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ABSTRACT

Sparse autoencoders (SAEs) are a technique for sparse decomposition of neural
network activations into human-interpretable features. However, current SAEs
suffer from feature absorption, where specialized features capture instances of
general features creating representation holes, and feature composition, where
independent features merge into composite representations. In this work, we
introduce Orthogonal SAE (OrtSAE), a novel approach aimed to mitigate these
issues by enforcing orthogonality between the learned features. By implementing
a new training procedure that penalizes high pairwise cosine similarity between
SAE features, OrtSAE promotes the development of disentangled features while
scaling linearly with the SAE size, avoiding significant computational overhead.
We train OrtSAE across different models and layers and compare it with other
methods. We find that OrtSAE discovers 9% more distinct features, reduces feature
absorption (by 65%) and composition (by 15%), improves performance on spurious
correlation removal (+6%), and achieves on-par performance for other downstream
tasks compared to traditional SAEs.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable performance in natural language pro-
cessing, but their internal mechanisms remain poorly understood. Mechanistic interpretability aims
to understand how neural networks function by reverse-engineering their computational processes
(Olah et al., 2020). Central to this field is understanding features, the human-interpretable concepts
represented as directions in a model’s internal representation (Elhage et al., 2022; Park et al., 2023).

Early interpretability methods focused on analyzing individual neurons (Olah et al., 2020; Bills et al.,
2023), but a key challenge has been that neurons are often polysemantic, responding to multiple
unrelated concepts rather than encoding single interpretable features (Olah et al., 2020). One theory
of why polysemanticity occurs is superposition, which posits that neural networks represent more
features than they have dimensions (Elhage et al., 2022). Although this enables efficient use of model
capacity, it significantly complicates interpretability research.

Sparse Autoencoders (SAEs) have emerged as a powerful approach to disentangling superposition
(Bricken et al., 2023; Cunningham et al., 2023). By adding a sparsity penalty to the reconstruction
loss, SAEs learn to decompose activations into a sparse latent space where each dimension aims
to capture a distinct, interpretable feature (Gao et al., 2024; Marks et al., 2024). Traditional SAE
variants (Bricken et al., 2023; Gao et al., 2024; Bussmann et al., 2024; Rajamanoharan et al., 2024)
focused on improving reconstruction quality while maintaining sparsity. However, the standard
objective can lead to two failure modes. As the number of SAE latents grows, feature absorption
can occur (Fig. 2a), where a broad feature representation absorbs into more specific, token-aligned
latents (e.g., a latent “starts with E” will activate on all tokens starting with “E”, except for the token
“elephant”) (Chanin et al., 2024). Another issue is feature composition (Fig. 2b), in which independent
features (e.g. representing “red” and “square”) are merged into a single composite feature (“red
square”) (Leask et al., 2025). Both problems undermine the interpretability of SAE latents and the
applicability of SAE representations for downstream tasks (Karvonen et al., 2025). To address these
issues, Bussmann et al. (2025) introduced Matryoshka SAE, a hierarchical approach to organizing
features at multiple levels of abstraction. However, this method introduces additional computational
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Figure 1: Performance of OrtSAEs vs. traditional SAEs. Bar plots display explained variance,
absorption, and composition rates for three SAE variants at L0=70 sparsity. OrtSAEs show a
marginally lower explained variance than BatchTopK SAEs but decreased absorption and composition,
indicating better feature specificity. The density plot illustrates the distribution of pairwise cosine
similarity values, computed as the maximum similarity between each decoder feature and its closest
counterpart in the model, across all features at L0=70. OrtSAEs demonstrate lower pairwise cosine
similarity, confirming greater decoder feature orthogonality compared to BatchTopK and ReLU
SAEs.

overhead and suffers from feature hedging (Chanin et al., 2025), a problem where correlated features
merge at higher levels, reducing interpretability. This highlights the need for alternative approaches.

Feature absorption and composition lead to redundant representations where multiple latents capture
overlapping concepts, which results in high cosine similarities between them. This suggests that
enforcing orthogonality between SAE latents could provide a principled approach to mitigate these
issues. Therefore, we propose OrtSAE, a novel approach to SAE training that promotes the emer-
gence of more atomic features (Sec. 3.3). At each training step, we penalize high cosine similarities
between SAE latents by introducing an additional orthogonality penalty. To optimize computation,
we implement a chunk-wise strategy that divides SAE latents into smaller blocks, computes the
penalty separately, and aggregates the results. This reduces the complexity from quadratic to linear
with respect to the number of latents and introduces a negligible computational overhead. Importantly,
this penalty scales efficiently without altering the core SAE architecture.

We train OrtSAE on the Gemma-2-2B (Team et al., 2024) and Llama-3-8B (Dubey et al., 2024) and
compare it against traditional SAEs and Matryoshka SAE (Bussmann et al., 2025). Experimental
results demonstrate that our objective reduces feature absorption and composition across a wide
range of sparsity levels (Sec. 4.3). For example, at a L0 of 70 (Fig. 1), OrtSAE discovers 9% more
distinct features, reduces feature absorption by 65%, and feature composition by 15% compared
to traditional SAEs. On SAEBench (Karvonen et al., 2025), our method improves performance on
spurious correlation removal by 6% while maintaining on-par performance for other downstream tasks
(Sec. 4.4). Through qualitative experiments, we show that OrtSAE features efficiently decompose
composite features learned by other SAEs into more atomic components (Sec. 4.3).

Our paper makes the following contributions:

• We propose OrtSAE, a novel approach to SAE training that directly addresses the issues
of feature absorption and composition, without requiring complex architectural changes or
significant computational overhead (Sec. 3.3).

• Comparison of OrtSAE with traditional SAEs shows that our method produces more distinct
features, reduces absorption and composition rates (Sec. 4.3).

• Experimental results on SAEBench demonstrate that our method performs on-par with other
SAE architectures, and outperforms them on spurious correlation removal (Sec. 4.4).
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(a) Example of feature absorption
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Green square 
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(b) Example of feature composition

Figure 2: Illustration of feature absorption and feature composition: (a) In feature absorption,
specific features like “elephant” absorb broader features like “starts with E”. (b) In feature composition,
independent concepts like “red color” and “square form” are merged into composite features.

2 RELATED WORK

Sparse Autoencoders (SAEs) have gained significant traction for interpreting LLMs, addressing
the challenge that LLMs often function as “black boxes”. A key issue is polysemanticity, where
individual neurons respond to multiple unrelated concepts (Bricken et al., 2023). SAEs aim to resolve
this by decomposing dense LLM activation vectors into a sparse set of monosemantic features, each
representing a single concept (Cunningham et al., 2023; Huben et al., 2025). Pioneering work Bricken
et al. (2023) and Cunningham et al. (2023) demonstrated the effectiveness of this approach on small
transformers, finding interpretable features such as DNA sequences or legal text. Subsequent efforts
scaled SAEs to larger models like Claude 3 Sonnet (Templeton et al., 2024) and GPT-4 (Gao et al.,
2024), as well as open-source models (Lieberum et al., 2024).

Limitations in basic SAEs, typically using ReLU activation with an L1 penalty (Bricken et al., 2023),
such as L1-induced shrinkage (underestimation of feature strength) and difficulty in precise L0
control (Gao et al., 2024; Templeton et al., 2024) have driven architectural innovation. JumpReLU
SAEs (Rajamanoharan et al., 2024), use a learned threshold within the activation function for direct
L0 optimization. TopK SAE (Gao et al., 2024) selects only the top K activations, simplifying tuning
and reducing shrinkage compared to L1; BatchTopK SAE (Bussmann et al., 2024) further improves it
by applying the TopK constraint at the batch level for adaptive sparsity and improved reconstruction.
The latter approach appears promising for our purposes, as it allows precise sparsity control along
with excellent reconstruction capabilities. For a detailed overview of the SAE variations, we further
refer the reader to the survey by Shu et al. (2025).

Despite ongoing advancements, SAEs continue to face challenges: Chanin et al. (2024) describes the
phenomenon of feature absorption, when broad features absorb into more specific ones. Leask et al.
(2025) highlights feature composition, when independent features merge into one larger feature, and
introduces the MetaSAE, which emerges as a promising approach to identify these problems.

Recently, Bussmann et al. (2025) proposed Matryoshka SAE to address these issues by employing a
hierarchical approach. It builds upon BatchTopK architecture and uses nested features with increasing
latent space size so that SAE separately learns broad and specific features. However, this hierarchical
design leads to feature hedging (Chanin et al., 2025), where narrow higher-level dictionaries merge
correlated features, reducing interpretability. Additionally, this approach introduces substantial
computational overhead (+50% compared to traditional SAEs) and a degradation in reconstruction
performance. Furthermore, while its reliance on hierarchical representation seems intuitive, its inter-
pretability remains poorly explored. In contrast, we explore an alternative direction of representations
decorrelation (Cogswell et al., 2016; Wang et al., 2021; Rodrı́guez et al., 2017). OrtSAE proposes
an efficient approach by directly enforcing the orthogonality between SAE latents. It avoids all of
the mentioned problems while achieving performance similar to Matryoshka SAEs in mitigating the
feature absorption and composition challenges.
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3 ORTHOGONAL SPARSE AUTOENCODERS

3.1 TRADITIONAL SPARSE AUTOENCODERS

Sparse autoencoders (SAEs) aim to reconstruct model activations x ∈ Rn as a sparse linear com-
bination of m ≫ n feature vectors, or latents. Formally, a SAE consists of an encoder and a
decoder:

h(x) = σ(Wencx+ benc),

x̂(h) = Wdech+ bdec.
(1)

The encoder, followed by a non-linearity σ(·), learns a mapping from the activations to a sparse and
overcomplete latent code h(x) ∈ Rm. Given h(x), the decoder reconstructs the original input as a
sparse linear combination of latents, Wdec

i , i = 1, ...,m, as x̂.

The standard loss function to train a SAE is defined as:

L(x) = ∥x− x̂(h(x))∥22︸ ︷︷ ︸
Lreconstruct

+λS(h(x))︸ ︷︷ ︸
Lsparsity

+αLaux, (2)

where S is a sparsity penalty and λ is a coefficient controlling the trade-off between sparsity and
reconstruction quality. The optional Laux term covers any auxiliary penalties (e.g. recycling dead
units (Gao et al., 2024)).

Traditional SAEs focus on reducing reconstruction loss while increasing sparsity. The ReLU SAE
(Bricken et al., 2023; Cunningham et al., 2023) uses the ReLU activation function and applies an
L1 penalty to ensure sparsity in h(x). TopK SAE (Gao et al., 2024) achieves sparsity by zeroing
all entries of h(x) except for the K largest ones. BatchTopK (Bussmann et al., 2024) SAE further
improves the idea by selecting the top B×K entries across a batch of h(x), allowing some examples
to have more or less active latents.

3.2 CHALLENGES IN TRAINING SAES

Traditional SAEs training objectives (Eq. 2) combine reconstruction loss and sparsity penalty. While
sparsity is required to decompose activations into interpretable features, optimization of it results in
multiple failure modes. Feature absorption (Fig. 2a) occurs when an interpretable feature becomes
SAE latent which appears to represent that feature, but fails to fire on arbitrary tokens that it seemingly
should activate on. Instead, token-aligned latents fire, “absorbing” part of the feature representation
to satisfy the sparsity objective by activating fewer latents overall. Feature composition (Fig. 2b)
occurs when features overlap. To optimize over sparsity, SAE learns a single latent that captures the
specific combination of features (e.g. “red square”) instead of representing the underlying features
(“red” and “square”) with separate latents.

Feature absorption and composition produce redundant representations where multiple latents capture
overlapping concepts, leading to high cosine similarities between decoder vectors. Formally, consider
two atomic features A (“red”) and B (“square”) (Fig. 2b). In traditional SAEs, these independent
features can merge into a composite feature C (“red square”). Let Wdec

A ,Wdec
B , and Wdec

C denote the
decoder vectors for features A, B, and C, respectively. When feature composition occurs, C incor-
porates components of both features A and B. This creates higher correlations between C and each
atomic feature: cos(Wdec

C ,Wdec
A ) > cos(Wdec

A ,Wdec
B ) and cos(Wdec

C ,Wdec
B ) > cos(Wdec

A ,Wdec
B ).

Similarly, feature absorption creates overlapping latents, resulting in the decoder vectors that are more
correlated than they should be for truly atomic features. To address these issues, OrtSAE extends
the traditional SAE objective by enforcing orthogonality between SAE latents. At each training step,
we penalize high cosine similarities between SAE latents, directly approaching both absorption and
composition problems by encouraging the formation of more atomic features.

3.3 ORTSAE TRAINING PROCEDURE

The main contribution of OrtSAE is the introduction of a new orthogonalization penalty that penalizes
high similarities between SAE latents. Formally, given a SAE with decoder matrix Wdec ∈ Rn×m,
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we first define the cosine similarity between two feature vectors as:

cos(Wdec
i ,Wdec

j ) =
⟨Wdec

i ,Wdec
j ⟩

max(∥Wdec
i ∥2 · ∥Wdec

j ∥2, δ)
, (3)

where δ > 0 is a small constant added to prevent division by zero. Using this definition, we formulate
our orthogonality penalty as:

Lorthogonal(W
dec) =

1

K(m)

K(m)∑
k=1

1

|Ck|
∑
i∈Ck

max
j∈Ck
j ̸=i

cos(Wdec
i ,Wdec

j )

2

. (4)

Instead of computing all pairwise similarities between feature vectors Wdec
i , which would require

O(m2) operations and is infeasible for large m, at each training step we randomly partition the
latent space into K := K(m) equal chunks, each containing a fixed number of latents, |Ck|, k =
1, ...,K(m), proportional to m. Within each k-th chunk, we find the maximum pairwise cosine
similarity between every Wdec

i , i ∈ Ck and all other latents from Ck, square this value to penalize
highly correlated features more and compute the expectation. We compute the final value by averaging
across all K chunks. This chunk-wise strategy reduces the computational complexity to O(m) and
provides an efficient scaling strategy to a larger latent spaces.

With the orthogonal penalty defined, OrtSAE training objective is defined as:

LOrtSAE(x) = LMSE + λLsparsity + αLaux + γLorthogonal, (5)

where γ is an orthogonality coefficient that controls the strength of the applied penalty.

To further enhance computational efficiency, we explore computing the orthogonality loss every fifth
training iteration, scaling the orthogonality coefficient γ by a factor of 5 to maintain regularization
strength, which yields comparable performance with significantly reduced computational overhead,
as detailed in Appendix C.

4 EXPERIMENTS

Here, we present our experimental evaluation of OrtSAE. Sec. 4.1 covers the experimental setup.
Sec. 4.2 compares OrtSAE’s core performance metrics to other methods. Sec. 4.3 presents quantitative
and qualitative results on feature atomicity. Sec. 4.4 assesses OrtSAE’s performance on downstream
tasks using SAEBench.

4.1 EXPERIMENTAL SETUP.

Baselines. We compare our model with: 1) traditional SAEs, such as ReLU SAE (Bricken et al.,
2023; Cunningham et al., 2023) and state-of-the-art BatchTopK SAE (Bussmann et al., 2024); 2)
recent Matryoshka SAE that enforce nested, hierarchical learning at multiple feature levels (Bussmann
et al., 2025).

Models Configuration. Following the work of Bussmann et al. (2025) we train SAEs on the
activations from layer 12 of the Gemma-2-2B (26 layers total). Each SAE has latent space of size
m = 65536 and sparsity levels L0 in {25, 40, 55, 70, 85, 100, 115, 130}. The training uses 500
million tokens from the OpenWebText dataset (Gokaslan and Cohen, 2019) with a context length
of 1024. As a basis of OrtSAE, we follow BatchTopK SAE repository, leveraging BatchTopK’s
precise L0 sparsity control. For OrtSAE, we set the number of chunks K(m) = ⌈m/8192⌉ (yielding
K = 8 for m = 65536) with γ = 0.25. The full details and hyperparameters are available in the
Appendix A. To assess the transferability of our approach, we also conduct experiments on layer
20 of Gemma-2-2B and layer 20 of Llama-3-8B and report the results in Appendix B.To ensure the
reproducibility, we will publicly release all code and hyperparameters.

Evaluation. Following Gao et al. (2024) and Bussmann et al. (2025), we evaluate SAEs core
performance through explained variance, KL-divergence, orthogonality, and feature interpretability.
Atomicity analysis includes absorption metrics, MetaSAE-based composition rate (Leask et al.,

5
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(a) Explained variance. (b) KL divergence score. (c) Mean cosine similarity. (d) Autointerp Score.

Figure 3: Core performance metrics. (a) Explained variance: OrtSAE shows slightly lower
reconstruction fidelity than BatchTopK SAE but outperforms Matryoshka SAE. (b) KL-divergence
score: OrtSAE matches BatchTopK SAE and exceeds Matryoshka SAE. (c) Mean cosine similarity to
closest decoder feature: OrtSAE achieves near-random initialization orthogonality, significantly lower
than other SAE variants. (d) Autointerp Score: OrtSAE demonstrates interpretability comparable to
both BatchTopK and Matryoshka SAEs.

2025), clustering, cross-model overlap, and qualitative investigation. Downstream assessment uses
SAEBench (Karvonen et al., 2025) with spurious correlation removal, targeted probe perturbation,
sparse probing, and RAVEL tasks.

4.2 FOUNDATIONAL PERFORMANCE ANALYSIS

We evaluate OrtSAE using four metrics: (1) reconstruction fidelity, computed as the fraction of
explained variance; (2) downstream predictive performance, measured by the KL-divergence score
between the original LLM’s output distributions and those generated using reconstructed activations;
(3) feature orthogonality, calculated as the mean cosine similarity to each feature’s nearest decoder
neighbor; and (4) feature interpretability, assessed via the Autointerp Score. Fig. 3 shows these
metrics across sparsity levels, demonstrating OrtSAE’s balance between reconstruction quality and
model functionality preservation. To further validate the generalizability of our findings across
different model architectures and layers, we conducted additional experiments on layer 20 of Gemma-
2-2B and layer 20 of Llama-3-8B, with results reported in App. B. We also analyze the impact of
varying the number of chunks on OrtSAE performance to assess its robustness and scalability, with
details provided in App. C.

Reconstruction and Predictive Performance. We first evaluate reconstruction quality through
explained variance, measuring how accurately each SAE reconstructs input activations. To assess
whether these reconstructions preserve the model’s functionality, we additionally examine downstream
predictive performance using KL-divergence scores (detailed descriptions provided in App.D). We
also tested the effect of decoded activations on the base language model’s perplexity using LogLoss,
which shows the same patterns as the KL-divergence scores (see App. E). Fig. 3a shows OrtSAE
achieves comparable performance to BatchTopK SAE while outperforming Matryoshka SAE by
2% in fraction of explained variance. The KL-divergence scores (Fig. 3b) reveal nearly identical
predictive behavior between OrtSAE and BatchTopK SAE, with both slightly surpassing Matryoshka
SAE. These results are particularly notable because OrtSAE maintains strong performance despite its
additional orthogonality constraints, whose effects we analyze next through feature similarity.

Feature Orthogonality. To quantify the separation of decoder features, we compute the mean
cosine similarity (MeanCosSim) for each feature vector i to its closest neighbor in the decoder matrix:

MeanCosSim =
1

m

m∑
i=1

max
j ̸=i

cos(Wdec
i ,Wdec

j ). (6)

As shown in Fig. 3c, OrtSAE achieves superior separation with MeanCosSim values 2.7 times lower
than BatchTopK and 1.5 times lower than Matryoshka SAE, approaching random initialization levels.
This enhanced orthogonality directly contributes to improved feature atomicity, as shown in Sec. 4.3.
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(a) Composition rate. (b) Absorption rate. (c) Clustering rate. (d) Unique features.

Figure 4: Atomicity metrics. (a) MetaSAE-based Composition rate: OrtSAE shows reduced feature
merging compared to traditional SAEs and matches Matryoshka SAE. (b) Absorption rate: OrtSAE
shows significant improvement over BatchTopK with performance approaching Matryoshka SAE.
(c) Feature clustering: OrtSAE matches Matryoshka SAE in low feature interconnection, both
outperforming traditional SAEs. (d) Proportion of unique features: OrtSAE discovers substantially
more distinct features than BatchTopK SAE.

Feature Interpretability. The Autointerp Score evaluates feature interpretability using GPT-4o-
mini as an LLM judge. Following Paulo et al. (2024)’s methodology, we first generate interpretable
descriptions of 1,000 latents using an LLM, then quantitatively assess these explanations by measuring
how accurately the LLM can predict whether each latent activates (fires) on new input tokens (detailed
descriptions provided in Appx. F). Fig. 3d demonstrates comparable interpretability between OrtSAE,
BatchTopK SAE, and Matryoshka SAE latents across all tested sparsity levels.

These results demonstrate that OrtSAE achieves an optimal balance - matching top reconstruction
performance while significantly improving feature separation without compromising interpretability.
This demonstrates that our new training procedure can enhance feature quality while preserving
model functionality, as we explore further in our atomicity analysis.

4.3 ATOMICITY ANALYSIS

We assess feature atomicity through four quantitative measures: (1) MetaSAE-based composition
rates, (2) absorption metrics, (3) clustering coefficients, and (4) cross-model feature uniqueness,
complemented by qualitative analysis of decomposed features. Fig. 4 presents the quantitative
comparisons across sparsity levels, while Fig. 5 illustrates OrtSAE’s ability to disentangle composite
features through concrete examples.

MetaSAE-Based Feature Composition Analysis. We train a MetaSAE on the decoder features of
SAEs, following the methodology of Leask et al. (2025). The MetaSAE follows the same training
procedure as ordinary SAEs (Sec. 4.1) but operates on decoder features rather than LLM activations,
attempting to decompose these higher-level representations into more atomic latent components
(detailed descriptions provided in Appx. G). The MetaSAE employs a BatchTopK architecture with
sparsity k = 4 and a dictionary size reduced to 25% of the original SAEs. We measure composition
via explained variance, where lower values indicate higher atomicity. Fig. 4a shows that OrtSAE
attains a composition rate much lower (by 0.06 at L0 of 70) than BatchTopK SAE and similar to
Matryoshka SAE, reflecting pronounced feature atomicity and resistance to decomposition into
simpler constituents.

Feature Absorption Analysis. Feature absorption is evaluated using SAEBench (Karvonen et al.,
2025). Following established methodologies for studying absorption in sparse autoencoders (Chanin
et al., 2024), we perform tests in the first-letter classification and hierarchical concept domains
(detailed descriptions provided in Appx. B). Fig. 4b shows that OrtSAE achieves a significantly
reduced absorption rate compared to BatchTopK SAE (by 0.17 at L0 of 70), but slightly higher than
Matryoshka SAE, indicating effective minimization of conceptual overlap compared to traditional
SAEs.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) BatchTopK SAE feature that
activates only on “Queen” token

(b) OrtSAE feature that activates
only on “Queen” token

(c) OrtSAE feature that activates
only on titles and royal concepts

Figure 5: Decomposition of a BatchTopK SAE Feature into OrtSAE Features. (a) A BatchTopK
SAE feature activating solely on the token “Queen”, expressed as a linear combination of two OrtSAE
features: (b) An OrtSAE feature specific to the token “Queen”. (c) An OrtSAE feature capturing
royal titles, revealing how OrtSAE disentangles the broader royalty concept absorbed by the “Queen”
feature in BatchTopK SAE.

Clustering Properties of Decoder Features. The clustering coefficient measures how tightly
connected features are in a graph of decoder interactions, where edges represent high cosine similarity
between features (detailed descriptions provided in Appx. C). A lower coefficient indicates that
features are more independent, forming fewer interconnected groups, which suggests greater feature
atomicity. We evaluate this across 10 similarity thresholds at varying edge densities (the ratio of
existing edges to the number of all possible edges). Fig. 4c shows the clustering coefficient of OrtSAE
is substantially lower than that of BatchTopK SAE and similar to Matryoshka SAE, signifying
enhanced feature independence compared to traditional SAEs.

Cross-Model Feature Overlap Analysis. We measure feature uniqueness by computing maximum
pairwise cosine similarity between OrtSAE and BatchTopK SAE features, at a L0 of 70. A feature is
considered unique if all cross-model similarities are below 0.2. OrtSAE retains 9% unique features,
compared to 1.5% for BatchTopK (Fig. 4d). This six-fold increase in unique features highlights
OrtSAE’s ability to discover novel features, enhancing scalability for larger dictionaries.

Qualitative Analysis of Feature Atomicity. We analyze feature atomicity by decomposing Batch-
TopK SAE features into sparse combinations of OrtSAE features, following a methodology adapted
from MetaSAE (Leask et al., 2025). We select BatchTopK SAE (at L0 of 70) features if their OrtSAE
(at L0 of 70) approximation has a cosine similarity above 0.95 and each coefficient is at least 0.1,
ensuring meaningful contributions. Fig. 5 illustrates the decomposition of a BatchTopK SAE feature
for “Queen terms” into two OrtSAE features: one for “Queen terms” and another for “titles and royal
concepts”. This demonstrates how OrtSAE disentangles broader concepts absorbed by specialized
features. Additional examples of feature decompositions are provided in Appx. D.

These results demonstrate OrtSAE improves feature atomicity over traditional SAEs, achieving lower
composition and absorption rates, reduced clustering, and a higher proportion of unique features.
Qualitative evidence supports these findings, demonstrating the effective decomposition of complex
BatchTopK features by OrtSAE features. These results highlight the efficacy of orthogonality
constraint in yielding disentangled representations, paving the way for downstream tasks.

4.4 DOWNSTREAM BENCHMARKS

We evaluate OrtSAE using the SAEBench (Karvonen et al., 2025), which measures SAEs quality
across a diverse set of tasks related to practical downstream applications. The key metrics we report
on are Spurious Correlation Removal (SCR), Targeted Probe Perturbation (TPP), Sparse Probing, and
RAVEL.
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(a) SCR score. (b) TPP score. (c) Probing accuracy. (d) RAVEL score.

Figure 6: Results on SAEBench. (a) Spurious Correlation Removal: OrtSAE outperforms tradi-
tional SAEs but achieves lower scores than Matryoshka. (b) Targeted Probe Perturbation: OrtSAE
shows modest improvements over traditional SAEs, while Matryoshka demonstrates the strongest
performance. (c) Sparse Probing: OrtSAE maintains accuracy comparable to baseline methods. (d)
RAVEL: OrtSAE achieves scores similar to both BatchTopK and Matryoshka SAEs.

Spurious Correlation Removal and Targeted Probe Perturbation. SCR evaluates the removal
of spurious correlations (e.g., gender in profession classification) by zero-ablating SAE latents,
while TPP tests class-specific concept isolation in multi-class settings via targeted ablation. Fig. 6
demonstrates that OrtSAE achieves stronger performance than traditional SAEs in both tasks, with
a significant improvement in SCR scores and modest gains in TPP compared to BatchTopK SAE.
While Matryoshka SAE achieves the highest absolute scores, OrtSAE delivers similarly strong results
with lower computational overhead and traditional architecture.

Sparse Probing. Sparse Probing evaluates the ability of SAEs to isolate specific concepts, such
as sentiment, within individual latents without explicit supervision. For each concept, we select the
top-k latents by comparing their mean activations on positive versus negative examples. A linear
probe is then trained on these latents to predict the concept. High probe accuracy indicates that the
latents effectively capture the target concept in a disentangled manner. As shown in Fig. 6c, OrtSAE
achieves probing accuracy comparable to BatchTopK and Matryoshka SAEs across various sparsity
levels, demonstrating its capability to produce interpretable, concept-aligned features.

RAVEL. RAVEL (Resolving Attribute–Value Entanglements in Language Models) (Huang et al.,
2024) evaluates disentanglement by manipulating attributes in LLM activations (e.g., transferring
city-related features from “Tokyo” to “Paris”) while minimizing interference with unrelated attributes
(e.g., France-related context). Fig. 6d demonstrates that OrtSAE, BatchTopK SAE, and Matryoshka
SAE exhibit equivalent performance, highlighting OrtSAE’s ability to enable precise interventions
without compromising efficacy.

Evaluated against traditional SAEs, OrtSAE demonstrates superior SCR performance, competitive
TPP results, and consistently comparable outcomes in Sparse Probing and RAVEL, highlighting its
ability to generate atomic, disentangled features without sacrificing downstream utility.

5 CONCLUSION

In this work, we introduce OrtSAE, a novel sparse autoencoder training approach that enhances latent
atomicity through orthogonal constraints on decoder features. This method effectively addresses
feature absorption and composition, key obstacles to interpretable representations, while preserving
reconstruction fidelity comparable to traditional SAEs. Notably, OrtSAE achieves this with minimal
computational overhead through an efficient chunk-wise orthogonalization penalty that scales linearly
with feature count. Experiments across different language model families demonstrate OrtSAE’s
significant reductions in absorption and composition rates, yielding 9% more distinct features, superior
spurious correlation removal (+6%), and on-par performance across other SAEBench tasks. These
insights underscore geometric constraints’ role in disentangling superposed representations, offering
fresh perspectives on the superposition hypothesis. Future work should investigate using orthogonal
features as more interpretable building blocks for neural circuit discovery, potentially leading to
clearer mechanistic models of model computations.

9
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have taken several measures throughout the paper and
supplementary materials. All experimental details, including model architectures, hyperparameters,
and training procedures, are comprehensively documented in Section 4.1 and Appendix A. We
provide complete specifications for our OrtSAE implementation, including the orthogonal penalty
formulation and chunking strategy in Section 3.3. The evaluation metrics and benchmarks are
described in detail in Sections 4.2-4.4, with additional methodological explanations in Appendices
B-G. Code for OrtSAE training, evaluation scripts, feature analysis tools, and SAEBench integration
will be released anonymously as supplementary material and made fully public upon acceptance. The
datasets used in our experiments (OpenWebText) are publicly available, and we specify exact data
processing steps in Appendix A. For the SAEBench evaluations, we follow established protocols
from prior work with detailed descriptions of each task. Additional experiments on different model
architectures and layers (Appendix B) and ablation studies on key hyperparameters (Appendix C)
further validate the robustness of our approach.
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Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Ed-
ward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling
monosemanticity: Extracting interpretable features from claude 3 sonnet. Transformer Cir-
cuits Thread. Anthropic, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

11

https://arxiv.org/abs/2501.17727
https://arxiv.org/abs/2501.17727
https://aclanthology.org/2024.blackboxnlp-1.19/
https://arxiv.org/abs/1611.01967
https://arxiv.org/abs/1611.01967
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhennan Wang, Canqun Xiang, Wenbin Zou, and Chen Xu. Mma regularization: Decorrelating
weights of neural networks by maximizing the minimal angles, 2021. URL https://arxiv.
org/abs/2006.06527.

A ADDITIONAL DETAILS OF SAE TRAINING SETUP

Following the approach of (Bussmann et al., 2025), we train Sparse Autoencoders (SAEs) on
activations from layer 12 of the Gemma-2-2B model (Team et al., 2024) (26 layers total) to align
with prior work. To assess the generalizability of our approach, we also conduct experiments on layer
20 of Gemma-2-2B and layer 20 of Llama-3-8B (Dubey et al., 2024) (32 layers total). Each SAE
has latent space of size m = 65536 and sparsity levels L0 in {25, 40, 55, 70, 85, 100, 115, 130}. The
training uses 500 million tokens from the OpenWebText dataset (Gokaslan and Cohen, 2019) with
a context length of 1024. We employ the AdamW optimizer (Loshchilov and Hutter, 2017) with a
learning rate of 2× 10−4 and a batch size of 2048. All SAE variants except ReLU SAE employ an
auxiliary loss coefficient α = 1/32 to mitigate dead features during training. As a basis of OrtSAE,
we follow BatchTopK SAE repository, leveraging BatchTopK’s precise L0 sparsity control. For
OrtSAE, we set the number of chunks K(m) = ⌈m/8192⌉ (yielding K = 8 for m = 65536) with
γ = 0.25. All SAEs are trained comparably with identical data ordering and hyperparameters on 1
H100 GPU, 80GB. For one SAE, training requires approximately 10 hours. To ensure reproducibility,
we will publicly release all code, hyperparameters, and instructions for accessing the datasets. The
results of additional experiments on layer 20 of Gemma-2-2B and Llama-3-8B focusing on a sparsity
level of L0 = 70 are reported in the Appendix B.

B ADDITIONAL EXPERIMENTS ON GEMMA-2-2B AND LLAMA-3-8B

To address the generalizability of our findings, we conducted additional experiments on layer 20 of
Gemma-2-2B (26 layers total) and layer 20 of Llama-3-8B (32 layers total) (Dubey et al., 2024),
following the experimental setup described in Sec. 4.1. We trained SAEs with a sparsity level of
L0 = 70 and measured key metrics: explained variance, mean cosine similarity, composition rate,
absorption rate, and Spurious Correlation Removal (SCR) score. The results, presented in Tables 1
and 2, confirm the findings from layer 12 of Gemma-2-2B, showing consistent reductions in feature
absorption and composition, as well as improved performance in tasks such as Spurious Correlation
Removal. Notably, the Explained Variance gap between Matryoshka SAE and OrtSAE widens to 0.04
in Llama-3-8B (0.722 vs. 0.762), reinforcing OrtSAE’s advantage in reconstruction performance.

Table 1: Performance of SAEs trained on layer 20 of Gemma-2-2B with L0=70.

SAE model Expl. var. Mean Cos. sim. Comp. rate Abs. rate SCR score

ReLU SAE 0.784 0.549 0.527 0.371 0.144
BatchTopK SAE 0.843 0.354 0.490 0.220 0.308
Matryoshka SAE 0.811 0.148 0.349 0.015 0.385
OrtSAE 0.836 0.112 0.340 0.095 0.322

Table 2: Performance of SAEs trained on layer 20 of Llama-3-8B with L0=70.

SAE model Expl. var. Mean Cos. sim. Comp. rate Abs. rate SCR score

ReLU SAE 0.704 0.517 0.413 0.490 0.060
BatchTopK SAE 0.769 0.327 0.461 0.148 0.103
Matryoshka SAE 0.722 0.149 0.323 0.022 0.191
OrtSAE 0.762 0.107 0.316 0.070 0.151
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C EFFECT OF NUMBER OF CHUNKS ON ORTSAE PERFORMANCE

We evaluated the impact of the number of chunks and the frequency of orthogonality loss computation
on OrtSAE performance, following the experimental setup in Sec. 4.1. OrtSAE was tested with
chunk counts K ∈ {4, 8, 16, 32, 64}, using a fixed sparsity at L0 of 70. Additionally, to enhance
computational efficiency, we explored a modified OrtSAE variant where the orthogonality loss is
computed every fifth training iteration, with the orthogonality coefficient γ scaled by a factor of 5 to
maintain regularization strength.

As shown in Figure 7, OrtSAE demonstrates robust performance in core reconstruction and atomicity
metrics across different numbers of chunks. The original OrtSAE and the modified OrtSAE show
similar trends, with the modified version maintaining performance even better then original. Explained
variance (Fig.7a) remains stable around 0.77–0.78 across chunk counts for both variants, slightly
outperforming ReLU SAE and Matryoshka SAE. Mean cosine similarity (Fig.7b) increases modestly
with more chunks (e.g., from 0.10 at K = 4 to 0.20 at K = 64), but remains lower than BatchTopK
and ReLU SAEs. Absorption rate (Fig.7c) and composition rate (Fig.7d) also increase slightly with
more chunks (e.g., absorption from 0.15 to 0.20), yet both variants outperform traditional SAEs. The
modified OrtSAE achieves performance within 1–2% of the original OrtSAE across these metrics,
reducing the computational overhead of the orthogonality loss by approximately five times, as it
is calculated in only 20% of training iterations. Overall, OrtSAE demonstrates both robustness
and scalability by maintaining core SAE performance across varying chunk counts while reducing
training overhead to within 4% of the BatchTopK baseline (see Table 3).

(a) Explained variance (b) Mean cosine similarity (c) Absorption rate (d) Composition rate

Figure 7: Performance of OrtSAE across different number of chunks at L0 of 70. OrtSAE shows
robust performance in core reconstruction and atomicity metrics across different number of chunks.

Table 3: Training times for SAE variants. Ratios are relative to BatchTopK SAE.

Method Training Time (minutes) Time Ratio*
BatchTopK SAE 325 1.0×
Matryoshka SAE 373 1.15×
OrtSAE modified (K = 8) 361 1.11×
OrtSAE modified (K = 64) 340 1.04×
*Relative to BatchTopK SAE

D KL-DIVERGENCE SCORE DEFINITION

The KL-divergence score assesses how effectively a sparse autoencoder (SAE) preserves the predictive
behavior of a language model by comparing next-token probability distributions. We define Porig as
the distribution from the original model, PSAE as the distribution when activations are replaced by
SAE reconstructions, and Pablated as the distribution when activations are set to zero, serving as a
baseline.
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The score is given by:

KL-Divergence Score =
DKL(Pablated ∥ Porig)−DKL(PSAE ∥ Porig)

DKL(Pablated ∥ Porig)

where DKL denotes the Kullback-Leibler divergence. This metric ranges from 0, indicating no
improvement over the zero-ablated baseline, to 1, indicating perfect reconstruction (PSAE = Porig). In
SAEBench, the score is averaged over a dataset to evaluate SAE reconstruction quality.

E LOGLOSS RESULTS

To further evaluate the impact of decoded activations on the base language model’s predictive
performance, we compute LogLoss scores for SAEs trained on layer 12 of Gemma-2-2B across
various sparsity levels (L0 ∈ {40, 70, 100, 130}). LogLoss measures the negative log-likelihood
of the model’s next-token predictions, with lower values indicating better preservation of the base
model’s predictive behavior. The results, shown in Table 4, align closely with the KL-divergence
findings (Appendix D), confirming that OrtSAE maintains predictive performance comparable to
BatchTopK SAE, with both outperforming ReLU SAE and Matryoshka SAE.

Table 4: LogLoss of SAEs trained on layer 12 of Gemma-2-2B. Lower LogLoss indicates better
preservation of the base language model’s predictive performance.

SAE model L0=40 L0=70 L0=100 L0=130

No SAE (LLM’s LogLoss) 2.4533 2.4533 2.4533 2.4533
ReLU SAE 2.7657 2.6562 2.6094 2.5935
BatchTopK SAE 2.5623 2.5312 2.5152 2.5020
Matryoshka SAE 2.5786 2.5321 2.5161 2.5025
OrtSAE 2.5646 2.5319 2.5159 2.5024

F FEATURE INTERPRETABILITY METRICS DETAILS

To evaluate the interpretability of Sparse Autoencoder (SAE) features, we follow the automated
interpretability methodology outlined in (Paulo et al., 2024; Karvonen et al., 2025), leveraging
large language models (LLMs) to generate and validate human-readable feature descriptions. We
select 1,000 random SAE features, excluding ”dead” features. For each feature, we collect up to 10
top-activating sequences from the OpenWebText dataset (Gokaslan and Cohen, 2019) and prompt
GPT-4o-mini to generate a concise description, such as ”sentiment terms” or ”math expressions,”
capturing the feature’s core concept.

To assess these descriptions, we create a test set for each feature with 100 sequences: 50 activating the
feature at varying strengths and 50 random non-activating sequences, all sourced from OpenWebText.
A separate GPT-4o-mini model predicts whether each sequence activates the feature based on the
description, treating it as a binary (yes/no) classification task. The Autointerp Score, shown in
Fig. 3d, is the prediction accuracy, measuring how well the description generalizes to new data.
A high score indicates a monosemantic, interpretable feature, while a lower score may suggest
polysemanticity or an inaccurate description. OrtSAE demonstrates interpretability comparable to
BatchTopK and Matryoshka SAEs across sparsity levels (Sec. 4.2), confirming its ability to produce
clear, disentangled feature representations.

G METASAE-BASED FEATURE COMPOSITION METRICS DETAILS

The MetaSAE-based feature composition analysis, originally proposed by Leask et al. (2025) and
extended by Bussmann et al. (2025), provides a quantitative method for assessing the atomicity of
features learned by sparse autoencoders. This approach measures the degree of feature composition
by training a secondary sparse autoencoder (MetaSAE) on the feature vectors of the primary SAE to
decompose them into more atomic components.
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In our implementation, we train MetaSAEs on the decoder weight matrices of both OrtSAE and
BatchTopK SAE. The decoder weights are treated as input data points, where each feature vector
from the primary SAE’s dictionary serves as an input to the MetaSAE. The MetaSAE follows the
same BatchTopK architecture as our primary SAEs but operates on this different input space.

The MetaSAE is configured with a dictionary size equal to one-quarter of the primary SAE’s dictionary
size (16,384 meta-latents for our primary SAEs with 65,536 features). We apply a sparsity constraint
ensuring an average of 4 active meta-latents per decoder vector reconstruction. The MetaSAE learns
to reconstruct each primary SAE feature vector using a sparse combination of meta-latents, where the
meta-features represent atomic sub-components of the primary SAE’s features.

The key metric for assessing composition is the explained variance, which measures the proportion of
variance in the primary SAE’s decoder weights that the MetaSAE can reconstruct. A higher explained
variance indicates that the MetaSAE can effectively reconstruct the primary SAE’s features using
shared, atomic sub-features, suggesting that the original features were composed of these simpler
components. Conversely, a lower explained variance implies that the primary features are already
atomic and resist decomposition into simpler constituents. In our experiments, we interpret lower
MetaSAE explained variance as indicating better feature atomicity in the primary SAE.

This methodology provides an objective, quantitative measure of feature composition that comple-
ments our qualitative analyses and other atomicity metrics, offering insights into the hierarchical
structure of the representations learned by different SAE variants.

H CLUSTERING COEFFICIENT DEFINITION

The global clustering coefficient quantifies the tendency of nodes in a graph to form clusters. For
Sparse Autoencoders (SAEs), nodes represent decoder features, and edges connect feature pairs with
cosine similarity above a threshold.

Edge density, the proportion of possible edges present, is defined as:

density =
2E

n(n− 1)
,

where E is the number of edges and n is the number of nodes. Varying the similarity threshold
adjusts the density, enabling analysis across connectivity levels.

The clustering coefficient C is computed as:

C =
3× number of triangles

number of connected triples
,

where a triangle is three nodes fully connected by edges, and a connected triple is three nodes linked
by at least two edges. C ranges from 0 (no clustering) to 1 (maximal clustering).

I ADDITIONAL QUALITATIVE EXAMPLES

We provide three additional examples of BatchTopK SAE features decomposed into orthogonal,
atomic OrtSAE components. These cases further illustrate how OrtSAE disentangles composite
concepts through orthogonality constraint.
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(a) BatchTopK SAE feature activat-
ing on climate-related terms.

(b) OrtSAE feature activating on on
climate-related terms.

(c) OrtSAE feature activating on
broader environmental and weather
contexts.

Figure 8: Decomposition of Climate-Related BatchTopK SAE Feature into OrtSAE Features. (a)
A BatchTopK SAE (L0=70) feature that activates on climate-related terms, which can be represented
as a linear combination of two OrtSAE (L0=70): (b) An OrtSAE feature that activates specifically on
climate-related terms. (c) An OrtSAE feature that activates on broader environmental and weather
contexts.

(a) BatchTopK SAE feature
activating on “jaw” token.

(b) OrtSAE feature
activating on “jaw” token.

(c) OrtSAE feature
activating on mouth
and oral concepts.

(d) OrtSAE feature
activating on “aw” token.

Figure 9: Decomposition of Jaw-Related BatchTopK SAE Feature into OrtSAE Features. (a)
A BatchTopK SAE (L0=70) feature that activates on the token “jaw”, which can be represented
as a linear combination of three OrtSAE (L0=70) features: (b) An OrtSAE feature that activates
specifically on the token “jaw”. (c) An OrtSAE feature that activates on mouth and oral concepts. (d)
An OrtSAE feature that activates on the token “aw”.

(a) BatchTopK SAE feature
activating on “module”
token.

(b) OrtSAE feature
activating on “module”
token.

(c) OrtSAE feature
activating on concepts
of parts, segments.

(d) OrtSAE feature
activating on concepts
of complex system.

Figure 10: Decomposition of Module-Related BatchTopK SAE Feature into OrtSAE Features.
(a) A BatchTopK SAE (L0=70) feature that activates on the token “module”, which can be represented
as a linear combination of three OrtSAE (L0=70) features: (b) An OrtSAE feature that activates
specifically on the token “module”. (c) An OrtSAE feature that activates on concepts of parts and
segments. (d) An OrtSAE feature that activates on concepts of complex systems.
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