furnished by the deep network); and Coreset (Sener &
Savarese, 2018), a widely used AL technique which queries a batch of images such that a model
trained on the queried subset is competitive for the remaining data samples.

Region-level annotation: Here, a batch of regions were queried from the unlabeled images and all
the pixels in the queried regions were annotated. We used the region-based active learning (RAL)
method proposed by Kasarla et al. (Kasarla et al., 2019) where the SLIC algorithm was used to
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compute the superpixel of an image, and the regions with the highest uncertainties (defined by the
superpixels) were queried for annotation.

Binary-level annotation: In this category, binary queries were posed regarding the presence / ab-
sence of specific semantic classes in the unlabeled images (similar to our method). This is the first
AL framework with binary-level annotation for image segmentation; we hence used the follow-
ing methods as comparison baselines: Random-Random (RR), which randomly selects a subset of
images and randomly queries B semantic classes from the selected images; and Entropy-Entropy
(EE), where a batch of images were selected based on the entropy of the underlying model and the
semantic classes producing the highest prediction entropy values were queried from each.

We used the DeepLabV3+ model with the ResNet101 backbone (pre-trained on ImageNet) as our
base model due to its promising performance in image segmentation applications (Chen et al., 2018).
The same architecture was used for all the baseline methods, for fair comparison.

Evaluation Metrics: The mean intersection-over-union (mIoU) was used as the evaluation met-
ric, as commonly done in image segmentation research (Chen et al., 2018). Since our comparison
baselines span different categories of annotation, we also used the annotation time as an evaluation
metric.

4.3 EXPERIMENTAL SETUP

Each dataset was divided into three parts: (i) an initial training set L; (ii) an unlabeled set U ; and
(iii) a test set. The number of images in the initial training, unlabeled and test sets were 1, 500,
1, 200 and 1, 000 respectively for all three datasets. All the images in L were provided with pixel-
level annotations. A query budget B (taken as 200 for Cityscapes and PASCAL and 400 for Flickr)
was imposed in each AL iteration, and the experiments were conducted for 25 AL iterations. The
query budget denotes the number of binary queries that can be posed (for the binary-level annotation
methods, RR, EE and our method) or the number of image regions that can be queried (for the region-
level annotation method, RAL). However, since we had 1200 images in our unlabeled set, using a
query budget of 200 for the pixel-level annotation baselines would have exhausted the unlabeled
pool after 6 AL iterations. We hence set the query budget to 48(= 1200/25) in each AL iteration for
the pixel-level baselines, so that the unlabeled pool is completely exhausted after 25 AL iterations.
Also, since each queried image was annotated at the pixel level for Entropy and Coreset, these
baselines represent an upper bound on the AL performance among the methods studied.

After each AL iteration, the selected samples were annotated and appended to the training set;
the deep neural network was retrained and tested on the test set. The objective was to study the
improvement in performance on the test set with increasing number of label queries. The value of
α in Equation (2) was set as 1, the parameter Cmax in Equation (4) was taken as 5, and the weight
parameter λ in Equation (4) was taken as 1 for all the datasets. All the results were averaged over 3
runs (with different training, unlabeled and test sets) to rule out the effects of randomness.

4.4 IMPLEMENTATION DETAILS

Please refer to Section F of the Appendix for details on implementation and model parameters.
Please refer to Section F.1 of the Appendix for details on updating the deep neural network with
binary user feedback. We also provide a few visual illustrations showing the performance of our
binary query AL framework (in Section F.2 of the Appendix).

4.5 USER STUDY TO ESTIMATE ANNOTATION TIME

To accurately estimate the human annotation time (and hence, effort) required to annotate an image
at the pixel-level, region-level and binary-level, we conducted a user study. 10 images were selected
at random from each of the three datasets. For each image, the following tasks were posed:

(i) Annotators were asked to segment each image at the pixel level with the different categories of
objects and mark each category with a different color (pixel-level annotation)
(ii) Annotators were asked to annotate all the pixels within a given region (super-pixel) of an image
with the different categories of objects and mark each category with a different color (region-level
annotation)
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(iii) Annotators were asked a question regarding the presence of an object in each image and had to
provide a binary response: “YES / NO” (binary-level annotation)

Annotators were provided with the LabelMe annotation tool (Russell et al., 2007) to segment the
images. The time taken for each annotation task was noted. The annotators were also asked to
provide a rating, denoting the ease of annotation for each task, on a scale of 1 to 10, 1 being VERY
DIFFICULT and 10 being VERY EASY. Each image was annotated (at the pixel, region, and binary
levels) by 3 human annotators independently.

Annotation Task Flickr Cityscapes PASCAL VOC12
Time Ease Time Ease Time Ease

Pixel-level 7.8±2.9mins 5.5±1.2 37.5±6.3mins 3.6±1.6 18.2±4.3mins 5.2±1.7
Region-level 1.6±1.2mins 7.3±2.7 3.6±0.7mins 5.5±1.8 2.7±1.1mins 6.7±2.3
Binary-level 2±0.3secs 10±0.0 4±0.8secs 10±0.0 3±1.4secs 10±0.0

Table 1: User study results. The table reports the average time (and ease of annotation) to annotate
one complete image at the pixel-level, one region within an image at the pixel-level, and to answer
one binary query posed for a given image, for the three datasets. The results were averaged across
all images for a given dataset and all annotators.

The user-study results are reported in Table 1, which depicts the average time (and ease of anno-
tation) across all images and annotators, for the three datasets. The resolution of each image was
513× 513 for Flickr, 768× 768 for Cityscapes and 513× 513 for PASCAL VOC. As evident from
the table, pixel-level annotation entailed the maximum amount of time (and hence, human labor).
Annotating a given region within an image took considerably less amount of time. As expected,
binary-level annotations were the most efficient in terms of time and took only a few seconds for
each image. We also note that the pixel-level annotations were the most difficult to provide, followed
by region-level annotations. All the annotators reported that binary annotations were the easiest and
the most convenient to provide and it consistently received the highest rating of 10. This user study
demonstrates the tremendous savings in human annotation effort that can be achieved by the pro-
posed binary-level annotation technique for image segmentation applications. Note that the user
study was conducted to estimate the annotation time for the three annotation tasks, which will be
used in our empirical analysis (detailed below). To train the DeepLabV3+ model in our experiments,
we used the ground truth annotations that are provided for each dataset, since it will be extremely
time-consuming to obtain human annotations for all the training images used in our study.

4.6 ACTIVE LEARNING PERFORMANCE

The active learning performance results are shown in Figure 2. In each graph, the x-axis denotes the
iteration number and the y-axis denotes the mean IoU on the test set. From the results, we conclude
the following:

0 5 10 15 20 25
Iteration Number

60

65

70

75

m
Io

U

Flickr

RR(B)
EE(B)
RAL(R)

Entropy(P)
Coreset(P)
Proposed(B)

(a) Flickr

0 5 10 15 20 25
Iteration Number

70

75

80

m
Io

U

Cityscapes

RR(B)
EE(B)
RAL(R)

Entropy(P)
Coreset(P)
Proposed(B)

(b) Cityscapes

0 5 10 15 20 25
Iteration Number

68

70

72

74

76

m
Io

U

PASCAL VOC12

RR(B)
EE(B)
RAL(R)

Entropy(P)
Coreset(P)
Proposed(B)

(c) PASCAL VOC12

Figure 2: Active Learning performance comparison. The x-axis denotes the iteration number and
the y-axis denotes the mean IoU on the test set. Query budget = 200 for Cityscapes and PASCAL
and 400 for Flickr in each AL iteration. Here, B denotes binary-level annotation, R denotes region-
level annotation and P denotes pixel-level annotation. Best viewed in color.
The proposed method comprehensively outperforms the two other AL techniques that utilize binary
user feedback: RR and EE. In almost all the iterations across all three datasets, our framework depicts
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Dataset RR(B) EE(B) RAL(R) Entropy(P) Coreset(P) Proposed(B)
Flickr 71.9± 0.44 74.95± 0.21 76.9± 0.41 76.8± 0.58 76.8± 0.57 75.7± 0.13

Cityscapes 75.56± 0.37 76.76± 0.25 79.30± 1.48 79.4± 0.07 79.4± 0.52 78.5± 0.47
PASCAL 74.9± 0.17 75.46± 0.35 76.1± 0.23 76.4± 0.17 76.4± 0.29 75.96± 0.06

Table 2: Final mIoU achieved by all the methods after 25 AL iterations. Here, B denotes binary-
level annotation, R denotes region-level annotation and P denotes pixel-level annotation.

Dataset Binary-Level Region-Level Pixel-Level
Flickr 5.56 266.67 156

Cityscapes 5.56 300 750
PASCAL 4.16 225 364

Table 3: Approximate total time (in hours) to be expended for annotation (for the binary-level,
region-level and pixel-level methods) over 25 AL iterations for all the three datasets. Query budget
= 200 for Cityscapes and PASCAL and 400 for Flickr in each AL iteration. Query budget denotes
the number of binary queries answered for binary-level annotation methods, and number of image
regions annotated for the region-level annotation methods. Pixel-level annotation methods annotate
all the 1, 200 unlabeled images at the pixel-level (48 images in each AL iteration for all the datasets).

a better mIoU value compared to these two baselines. The final mIoU achieved by our method after
25 AL iterations is also higher than RR and EE, for all three datasets. This shows that our algorithm
can successfully identify the exemplar (image-class) pairs which augment maximal information to
the deep learning model, thereby enabling it to attain much better generalization capabilities.

The RAL method (which requires human users to annotate pixels within given image regions) as well
as the Entropy and Coreset methods (which requires users to annotate all the pixels in a given image)
marginally outperform the proposed algorithm (for the Flickr and Cityscapes datasets). Coreset
depicts the best performance for Cityscapes and Flickr while Entropy depicts the best performance
for PASCAL VOC. Table 2 shows the final mIoU attained by all the methods after 25 AL iterations.
We note that RAL, Entropy and Coreset all achieve a marginally higher mIoU than our method.
However, these methods also entail a significantly higher human annotation effort than our binary
query framework. Table 3 depicts an estimate of the total annotation time (in hours) that has to
be expended over the 25 AL iterations, for all the methods studied. These figures were obtained
by multiplying the values in Table 1 by the number of annotations performed in each AL iteration
and the total number of AL iterations. For instance, for the Cityscapes dataset, the time for pixel-
level annotation was computed as: 37.5mins (time taken to annotate one image at the pixel-level)
× 48 (no. of images annotated in each AL iteration) × 25 (no. of AL iterations); similarly, the
time for region-level annotation was computed as: 3.6mins (time taken to annotate the pixels in one
region in an image) × 200 (number of regions annotated in each AL iteration) × 25 (no. of AL
iterations); and the time for the proposed binary annotation was computed as: 4secs (time taken to
answer one binary query)× 200 (number of binary queries answered in each AL iteration)× 25 (no.
of AL iterations). From Figure 2 and Table 3, it is evident that our method requires substantially
less annotation time and effort, while producing mIoU values that are comparable to RAL, Entropy
and Coreset. For the PASCAL VOC dataset for instance, the final mIoU achieved by our binary
query framework is 75.96, and the difference is less than 0.5% compared to the values achieved by
RAL, Entropy and Coreset (Table 2). However, the total annotation time required by the region-level
(RAL) and pixel-level annotation (Entropy and Coreset) methods are 54.08 times and 87.5 times
greater than our method respectively (Table 3). These results corroborate the promise and potential
of our binary query and annotation technique to substantially reduce human annotation effort, with a
marginal loss in performance, in an application like image segmentation, where annotating a single
data instance is extremely time-consuming and laborious. From Table 3, we also note that region-
level annotation can sometimes take more time than pixel-level annotation, depending on the number
of regions annotated and the resolution of the images.

4.7 STUDY OF BACKBONE NETWORK ARCHITECTURE

In this experiment, we studied the effect of the backbone network architecture used in the
DeepLabV3+ model (we used ResNet-101 as the default backbone architecture). The results on the
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Cityscapes dataset (with query budget 200) using the XceptionNet (Chollet, 2017) and ResNet50
backbones are shown in Figure 3. Our framework once again outperforms the binary-level annota-
tion baselines RR and EE and depicts comparable performance to the region-level (RAL) and pixel-
level (Entropy and Coreset) annotation baselines. Table 4 depicts the final mIoU values attained by
all the methods after 25 AL iterations; since we have only changed the backbone network architec-
ture (and not the query budget), the total annotation time computed in Table 3 for the Cityscapes
dataset is also applicable for this experiment. From Table 4, we note that, for the Xception back-
bone, our binary query framework depicts the highest mIoU after 25 AL iterations; for the ResNet-
50 backbone, our algorithm’s final mIoU is marginally less than that of RAL, Entropy and Coreset.
However, as evident from Table 3, the total annotation time required by the region-level (RAL) and
pixel-level annotation (Entropy and Coreset) methods are 53.95 times and 134.89 times greater than
our method respectively. Our framework thus depicts comparable (and sometimes, marginally bet-
ter) performance than the region-level and pixel-level annotation baselines, and is significantly more
efficient in terms of the total annotation time required for the entire experiment. This shows the
robustness of our framework to the backbone network architecture.
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(a) XceptionNet Backbone
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(b) ResNet50 Backbone

Figure 3: Study of backbone network architecture on the Cityscapes dataset. Query budget = 200.
Best viewed in color.

Backbone RR(B) EE(B) RAL(R) Entropy(P) Coreset(P) Proposed(B)
Xception 72.9± 0.18 71.25± 0.63 72.4± 0.31 72.8± 0.38 72.8± 0.43 73.2± 0.11

ResNet-50 67.2± 0.91 67.5± 0.07 68.2± 0.26 68.2± 0.67 68.2± 0.29 67.95± 0.36

Table 4: Final mIoU achieved by all the methods after 25 AL iterations (as shown in Figure 3) are
depicted in the table. Here, B denotes binary-level annotation, R denotes region-level annotation
and P denotes pixel-level annotation.

We also conducted the following experiments, which are reported in the Appendix, due to space con-
straints: study of query budget (Section B); ablation study (Section C); analysis of the computation
time of all the methods (Section D); study of the parameter Cmax (Section E); study of the initial
training set size (Section G); and comparison against the fully supervised baseline (Section H).

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel active learning framework for semantic image segmentation,
which poses only binary queries regarding the presence / absence of a semantic class in a given
image. To the best of our knowledge, this is the first research effort to develop such an active query
mechanism in the context of image segmentation. We posed the image and class selection as a
constrained optimization problem and derived an LP relaxation to identify a batch of (image-class)
pairs for active query. Our empirical results demonstrated the promise and potential of our frame-
work to drastically reduce human annotation effort in training a deep neural network for semantic
segmentation applications. We hope this research will motivate the development of novel AL algo-
rithms, particularly for applications where labeling a single data instance involves significant manual
work. As part of future research, we plan to explore GPU-based parallel algorithms (such as the one
proposed in (Li et al., 2011)) to improve the computational overhead of solving the LP problem.

9



Under review as a conference paper at ICLR 2024

REFERENCES

E. Ahmed, S. Cohen, and B. Price. Semantic object selection. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

J. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agarwal. Deep batch active learning by di-
verse, uncertain gradient lower bounds. In International Conference on Learning Representations
(ICLR), 2020.

A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei. What’s the point: Semantic segmentation
with point supervision. In European Conference on Computer Vision (ECCV), 2016.

A. Bhattacharya and S. Chakraborty. Active learning with n-ary queries for image recognition. In
IEEE Winter Conference on Applications of Computer Vision (WACV), 2019.

A. Biswas and D. Jacobs. Active image clustering: Seeking constraints from humans to complement
algorithms. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

A. Casanova, P. Pinheiro, N. Rostamzadeh, and C. Pal. Reinforced active learning for image seg-
mentation. In International Conference on Learning Representations (ICLR), 2020.

L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous separa-
ble convolution for semantic image segmentation. In European Conference on Computer Vision
(ECCV), 2018.

F. Chollet. Xception: Deep learning with depthwise separable convolutions. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

C. Coleman, E. Chou, J. Katz-Samuels, S. Culatana, P. Bailis, A. Berg, R. Nowak, R. Sumbaly,
M. Zaharia, and I. Yalniz. Similarity search for efficient active learning and search of rare con-
cepts. In AAAI Conference on Artificial Intelligence, 2022.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic urban scene understanding. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

Yoav Freund, Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using the query
by committee algorithm. Machine Learning, 28(2-3):133–168, 1997. ISSN 0885-6125.

Y. Fu, B. Li, X. Zhu, and C. Zhang. Active learning without knowing individual instance labels: A
pairwise label homogeneity query approach. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 26(4), 2014.

Y. Geifman and R. El-Yaniv. Deep active learning with a neural architecture search. In Neural
Information Processing Systems (NeurIPS), 2019.

S. Ghosh, N. Das, I. Das, and U. Maulik. Understanding deep learning techniques for image seg-
mentation. ACM Computing Surveys, 52(4), 2020.

A. Golestaneh and K. Kitani. Importance of self-consistency in active learning for semantic seg-
mentation. In British Machine Vision Conference (BMVC), 2020.

M. Gorriz, A. Carlier, E. Faure, and X. Giro i Nieto. Cost-effective active learning for melanoma
segmentation. In Neural Information processing Systems (NeurIPS) Workshop, 2017.

Y. Guo and R. Greiner. Optimistic active learning using mutual information. In International Joint
Conference on Artificial Intelligence (IJCAI), 2007.

B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse
detectors. In IEEE International Conference on Computer Vision (ICCV), 2011.

S. Hoi, R. Jin, J. Zhu, and M. Lyu. Batch mode active learning and its application to medical image
classification. In International Conference on Machine Learning (ICML), 2006.

10



Under review as a conference paper at ICLR 2024

P. Hu, Z. Lipton, A. Anandkumar, and D. Ramanan. Active learning with partial feedback. In
International Conference on Learning Representations (ICLR), 2019.

A. Joshi, F. Porikli, and N. Papanikolopoulos. Breaking the interactive bottleneck in multi-class
classification with active selection and binary feedback. In CVPR, 2010.

T. Kasarla, G. Nagendar, G. Hegde, V. Balasubramanian, and C. Jawahar. Region-based active learn-
ing for efficient labeling in semantic segmentation. In IEEE Winter Conference on Applications
of Computer Vision (WACV), 2019.

J. Li, R. Lv, X. Hu, and Z. Jiang. A gpu-based parallel algorithm for large scale linear programming
problem. In Intelligent Decision Technologies, 2011.

X. Li and Y. Guo. Adaptive active learning for image classification. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2013.

D. Lin, J. Dai, J. Jia, K. He, and J. Sun. Scribblesup: Scribble-supervised convolutional networks
for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei, and
B. Guo. Swin transformer v2: Scaling up capacity and resolution. In arXiv 2111.09883v1, 2021.

Z. Lu, Z. Fu, T. Xiang, P. Han, L. Wang, and X. Gao. Learning from weak and noisy labels for se-
mantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
39(3), 2017.

R. Mackowiak, P. Lenz, O. Ghori, F. Diego, O. Lange, and C. Rother. Cereals-cost-effective region-
based active learning for semantic segmentation. In British Machine Vision Conference (BMVC),
2018.

C. Mayer and R. Timofte. Adversarial sampling for active learning. In IEEE Winter Conference on
Applications of Computer Vision (WACV), 2020.

A. Olmin, J. Lindqvist, L. Svensson, and F. Lindsten. Active learning with weak supervision for
gaussian processes. ICONIP. Communications in Computer and Information Science, 1792, 2023.

H. Osmanbeyoglu, J. Wehner, J. Carbonell, and M. Ganapathiraju. Active machine learning for
transmembrane helix prediction. BMC Bioinformatics, 11(1), 2010.

G. Papandreou, L. Chen, K. Murphy, and A. Yuille. Weakly- and semi-supervised learning of a dcnn
for semantic image segmentation. In IEEE International Conference on Computer Vision (ICCV),
2015.

T. Park, M. Liu, T. Wang, and J. Zhu. Semantic image synthesis with spatially-adaptive normaliza-
tion. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

P. Pinheiro and R. Collobert. From image-level to pixel-level labeling with convolutional networks.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

P. Ren, Y. Xiao, X. Chang, P. Huang, Z. Li, B. Gupta, X. Chen, and X. Wang. A survey of deep
active learning. ACM Computing Surveys, 54(9), 2021.

B. Russell, A. Torralba, K. Murphy, and W. Freeman. Labelme: a database and web-based tool for
image annotation. International Journal of Computer Vision (IJCV), 2007.

O. Sener and S. Savarese. Active learning for convolutional neural networks: A core-set approach.
In International Conference on Learning Representations (ICLR), 2018.

B. Settles. Active learning literature survey. In Technical Report 1648, University of Wisconsin-
Madison, 2010.

G. Shin, W. Xie, and S. Albanie. All you need are a few pixels: semantic segmentation with
pixelpick. In IEEE International Conference on Computer Vision Workshops (ICCV-W), 2021.

11



Under review as a conference paper at ICLR 2024

Y. Siddiqui, J. Valentin, and M. Nießner. Viewal: Active learning with viewpoint entropy for se-
mantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

S. Sinha, S. Ebrahimi, and T. Darrell. Variational adversarial active learning. In IEEE International
Conference on Computer Vision (ICCV), 2019.

S. Sridhar, V. Bittorf, J. Liu, C. Zhang, C. Re, and S. Wright. An approximate, efficient solver for
LP rounding. In Neural Information Processing Systems (NeurIPS), 2013.

S. Tong and D. Koller. Support vector machine active learning with applications to text classification.
Journal of Machine Learning Research (JMLR), 2:45–66, 2001.

S. Vempala. The random projection method. In Americal Mathematical Society, 2004.

J. Woo. Active learning in bayesian neural networks with balanced entropy learning principle. In
International Conference on Learning Representations (ICLR), 2023.

J. Wu, S. Zhao, V. Sheng, J. Zhang, C. Ye, P. Zhao, and Z. Cui. Weak-labeled active learning
with conditional label dependence for multilabel image classification. IEEE Transactions on
Multimedia (TMM), 19(6), 2017.

S. Xie, Z. Feng, Y. Chen, S. Sun, C. Ma, and M. Song. Deal: Difficulty-aware active learning for
semantic segmentation. In Asian Conference on Computer Vision (ACCV), 2020.

J. Xu, A. Schwing, and R. Urtasun. Tell me what you see and i will show you where it is. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

L. Yang, Y. Zhang, J. Chen, S. Zhang, and D. Chen. Suggestive annotation: A deep active learning
framework for biomedical image segmentation. In International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI), 2017.

D. Yoo and I. Kweon. Learning loss for active learning. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

T. Younesian, Z. Zhao, A. Ghiassi, R. Birke, and L. Chen. Qactor: Active learning on noisy labels.
In Asian Conference on Machine Learning (ACML), 2021.

Y. Yuan, X. Chen, X. Chen, and J. Wang. Segmentation transformer: Object-contextual representa-
tions for semantic segmentation. In European Conference on Computer Vision (ECCV), 2020.

X. Zhan, Q. Wang, K. Huang, H. Xiong, D. Dou, and A. Chan. A comparative survey of deep active
learning. In arXiv:2203.13450v3, 2022.

B. Zhang, L. Li, S. Yang, S. Wang, Z. Zha, and Q. Huang. State-relabeling adversarial active
learning. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Y. Zhu, K. Sapra, F. Reda, K. Shih, S. Newsam, A. Tao, and B. Catanzaro. Improving semantic
segmentation via video propagation and label relaxation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOF OF THEOREM 1

We provide the proof of Theorem 1 in this section. For better readability, we restate the theorem and
the optimization problem in Equation (4):

min
M,v

Tr(MG) + λv>Rv

s.t. 〈M,E〉 = B

(M.e)i ≤ Cmax,∀i
vi = min(1, (M.e)i),∀i
vi,Mij ∈ {0, 1},∀i, j (4)

Theorem 1. The optimization problem defined in Equation (4) can be expressed as an equivalent
linear programming (LP) problem.

Proof. We simplify the definition of v in the third constraint and rewrite the optimization problem
as:

min
M,v

Tr(MG) + λv>Rv

s.t. 〈M,E〉 = B

(M.e)i ≤ Cmax,∀i
Mij ≤ vi,∀i, j
vi,Mij ∈ {0, 1},∀i, j (5)

The constraint Mij ≤ vi,∀i, j denotes that if row i in M has at least one entry as 1, then vi has
to be 1. If row i in M has all entries as 0, then vi is free to be 0 or 1. However, we are solving
a minimization problem with v>Rv in the objective, and R has only non-negative entries; this
criterion will force vi to be equal to 0, as that will result in a better (lower) value of the objective.
This shows that the constraint vi = min(1, (M.e)i),∀i in Equation (4) is equivalent to the linear
constraint Mij ≤ vi,∀i, j in Equation (5).

The first term in the objective function can be expressed as a linear term: Tr(MG) =
∑
i,j Gij .Mji.

Also, let zij = vi.vj . Clearly, Z is a binary matrix of size N ×N with all entries 0 or 1. The second
term in the objective can then be written as:

v>Rv =
∑
i,j

zij .rij (6)

The optimization problem can thus be expressed as:

min
M,v,Z

∑
i,j

Gij .Mji + λ
∑
i,j

zij .rij

s.t.
∑
i,j

Mij = B

zij = vi.vj ,∀i, j
(M.e)i ≤ Cmax,∀i
Mij ≤ vi,∀i, j
vi,Mij , Zij ∈ {0, 1},∀i, j (7)

13



Under review as a conference paper at ICLR 2024

Now, we attempt to express the quadratic equality zij = vi.vj ,∀i, j as a linear term. The quadratic
equality implies that zij equals 1 only when both vi and vj are 1 and equals 0 otherwise. This can
be expressed as the linear inequality vi + vj ≤ 1 + 2zij ,∀i, j. From the inequality, we note that
when both vi and vj are 1, zij is forced to be 1. When vi and vj are both 0, or one of them is 0
and the other one is 1, zij is free to be 0 or 1. Using the same argument as before, we note that we
are solving a minimization problem with

∑
i,j zij .rij in the objective and R has only non-negative

entries; thus, the nature of the problem will force zij to be 0 as it will produce a lower value of the
objective. Replacing the quadratic equality with the linear inequality, we express the optimization
problem as follows:

min
M,v,Z

∑
i,j

Gij .Mji + λ
∑
i,j

zij .rij

s.t.
∑
i,j

Mij = B

vi + vj ≤ 1 + 2zij ,∀i, j
(M.e)i ≤ Cmax,∀i
Mij ≤ vi,∀i, j
vi,Mij , Zij ∈ {0, 1},∀i, j (8)

In this optimization problem, both the objective function and the constraints are linear in the vari-
ables M , v and Z. It is thus a linear programming (LP) problem.

As mentioned in Section 3.2, we vectorize the variables M , v and Z, append them one below the
other and express the objective function and the constraints in terms of this new variable. The
integer constraints are then relaxed into continuous constraints and the problem is solved using an
off-the-shelf LP solver. After obtaining the continuous solution, we recover the integer solution
of our variable of interest M , using a rounding approach where the B highest entries in M are
reconstructed as 1 and the other entries as 0, observing the constraints.

B STUDY OF QUERY BUDGET

The objective of this experiment was to study the effect of the query budget B on the AL perfor-
mance. The results on the Flickr dataset are shown in Figure 4 for query budgets 200, 300 and 400.
As explained before, these budgets were imposed only for the region-level and binary-level annota-
tion baselines (RAL, RR, EE and our method). The Entropy and Coreset methods still annotated the
same number of images (48) at the pixel-level in each AL iteration, to represent an upper bound on
the AL performance among the methods studied.
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Figure 4: Study of query budget on the Flickr dataset. Best viewed in color. The results with budget
400 are the same as those in Figure 2(a) and are included here for comparison.
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Budget RR(B) EE(B) RAL(R) Entropy(P) Coreset(P) Proposed(B)
200 72.95± 0.47 71.83± 0.66 76.50± 0.23 76.8± 0.58 76.8± 0.57 73.25± 0.09
300 71.45± 1.20 72.20± 0.14 76.2± 0.27 76.8± 0.58 76.8± 0.57 74.20± 0.17
400 71.9± 0.44 74.95± 0.21 76.9± 0.41 76.8± 0.58 76.8± 0.57 75.7± 0.13

Table 5: Study of the query budget on the Flickr dataset. Final mIoU achieved by all the methods
after 25 AL iterations (as shown in Figure 4) are depicted in the table. Here, B denotes binary-level
annotation, R denotes region-level annotation and P denotes pixel-level annotation.

Query Budget Binary-Level Region-Level Pixel-Level
200 2.78 133.33 156
300 4.16 200 156
400 5.56 266.67 156

Table 6: Approximate total time (in hours) to be expended for annotation (for the binary-level,
region-level and pixel-level methods) over 25 AL iterations for different query budgets for the Flickr
dataset. Query budget denotes the number of binary queries answered for binary-level annotation
methods, and number of image regions annotated for the region-level annotation methods. Pixel-
level annotation methods annotate all the 1, 200 unlabeled images at the pixel-level (48 images in
each AL iteration, regardless of the budget).

Our framework consistently outperforms RR and EE (the two baselines for binary-level annotation)
across all budgets, showing its usefulness across different query budgets. This result is particularly
significant from a practical standpoint, where the available query budget is dependent on time, re-
sources and other constraints of an application, and is different for different applications. Table 5
reports the final mIoU values for all the methods after 25 AL iterations for all the query budgets.
From Figure 4 and Table 5, we note that the performance gap between our method and the pixel-
level annotation baselines (Entropy and Coreset) increases with a reduction in query budget. This is
intuitive, as with a reduction in query budget, the generalization capability of our model decreases
while those obtained through Entropy and Coreset sampling remains the same (since their query
budget remains the same). However, a reduction in query budget also means a reduction in total an-
notation time. Table 6 reports the total annotation time required by all the methods across the 25 AL
iterations, for each query budget. We note that for query budgets 200, 300 and 400, our binary query
framework results in 56.11 fold, 37.5 fold and 28.05 fold reduction in annotation time respectively,
compared to the pixel-level annotations necessitated by the Entropy and Coreset baselines. From
Table 6, we also note that region-level annotation can sometimes take more time than pixel-level
annotation, depending on the number of regions annotated and the resolution of the images.

C ABLATION STUDY

We conducted an ablation study to assess the importance of the uncertainty and redundancy terms
in our formulation (Equation (4)). The results on the Flickr dataset (with query budget 400) are
depicted in Figure 5, which shows the performance of the proposed method, the proposed method
without the redundancy term (λ = 0) and the proposed method without the uncertainty term (α = 0).
We note that, removing either the redundancy term or the uncertainty term adversely affects the
performance of our method. This shows that it is important to consider both the class presence
uncertainty (to query informative semantic classes) and the image redundancy (to avoid duplicate
image queries) in our active learning framework for querying (image-class) pairs.

D COMPUTATION TIME ANALYSIS

The goal of this experiment was to perform a comparative analysis of the computation time of the
algorithms studied. The average time (in minutes) taken to query a batch of (image-class) pairs and
retrain the deep model with the queried classes (one AL iteration), for the three datasets are reported
in Table 7. The results are averaged over the 3 random runs and the 25 AL iterations for each run.
The Random-Random (RR) method selects a batch of (image-class) pairs at random and there is no
computation involved; it was hence excluded from this analysis. The algorithms were implemented
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Figure 5: Ablation study results. Query budget = 400. Best viewed in color.

in Python on a Windows 10 Pro workstation with Intel(R) Xeon(R) Gold 5222 CPU @ 3.80GHz
and 64GB RAM, equipped with Dual NVIDIA Quadro RTX 5000 GPUs with 16GB memory.

Dataset EE(B) RAL(R) Entropy(P) Coreset(P) Proposed(B)
Flickr 17.10 ± 0.86 30.68± 0.36 13.77± 0.28 23.86± 1.15 25.32 ± 0.62

Cityscapes 19.51 ± 0.40 36.26± 0.14 16.9± 1.04 31.12± 0.81 27.94 ± 0.57
PASCAL 18.09 ± 0.31 28.4± 0.76 13.17± 0.71 22.61± 1.92 24.91 ± 0.87

Table 7: Average (± std) time taken (in minutes) to query a batch of (image-class) pairs and retrain
the deep model with the queried classes (one AL iteration), for all the methods, except RR. Here, B
denotes binary-level annotation, R denotes region-level annotation and P denotes pixel-level anno-
tation.

From Table 7, we note that the Entropy method has the least computation time. This is because
the entropy of an image can be easily computed from the posterior probabilities furnished by the
deep neural network. Further, training the deep network with binary-level annotations is much
more difficult than training with pixel-level annotations (as illustrated in Section F.1); this explains
the comparatively higher computation time of EE compared to Entropy. The proposed method
has a higher computation time than EE, as it involves solving an LP minimization problem. The
computation time of our framework is more or less similar to that of Coreset, which involves solving
a mixed integer programming (MIP) problem (Sener & Savarese, 2018). The RAL method needs to
compute the superpixels of all the unlabeled images. Also, it involves training the deep neural
network with region-level annotations, which is a time-consuming process (similar to our binary-
level annotations). It thus has a slightly higher computation time.

D.1 IMPROVING THE COMPUTATION TIME OF THE PROPOSED FRAMEWORK

In this section, we present a couple of strategies, that can potentially improve the computational
efficiency of our framework.

Computing the redundancy matrix R (Equation(3)) involves quadratic complexity. We first note
that R needs to be computed only once in our framework (before the start of the AL iterations).
Moreover, the theory of random projections can be used to reduce the computational overhead.
Random projections have been successfully used to speed up computations, where an original data
matrix A ∈ <m×D is multiplied by a random projection matrix X ∈ <D×d to obtain a projected
matrix B ∈ <m×d in the lower dimensional space d: B = 1√

d
AX , where d � min(m,D)

(Vempala, 2004). We plan to study this as part of our future research.

Further, solving the LP minimization problem (in Equation (8)) more efficiently can improve the
computation time of our algorithm. Sridhar et al. Sridhar et al. (2013) proposed an algorithm to
solve large-scale LP problems and showed that we can recover solutions of comparable quality by
rounding an approximate LP solution instead of the exact one. These approximate LP solutions can
be computed efficiently by applying a parallel stochastic-coordinate-descent method to a quadratic-
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penalty formulation of the LP. For the sake of completeness, we discuss the main ideas here and
request the interested reader to refer to Sridhar et al. (2013) for further details.

We first consider an LP minimization problem in its standard form:

min
x

c>x

s.t. Ax = b

Cx ≤ d
x ≥ 0 (9)

Defining y = d − Cx, the inequality constraint reduces to y ≥ 0. The variables x and y can
then be concatenated into a single variable z and the whole problem can be expressed in terms
of this new variable. In our subsequent discussion therefore, we assume that we do not have any
inequality constraint (similar to Sridhar et al. (2013)) and consider an LP minimization problem in
the following form:

min
x

c>x

s.t. Ax = b

x ≥ 0 (10)

We next consider the following regularized quadratic penalty approximation to this LP, parameter-
ized by a positive constant β, whose solution is denoted by x(β):

x(β) = argmin
x≥0

fβ(x) = c>x− u>(Ax− b)

+
β

2
||Ax− b||2 + 1

2β
||x− x||2 (11)

where u and x are arbitrary vectors (can be set to zero). The stochastic coordinate descent (SCD)
algorithm was used to solve Problem (11); the pseudocode is provided in Algorithm 2. In each step,
the algorithm selects a component i ∈ {1, 2, . . . n} and takes a step in the ith component of x along
the partial gradient of Equation (11) with respect to this component, projecting if necessary to retain
non-negativity. As evident from the pseudo-code, the procedure is very simple and the solution to
the approximate LP can be computed efficiently. Please refer Sridhar et al. (2013) for convergence
analysis results of this algorithm and the worst case complexity bounds for this approximate LP
solver. A parallel version of the algorithm was also proposed, which is suitable for execution on
multi-core, shared-memory architectures. In their empirical studies, the authors reported computa-
tional speedup by a factor of 2.8 to 9.0 (time taken by an off-the-shelf LP solver divided by the time
taken by this method), with corresponding solution quality of 1.04 and 1.21 (ratio of the solution
objective obtained by this method to that by an off-the-shelf LP solver) for solving LP minimization
problems, similar to the one in this paper. Thus, this method has the potential to substantially reduce
the computation time, without sacrificing too much on the solution quality. We plan to explore this
framework to further improve the computation time of our algorithm, as part of future work.

Algorithm 2 Stochastic Coordinate Descent Algorithm to solve Problem (11)
1: Select x0 ∈ <n
2: j ← 0
3: loop
4: Select i(j) ∈ {1, 2, . . . n} randomly with equal probability
5: Define xj+1 from xj by setting

[xj+1]i(j) ← max(0, [xj ]i(j) − 1
Lmax

[∇fβ(xj)]i(j)), leaving other components unchanged
6: j ← j + 1
7: end loop

E STUDY OF THE PARAMETER Cmax

The goal of this experiment was to study the effect of the parameter Cmax (maximum number of
semantic class queries that can be posed for each unlabeled image) in Equation (4), on the AL
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performance. The results on the Flickr dataset for Cmax = {4, 5, 7, 9} and query budget 200 are
depicted in Figure 6. A low value ofCmax (≤ 4) seems to adversely affect the learning performance.
This is because, a low value restricts the number of classes that can be queried for each unlabeled
image, and as a result, the algorithm may miss querying some of the informative classes. Otherwise,
the performance of our framework is more or less robust to the choice of this parameter.
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Figure 6: Study of the parameter Cmax on the Flickr dataset with query budget 200. Best viewed in
color.

F IMPLEMENTATION DETAILS

We used the DeepLabV3+ model with the ResNet101 backbone (pre-trained on ImageNet) as our
base model due to its promising performance in image segmentation applications (Chen et al., 2018).
It is constructed upon an encoder-decoder architecture where DeepLabv3 is used as an encoder or
feature extractor which employs ResNet-101 as the backbone, together with atrous convolution lay-
ers to extract multi-scale contextual information; it also utilizes the Atrous Spatial Pyramid Pooling
(ASPP) module for further fast processing and improved performance (Chen et al., 2018). In the
ASPP module, 3 parallel 3 × 3 atrous convolutions with rates (6, 12, 18) for output stride 16, and
(12, 24, 36) for output stride 8 were used in our experiments. Data augmentation was applied by ran-
domly scaling the input images, and random left-right flipping during the training phase. The adam
optimizer was used in our experiments. The details of the training parameters for all the datasets are
provided in Table 8.

Dataset Learning Rate Mini-batch Size Momentum Training Epochs
Flickr 0.005 8 0.9 80

Cityscapes 0.0005 4 0.9 240
PASCAL VOC12 0.001 16 0.9 50

Table 8: Details of the training parameters for all the datasets.

F.1 MODEL UPDATING WITH BINARY USER FEEDBACK

The DeepLabV3+ model takes the input images and their corresponding masks with the semantic
class labels, into its training operation. For a given unlabeled image, the trained model similarly
generates the segmentation mask and predicts the semantic classes present in it based on the gen-
erated mask. An example is shown in Figure 7. The model also maintains a vector of probabilities
depicting the likelihood of the presence of each semantic class in the image. During the active learn-
ing iterations, as the user provides binary feedback regarding the presence / absence of a semantic
class in a given image, the probability vector and the list of classes for that image are updated. There
are four possible scenarios, as described below:

(1) Model predicts a semantic class to be absent in an image, poses a binary query and receives
a negative feedback from the oracle (class is absent): In this case, the predicted segmentation
mask does not change; the probability vector is updated to reflect that the semantic class is not
present in the image.
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Figure 7: Image and model segmented output (pixel wise classification).

(2) Model predicts a semantic class to be present in an image, poses a binary query and receives
a positive feedback from the oracle (class is present): In this case also, the predicted segmentation
mask does not change; the probability vector is updated to reflect that the semantic class is present
in the image.

(3) Model predicts a semantic class to be present in an image, poses a binary query and re-
ceives a negative feedback from the oracle (class is absent): In this case, the most probable
predicted class (that is currently not included in the mask) will replace the class that is absent, in the
segmentation mask; this class may get queried in a subsequent round.

(4) Model predicts a semantic class to be absent in an image, poses a binary query and receives
a positive feedback from the oracle (class is present): In this case, the new semantic class is
accommodated in the segmentation mask as a “background” class, in an appropriate location. These
locations are determined by searching the boundaries of the dominant class in the image, for pixels
allocated to the background class; if no such positions are found, the corners of the image are
searched. Our observation (through extensive experimental studies) reveals that the background
class is usually located close to the dominant class or around the corners of the image.

Once the segmentation mask is updated, the model is retrained with this new information.

Note that, our binary query mechanism does not provide any information about the spatial locations
of the semantic classes in an image. With reference to the above image, let us suppose that the
model predicts the location of the “Person” class in the bottom right of the image, based on the
current segmentation mask. While the image contains a person, the location is incorrectly predicted
by the model. Even though the binary feedback mechanism does not provide any information about
the spatial location of a semantic class in an image, it can still help in rectifying the location. For
instance, it may so happen that a new semantic class is about to be introduced in the image as a
“background” class and its most appropriate location is the bottom right of the image. In that case,
the newly introduced class is accommodated there, and the position of the “Person” class is shifted
to other available locations in the image with pixels allocated to the background class. Over time,
as we receive more and more feedback about the presence / absence of different semantic classes
in the image, the classes adjust themselves appropriately in the image; the predicted segmentation
mask becomes more and more accurate, which increases the generalization capability of the model,
and hence, the mIoU on the test set keeps increasing.

Our code will be made publicly available once our paper is accepted.

F.2 VISUAL ILLUSTRATIONS

In the figures below, we have shown a few examples of how the segmentation mask of a particular
test image evolves over the active learning (AL) iterations, as the deep model receives more and
more binary feedback in our binary annotation framework. In Figure 8, we note the car in front
(marked by the blue arrow) was absent in the 5th AL iteration, but appears in the correct location in
the 25th AL iteration; we also note the portion of the hood of the car in the bottom left portion of
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the image (marked by the red arrow) was not properly segmented in the 5th AL iteration, but shows
a much better segmentation in the 25th iteration.

In Figure 9, the sidewalk in the bottom left portion of the image (marked by the red arrow) was
not properly segmented in the 5th AL iteration, but achieves the correct segmentation in the 25th

iteration, which increases the mIoU.

In Figure 10, the traffic light (shown by the yellow circle and marked by the red arrow) was absent
in the 5th AL iteration, but appears in the correct location in the 25th AL iteration; also, the portion
of the hood of the car in the bottom left portion of the image (marked by the blue arrow) was
not properly segmented in the 5th AL iteration, but shows a much better segmentation in the 25th

iteration.

These examples show that binary feedback can be effective in training a deep neural network for
image segmentation.

Figure 8: Visual Illustration 1. Best viewed in color.
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Figure 9: Visual Illustration 2. Best viewed in color.
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Figure 10: Visual Illustration 3. Best viewed in color.
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G STUDY OF INITIAL TRAINING SET SIZE

In this experiment, we studied the effect of the size of the initial training set (with pixel-level an-
notations) on the AL performance. The results on the Cityscapes dataset, with training set sizes
300 and 500 are depicted in Figure 11. The results depict a very similar trend as Figure 2. The
proposed method outperforms the other binary-level annotation techniques (RR and EE) and depicts
competitive performance as the region-level (RAL) and pixel-level (Coreset and Entropy) annotation
techniques. Thus, it can result in substantial savings in the human annotation effort in exchange of
a marginal drop in accuracy. These results show the efficacy of the proposed method even when the
size of the initial training set (containing pixel-level annotations) is small.
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(a) Initial Training Set Size: 300
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(b) Initial Training Set Size: 500

Figure 11: Study of initial set size on the Cityscapes dataset. The errorbars have been removed for
better visualization. Best viewed in color.

H COMPARISON AGAINST FULLY SUPERVISED BASELINE

In this experiment, we compared the performance of all the methods against a fully supervised
baseline, where all the samples in the training and unlabeled sets were annotated at the pixel-level
and the deep model was trained on the combined pool. The results are presented in Figure 12 where
the fully supervised baseline is represented by the dashed flat line. After 25 AL iterations, our
method achieves an mIoU that is very close to that obtained by the fully supervised baseline.

Table 9 reports the difference in mIoU between the fully supervised baseline and the proposed
method after 25 AL iterations. We note that, just by using binary queries, our method achieves
an mIoU that is very close to the fully supervised baseline. The table also shows the reduction in
human annotation effort achieved by our method, compared to the fully supervised baseline. The
fully supervised baseline requires all the images in the unlabeled set to be annotated at the pixel-
level. From the table, it is evident that our binary query mechanism can result in substantial savings
of human annotation effort. For the PASCAL dataset, for instance, our method achieves an mIoU
that is only 0.74 units less than that achieved by the fully supervised baseline. However, our method
also results in a 87.5 fold reduction in human annotation effort due to the binary queries, as opposed
to the pixel-level queries for the fully supervised baseline. These results further corroborate the
usefulness of our framework in drastically reducing human annotation effort, with a minor loss in
performance, for image segmentation applications.

Dataset mIoU Difference Annotation Effort Reduction
Flickr 1.5 28.05 fold

Cityscapes 1.87 134.89 fold
PASCAL VOC12 0.74 87.5 fold

Table 9: Table showing the difference in mIoU between the fully supervised baseline and the pro-
posed method after 25 AL iterations. The table also shows the reduction in annotation effort achieved
by the proposed method after 25 AL iterations, compared to the fully supervised baseline.
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Figure 12: Comparison against the fully supervised baseline. The errorbars have been removed for
better visualization. Best viewed in color.
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