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Abstract

Logical fallacies are common errors in reason-001
ing that undermine the logic of an argument.002
Automatically detecting logical fallacies has003
important applications in tracking misinforma-004
tion and validating claims. In this paper, we005
design a process to reliably detect logical fal-006
lacies by translating natural language to First-007
order Logic (FOL) step-by-step using Large008
Language Models (LLMs). We then utilize009
Satisfiability Modulo Theory (SMT) solvers to010
reason about the validity of the formula and011
classify inputs as either a fallacy or valid state-012
ment. Our model also provides a novel means013
of utilizing LLMs to interpret the output of the014
SMT solver, offering insights into the counter-015
examples that illustrate why a given sentence016
is considered a logical fallacy. Our approach is017
robust, interpretable and does not require train-018
ing data or fine-tuning. We evaluate our model019
on a mixed dataset of fallacies and valid sen-020
tences. The results demonstrate improved per-021
formance compared to end-to-end LLMs, with022
our classifier achieving an F1-score of 71% on023
the LOGIC dataset. The approach is able to024
generalize effectively, achieving an F1-score025
of 73% on the challenge set, LOGICCLIMATE,026
outperforming state-of-the-art models by 21%027
despite its much smaller size.1028

1 Introduction029

A logical fallacy is an argument that may sound030

convincing, but involves faulty reasoning, lead-031

ing to an unsupported conclusion (Hamblin, 2022).032

These fallacies can be committed intentionally to033

manipulate or spread misinformation, and have034

been used to spread propaganda in news articles035

(Musi et al., 2022). Consequently, detecting logi-036

cal fallacies in natural language text holds a very037

important potential application in tracking misin-038

formation and validating claims. Recognizing falla-039

1Our code,data and prompts have been uploaded to the sub-
mission system, and will be open-sourced upon acceptance.

cious arguments can make discourse more rational 040

and instructive. In general, logical fallacies could 041

be classified into various types (Jin et al., 2022; 042

van and Francisca, 2017; Tindale, 2007), which are 043

associated with the structure of the sentence. The 044

datasets we use for this research contain 13 differ- 045

ent categories of fallacies and examples of some of 046

these are mentioned in Table 1. 047

As evident, these fallacies evolve out of premises 048

that are not logically sound. They can be identified 049

by a lack of legitimate and relevant evidence that 050

supports their claim. By formally reasoning about 051

these fallacies, we can identify potential issues in 052

the given reasoning effectively. In the last few 053

decades, formal reasoning tools like Boolean satisfi- 054

ability (SAT) and SMT solvers have advanced con- 055

siderably. Increases in computing power coupled 056

with algorithmic innovations have enabled major 057

leaps in the capabilities of these solvers, handling 058

millions of variables and functions, heavily com- 059

plicated logical formulae and numerous theories. 060

Consequently, SMT solvers like Z3 (de Moura and 061

Bjørner, 2008), CVC (Barbosa et al., 2022) have 062

become a key tool in different kinds of program 063

analysis and verification, including studying the sat- 064

isfiability and validity of logical formulae. These 065

formal reasoning tools allow us to precisely repre- 066

sent arguments symbolically and analyze them to 067

detect logical fallacies through systematic check- 068

ing for invalid forms of reasoning. This level of 069

rigorous analysis is difficult for humans, so compu- 070

tational tools are useful supplements to scale anal- 071

ysis across large volumes of arguments through 072

methodical application of the rules of deduction 073

and logical calculus. 074

In order to utilize theory solvers for detecting log- 075

ical fallacies, it becomes essential to first convert 076

the given statement to logical form. Most of the 077

existing techniques, as discussed in the next sec- 078

tion, do not translate natural language sentences to 079
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Fallacy Name Example Logical Form

Faulty Generalization Sometimes flu vaccines don’t work; therefore vac-
cines are useless.

(property1(a) ∧ (a ⊆ b)) ⇒
(∀c ∈ b (property1(c)))

False Causality Every time I wash my car, it rains. Me washing my
car has a definite effect on the weather.

occuredAfter(a, b) ⇒ caused(a, b)

Ad Populum Everyone should like coffee: 95% of teachers do! manyPeopleBelieve(a) ⇒ isTrue(a)
False Dilemma I don’t want to give up my car, so I don’t think I can

support fighting climate change.
∀(a)(property1(a) ∨ property2(a))

Table 1: Few types of logical fallacies along with examples and their logical forms. Note that each type of fallacy
may correspond to several logical forms, and the examples provided above are just one possible representation.
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Figure 1: Proposed Logical Fallacy Detection Methodology: Module A converts natural language input to a
first-order logic formula merged with contextual relationships, Module B compiles the negation of a given logical
formula to an SMT file with well-defined sorts for variables and predicates, and Module C is used to run CVC on
the SMT file and if the negation is satisfiable, interpret the counter-model in natural language.

logical form very well. We have developed an ef-080

fective technique to chain LLMs to translate a given081

set of statements to first-order logic. Additionally,082

theory solvers require context, or ground truth, to083

accurately distinguish logical fallacies from valid084

statements. This context provides a semantic in-085

terpretation of different variables and predicates,086

without which they have no meaning. Our method-087

ology introduces an effective way to encode that088

context in a logical formula and utilize it to enrich089

the theory solver with the necessary context to aid090

in decision making.091

Theory solvers are a good way to identify the valid-092

ity of a given logical statement. If a set of logical093

reasoning arguments are invalid, these solvers can094

be used to obtain a counter-model to the statements.095

This counter-model serves the explanation behind096

the faulty reasoning for the statement by providing097

an interpretation of different variables and pred-098

icates where the claims do not lead to the given099

inference. Counter-models obtained from theory100

solvers, however, may be hard to interpret because101

they are in formal notation, which is incomprehen-102

sible to a layperson. We have developed an efficient103

way to utilize LLMs to provide a natural language 104

interpretation of the counter-model, which is more 105

understandable. This helps in further scaling our 106

approach to tracking misinformation in the real 107

world and making it more accessible to everyone. 108

In this paper, we make the following contributions: 109

1. We develop an explainable and few-shot 110

method for translating Natural Language to 111

First Order Logic by chaining LLMs 112

2. We devise a first-order-logic-to-SMT com- 113

piler, which, given any string format first- 114

order logic formula, converts it to an SMT 115

file which is fed to the cvc4 solver (Barbosa 116

et al., 2022). 117

3. We design an effective technique to interpret 118

the results of cvc4 to explain the faulty reason- 119

ing behind the sentence in natural language, 120

making it more interpretable. 121

4. We evaluate our methodology on numerous 122

datasets and prove that it is highly generaliz- 123

able by testing its effectiveness over a dataset 124

consisting of real-world fallacies related to 125
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climate change.126

5. We plan to make our code open-source for the127

benefit of the research community.128

2 Related Work129

In this section, we discuss existing research on de-130

tection of logical fallacies, converting natural lan-131

guage to first order logic, LLMs and theory solvers.132

Logical Fallacy Detection. There have been mul-133

tiple works on classification of logical fallacies, in-134

clude classification of argument sufficiency (Stab135

and Gurevych, 2017), ad hominem fallacies from136

Reddit posts (Habernal et al., 2018) and dialogues137

(Sheng et al., 2021), rule parsers (Nakpih and San-138

tini, 2020), structure-aware Transformers (Jin et al.,139

2022), multitask instruction based prompting (Al-140

hindi et al., 2022) and instance-based reasoning141

(Sourati et al., 2023). As per our knowledge, our142

work is the first on classification of logical fallacies143

in a step-by-step, few shot and explainable manner.144

This method of making the reasoning process trans-145

parent, allowing users to understand and verify the146

basis on which conclusions are drawn.147

Natural Language to Formal Logic Conversion.148

Early works on natural language to formal logic149

conversion relied heavily on grammar-based ap-150

proaches that could handle well-structured lan-151

guage, but struggled with more complex linguistic152

constructions (Purdy, 1991; Angeli and Manning,153

2014; MacCartney and Manning, 2014). These154

works are hard to generalize because of their in-155

ability to work with random sentences without a156

fixed structure. It has been shown it is hard even157

for humans to perform such conversions, primarily158

owing to the ambiguity in natural language (Barker-159

Plummer et al., 2009).160

More recently, advances in neural networks, deep161

learning and large language models have enabled162

new data-driven techniques for natural language to163

linear temporal logic (Cosler et al., 2023; Fuggitti164

and Chakraborti, 2023; Liu et al., 2022) and first165

order logic (Singh et al., 2020; Yang et al., 2023;166

Olausson et al., 2023; Hahn et al., 2022). However,167

these methods do not provide a way to incorporate168

ground truth claims, which are necessary for dis-169

tinguishing logical fallacies from valid sentences.170

Additionally, owing to the linguistic ambiguity in171

the English language, most of the approaches have172

not reached to a level where complex sentences173

could be accurately transformed to logical form as 174

well as it can be done manually. 175

Aly et al. (2023) develop an inference pipeline for 176

QA by generating natural logic proofs to identify 177

the relations between claim and evidence text span, 178

in which each proof step is cast into the form of 179

a QA pair. While this work is similar to ours in 180

that it uses a chain of language models to generate 181

a proof and identify relations between two text 182

spans, it requires each proof step to be independent, 183

whereas our task requires us to include information 184

from ground truth and previous proof steps. 185

Theory Solvers. SMT solvers like Z3 (de Moura 186

and Bjørner, 2008) and CVC (Barbosa et al., 2022) 187

are commonly used to check the satisfiability and 188

validity of logical formulas. They have enabled 189

applications like system verification, program anal- 190

ysis, and model checking. Given a set of logical 191

formulas, an SMT solver determines their satis- 192

fiability by applying theories and inference rules. 193

Validity can be checked by taking the negation of 194

the formula and testing if the negation is unsatisfi- 195

able. 196

Olausson et al. (2023) have shown that theory 197

solvers can be employed for logical reasoning with 198

natural language. We enhance their methodology 199

by creating an advanced parser that converts natural 200

language to first-order logic, which is more adept at 201

processing naturalistic, real-world data and capable 202

of managing tasks with ambiguous premises and 203

conclusions. We also develop a method to incor- 204

porate real-world context (ground truth) into the 205

logical formula. 206

3 Methodology 207

3.1 Task Formulation and Background 208

Our methodology can be used to detect logical 209

fallacies. The input to the task is a natural language 210

sentence, or a set of sentences, that contains an 211

implication (inference), which would be optionally 212

backed by one or more claims. Our methodology 213

processes this input using LLMs and SMT solvers 214

to output if the given input is a logical fallacy or 215

not, and if it is, then produce a natural language 216

counter-example that explains why it is a logical 217

fallacy. 218

For the task, we introduce some basic background 219

in first-order logic. In first-order logic, propositions 220

are represented using predicates, which express 221

3



properties or relations over objects in a domain.222

These predicates can be combined with constants,223

representing specific objects, and variables, stand-224

ing for unspecified elements in the domain. Inter-225

pretations assign meaning to these symbols within226

a given context, while sorts categorize objects into227

different types, facilitating precise reasoning about228

their properties.229

The logical connectives of first-order logic, includ-230

ing implication (⇒), universal quantifier (∀), ex-231

istential quantifier (∃), and operators for conjunc-232

tion/and (∧), disjunction/or (∨), and negation/not233

(¬), allow for the construction of intricate state-234

ments. Implication captures conditional relation-235

ships. Quantifiers enable assertions over elements236

in the domain: a universal quantifier indicates that237

a proposition is true for all elements, whereas the238

existential quantifier indicates that a proposition is239

true for some elements in the domain. The other240

connectives follow their trivial definitions and are241

used to develop compound and meaningful first-242

order logical statements.243

3.2 Module A: Natural Language to First244

Order Logic245

We devise a technique to efficiently convert a given246

natural language sentence to logical form. Our247

methodology is split into multiple steps involving248

few-shot prompting for LLMs. These steps aim at249

three major goals. The first goal is to be able to250

split a sentence into multiple smaller components251

that can be represented at the first-order logic level.252

The second goal is to identify the relationships253

between different sub-components to merge254

them and develop the logical formula. The255

third goal is to identify real-world relationships256

between these sub-components (ground truth)257

and augment them to the first-order logical258

formula in order to incorporate context in the259

statement. We would use two simple examples260

to explain the algorithm: Example 1 below is261

a logical fallacy and Example 2 is a valid statement.262

263
Example 1: I met a tall man who loved to eat
cheese, now I believe all tall people like cheese.
Example 2: A boy is jumping on skateboard in
the middle of a red bridge. Thus, the boy does a
skateboarding trick.

264

The first step is to develop a semantic inference265

module to transform a natural language sentence to266

claim and implication form. Generally, a sentence267

can be split into some claims and some implication 268

based upon those claims. It is also possible for a 269

sentence to have no claim, which means that the 270

entire sentence is being asserted with respect to the 271

ground truth, which we evaluate in later steps. 272

273
Example 1: Claim: A tall man loved to eat cheese.
Implication: All tall people like cheese.
Example 2: Claim: A boy is jumping on skate-
board in the middle of a red bridge. Implication:
the boy does a skateboarding trick.

274

Next, we split the claim and implication into 275

various sub-components. We utilize these sub- 276

components to extract the meaning of the sentence 277

from ground up and eventually build up the logical 278

form of the sentence. 279

The first set of sub-components are referring ex- 280

pressions. Referring expressions or entities are 281

used to identify specific entities and could be any 282

noun phrase, or surrogate for a noun phrase, whose 283

function in discourse is to identify some objects. 284

Additionally, we find the relationship between dif- 285

ferent entities using Zero-Shot classification via 286

Natural Language Inference (NLI). These relation- 287

ships (subset / equality / not related) are generally 288

helpful in adding appropriate quantifiers in the log- 289

ical form of the sentence. For example, if the enti- 290

ties are ‘man’ and ‘people’, then it can be inferred 291

that ‘man’ is a subset of ‘people’, and that the man 292

would be bound by an existential quantifier in the 293

sentence. 294

Example 1: Referring Expressions: man: x,
cheese: c, people: y, x ⊆ y
Example 2: Referring Expressions: boy: x, skate-
board: s, bridge, skateboardingTrick: y

295

The other set of sub-components are properties, 296

which are used describe a trait of a referring expres- 297

sion or a relationship between multiple referring 298

expressions. These properties are essentially predi- 299

cates in first-order logic. We also find the relation- 300

ships between numerous properties. For example, 301

in Example 1, it can be inferred that ‘Like’ and 302

‘Love’ are contextually similar. Similarly, in the 303

valid example, ‘jumping over skateboard’ implies 304

‘doing a skateboard trick’. These relationships rep- 305

resent a form of ground truth/context that is not 306

directly present in the statement. 307

To identify these contextual relationships, we run 308

NLI between each pair of properties, i.e, by setting 309
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one property as the hypothesis and the other as310

the premise as the input to the NLI model. If we311

find that any one property entails the other, we add312

the relationship property1 ⇒ property2 to our313

context. Before running the NLI model between314

a pair of properties, we replace the variables315

in each property with the referring expressions316

that they represent. This adds additional context317

that helps the NLI model identify relations. For318

example, in Example 2, the NLI model is unable319

to find the relation between JumpsOn(x,s) and320

Does(x,y), but is able to identify the relation-321

ship between JumpsOn(boy,skateboard) and322

Does(boy,skateboardingtrick). Without these323

additional ground truth assertions, we may not be324

able to prove validity of the statement.325

326
Example 1: Properties: Tall, Love, Like
Relationships: Tall(x),Love(x, c)
Ground truth:

• ∀x(Like(x, c) ⇒ Love(x, c))
• ∀x(Love(x, c) ⇒ Like(x, c))
• x ⊆ y

Example 2: Properties: JumpsOn, inMiddleOf,
Red, Does
Relationships: JumpsOn(b, s),Red(bridge),
inMiddleOf(b,bridge),Does(b, y)
Ground truth:

• ∀x(JumpsOn(x, s) ⇒ Does(x, y))

327

Finally, we combine all of the information with328

the help of an LLM and utilizing the relation-329

ships between numerous properties and entities330

to obtain the first-order logical form of the331

sentence. For a logical fallacy, the negation of332

the formula is expected to be satisfiable. For333

a valid statement, the negation of the formula334

should be unsatisfiable. This leads us to the next335

step, which is to feed the formula to an SMT solver.336

337
Example 1: First-Order Logic:
((∀x(Like(x, c) ⇒ Love(x, c)))∧
(∀x(Love(x, c) ⇒ Like(x, c)))∧ (∃x(Tall(x) ∧
Love(x, c)))) ⇒ (∀y(Tall(y) ⇒ Like(y, c)))
Example 2: First-Order Logic:
((∀xJumpsOn(x, s) ⇒ Does(x, y)) ∧
Red(bridge)∧ inMiddleOf(b,bridge) ∧
JumpsOn(b, s)) ⇒ Does(b, y)

338

3.3 Module B: FOL to SMT Solving339

Our next step involves automatically creating an340

SMT file for the negation of the first-order logical341

formula generated. Given a logical formula, while 342

one can easily write an SMT file for the same man- 343

ually, generating one automatically for an arbitrary 344

formula is something that has not been done before, 345

and is one of our major contributions. 346

We have developed an efficient compiler for pars- 347

ing a given logical formula and converting it into 348

a SMT file that can be given as input to CVC, as 349

described in Algorithm 1. This compiler trans- 350

lates any first-order logic formula to the SMT input 351

format, ensuring that no SMT programming is re- 352

quired by future users of this method. Some of the 353

major challenges involved in designing the com- 354

piler were in designing a recursive infix to prefix 355

algorithm to parse the input formula, as well as 356

designing a novel algorithm (Algorithm 2, present 357

in the Appendix) to identify and unify sorts. 358

Algorithm 1 Logical Formula to SMT Compilation
1. Split the formula across any operator, parentheses, or

commas into tokens.
2. Process tokens to instances of operators, variables and

predicates. For predicates, identify all arguments and
recursively process tokens for the arguments separately.

3. Convert the main logical formula from infix to prefix
form. For predicates, recursively convert the arguments
to prefix form.

4. Identify sorts of all variables and predicates using
unify_sort described in Algorithm 2.

5. Parenthesize the prefix form formula to bring it into
SMT format appropriately.

6. Create the SMT file by declaring appropriate sorts,
variables and predicates using (declare− sort) and
(declare− fun). Assert negation of the logical formula.
Add (check− sat) and (get−model) to the SMT file.

3.4 Module C: Interpretation of SMT Solver 359

Results 360

We send the SMT file that we generate to the cvc4 361

solver (Barrett et al., 2011) to get the result (sat / 362

unsat), and if it is satisfiable, then get a model, i.e, 363

a concrete assignment of values to the variables in 364

the formulas that makes the formulas true. Since 365

we assert the negation of the actual logical formula, 366

this model acts as a counter-example to the original 367

formula, proving that the given claim and implica- 368

tion is actually a logical fallacy. 369

Generally, it is difficult to understand the model 370

generated by the SMT solver, especially for a 371

layperson. In order to explain the counter-example 372

better to prove that the reasoning is faulty, it is es- 373

sential to explain the counter-example in natural 374

language. 375

A simplified example for the same is given in Fig- 376
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I  met  a t al l  man who l oved t o eat  cheese,  now I  bel i eve al l  
t al l  peopl e l i ke cheese.

I  met  a t al l  man who l oved t o 
eat  cheese,  now I

bel i eve al l  t al l  peopl e l i ke 
cheese.

( asser t  ( not  ( => ( exi st s ( ( x BoundSet ) )  ( and ( T x)  ( L x cheese) ) )  
                   ( f or al l  ( ( y BoundSet ) )  ( => ( T y)  ( L y cheese) ) ) ) ) )

sat
(
; car di nal i t y of  BoundSet  i s 2
; r ep:  ( as @BoundSet _0 BoundSet )
; r ep:  ( as @BoundSet _1 BoundSet )
; car di nal i t y of  UnboundSet  i s 1
; r ep:  ( as @UnboundSet _0 UnboundSet )
( def i ne- f un cheese ( )  UnboundSet  ( as @UnboundSet _0 UnboundSet ) )
( def i ne- f un T ( ( _ar g_1 BoundSet ) )  Bool  t r ue)
( def i ne- f un L ( ( _ar g_1 BoundSet )  ( _ar g_2 UnboundSet ) )  Bool  ( and ( = 
( as @BoundSet _0 BoundSet )  _ar g_1)  ( = ( as @UnboundSet _0 UnboundSet )  
_ar g_2) ) )
)

BoundSet  = Set  of  Tal l  Peopl e.  
Let  @BoundSet _0 = John ( t al l  per son 1)  and @BoundSet _1 = Jane 
( t al l  per son 2)
UnboundSet  = Set  of  Foods.  Let  @UnboundSet _0 = Cheese
Pr edi cat es:  T( per son)  = per son i s t al l .   L( per son,  f ood)  = per son 
l i kes f ood
SMT I nst ance:
- John i s t al l  ( T( John)  i s Tr ue) .  John l i kes cheese ( L( John,  

Cheese)  i s Tr ue) .
- Jane i s t al l  ( T( Jane)  i s Tr ue) .  No const r ai nt  Jane l i kes cheese.
Ther ef or e,  t her e exi st s a t al l  per son ( John)  who l i kes cheese,  but  
i t  does not  f ol l ow t hat  al l  t al l  peopl e l i ke cheese,  s i nce Jane 
ser ves as a count er - exampl e.

Figure 2: Interpretation of results from a counter-
example.

ure 2. As evident, the SMT result is hard to un-377

derstand because it uses technical terminology that378

can generally be only understood by those who379

understand cvc4 and SMT well. Therefore, we de-380

veloped a pipeline to convert the cvc4 results back381

to natural language to explain why the reasoning is382

faulty.383

To do so, we prompt an LLM and give it the claim,384

implication, referring expressions, properties, first-385

order logical formula and the counter-model gen-386

erated by cvc4. The transformer model is then uti-387

lized to interpret the counter-model using natural388

language as depicted in Figure 2.389

4 Experimental Results390

4.1 Dataset391

We use the following three datasets to evaluate the392

effectiveness of our approach:393

• LOGIC (Jin et al., 2022): consists of 2,449394

common logical fallacies.395

• LOGICCLIMATE (Jin et al., 2022): consists396

of 1,079 logical fallacies from climate change397

news from the Climate Feedback website.398

• Stanford Natural Language Inference (SNLI)399

Corpus (Bowman et al., 2015): contains over400

170,000 valid sentences generated by combin-401

ing ‘sentence 1’ and ‘sentence 2’ from the en-402

tailment data points to form a sentence where 403

claim entails the implication. 404

Since the LOGIC and LOGICCLIMATE datasets con- 405

tain only logical fallacies, we randomly sample 406

equal number of valid statements from the SNLI 407

corpus to balance the datasets. 408

4.2 Models 409

We compare our method with NLI Zero Shot Classi- 410

fiers (BART MNLI) and pretrained language mod- 411

els, including Llama-7b, Mistral-7b (Jiang et al., 412

2023), GPT3.5 (OpenAI, 2024), GPT4 (OpenAI 413

et al., 2024) and Claude-3-Opus (Anthropic, 2024) 414

with few-shot in-context examples. We use the 415

open-source model Llama 2 (7B-parameters) (Tou- 416

vron et al., 2023) for LLM prompting and BART 417

(140M parameters) (Lewis et al., 2020) finetuned 418

on MNLI (Williams et al., 2018) for identifying 419

the relationships between properties and referring 420

expressions. We run the experiments on a V100 421

GPU, and one run costs around 2 GPU hours. 422

4.3 Main Results 423

Model Acc P R F1

BART-MNLI (Zero Shot) 0.58 1 0.15 0.26
Llama-7b (Few Shot) 0.41 0.45 0.82 0.58
Mistral-7b-Instruct (Few Shot) 0.85 0.85 0.86 0.85
GPT3.5 (Few Shot) 0.88 0.86 0.91 0.89
GPT4 (Few Shot) 0.95 0.97 0.94 0.95
GPT4 (Few Shot with COT) 0.94 0.95 0.94 0.94
Claude 3 Opus (Few Shot) 0.97 0.96 0.98 0.97
NL2FOL (Few Shot) 0.63 0.58 0.92 0.71

Table 2: Model performance on the LOGIC+SNLI
dataset, showcasing accuracy (Acc), precision (P), re-
call (R), and F1 score (F1).

As shown in the experimental results in Table 2, we 424

find that LLMs can effectively identify properties 425

and referring expressions in the sentence, and natu- 426

ral language inference can be used to identify the 427

relationships between properties and entities well. 428

We observe that our method achieves an F1-Score 429

of 71%, surpassing both end-to-end few-shot and 430

zero-shot classification techniques with the same 431

models. When used end-to-end, the Llama-7b 432

model reached only a 58% F1-Score, while zero- 433

shot NLI classification with the BART-MNLI 434

model was ineffective, incorrectly labeling every 435

sentence as a logical fallacy. Although other lan- 436

guage models have shown better performance, com- 437

parisons may be skewed as these models might 438

have been exposed to the LOGIC dataset and its 439
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labels during their training, as this dataset was com-440

piled from publicly accessible web sources. Our441

model demonstrated high recall in identifying logi-442

cal fallacies, suggesting it is well-suited for detect-443

ing and addressing misinformation.444

4.4 Results on the Challenge Set445

Our challenge set, LOGICCLIMATE+SNLI, is a set446

of real-world logical fallacies from climate change447

news. The results obtained are shown in Table 3.448

As we are using this dataset to test generalization,449

the in context examples we provide to all the mod-450

els are from the LOGIC dataset. Our methodology451

leads to results that are highly similar to the re-452

sults of the LOGIC dataset. This demonstrates that453

our system is exceptionally robust and adapts well454

to real-world text, including texts with significant455

domain-specific context. This makes it highly ef-456

fective in detecting and mitigating misinformation.457

This dataset is more of a fair comparison, as it is458

unlikely that these models have seen the dataset459

during training as the data is human-annotated. We460

find our model outperforms all LLMs we test on,461

despite being much smaller. The LLMs achieve a462

high precision but low recall, indicating that they463

can classify the valid sentences from SNLI effec-464

tively, but not the fallacies from the LOGICCLI-465

MATE dataset.466

Metric Acc P R F1

BART-MNLI (Zero Shot) 0.57 1 0.14 0.25
Llama-7b (Few Shot) 0.31 0.38 0.62 0.47
Mistral-7b-Instruct (Few Shot) 0.62 0.68 0.44 0.53
GPT3.5 (Few Shot) 0.63 0.81 0.39 0.53
GPT4 (Few Shot) 0.64 0.91 0.30 0.45
GPT4 (Few Shot with COT) 0.66 0.90 0.36 0.51
Claude3 Opus (Few Shot) 0.67 0.92 0.38 0.54
NL2FOL (Few Shot) 0.66 0.60 0.94 0.73

Table 3: Comparison of accuracy (Acc), precision (P),
recall (R), and F1 score (F1) Metrics for various ap-
proaches for the LOGICCLIMATE+SNLI dataset.

4.5 Error Analysis467

As evident from the results, proving a statement to468

be valid is harder than identifying it as a logical469

fallacy, contributing to the lower precision of the470

model. This is because it is inherently difficult to471

prove the negation of a statement as unsatisfiable472

compared to satisfiable. This challenge arises be-473

cause the model may not have articulated some474

semantics or ground truth in the first-order logical475

formula that may be necessary to prove validity.476

If this context is not well established in the SMT477

code explicitly, we cannot prove validity, because 478

it would be easy to build a counter-example. The 479

SMT needs full context, and any gaps in contex- 480

tual information can cause a valid statement to be 481

mistakenly identified as a logical fallacy. 482

One such case is present in example 4 of the Table 483

4. In this case, the model is not able to identify 484

the extra context statement because the NLI model 485

does not identify a required ground-truth relation. 486

If this context were identified and added to the 487

claim of the logical formula, then it would have 488

predicted the statement to be valid. 489

Furthermore, our current approach is limited to 490

discerning the NLI relationship between two prop- 491

erties at a time, rather than handling multiple re- 492

lationships concurrently. For example, consider 493

example 6 in Table 4. In the given example, the se- 494

mantic claim involves the conjunction of two prop- 495

erties entailing the third, while the NLI model only 496

checks if one property entails the other. Finding 497

such complex extra context requires more advanced 498

techniques or human intervention, and including 499

this can further improve the precision of the model. 500

Nonetheless, it is important to clarify that these ex- 501

amples do not imply a general inefficiency of NLI. 502

An interesting illustration of where they work well 503

can be found in Example 5 from Table 4. In this 504

instance, our model identifies additional context by 505

establishing relationships such as IsBaseballPlayer 506

implying IsPlayingBaseball, and IsNearOutfield- 507

Fence implying IsOutdoors. These contextual con- 508

nections help in effectively proving the validity of 509

the statement. Note that if we did not have these 510

semantic relations embedded, the predicates won’t 511

have a meaning attached to them and could be as- 512

signed any invalidating interpretation. This substan- 513

tiates the need of including semantic information 514

in the formula. 515

The examples in Table 4 prove that few shot 516

prompting with LLMs is a great way to convert a 517

sentence to first-order logic in a step-by-step man- 518

ner, improving the efficiency of conversion. It can 519

be seen that most of these examples identify refer- 520

ring expressions and properties quite well, and are 521

able to produce syntactically correct expressions. 522

Various examples like example 1 and 2 correctly 523

detect logical fallacies. Consequently, we also ob- 524

tained a very high recall for NL2FOL, beating the 525

baseline techniques by a significant amount. 526
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Type Sentence Logical Form Prediction
1 LF X has been around for years now.

Y is new. Therefore, Y is better
than X.

(IsNew(a) ∧ ∼ IsNew(b)) ⇒ (IsBet-
terThan(a,b))

LF: Correct prediction

2 LF Jimmy isn’t at school today. He
must be on a family trip.

(∼IsAtSchool(a))
⇒(IsOnFamilyTrip(a))

LF: Correct prediction

3 LF Everyone is doing the Low-Carb
Diet.

(∃ b (∃ a (IsDoing(b,a)))) ⇒ (∃ c (∃ a
(IsDoing(c,a))))

Valid: Incorrect prediction:
Wrong translation when there
was no claim given

4 V Two dogs are fighting in a field.
Consequently, the two dogs are
outside.

(∃ b (∃ a (IsFighting(a, b) ∧ IsInField(b)
∧ IsInField(b)))) ⇒ (∃ a (IsOutside(a)))

LF: Incorrect prediction: Miss-
ing semantic ground truth
claim: ∀ a (IsInField(a) ⇒
IsOutside(a))

5 V A baseball player gets ready to
catch a fly ball near the outfield
fence. Therefore, a person is
playing baseball outdoors.

(∃ a (IsGettingReady(a) ∧ (IsABase-
ballPlayer(a) ∧ IsCatchingFlyBall(a)
∧ IsNearOutfieldFence(a))) ∧ (∀ e
( IsABaseballPlayer(e) ⇒ IsPlaying-
Baseball(e))) ∧ (∀ f ( IsPlayingBase-
ball(f) ⇒ IsABaseballPlayer(f))) ∧ (∀
g ( IsNearOutfieldFence(g) ⇒ IsOut-
doors(g)))) ⇒ (∃ c (∃ a (IsPlayingBase-
ball(a) ∧ IsOutdoors(c))))

Valid: Correct Prediction

6 V A woman sits alone on a park
bench in the sun. Hence, a
women is in a park.

(IsSittingOn(a, b) ∧ isParkBench(b) ∧
IsInSun(a)) ⇒ (IsInPark(a))

LF: Incorrect prediction: Miss-
ing semantic ground truth
claim: ∀a∀b (IsSittingOn(a,
b) ∧ isParkBench(b) ⇒ IsIn-
Park(a))

Table 4: Some example outputs of our model. Type LF refers to Logical Fallacy and V refers to Valid statement.

Among the few logical fallacies where our model527

incorrectly predicted a logical fallacy to be a valid528

statement, most of these predictions failed due to529

the imprecision of the LLM, leading to false trans-530

lations and incorrect results. Example 3 is a promi-531

nent case where the input does not have any claim,532

rather just jumps to an implication. However, the533

model is not able to identify that the example has534

no claim. As a result, we get an incorrect transla-535

tion from our technique. We believe that utilizing536

more advanced LLMs in future experiments will537

help prevent these issues and improve our statistics538

further.539

5 Future Work540

Potential approaches to improving performance on541

this task include utilizing more advanced LLMs,542

utilizing DSPy (Khattab et al., 2023) to optimize543

prompts, utilizing Constrained Decoders (Geng544

et al., 2024) to ensure the generated output fol-545

lows the correct syntax or utilizing self-consistency546

(Wang et al., 2023) to verify the method’s inter-547

mediate outputs. The step-by-step, interpretable548

nature of our approach also enables the incorpo-549

ration of human feedback into the pipeline in the550

future.551

As there are currently no large datasets contain-552

ing natural language formulas with annotated first- 553

order logical forms, we encourage researchers to 554

utilize our method to generate psuedo first-order 555

logic labels to fine-tune models. Having demon- 556

strated an effective method to compile, execute, and 557

verify the validity of logical formulas, this direction 558

could be used to develop benchmarks for logical 559

reasoning tasks in NLP, that are evaluated similarly 560

to how code generation benchmarks are evaluated 561

by compiling the generated code and running unit 562

tests (Jimenez et al., 2024). 563

6 Conclusion 564

In conclusion, we presented an automatic and ef- 565

fective solution for detecting fallacies and tackling 566

misinformation. We developed a strategy to distin- 567

guish logical fallacies from valid statements, which 568

involves a chaining approach to convert a sentence 569

to first-order logic using LLMs, followed by using 570

SMT solvers to identify whether the first-order log- 571

ical statement is valid or not, and if not, interpret 572

the counter-model generated by the SMT solver in 573

natural language. Our proposed technique showed 574

promising results in identifying logical fallacies 575

and valid statements, as well as great generaliza- 576

tion ability. The primary bottleneck is the natural 577

language to first-order logic conversion, which is 578

ongoing research. 579
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Limitations580

The step-by-step nature of our model increases the581

time taken for inference compared to end-to-end582

models. Moreover, it also increases the develop-583

ment time as a user needs to write prompts for each584

step.585

As discussed in the analysis section, correct iden-586

tification of ground truth knowledge is crucial for587

our method. At the moment, our method only588

considers simple relations between properties (ex:589

a ⇒ b) and misses out on complex relations (ex:590

(a ∧ b) ⇒ (c ∨ d)))591

While, we expect the technique to generalize to592

datasets in languages other than English and mod-593

els other than LLAMA-7b and BART-MNLI, test-594

ing this is left to future work.595

Ethics Statement596

While the intended outcome of this research is to597

help fight misinformation and promote rational dis-598

course, there are several ethical challenges that we599

must consider. Dependence on AI for identifying600

logical fallacies could influence how individuals en-601

gage in debates and discussions. There’s a risk that602

people may over-rely on AI judgments, potentially603

stifling complex arguments or dissenting opinions604

that are essential for a healthy democratic process.605

The use of AI in moderating discussions, especially606

in identifying logical fallacies, raises ethical ques-607

tions about the automation of content moderation.608

While it can enhance the quality of public discourse609

by filtering out fallacious arguments, it also risks610

automating censorship and impacting the dynam-611

ics of online communities. In the wrong hands,612

logical fallacy detection tools could be used to cen-613

sor speech or suppress certain viewpoints under614

the guise of promoting rational discourse. Govern-615

ments or organizations might misuse these tools616

to silence opposition or critique, posing a threat to617

free speech and open debate.618

To mitigate these issues, there is a need to establish619

ethical guidelines for the use of AI in public dis-620

course, including transparency, accountability, and621

user engagement. It is necessary to encourage pub-622

lic literacy in AI and logical fallacies, empowering623

individuals to critically assess both AI judgments624

and arguments in discussions.625

References 626

Tariq Alhindi, Tuhin Chakrabarty, Elena Musi, and 627
Smaranda Muresan. 2022. Multitask instruction-based 628
prompting for fallacy recognition. In Proceedings of 629
the 2022 Conference on Empirical Methods in Natural 630
Language Processing, pages 8172–8187, Abu Dhabi, 631
United Arab Emirates. Association for Computational 632
Linguistics. 633

Rami Aly, Marek Strong, and Andreas Vlachos. 2023. 634
Qa-natver: Question answering for natural logic-based 635
fact verification. 636

Gabor Angeli and Christopher D Manning. 2014. Natu- 637
ralli: Natural logic inference for common sense reason- 638
ing. In Proceedings of the 2014 conference on empiri- 639
cal methods in natural language processing (EMNLP), 640
pages 534–545. 641

Anthropic. 2024. The claude 3 model family: Opus, 642
sonnet, haiku. 643

H. Barbosa et al. 2022. cvc5: A versatile and industrial- 644
strength smt solver. In Tools and Algorithms for the 645
Construction and Analysis of Systems. TACAS 2022. Lec- 646
ture Notes in Computer Science, volume 13243, Cham. 647
Springer. 648

Dave Barker-Plummer, Richard Cox, and Robert Dale. 649
2009. Dimensions of difficulty in translating natural 650
language into first-order logic. In International Working 651
Group on Educational Data Mining, Paper presented 652
at the International Conference on Educational Data 653
Mining (EDM) (2nd, Cordoba, Spain, Jul 1-3, 2009), 654
pages 220–229. 655

Clark Barrett, Christopher L. Conway, Morgan Deters, 656
Liana Hadarean, Dejan Jovanović, Tim King, Andrew 657
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A Unify Sort Algorithm 805

Algorithm 2 unify_sort for predicate, say A(x, y)
1. Declare the current sort of A: (NULL, NULL, Bool)
2. For each instance of predicate A:

(a) Find the sort of arguments based upon the instance
(instance sort):

i. If argument is a formula, then sort(arg) =
Bool.

ii. If argument is a variable, then sort(arg) =
sort(variable) [may be null]

(b) Unify current sort with instance sort:
i. If sorts of an argument in the current sort

and instance sort are not NULL and different,
then raise Error (incompatible sorts).

ii. If current argument sort is NULL and cor-
responding instance sort is not NULL, then
update current argument sort = instance sort.

iii. If instance argument sort is NULL and cor-
responding current sort is not NULL, then
update the sort of the corresponding variable
to current sort.
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