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Abstract
Single-cell foundation models (scFMs) have demonstrated
state-of-the-art performance on various tasks, such as cell-
type annotation and perturbation response prediction, by
learning gene regulatory networks from large-scale transcrip-
tome data. However, a significant challenge remains: the
decision-making processes of these models are less inter-
pretable compared to traditional methods like differential
gene expression analysis. Recently, transcoders have emerged
as a promising approach for extracting interpretable decision
circuits from large language models (LLMs). In this work,
we train transcoders on all 24 layers of the cell2sentence
(C2S) model, a state-of-the-art scFM, and develop system-
atic pipelines for biological interpretation. Our analysis re-
veals that over 80% of transcoder features across most lay-
ers are biologically interpretable through Gene Set Enrich-
ment Analysis (GSEA). Through a case study on endothelial
cell classification, we demonstrate that extracted circuits cor-
rectly identify cell-type-specific genes and significantly en-
rich for relevant pathways (FDR = 0.0013), confirming that
transcoders can identify internal features aligned with bio-
logical knowledge within complex single-cell models.

Introduction
In recent years, single-cell foundation models (scFMs) such
as cell2sentence (C2S) (Levine et al. 2024) and Geneformer
(Theodoris et al. 2023) have garnered significant attention
in the field of computational biology. These models adapt
techniques from large language models (LLMs) in natural
language processing, combining pre-training on large-scale
transcriptome data corpora to learn general gene-gene rela-
tionships with task-specific fine-tuning on smaller datasets
(Theodoris et al. 2023; Cui et al. 2024). While these mod-
els have achieved state-of-the-art performance on various
single-cell analysis tasks including cell-type annotation and
cellular response prediction, their low interpretability, stem-
ming from the inherent nature of neural network algorithms,
remains a significant challenge. This is particularly crucial
in single-cell analysis models, where biological interpreta-
tion of model predictions is essential, making improved in-
terpretability in scFMs an urgent priority.

A major goal in efforts to elucidate the internal mecha-
nisms of large-scale models like LLMs and scFMs includes
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identifying internal circuits: the combinations of features
that determine model behavior (circuit tracing) (Dunefsky,
Chlenski, and Nanda 2025; Elhage et al. 2021). In single-
cell analysis models, discovered internal circuits could po-
tentially lead to new discoveries when connected with bio-
logical insights. This pursuit of understanding model inter-
nal mechanisms falls under the research field of mechanistic
interpretability, which has recently attracted considerable at-
tention.

In the domain of natural language processing, mechanis-
tic interpretability of LLMs has emerged as a major research
topic, with various methods being proposed. Among these,
sparse autoencoders (SAEs) (Huben et al. 2024) and their
variant, transcoders (Dunefsky, Chlenski, and Nanda 2025),
have gained attention as methods that can resolve the “poly-
semanticity” within LLMs and transform internal represen-
tations into interpretable features. Transcoders, in particular,
have been shown to extract input-invariant and highly in-
terpretable features by training neural networks with wide,
sparsely activated intermediate layers that replace MLP lay-
ers, enabling the extraction of model internal circuits.
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Figure 1: Pipeline for transcoder-based circuit tracing in
scFMs. We train a transcoder on each MLP and attribute
across features and attention to recover a sparse computa-
tional subgraph (circuit) that underlies cell-type predictions.
The recovered features align with known endothelial biol-
ogy (e.g., VWF, PTPRB, SPARCL1).

In this work, we apply transcoders to the C2S model, a
state-of-the-art scFM, to extract its internal circuits and bi-



ologically interpret the circuit components (Figure 1). Our
contributions are summarized as follows:
• We present the first application of transcoders to scFMs,

successfully training transcoders on all 24 layers of the
C2S model and demonstrating their effectiveness for
mechanistic interpretability.

• We develop systematic biological interpretation
pipelines: (1) an automated pipeline using GSEA to
evaluate individual transcoder features, and (2) a pipeline
to biologically interpret extracted circuits through gene
identification and pathway analysis.

• We provide comprehensive empirical evidence showing
that over 80% of transcoder features across most layers
are biologically interpretable, with layer-wise analysis
revealing interpretability patterns consistent with trans-
former architectural principles.

• We demonstrate practical circuit extraction through a
case study on cell type classification, where the ex-
tracted circuit correctly identified endothelial-specific
genes (e.g., VWF, PTPRB) and significantly enriched
for “Endothelial cell: heart” pathways (FDR = 0.0013),
demonstrating the biological relevance of our approach.

The remainder of this paper is organized as follows.
We first explain the background methods of scFMs and
transcoders along with their use for circuit analysis. We then
discuss case studies of experiments applying transcoders to
the C2S model. Subsequently, we summarize related work
on interpretability in single-cell analysis models, and finally
present conclusions and future perspectives.

Single-cell Foundation Models
Single-cell foundation models (scFMs) are transformer-
based models pre-trained on large-scale transcriptome data.
These models process input by ranking genes within each
cell based on their expression levels and other factors,
then arranging genes in rank order to form gene se-
quences. Prominent examples include Geneformer, scGPT,
and cell2sentence (C2S).

ScFMs exhibit several architectural variations:
• Architecture type: Models can be either encoder-based

or decoder-based.
• Tokenization method: Some models tokenize at the

gene level, while others leverage natural language tok-
enizers to process gene sequences represented as natural
language strings.

• Gene ranking methods: Different approaches exist for
ranking genes (Theodoris et al. 2023; Levine et al. 2024),
which represents a unique challenge specific to scFMs.

In this work, we focus on the C2S model, which em-
ploys a decoder-based architecture and utilizes natural lan-
guage tokenization. C2S leverages the Pythia (Biderman
et al. 2023) architecture and tokenizer, pre-trained on 57 mil-
lion human and mouse cells from scRNA-seq data, along
with biological literature abstracts (Levine et al. 2024). This
approach enables the model to capture both gene expression
patterns and broader biological knowledge from scientific
texts.

Transcoders and Circuit Tracing
The Need for Transcoders: Resolving
Polysemanticity
Understanding the internal representations of LLMs faces a
fundamental challenge known as polysemanticity: the phe-
nomenon where individual neurons or weights simultane-
ously encode multiple distinct concepts or functions (Elhage
et al. 2022). For instance, a single neuron might strongly re-
spond to both Japanese city names and gene names. This
polysemanticity makes it difficult to disentangle and under-
stand which parts of the weight matrices represent specific
concepts through direct observation.

To resolve or mitigate polysemanticity and reconstruct
the internals of large models into human-interpretable units,
methods such as sparse autoencoders (SAEs) and their vari-
ant, transcoders, have proven effective (Huben et al. 2024;
Dunefsky, Chlenski, and Nanda 2025).

Sparse Autoencoders and Transcoders
Sparse Autoencoders (SAE) SAEs consist of an encoder
that transforms an input vector x ∈ Rd into a higher-
dimensional activation vector z ∈ Rl

≥0 (where l > d), and a
decoder that reconstructs the original dimension:

z = ReLU(Wencx+ benc) (1)
x̂ = Wdecz+ bdec (2)

Typical SAEs use the same LLM hidden state for both en-
coder input and decoder output, and are trained to minimize
the following loss function:

L = ||x̂− x||22 + λ||z||1 (3)

where the first term represents reconstruction error, the sec-
ond term is a sparsity penalty that encourages sparse activa-
tions, and λ is a hyperparameter controlling the L1 weight.

Transcoders Transcoders are a variant of SAEs that learn
on the input and output of each transformer layer’s MLP
rather than on the same hidden state:

L = ||x̂−MLP(x)||22 + λ||z||1 (4)

This formulation enables transcoders to approximate the
transformer’s MLP, decomposing MLP neurons into inter-
pretable components.

Key Differences between SAEs and Transcoders While
standard SAEs are trained to reproduce hidden states and ex-
tract input-dependent features, transcoders approximate spe-
cific modules within transformers (the MLPs) and thus ex-
tract input-invariant features. For explaining general model
behavior, input-invariant features are preferable; therefore,
transcoders are better suited for extracting circuits within
transformers.

Circuit Tracing with Transcoders
Recent work has proposed methods for tracing circuits
within LLMs using transcoders. We outline the key com-
ponents below.



Attribution Between Transcoder Feature Pairs The
contribution of transcoder feature i in layer l to feature j
in layer l′ is computed as:

z(l,i)(x)×
(
f
(l,i)
dec · f (l′,j)

enc

)
(5)

where z(l,i)(x) represents the input-dependent activation
level, and the dot product (fdec · fenc) is an input-
independent fixed value. Here, f (l,i)

enc/dec denotes feature vec-
tor i of the transcoder encoder/decoder in layer l, cor-
responding to row vectors of Wenc and column vectors
of Wdec respectively. This decomposition allows separate
treatment of “input-independent general connections” and
“input-specific importance.”

Attribution Through Attention Heads Inter-feature rela-
tionships propagate not only through MLPs within the same
token but also from different tokens via attention heads.
Through the OV matrices of attention heads (Kamath et al.
2025), we can track which token’s information contributes
to specific features. Mathematically, by combining atten-
tion scores with OV matrices, we can compute how rep-
resentations from source tokens contribute to downstream
transcoder features.

Finding Computational Subgraphs By iteratively apply-
ing the attribution calculations above, we can identify the
primary computational paths that activate specific features
(Dunefsky, Chlenski, and Nanda 2025). The process in-
volves:
1. Search for upstream features that strongly contribute to

the target feature
2. Retain only top contributors and extend the paths
3. Iterate to obtain a set of important computational paths
Integrating these paths yields a sparse computational sub-
graph (circuit) that represents the model’s internal decision-
making process.

Extraction of Biologically Interpretable
Features and Circuit Analysis

To evaluate whether the learned transcoders are useful
for biological research, we constructed (1) an automated
pipeline to assess the biological interpretability of individual
transcoder features, and (2) a pipeline to perform biological
interpretation of circuits extracted using transcoders.

Biological Interpretation Pipeline for Individual
Transcoder Features
The interpretation pipeline for transcoder features consists
of two stages: 1. Identification of tokens that specifically ac-
tivate each feature and their corresponding genes. 2. Execu-
tion of Gene Set Enrichment Analysis (GSEA) (Subrama-
nian et al. 2005) using the identified gene lists.

1. Identification of Tokens and Corresponding Genes
that Specifically Activate Features

For each transcoder feature f , we calculate the frequency
distribution of tokens that activate feature f . Specifically, us-
ing a corpus of gene sequences created from the Heart Cell

Atlas v2 (Kanemaru et al. 2023), we compute the activation
value E(f, t) for each token t. In the cell2sentence model
we employed, gene names can be split into multiple tokens
(sub-words). In such cases, we treat tokens as correspond-
ing to genes when they are contained within gene names in
the corpus sentences. By listing genes in descending order
of activation frequency for each transcoder feature, we can
identify genes that specifically activate the feature.

2. Execution of Gene Set Enrichment Analysis (GSEA)
Using Identified Gene Lists

We perform GSEA using the gene lists identified through
the above procedure. GSEA is a method for evaluating
whether a given gene list is associated with specific biologi-
cal pathways or functions. Using the enrichment scores and
False Discovery Rate (FDR) obtained from GSEA, we eval-
uate whether each transcoder feature is biologically inter-
pretable.

Biological Interpretation Pipeline for Extracted
Circuits
While transcoders enable extraction of internal circuits that
reveal how scFMs determine their outputs, we also devel-
oped a pipeline to biologically interpret these circuits.

The extracted circuits are represented as directed graphs
consisting of nodes (transcoder features in each scFM layer
with their corresponding token positions) and edges (con-
tributions between nodes). We identify gene names corre-
sponding to tokens at each high-contribution node. The re-
sulting gene lists are considered to play particularly impor-
tant roles in how scFMs determine their outputs. Further-
more, by performing GSEA on these gene lists, we can
evaluate whether they are associated with known biological
pathways or functions.

Experiments
Training Transcoder on C2S
Experimental Setup We trained transcoders on each
MLP layer of vandijklab/C2S-Pythia-410m-
cell-type-prediction (van Dijk Lab 2025), a model
from the C2S family from Hugging Face. For training data,
we used the Heart Cell Atlas v2 (Kanemaru et al. 2023)
dataset, splitting it into 90% for training and 10% for val-
idation.

Training Hyperparameters The transcoder training was
conducted with the following hyperparameters:
• Maximum learning rate: 1× 10−4

• Number of tokens per batch: 2048
• L1 coefficient: 1.4× 10−4

• Hidden dimension of transcoder: 8192 (expansion factor
8)

• Number of training tokens: 60 million

Model Validation To validate the trained transcoders, we
compared three models: the original model, a model with all
MLPs replaced by transcoders, and a model with all MLPs
removed. Table 1 shows the validation losses for each model
configuration.



Model Configuration Original Transcoder No MLP

Validation Loss 2.48 4.63 12.67

Table 1: Validation loss comparison across different model
configurations.

While the transcoder-replaced model shows some degra-
dation compared to the original model, it achieves substan-
tially lower loss than the model with MLPs removed, con-
firming that the transcoders successfully capture significant
MLP functionality.

Additionally, we computed the KL divergence between
the logits of the modified models and the original model:

Mean

KL(Original∥Transcoder) 2.406
KL(Original∥No MLP) 10.52

Table 2: KL divergence between original model and modi-
fied models.

The average number of activated transcoder features per
token (L0 value) across layers is shown in Figure 2.
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Figure 2: Average L0 values (number of active features per
token) across transcoder layers.

Human Evaluation of Transcoder Features’
Interpretability
To evaluate the interpretability of learned transcoder fea-
tures, we conducted a human evaluation study. We focused
on transcoder features from layer 12, defining “live features”
as those with log10 E(f) ≥ −4, where E(f) represents the
probability that feature f activates per token. Figure 3 shows
the distribution of live features.

From these live features, we randomly selected 20 fea-
tures for detailed interpretation. Features were analyzed by
investigating which tokens activate them. A feature was clas-
sified as “gene-level interpretable” if it consistently activated
on tokens corresponding to specific genes or gene families.

Figure 3: Distribution of live features in layer 12 transcoder
with log10 E(f) ≥ −4.

Our evaluation revealed that 7 out of 20 features (35%)
were gene-level interpretable. Table 3 presents the detailed
analysis of each feature.

Biological Interpretation of Transcoder Features
via GSEA
To interpret transcoder features from a biological perspec-
tive, we applied the previously described GSEA pipeline. In
the pipeline, we used two databases for GSEA: “GO Biolog-
ical Process 2025” (The Gene Ontology Consortium 2023)
and “KEGG 2021 Human” (Kanehisa et al. 2021). We de-
fined features as “biologically interpretable” if they identi-
fied at least one pathway satisfying FDR < 0.05 through
this pipeline.

The C2S model we employed is a 24-layer transformer
model. We applied the pipeline to “live features” with
log feature activation frequency (log10 E(f)) ≥ −3 from
transcoders corresponding to each layer. The results are
shown in Table 4.

As these results demonstrate, over 80% of live features in
most layers were shown to be biologically interpretable.

Despite the high overall fraction of biologically inter-
pretable features, we observed a relative dip in Layer 0. We
posit two primary causes. (1) Early transformer layers pref-
erentially encode form- and position-dependent regularities
(e.g., delimiter tokens, local context, rank/positional cues),
with more semantically aligned representations emerging
in middle and upper layers; this layerwise progression is
well documented in NLP models and plausibly carries over
to scFMs operating on “cell sentences” (Tenney, Das, and
Pavlick 2019; Clark et al. 2019). (2) Subword tokenization
fragments gene symbols in a general-domain vocabulary, es-
pecially at low layers that behave more like form detectors;
consequently, Layer-0 features often fire on token fragments
(affixes, numerals) rather than whole genes, weakening the
mapping from features to coherent gene sets and depressing
GSEA yields. Prior evidence shows that domain-adapted vo-
cabularies mitigate such mismatch, suggesting that biomedi-
cal tokenizers, or distillation into domain-tokenized models,



Feature ID log10 E(f) Activating Tokens Gene-Level Interpretable

6027 -2.66 PSD token in PSD3 gene Yes
2123 -2.60 OL token in GOLGA4, GOLGA8A, GOLPH3 No
4942 -1.25 Trailing 2 token in genes No
2459 -3.01 Y tokens (non-specific) No
7892 -2.50 ME token in MEIS2, MEF2A No
7125 -2.53 PN token in PTPN family genes Yes
3266 -2.90 SH token in TSHZ2, TSHZ3 No
1702 -2.43 AM token in LAM* genes (LAMC1, LAMTOR4) No
3546 -2.34 X token in YBX1, YBX3 Yes
4319 -2.96 AA token in HSP90AA1 gene Yes
2709 -2.57 BL token in ABLIM1, ABL1, ABLIM3 No
1283 -1.71 20 token in ZBTB20 gene No
5085 -2.60 NA token in GNA* genes (GNAI1, GNAI2, GNA14) No
2271 -2.67 NK token in CSNK family genes Yes
1980 -2.91 NA token in NAALADL2, NAIP No
2808 -2.53 OCK token in ROCK1, ROCK2 No
4619 -2.90 NN token in TNNI3, TNNC1 No
5951 -2.41 O token in FOXO family genes Yes
4819 -2.31 SB token in WSB family genes Yes
5280 -1.98 3 token in RPS3, RPS3A No

Table 3: Human interpretation of randomly selected transcoder features from layer 12. Note: In token representations, under-
score ( ) denotes a space character.

KIAA1217 VWF MT-CO1 FOXN3 MT-CO2 ENG MGLL
MT-ND4 MAGI1 MT-CO3 MT-CYB IQGAP1 SYNE1
CD36 RASAL2 SPARCL1 ST6GALNAC3 LINC00486
RAPGEF1 ID1 RBMS3 NFIB PTPRB LRMDA ARID2
MT-ATP6 SMAD2 ZBTB20 RGCC PLAA SLC48A1
TACC1 MECOM RB1 TSPAN14 FRMD4A AFDN ANO2
SHOC2 CDC42BPA RASGRF2 CCDC85A ESR2 SLC1A1
FRYL MALAT1 FAM241A DIAPH2 TSPAN15 LPAR6
HIF3A ITGA6 PARP14 NSD3 WNT2B FTX ART4
FBXW11 MTHFR AFF1 KHDRBS1 ZBTB46 ANKRD13C
RDX.

The corresponding cell type is:

Figure 4: Prompt for cell type classification consisting of 64
genes ordered by C2S gene rank encoding.

could improve low-layer interpretability (Beltagy, Lo, and
Cohan 2019; Lee et al. 2020).

Case Study: Interpreting Cell Type Classification
To demonstrate the practical application of circuit tracing in
scFMs, we analyzed how the C2S model performs cell type
classification. We extracted a cell labeled as endothelial cell
from Heart Cell Atlas v2 and prepared the prompt shown in
Figure 4.

This prompt consists of the top 64 genes arranged
according to C2S’s gene rank encoding (a cell sen-
tence), followed by a query for cell type prediction.
The C2S model (vandijklab/C2S-Pythia-410m-
cell-type-prediction) successfully predicted “en-
dothelial cell of artery” as the cell type.

We extracted circuits for features that strongly activated
on the final token (“:”) in the last layer. Figure 5 shows an ex-
ample circuit extracted for feature ID 2692, one of the most

strongly activated features.

Figure 5: Extracted circuit for feature 2692 activated during
endothelial cell classification. The circuit shows the compu-
tational graph tracing back from the final prediction token.

While the extracted circuit contains many activated fea-
tures, many correspond to tokens in the text prompt (like
“cell type:” part) rather than gene names.

When we extract only the nodes corresponding to gene
name tokens, we can identify 9 gene-associated nodes:
‘VWF’, ‘PTPRB’, ‘ANKRD13C’, ‘KHDRBS1’, ‘LPAR6’,
‘ST6GALNAC3’, ‘ART4’, ‘DIAPH2’, and ‘MT-ND4’. Us-
ing this gene list, we performed GSEA based on the “Cell-
Marker Augmented 2021” (Hu et al. 2023) database, which
significantly detected a pathway associated with “Endothe-
lial cell: heart” cell type with FDR = 0.0013. This pathway
achieved an enrichment score of 315.17, the highest score



Layer Total Biologically Fraction Percentage
Features Interpretable (%)

0 116 78 78/116 67.24
1 179 159 159/179 88.83
2 606 529 529/606 87.29
3 665 552 552/665 83.01
4 729 614 614/729 84.22
5 919 780 780/919 84.87
6 967 854 854/967 88.31
7 921 805 805/921 87.40
8 641 563 563/641 87.83
9 542 460 460/542 84.87

10 636 540 540/636 84.91
11 625 533 533/625 85.28
12 915 808 808/915 88.31
13 865 762 762/865 88.09
14 880 802 802/880 91.14
15 868 776 776/868 89.40
16 778 682 682/778 87.66
17 766 679 679/766 88.64
18 746 664 664/746 89.01
19 791 710 710/791 89.76
20 932 827 827/932 88.73
21 938 835 835/938 89.02
22 922 804 804/922 87.20
23 269 220 220/269 81.78

Table 4: GSEA results for transcoder features across all lay-
ers, showing the number of biologically interpretable fea-
tures (FDR < 0.05) among live features (log10 E(f) ≥
−3).

among all pathways satisfying FDR < 0.05. Since the in-
put gene sequence was obtained from a cardiac endothelial
cell from Heart Cell Atlas v2, this suggests that the extracted
circuit is biologically plausible.

Specifically, literature review revealed that four of these
genes are closely associated with cardiac endothelial cell bi-
ology:

• VWF (von Willebrand factor): a canonical endothe-
lial marker localized to Weibel–Palade bodies (Valentijn
et al. 2011).

• PTPRB (VE-PTP): an endothelial-enriched receptor-type
tyrosine phosphatase that regulates junctional integrity
and TIE2/EPHB4 signaling (Drexler and others 2019).

• KHDRBS1 (Sam68): an RNA-binding protein that mod-
ulates endothelial adhesion-site formation and migra-
tion (Rekad and et al. 2023).

• DIAPH2 (mDia2): a formin implicated in endothelial
actin remodeling and phagocytosis-like uptake, linked to
angiogenic behaviors (Rengarajan, Hayer, and Theriot
2016).

These genes are all closely associated with endothelial
cell biology, suggesting that the extracted circuit captures bi-
ologically meaningful patterns. However, the circuit remains
large and complex, with many features difficult to interpret

biologically. This highlights the need for more refined circuit
extraction methods and feature interpretation techniques in
future work.

Related Work
While mechanistic interpretability of large-scale models in-
cluding LLMs has attracted significant attention (Dunefsky,
Chlenski, and Nanda 2025; Kamath et al. 2025; Huben et al.
2024), the field remains in its early exploratory stages. Par-
ticularly, applications of mechanistic interpretability tech-
niques from natural language processing to bioinformatics
models such as single-cell analysis models are still limited.
Here we summarize the relationship between our work and
these pioneering studies.

Schuster’s scFeatureLens (Schuster 2025) and work by
Claye et al. (Claye et al. 2025) have applied sparse au-
toencoders to scFMs such as Geneformer (Theodoris et al.
2023) and scGPT (Cui et al. 2024), providing frameworks
to mechanistically interpret SAE features as biological con-
cepts. Our research extends this line of work by utilizing
transcoders, an advanced variant of SAEs, to extract internal
decision circuits from scFMs and demonstrate their corre-
spondence with biological concepts. The frameworks devel-
oped in these prior studies could potentially be applied to in-
dividual transcoder features, suggesting valuable directions
for future research.

Additionally, mechanistic interpretability techniques have
been applied to models that directly process genome se-
quences. For instance, Brixi et al. developed Evo 2 (Brixi
et al. 2025), a genomic foundation model, and as part of
their research incorporated SAE analysis to investigate the
model’s internal representations, revealing that it recognizes
biologically important sequence patterns such as intron-
exon boundaries. These studies collectively demonstrate the
growing potential of mechanistic interpretability methods in
understanding biological foundation models.

Conclusion and Future Work
In this work, we presented the first application of transcoders
to single-cell foundation models, successfully training
transcoders on all 24 layers of the cell2sentence model and
developing systematic pipelines for biological interpreta-
tion. Our comprehensive analysis revealed that over 80%
of transcoder features across most layers correspond to bi-
ologically interpretable concepts, as validated through Gene
Set Enrichment Analysis. Notably, we observed a layer-wise
interpretability pattern consistent with transformer architec-
tural principles, where early layers focus on form and posi-
tion encoding while middle and upper layers capture more
semantically meaningful biological representations.

Our case study on endothelial cell classification demon-
strated the practical utility of circuit extraction. The recov-
ered circuit correctly identified endothelial-specific genes
including VWF, PTPRB, KHDRBS1, and DIAPH2, and sig-
nificantly enriched for “Endothelial cell: heart” pathways,
highlighting the potential of extracting circuits that align
with known biological pathways. This success suggests that
transcoders can help analyze scFMs’ internal computations



by decomposing them into interpretable biological compo-
nents.

However, several challenges remain. First, our current
pipeline simply extracts gene lists from circuits and applies
enrichment analysis, without fully leveraging the richer in-
formation encoded in circuit structure, such as inter-node re-
lationships, information flow patterns, and hierarchical fea-
ture dependencies. Future work should develop methods to
interpret these structural properties and translate them into
biological insights. Second, the impact of subword tokeniza-
tion on feature interpretability, particularly evident in early
layers, suggests that domain-specific tokenizers could im-
prove mechanistic interpretability. Third, our analysis fo-
cused on cell type classification; extending to other tasks like
perturbation response prediction could reveal task-specific
interpretability patterns.

Looking forward, we envision several promising direc-
tions: (1) applying transcoders to other scFMs to assess
generalizability, (2) developing methods to leverage inter-
pretable features for model improvement and debugging,
and (3) using mechanistic insights to guide the design of
more interpretable architectures. As scFMs become central
to single-cell analysis, ensuring their interpretability through
techniques like transcoders will be crucial for both scien-
tific discovery and building trust in AI-driven biological re-
search.
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bubani, K. T.; Tuck, L.; Wang, L.; Huang, M. M.; Prete, M.;
Pritchard, S.; Dark, J.; Saeb-Parsy, K.; Patel, M.; Clatwor-
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