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Abstract

Contrastive learning—a modern approach to extract useful representations from
unlabeled data by training models to distinguish similar samples from dissim-
ilar ones—has driven significant progress in foundation models. In this work,
we develop a new theoretical framework for analyzing data augmentation-based
contrastive learning, with a focus on SimCLR as a representative example. Our
approach is based on the concept of approximate sufficient statistics, which we
extend beyond its original definition in Oko et al. [28] for contrastive language-
image pretraining (CLIP) using KL-divergence. We generalize it to equivalent
forms and general f-divergences, and show that minimizing SimCLR and other
contrastive losses yields encoders that are approximately sufficient. Furthermore,
we demonstrate that these near-sufficient encoders can be effectively adapted to
downstream regression and classification tasks, with performance depending on
their sufficiency and the error induced by data augmentation in contrastive learning.
Concrete examples in linear regression and topic classification are provided to
illustrate the broad applicability of our results.

1 Introduction

Leveraging massive unlabeled data to learn useful representations has played a central role in recent
advances in foundation models. A prominent approach of this kind is contrastive learning, which has
driven significant progress in visual representation learning [5, 14], large-scale speech processing [3],
and multimodal AI [31, 21].

In short, contrastive learning finds useful representations of the data by maximizing similarity
between paired samples while minimizing it for non-paired samples. Consider SimCLR [5] for
visual representation learning as an illustrative example. Given a dataset of images € X, SimCLR
generates two augmented views (z(1), 2(2)) € X x X for each image & using random transformations
(i.e., data augmentations) such as random cropping, random color distortions, and random Gaussian
blur, etc. It then trains an encoder f that aligns the paired views and separates the non-paired views
through minimizing the loss in Eq. (2). The learned representation f(z) (or f(z(!))) can then be
adapted to downstream tasks with few labeled samples and minimal fine-tuning.

Despite its remarkable empirical performance, the theoretical aspects of contrastive learning remain
an active area of study [32, 28]. In this work, we present a theoretical analysis of data augmentation-
based contrastive learning, with a specific focus on the SImCLR framework [5] as a representative
example. Notably, recent work by Oko et al. [28] has introduced new theoretical insights into
contrastive language-image pretraining (CLIP). They first introduced the concept of approximate
sufficient statistics, showing that the image and text encoders obtained from the empirical risk
minimizer of CLIP are approximately sufficient. Additionally, under the joint graphical hierarchical
model (JGHM) assumption for image and text data, they demonstrated that such encoders can be
efficiently adapted to various downstream multimodal tasks.
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Our work complements and extends the work by Oko et al. [28] in two key ways.

(1) We extend the concept of approximate sufficient statistics, which was originally defined
for CLIP in a specific form based on KL-divergence, to three equivalent forms and general
f-divergences. Based on the equivalent forms of the definition, we establish that minimizing
the contrastive loss (e.g., the InfoNCE loss [29]) is essentially finding approximate sufficient
statistics that are adaptable to downstream tasks.

(2) We focus on data augmentation-based contrastive learning following the SImCLR framework.
In contrast to CLIP, the random transformations in SimCLR introduce additional challenges
for theoretical analysis. We show that the downstream performance of the learned encoder
depends on its sufficiency and the error induced by the random transformations. Furthermore,
motivated by the generalized definition of approximate sufficient statistics, we theoretically
demonstrate that encoders trained using alternative contrastive losses can achieve similar
downstream performance to those trained using standard SimCLR.

The remainder of this work is organized as follows. In Section 2, we introduce the concept of
approximate sufficient statistics. Sections 3.1-3.2 present the setup of data augmentation-based
contrastive learning and analyze the downstream performance of the SImCLR-trained encoder. In
Section 3.3, we extend our analysis to general f-contrastive losses. Examples in linear regression and
topic classification are presented in Section 4. We also conduct synthetic experiments to compare
contrastive learning losses in Section 5. Discussion of related works is deferred to Appendix A.

2 Approximate sufficient statistics

Before diving into the analysis of contrastive learning, we first introduce the concept of approximate
sufficient statistics, which provides a novel viewpoint for characterizing the quality of encoders f
used in contrastive learning. Let f : R, — R be a convex function such that f(1) = 0. For random
variables (X,Y) on X x ) with joint density P(z, y) with respect to some measure !, we define
the f-mutual information (f-MI) as
P(z, y)
1(x,v) = | £
) = (5050

Note that the f-MI is essentially the f-divergence between the joint distribution and the product of
marginal distributions. It is non-negative and symmetric in X and Y. Moreover, provided that f
is strictly convex, It(X,Y) = 0 if and only if X and Y are independent. Let (X,Y") be random
variables that have the joint density P(X,Y") (Y could be thought as the parameter 6 in Bayesian
statistics). For any statistic T : X — T'(X), to characterize the information loss of using 7T'(X)
instead of X for predicting Y, we introduce the following definition of the sufficiency of T'(X).

)P(@)P()dp.

Definition 1 (Approximate sufficiency). Let T : X — T(X) be a mapping (i.e., a statistic). We
define three forms of the sufficiency of T', which will be shown to be equivalent:

* Information Loss Sufficiency (ILS): The information loss sufficiency of T is defined as
Suffﬂ’f(T) = If(X, Y) - If(T(X>7 Y)

* Variational Form Sufficiency (VFS): The variational form sufficiency of T is given by

S = gy MO 0T = )

where S o T'(z,y) := S(T'(x),y), and the f-contrastive loss
Rt (S) = Epz,y)[—S(x,y)] + s lgcliR Ep(zyp) [f*(S(x,y) — Sa(2)) + Se(x)], (1)

where {* is the Fenchel-dual of f.

"For example, p can be the Lebesgue measure on Euclidean spaces, or the counting measure on discrete
spaces.



* Conditional Bregman Sufficiency (CBS): The conditional Bregman sufficiency of T is
defined as

P(y|x) P(yIT(x))>]
P(y) = P(y) ’

where B(a,b) = f(a) — £(b) — (a — b){"(b) is the Bregman divergence of {.

Suffep,1(T) = Ep(a)xp(y) [Bf(

Indeed, these definitions will be shown to be equivalent (Lemma 1), i.e.,
Suffil)f(T) = Suffvf’f(T) = Suffcb7f(T) = Sufff(T)
We say T'(X) is an e-approximate sufficient statistic if Suff¢(T) < e.

The Information Loss Sufficiency (ILS) is closely linked to the InfoMax principle [22, 15], which
finds a statistic 7" that maximizes mutual information I(7'(X),Y") under certain constraints. The
equivalence between ILS and CBS suggests that the loss in mutual information can be represented
as a divergence between the conditional probabilities P(Y'|X) and P(Y|T(X)). This provides a
concrete measure for interpreting the information loss.

~

In VFS, by definition, the excess risk R¢(S o T') — infg R¢(S) serves as an upper bound on the
sufficiency Suff¢(7T'), and they are nearly equal when S is obtained by minimizing R¢(S o T') over a
sufficiently rich space S. Consequently, VFS provides a loss minimization framework for finding
T with low sufficiency by minimizing the f-contrastive loss R¢(S) over S in some space S and
extracting 7" from S. Moreover, an extension of approximate sufficiency to similarity scores S is
introduced in Appendix B.3.

The concept of approximate sufficient statistics was first proposed in Oko et al. [28], but only in
the CBS form for KL divergence (i.e., f(z) = zlogx). In this work, we extend the definition to
general f-divergences and establish the equivalence among three forms of sufficiency. Notably, for
f that is strictly convex, we have Suff¢(7") = 0 if and only if Y 1L X |T'(X) from the CBS form,
aligning with the classic definition of sufficient statistics (see e.g., [19]). We will mainly consider two
special cases of f: f(x) = xlog 2z (KL-divergence) and f(z) = (z — 1)2/2 (x2-divergence), with the
corresponding sufficiency denoted by Suffy and Suff, 2. For more examples and properties regarding
approximate sufficient statistics, we refer the readers to Appendix B.

In the context of data augmentation-based contrastive learning, we may choose X and Y as two
augmented views of the sample, and T as the encoder f. The sufficiency Suff¢(f) then quantifies
the loss of recovering augmented views from the encoder representation. We will show that the
downstream performance of f can be controlled by its sufficiency (in the CBS form) and the
error induced by data augmentation. Specifically, for any downstream task, a small risk can be
achieved using f if it is near-sufficient and the random transformations in contrastive learning do not
significantly change the downstream outcomes. As a preview of the results, we have

Theorem (Informal). The risk on a downstream task using encoder f (denoted by R(f)) satisfies

R(f) < e (VSuffi(f) + )

Sfor some constant ¢ > 0, where Suff¢(f) is the f-sufficiency of f and eg denotes the error on the
downstream task induced by data augmentation.

Contrastive learning with general f-divergence was also studied in [23, 48], but the loss functions
considered in these works differ from the variational form in (1). In particular, while Lu et al. [23]
considered a variational form similar to (1), they set S, = 0 instead of taking the infimum over S.

3 Statistical properties of contrastive learning

In this section, we demonstrate that data augmentation-based contrastive learning can find near-
sufficient encoders that are effectively adaptable to downstream tasks. We focus on the SimCLR
framework in Section 3.1-3.2, and extend the results to general f-contrastive losses in Section 3.3.



3.1 Setup and the ERM estimator

Let x € X be a random sample drawn from a distribution Px on X'. Consider a set of transformations
G in which each transformation g : X — X maps X to itself.? Let Pg denote a distribution over the
transformations in G. Given a sample « and two transformations g1, g(2) ~;;4 Pg, we generate two
augmented views of @, denoted as z(") = g(V) () and z(®) = ¢(®) (z). The marginal distribution of
2 (or equivalently z(?)) is denoted by .. Often, we will omit the superscripts and let z = g(x)
denote a single augmented view generated by a transformation g ~ Pg.

Throughout the remainder of this work, unless otherwise specified, we set (X,Y) g (z(M), 2(2)
in Definition 1, i.e., we define the sufficiency Suff;(T) = I;(2("), 2®) — I;(T(2V), 2(?)). For
simplicity, we assume the joint distribution of (x, (1), 2(?)) is either discrete or has a continuous
density w.r.t. some base measure on X®3. We abuse the notation P(-) to refer to either discrete
distributions or the density of continuous distributions, with the intended meaning clear from the
context. Also, we occasionally omit the subscript kl when referring to KL-sufficiency.

SimCLR [5] learns a representation of the sample x (i.e., f(x) or f(g(x))) through performing

contrastive learning on the augmented views (z(1), 2(?)). Specifically, given a batch of K i.i.d.
samples {x;} | from Py, we generate K pairs of augmented views {(zz(l), 252)) K

i.i.d. transformations {(gfl), g§2))}ZK=1 from Pg. Let f : X — RP be an encoder function, potentially

parametrized by neural networks. The SimCLR risk function is defined as the expected InfoNCE
loss [29]:

; using 2K

(1) _(2)
ﬁsimclr,K(S) = %E — eXp(S(zl ) %1 )) :|

1 exp(S(z1", 21”))
Yerry exp(S(21”, 217))

, and
jerre) (S (24", zF)))]

(2
Reimalr 1 (f) == Rsimair 1 (S ), where S := T((f(z(l)), f(z(z))>), 7 : R — R is some simple link function.

1
+E

2 [—ng

Given a set of encoders denoted by F and n = n; K i.i.d. pairs of augmented views {(zgl), z§2)) 2,

SimCLR learns an encoder function ]? € F through empirical risk minimization (ERM), namely,

(1) (2)
~ ~ 1 K exp(Sy(z;;” L2050 ,
7= argmin{Rsimc|r7K(Sf) =5 [Z[—log £z i 5 1>(;<)+])) ]

rer =1 =1 2err] P (2 1) k4 21y k1))

(1) (2)
exp(Sr(z i 20 )
[ ) (Sy( (i—1)K +j (—1)K+j))

-

g
(1)
DlelK] eXp(Sf(z(i—an Rli—1)K+j

~ ~

With the encoder f| () at hand, f(x) (or f(g(x))) serves as a representation for each « € X', which
can be used for downstream tasks.

We now show that the sufficiency of the ERM estimator f can be properly controlled. We will

demonstrate in Section 3.2 that the downstream performance of f is closely tied to its sufficiency.
P(z™ 2(2))
P(zM)-P(z®@)
(see Lemma 2 for the proof). To analyze the properties of the ERM estimator, we introduce the
following boundedness assumption on the score function S and regularity assumption on 7.

First, we note that a global minimizer of the SimCLR risk is S, (z(1), 2(?)) := log [

Assumption 1 (Bounded score). There exists a constant Bs > 0 such that for all pairs (z(l), z(2)),

1) 52 Pz )
we have exp(Sy (21, 2'))) € [1/Bs, Bs] for all f € F and PG € [1/Bs, Bs].

Assumption 2 (Simple link function). The link function T : R — R is invertible and there exists
some constant B, > 0 such that |7(0)| < B, and 7,71 are B.-Lipschitz.

Note that the first part of Assumption 1 is satisfied with Bs = exp(B}) when | f(z)[2 < By for all
f € F,x e X and 7 is the identity function. Based on these assumptions, we have

*More generally, we only need each transformation g : X — Z maps X’ to a space Z, which entails a natural
injective map back to X.



Theorem 1 (Sufficiency bound for the ERM estimator). Suppose Assumption 1 and 2 hold for some
Bs > 1,B; > 0. Let fbe the empirical risk minimizer defined in Eq. (3) and let S, be as defined in
Section 3.1. Let supp(zM)) be the support of 2"V and N (u, || - 2,00, F) be the u-covering number of
F under the (2, 0)-norm | f|2,00 == SUPesupp(z)) | £ () |2- Then, with probability at least 1 — 6,
we have

~ C
Suffy(f) < (1 + ?) - [generalization error + approximation error]|, 4)
where
C 2(log Bs+B-)
generalization error := 7 [\/log(l/(S) + BEJ \/Iogj\/'(u, | - Q,w,F)du], (5a)
0
approximation error := }gjfr Rsimelr, 5 (S#) — Reimelr, ik (S« (5b)

for some constant C > 0 depending polynomially on Bs.

See the proof in Appendix C.2. In the decomposition on the R.H.S. of (4), the approximation error
term represents the error incurred when approximating the optimal score S, within the function class
F. Itis a property of the function class F, and a richer class tends to have a smaller approximation
error. The generalization error bound is derived using concentration properties of functions with
bounded differences. Notably, it depends only on the total sample size n = n; K rather than the batch
size K or the number of batches 7;. This allows our results to account for large or full-batch training,
as used in SIMCLR [5] and CLIP [31]. When n — oo, the generalization error vanishes while the
approximation error remains constant.

Why does the SimCLR loss work? Intuitively, Reimeir, k (S) can be viewed as an approximation of
the KL-contrastive loss Ry (S) in Eq. (1) using a finite batch size /K. Namely,

Ru(S) = —E[S(z(l),z@))] + Ezﬁl) [1og Ezf) [exp(S(zil)’ zéQ)))]] = %@mﬁﬂmdd{(S) —log K.
(6)

See the proof in Appendix C.1. As a result, by the definition of VFS in Definition 1
Suffu(f) < Ru(Sy) — i]gf Ru(S) ~ Reimanr,x (Sy) — iIslfﬁsimclr,K(S);

Excess risk

and thus minimizing the SimCLR loss ﬁsimdh K (Sy) effectively controls the sufficiency Suffy(f).

3.2 Using the encoder for downstream tasks

Given an encoder function f : X — RP, we are interested in applying it to downstream tasks.
Specifically, the goal is to leverage the learned representation f () (or f(g(x))) to facilitate learning
in downstream tasks, such as regression or classification. By mapping the raw sample @ to the feature
space RP, the representation f(x) (or f(g())) is expected to capture the most salient information
of x, simplifying the downstream task while maintaining high performance. In this section, we
demonstrate that the downstream performance of the encoder depends on its sufficiency Suffy(f)
and the robustness of the downstream task to the random transformation g ~ Pg.

Adaptation to downstream regression tasks. We first study regression tasks. Consider the task
of learning an unknown target function h, : X — R. Given an encoder f, our objective is to find a
function h : R? — R such that h(f(x)) ~ h.(x) (or h(f(g(x))) ~ h.(x)). The estimation error of
h is measured by the risk

Rg(ho f) = Eonby,g~ps [(h(f(9(2))) = ha(x))?], or R(ho f)i=Eaup, [(h(f(x)) = h(x))?].

For example, in regression tasks where the goal is to predict the outcome y based on the covariates
@, one can choose h,(x) = E[y|x]. The two risks Rg (), R(:) correspond to the cases where a
random transformation g is (or is not) applied before passing the input to the encoder f, respectively.
Theorem 2 illustrates how the downstream performance of the encoder f depends on its sufficiency.



Theorem 2 (Performance on downstream regression). Suppose h, satisfies |E[h.(x)|g(x)]| < Bp,
almost surely. Given an encoder f : X — RP, there exists a measurable function h : RP — R such
that

Rg(ho f) < c(Bh A/Suff(f) + €g), (7a)

where ¢ > 0 is some absolute constant and g = By p.. gpg[(he(g(x)) — ha(x))?]. Moreover, if

the augmented view has the same marginal distribution as the original sample, i.e., z(*) 4 x, then
R(ho f) < e(Bj, +/Suffu(f) + €g) (7b)

for some absolute constant ¢ > (.

The proof of Theorem 2 is contained in Appendix C.3. The term eg characterizes the impact of a
random transformation ¢ on the value of the target function h,. In SimCLR, since the encoder f
is trained only on the augmented views (z(l), z(2)), the random transformation g need to preserve
sufficient information on h, (e.g., €g is small) for f to be effective. This is often the case in practice:
for example, random cropping (g) typically does not alter the class label (h,) of an image; similarly,
rotations and scaling (g) should not affect the true age (h,) of a person in facial images. In addition,
Eq. (7a) still holds when €g is replaced by the minimum error &g := infy, Exp, gp, [(h(g(x)) —
hy(2))?] < eg. We refer to the proof for more details.

Adaptation to downstream classification tasks. We next turn to classification tasks. Suppose
in the downstream we are given samples (x, y) from some joint distribution P on X' x [K], where
x ~ Py is the input and y € [K] is the corresponding label. Note that for any «, the label y follows
the conditional probability P(y|x). Given an encoder f, for any function h : R? — A([K]), we
measure its classification error by

RG*(h o f) = Ea,y)~p,g[DxL(P(yl2)[[h(f(9(x))))]-

Theorem 3 (Performance on downstream classification). Suppose inf,crc) P(ylg(x)) = exp(—B)

for some B > 0 on the support of g(x). Given an encoder f : X — RP, there exists a measurable
Sunction h : R? — A([K]) such that

RE(ho f) < e By/Suffu(f) + ), ®)

where €5° := Eqp g [D2(P(y|z)||P(y|2)) + D2(P(y|2)||P(y|x))] and ¢ > 0 is some absolute
constant. Here, Dy denotes the 2-Rényi divergence.

The proof of Theorem 3 is contained in Appendix C.4. Similar to the regression case in Theorem 2,
the downstream classification error is bounded by the sum of a sufficiency term and an error term that
characterizes the change in label probabilities induced by the transformation g.

3.3 General f-contrastive learning

We generalize our theoretical framework to using general f-sufficiency as defined in Definition 1,
which could be controlled by minimizing the f-contrastive learning risk. We discuss (1) how to find
encoders f with low f-sufficiency Suff¢(f) via data augmentation-based contrastive learning and (2)
the implications of low f-sufficiency on downstream performance. Note that f(z) = x log x yields
the standard SimCLR setup.

3.3.1 Finding encoders with low f-sufficiency

Recall the variational form sufficiency (VFS) in Definition 1. We see that for any { and encoder f

Sufff(f) < S:f(Xl)nfoHR Rf(S ° f) B S:Xl><n2£»—>R Rf(s) S Rf(Sf) B S:X1><n)£»—>R Rf(S) '

~~
Excess risk

Thus, for any € > 0, if there exists an encoder f € F such that the excess risk of S 7 is less than

~

g, then the sufficiency Suff¢(f) < e. Consequently, given i.i.d. pairs of augmented views, we can



obtain an encoder f with low f-sufficiency by choosing fas the empirical risk minimizer (ERM) of a

finite-sample estimate R(S 7) of R¢(Sy), provided that Re(S 1) ~ R¢(Sy), the function class F is
sufficiently rich, and its | - |2,5-covering number is well-controlled.

We focus on x2-sufficiency (i.e., f(x) = (z — 1)2/2) in the following. For general f, the S, (z)
that attains the infimum in Eq. (1) may not have a closed-form solution, and estimating R¢(Sy)
requires solving estimating equations, adding complexity to the analysis. Thus, we leave a detailed
investigation of the general f case for future work.

When f(z) = (z — 1)?/2, basic algebra shows that the y2-contrastive loss (1) takes the form

Ry2(S) = Ep(a,)[=S(2,9)] + Ep(ayecy) [(S(2,y) — Ery) [S(z,)])?/2 + S(z, )] )
Given n = nq K i.i.d. pairs of augmented views {(zgl) 1(2)
of R,2(S) gives

13 & 1 1) (2 W @
RChISqK Sf 522[4([(_1)([(_2) Z (Sf( Zijs zk) Sf( ij o Zil ))

k,le[K]
j#k, k£ 1#]

20,28 =552, 2], 81 = r( ), £z, (10)

where we adopt the shorthand z( b) = zé;) DK +b

ERM estimator. Similar to Theorem 1, we have
Theorem 4 (x2-sufficiency bound for the ERM estimator). Suppose S r(z ) z(2)) €[— Bs, Bs] for

all f € F and pairs (21, ), and that Assumption 2 holds for some B, > 0. Let S, (21, 2(?)) ==
P(z1), 2(2))

)}, an unbiased finite-sample estimate

for i € [2]. Let f= argminfefﬁchisqx(sf) be the

For any K = 3, with probability at least 1 — §, we have

~

Suff,2(f) < generalization error -+ approximation error, (11)

where

2(Bs+B,
generalization error :

L[ Vioa(i5) + 22 [

}g.g_Rx (Sf) - x (S*)

' o N o - o ]

approximation error :

for some absolute constant ¢ > 0.

The proof of Theorem 4 is provided in Appendix C.5. Note that we do not assume the boundedness
of S, as in Theorem 1.

3.3.2 Implications of low f-Sufficiency

Similar to the KL case in Section 3.2, the downstream performance of f can be controlled by its
f-sufficiency for a broad class of f considered in Definition 1. Recall the CBS form in Definition 1.

Proposition 5 (f-sufficiency bound on downstream performance). The results in Theorem 2 and 3
hold with Suff\(f) replaced by c3 - Suft¢(f) for some value co > 0 if

E.0) 2@ [Drv(P(12M)[P e 0 (1f ()] < e2 - v/Suffe(f). (13)

Proposition 5 follows immediately by noting that, in the proof of Theorem 2 and 3, Suffy(f) is
only used as an upper bound of the expected total variation distance (e.g., by Pinsker’s inequality).
It can be verified that KL-divergence and y2-divergence satisfy Eq. (13) with c; = 1/4/2. Let
r=P(zM), 22))/[P(zM))P(2(?)] denote the density ratio. Moreover, for general f, we can choose
co = (2inf ) o) £"(r))~'/2, which is bounded when f is strongly convex on the range of the
density ratio r. For example, we can choose ¢, = v/2B%* when f(z) = 1 — \/z corresponds to
squared Hellinger-sufficiency if the density ratio r < B for all pairs (z(1), 2(?)). We refer the readers
to Lemma 3 in Appendix B.2 for further details. Combining the results from Sections 3.3.1 and 3.3.2,
we provide end-to-end theoretical guarantees for the downstream performance of encoders obtained
by minimizing the x2-contrastive losses.



4 Examples

In this section, we present concrete examples on linear regression and topic classification to illustrate
the applicability of our general results in Section 3.

4.1 Linear regression

Let « follow some distribution Py on X < R?. We assume the downstream task is linear regression,
where we observe samples of the form (z, y) € R? x R, with y = (x, 8, ) + ¢ for some unknown
parameter 6, € R? and zero-mean noise ¢ independent of . The goal is to predict y given 2. While
fitting a linear model using only the downstream samples yields a risk of order O(d/m), a smaller
risk may be achieved by fitting a linear model on a low-dimensional representation f(z) € R?, where
p < d, that captures sufficient information about x relevant to the downstream task. Theorem 6 gives
a theoretical guarantee for learning the downstream task using a given linear encoder.

Theorem 6 (Linear regression with encoder representation). Let p < d. Suppose we are given a linear
encoder f(z) = W z for some W € RP*4 and m i.i.d. samples {(x;,y;)}™, from the downstream
linear model y = {x, 0,)+¢, where e ~ N'(0,5%) I x. Suppose supc | T2 < Ba, |0s]2 < Be
for some By, Bg > 0 and let B = By By. Also assume that E[(1; — WIW)z|W 2] = 0 almost
surely. Consider fitting a (random) linear model hy(x) = {f(2),n) by ordinary least squares, i.e.,

7 1= argming ez, {Rin(hy) 1= — (=0, 1) — )},

where z = g(x), z; = g;(x;), and g,{g}™, are i.i.d. transformations from Pg. Then the expected
risk of the truncated linear model hz(x) := proji_p pj(hs(x)) satisfies

E[Rin(Ra)] = E[Eayl(y — ha(@)?]] < 52 +e((Beay/Suffans(f) + eg) + (2 + B?)
irreducible risk

where eg = E[{x — z, 0,)%] and the outer expectation is over {(x;,y;, g;)}1—,, and ca > 0 is any
value that satisfies Eq. (13).

See the proof of Theorem 6 and more discussion in Appendix D.1. Compared to fitting a linear
model using x € R?, which yields an excess risk of O(d/m), Theorem 6 achieves a smaller excess

risk of order O(p/m) when p « d and f(g(x)) is a “good" representation of x, in the sense that
Suff¢(f) and eg are sufficiently small. In Appendix D.2, we present a scenario where a linear encoder
f with low KL-sufficiency Suffy(f) can be efficiently learned by minimizing the SimCLR loss in
Eq. (3). Specifically, we consider a case where two augmented views (z(1), 2(2)) follow a joint von
Mises-Fisher (vMF) distribution [8] on a low-dimensional unit sphere, allowing S, to be realized
by Sy for some linear encoder f. Combined with Theorem 6, this yields an end-to-end result on the
downstream performance of the SimCLR-trained encoder.

4.2 Topic classification

We also demonstrate our results in a classification setting. Let )) = {1,2, ..., M} represent a set of
classes. A sample x is generated by first selecting a class y € ) from some distribution Py, and then
drawing x = (2, 2°?) € [S] x [S] conditioned on y, with the joint distribution

P(xly) = Pe(z|y) x P.(x]y),
where P.(-|y) is some conditional distribution over [S]. For example, in a topic classification task,
each sample consists of a two-part sentence (or a two-word phrase), with the class y representing

the topic (e.g., sports, technology, or health). The first and second parts (or words), ! and 2, are
independently sampled from a vocabulary of size .S, conditioned on the topic y.

Contrastive learning. We use the random dropout transformation g : [S] x [S] — [S], which
selects one component x¢ from the pair (z°!, x°2) with equal probability as the augmented view z
and drops the other. Denote the augmented view z using one-hot encoding. We consider encoders f
that are linear functions of z augmented with the one-hot encoding, i.e., consider the encoder space

F = {foug : Ui {ei} = RMTS | fe(2) = (W2)T,wz")T, W e RS we R, W

w
2,oov|ﬁ|

plogm

m )
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with By = M. To learn an encoder f,,g, we minimize the X 2-contrastive loss computed using n
i.i.d. pairs of augmented views via Eq. (10). Importantly, class labels {y;}?_; remain unobservable
during contrastive learning.

Downstream classification. Let faug( z) = ((Wz) @ - z")T be the learned representation,

and define the encoder as fA (z) = Wz € RM. We train a linear classifier on f to predlct the

conditional topic distribution P(y = y|z) .,y € RY. Define E, € RY*5 such that E, .

(P“(y:”“’clzj ) Bely=Mla" =) ) ! for j € [S]. Assume that (a) the marginal distributions of y
VEy@=1) T /Pyy=M

and £ are uniform over [ M and [S], respectively; (b) the minimum singular value o, (EL E, ') >
og, forsome op, > 0; (c) S = 4M and infc[rr sers) Pe(yls) = exp(—B) for some B > 0.

Theorem 7 (Classification using the x2-trained encoder). Under the setup and assumptions in
Section 4.2 and let fa.g be the ERM in Eq. (10). Then, with probability at least 1 — 6,

~ 27 74
Suffy 2 (faug) < Rf(Sfaug) — R(S,) =: Suff,» (Sfaug) < CS\/J%/[[\/log(l/é) + \FSM”’] (14)

for some absolute constant ¢ > 0.
In downstream classification, given m i.i.d. samples {(ml, ’!h)}l 1, consider fitting a multi-class

classifier ha(x) = Ef(f(z)) = softmax(log trun(T', f(2) + T')) with

~

I = argming  cpMxM T eRM ”lrwmap\/“rbH2<BF{RCIS hI‘ = —— Z log hI‘ y }7 (15)

where z = g(x), z; = gi(x;) and g, {g}7", are i.i.d. dropout transformations, Br > 4v/SM /o g,,
and trun(x) = proj [exp(—B),1] (). Then there exists some absolute constants ¢, ¢ > 0 such that,

~ 2
given the encoder [ and suppose Suff,» (Sf ) < c’%, with probability at least 1 — 6,
aug

~

Rets(hg) = Eoy.g[Dxr(P(ylz)l[hq (f(9(2))))]

<ef [+ TR sutets )]+ [ Vies(17m) + Mg Br + VB)]).

approximation error generalization error

-

See the proof in Appendix D.5. Note that the bound on downstream classification depends on the
sufficiency of the score function Suff,2 (S, ), introduced in Appendix B.3, rather than Suff, 2 (f).
aug

This distinction arises because we restrict ourselves to linear classifiers, whereas Theorem 3 considers
arbitrary measurable functions, leading to an additional approximation error term.

S Experiments

We conduct synthetic experiments to learn data representations via contrastive learning using two-
layer neural networks, and evaluate them on downstream linear regression.

In the contrastive learning stage, we generate n i.i.d. samples x; ~ N(0,1;). The augmentation g
adds i.i.d. N'(0, 0%) noise to the first s < d coordinates of x;, and replaces the remaining coordinates
with i.i.d. V'(0, 1) noise. We apply KL and x2-contrastive learning (Eq. 3 and 10) with link function
7(x) = x, and encoder f(-) being a two-layer ReLU neural network mapping R¢ to R®. We set
s = 10,d = 100,n = 500, hidden dimension 64, and batch size K = 64. The encoder is trained
using Adam (learning rate 0.001) for 1000 epochs until convergence.

For downstream regression, we generate m i.i.d. samples (x;, y;), where z; ~ N(0,1y) and y; =
(x;,0,) + €i, with &; ~ N(0,0?) independent of ;. We choose 8, = (1]/4/5,0] )T and

o = 1. Using the learned representation fA (z;) € R* from KL (or x?)-contrastive learning, we
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Figure 1: Excess risk for various downstream sample sizes m. The errorbars represent the standard
deviation over 10 runs.

fit a downstream linear model to predict y;. We define the excess risk of any predictor h as

E[(y; — h(x;))?] — 02, and evaluate the excess risk of the linear model trained on f(z;). For
comparison, we also report the excess risk of a linear model trained directly on the original features
x; (denoted as Direct LR). Results for various downstream sample size m and the standard deviation
over 10 runs are shown in Figure 1.

From the figure, we observe that linear regression based on KL (i.e., InfoNCE) or X2-pretrained
representations achieve comparable excess risks, both much lower than that of direct linear regression
when the sample size m is relatively small (e.g., m = 150, 500). This suggests that both KL and
x2-contrastive learning can learn a “good” low-dimensional representation for the downstream task.
As the sample size increases, the excess risk of direct linear regression converges to zero, while
those of KL and y2-pretrained representations converge to non-zero constants. This is consistent

with our theoretical results, which attribute the excess risk to the non-zero sufficiency of f and the
augmentation error eg. More results comparing KL (i.e., InfoNCE) and y2-contrastive learning in
the CLIP setting are provided in Appendix E.

6 Conclusion

In this work, we present a new theoretical framework for data augmentation-based contrastive learning,
with SimCLR as a representative example. Based on the extended concept of approximate sufficient
statistics, we establish a connection between minimizing the f-contrastive losses and minimizing the
conditional Bregman sufficiency (CBS) of the encoder. Moreover, we show that the learned encoders
can be effectively applied to downstream tasks with performance depending on their sufficiency and
the error on the downstream task induced by data augmentation.

Our work opens up many directions for future research. First, as seen in Definition 1, the concept
of approximate sufficient statistics is not limited to contrastive learning; exploring its applicability
to other self-supervised and supervised learning paradigms is a promising direction. Second, while
approximate sufficiency quantifies the information preserved by the encoder, it does not reflect
the redundancy in its representation. Thus, it would be interesting to generalize the concept of
minimal sufficient statistics and develop practical algorithms for finding representations that are
both approximately sufficient and minimal. Lastly, our work mainly focuses on the empirical risk
minimizers in contrastive learning. Understanding what representations are learned and how training
algorithms influence the learned representation remains another exciting avenue for future research.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This is a theoretical paper. We provide a summary of our results in the abstract
and introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: we have discussed the limitations of our work in the paper.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: it can be seen from the theorem statements and the proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: we did not run any experiment in this paper.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: we did not run any experiment in this paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA|
Justification: we did not run any experiments in this paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: we did not run any experiments in this paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: we did not run any experiments in this paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: the authors have reviewed the Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: not applicable
Guidelines:

* The answer NA means that the paper poses no such risks.
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14.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: the paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: the paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: this paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related work

Self-supervised learning and contrastive learning. Self-supervised learning (SSL) dates back
to the early work of De Sa [7], which leverages cross-modality information as a self-supervised
substitute for labels to improve classification performance. In the past decade, SSL has been explored
in image classification through various data augmentations, including rotation [9], colorization [50],
and Jigsaw puzzles [26]. More recently, contrastive learning based on paired and non-paired samples
has emerged as a prominent approach in SSL [14, 5, 10, 18, 31]. Notably, SimCLR [5] learns image
representations by minimizing the InfoNCE loss [29] on randomly augmented views of images, while
CLIP [31] does so on paired and non-paired image-text samples.

Choices of the loss function. Various loss functions have been used in contrastive learning,
including NCE [11], InfoNCE [29], Multi-class N-pair loss [37], SigLIP [49], f-MICL [23]. These
losses utilize cross-entropy and its variants to distinguish paired from non-paired samples. Most
relevant to our work is the InfoNCE loss [29], derived based on the InfoMax principle [22, 15].

Theoretical understanding of contrastive learning. Thus far, there is a rich body of literature on
the theoretical understanding of self-supervised learning [32, 30, 38, 45, 42, 27, 51, 1, 39, 40, 13, 17,
47,20, 46, 6, 34, 35, 25, 36, 41, 23, 28]. Notably, early works [32, 45, 1] derived generalization error
bounds for downstream classification tasks, using linear classifiers trained on representations learned
by minimizing the InfoNCE loss. Wang and Isola [45] explained contrastive learning through align-
ment (pulling paired samples together) and uniformity (separating non-paired samples). Zimmermann
et al. [51] showed that InfoNCE minimization can implicitly learn the inverse of the data-generating
function. Tosh et al. [39] demonstrated that contrastive learning recovers document representations
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that reveal topic posterior information in a document classification problem. More recently, Van Elst
and Ghoshdastidar [41] derived new PAC-Bayes bounds on the generalization error of SimCLR using
bounded difference concentration and applied them to downstream linear classification. Compared
with their results, our generalization error bound in Theorem 1 is independent of the batch size K and
thus allows for large or full-batch learning. The most related work to ours is Oko et al. [28], which
introduced the concept of approximate sufficiency to assess the quality of representations. They also
demonstrated that the learned representation from CLIP [31] can be effectively adapted to several
multimodal downstream tasks in a joint hierarchical graphical model.

Our work differs from existing theories of contrastive learning in several aspects: (1) Similar to Oko
et al. [28], we derive more refined “excess risk bounds" instead of the “absolute risk bounds"
established under structural conditions for downstream tasks in many prior works. (2) We derive
novel unified risk bounds for downstream tasks that depend solely on the sufficiency of the encoder
and the error induced by data augmentation. (3) We extend the concept of approximate sufficient
statistics and theoretically analyze a broader class of contrastive losses.

B Properties of approximate sufficient statistics

In this section, we discuss some properties of approximate sufficient statistics introduced in Defini-
tion 1 and provide some concrete examples.

B.1 Equivalence in Definition 1

Lemma 1 (Equivalence of three forms of sufficiency). The ILS, VFS, CBS definitions in Definition 1
are equivalent, i.e., for any statistic T

Suffyy ¢ (T') = Sufty ¢ (T) = Suffep ¢(T7) =: Suffe(T).

Proof of Lemma 1. (ILS) < (VFS). Note that by the variational form of f-divergence, we have
- It(X,Y)

s Brean [=5(#: 0] + Braye [ (S (2, 9)]

SﬁX—»Ri,rSl:f/‘\fxy—)R Ep.y) [Sa(z) = Sz, y)] + Ep@)p(y) [£*(S(z,y) — Su)]

i Broy) [=S(@ )] + i e [F*(S(@.y) = Su@)) + Sp(@)] = _inf__ Ri(S).

Similarly,
- I(T(X),Y)
inf  Epp),y)[~S(T(2), y)] + Epre)ew [ (S(T(2),y))]

S:T(Xl)xy—>R
o e ST+ Betrpe [P (S(w),) — Su(T() + S,(7()

Su:T(X)—R
= Bre ST+ nf Eryn (ST, 0) = (1) + S.(T()]
= inf Re(SoT).
S:T(X)xY—R

Combining the two results yields the equivalence between (ILS) and (VFS).
(ILS) < (CBS). By definition of the (ILS)
SuffiLf(T) = If(X, Y) - If(T(X), Y)

- [t(pr Y pwrpwan — [ (G S e P
- | f(PIé‘l(/;;))P(w)P(y)du - f(W)M)P(y)du
)

— Epgaypy|f (%?'y?) - f(P(fy'T(f”)
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where the last equality follows since

Ep(a)2(y) [p( (y\T(:v)))( (ylz) (y\T(x)))]

( ) P(y) P(y)
T 30 Tx
:E[P(y) ( (y;f()x)))[ [P(ylz)|T(z)] — P(y\T(a;))H —0. 16)

An equivalent expression of (CBS). We now show that

Plylz) P(y|T(x)) Py
Betoy<eto | Bi( Ply) = P(y) )] = griha) O [5:( P(y) = B(y)

This follows immediately as for any Q : T'(X) — A(Y)

trano (S |-l 5 )
- sl () - (U5 - (S (gt - 445
(

> s (U0 (45 - ) o

where the first equality uses Eq. (16).

B.2 Properties and examples
Lemma 2 (Global minimizers of R¢(S)). Recall

Rt(S) = Ep(ey) [ =S 9)] +  f  Eruypi) [ (S(@,9) = Sa(2)) + Su()]-
For f that is strictly convex and differentiable, the following results hold for Ry(-).

(1). The infimum in the definition of Ry(-) is obtained by S, (x) such that Ep,[(f') " (S(z, y) —
S:(2))] = 1 forall x.

(2). LetSi(x,y) = fl(P[(P:i) ) ) The global minimizers of Rx(-) form the set

M; = {S X x Y- R, S(x,y) = S«(z,y) + Sy(x) for some S, : X — R}.

Proof of Lemma 2. For any fixed x, we have
VCEP(y) [f* (S(xa y) - C) + C] = EP(y) [7Vf* (S(‘T7 y) - C) + 1]
Claim (1) follows immediately from setting the derivative equal to zero and noting that V* = (f)~!

To prove claim (2), we first note that adding any function S, (x) to S(x, y) does not change the value
of R¢(S) due to the infimum inside the definition of R¢(S). Therefore, it suffices to show that the
unique minimizer of

Rf(s) = IE]P’(m,y) [_S(x’ y)] + E]P’(z)IP(y) [f*(S(l‘, y))]

isS, =1 (IP’]?;SEB;’?@) ) Write S = S, + ch. It can be verified that R¢(S, + ch) is strictly convex in c.

Thus S, is the unique minimizer of Ry if V. R¢(S. + ch)|c—o = 0 for all k. This is true since
VeRi(Su + ch)|e—o = Ep(z ) [— (2, 9)] + Epoypy) [VE*(S(2, y))h(z, y)]
P(z,y)
-E - E I -

where the second inequality uses the property of convex conjugates that V{*(f'(z)) = x.
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Lemma 3 (A general bound on Dy (P(y|z)||P(y|T (x))) based on sufficiency.). For f in Definition 1
that is twice continuously differentiable, and for any statistic T, we have

Ep(a) [Drv (B(y[2)[[P(y[T(2)))] < ¢z - 4/Suffer ¢(T), (17)

. " T _1/2
where cy == (2 inf (4 ) esupp(a,y) T (%@Q)) , and supp(z,y) denotes the support of P(x) x
P(y). Notably, when f(x) = (x — 1)2/2 (x3-divergence), we have c = 1/+/2.

Proof of Lemma 3. Using the CBS form of sufficiency, we find that

Suft(T) = Esgey oy [Bf(IP(yLr) P(y\T@:)))]

P(y) = P(y)
1 » (P(ylx P(y|x P(y|T(z)) 72
> 3Er@)<pw) [ Ié’:l(/gL))) | I[E’Z(J;L)) - (?;P)(y() ))] ]
1 . nP(ylx P(y|x P(y|T(x))712
= §(w,y>e1sru1£p(x,y)f ( 11%))) 'EP(””)XP(”)H IP(}(/L)) - (?P’(y() ))] ]

where the first inequality follows from the definition of Bregman divergence and the fact that the
range of P(y|7T'(z)) belongs to the range of P(y|x). Moreover, by Jensen’s inequality, we have

(EP(””)XP(”HPHE}(/L? R P%a()x))]z])m | pw B P%x”\]
= 2Ep(s) [Drv (P(y|2)|[P(y| T (2)))].

Putting pieces together yields Lemma 3. O

Example 1 (KL-sufficiency). Take f(z) = xlogx (KL-divergence), then we have

Suffen (T) = By Dt (Pl [PIT(2)) |, and
Rf(S) = E]P’(:c,y) [—S(.’I}, y)] + IE]P’(:t) [IOg E]P’(y) [exp(S(ai, y))]]

It can be verified that the InfoNCE loss in Eq. (2) is an asymptotically unbiased estimate of R¢(S) as
the batch size K — o0 (see Eq. 6). Moreover, by Pinsker’s inequality

Ep(a) [Drv (P(y[)|[P(yT(x)))] < \[ Suffep (7).

Example 2 (Chi-sufficiency). Take f(z) = (x — 1)?/2 (x?-divergence), then we have

x) P z))\?
Suffey, ¢ (1) = EP(:E)XP(?/)[ ( HS’?J/)) B (gg(j?;() ))> ]’
Re(S) = Ep(a)[=S(@, )] + Er@)z)[(S(2,9) — Eey) [S(2,9)])%/2 + S(2, )]

Lemma 3 gives

1
Ep(a) [Drv (P(y|2)[[P(y|T(x)))] < 75V Suffen 2 (T).
Also, we can bound the x?-divergence by the sufficiency:
P(T (z))P(y)
Ep(2)x* (P(y|2)|[P(y|T(2))) < Suffer¢(T) - |2 oy |
F() ! [ (z,y)esupp(z,y) P(T($)7 y) ]
Example 3 (Squared Hellinger-sufficiency). Take f(z) = 1 — +/x, then we have {*(z) = =1 — 1=

forxz <0, and
Suffer, ¢ ( T) Ep() [ H? (P(y)|[P(y]2)) — H*(P(y)||P(y|T()))].

where H?(p||q) = §(v/p(x) — \/q(x))? dz/2 is the squared Hellinger distance. Similarly, the
squared Hellmger dlstance between P(y|z), P(y|T(x)) can be bounded by the sufficiency of T':

o) [H2(P(01a) [PGIT(@))] = & Brco [Z(W@M)—W(MT@»)Q]
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| o BTGy 7y> By WEUTR) - V)’
b <m,y>esupp e\ P(T(@)P(y) <y ”“ P(y|T(2))

= su (:v ,y) u

B (z y)esu;lj)p (z,y) JI) (ZU S ﬁCb f

where the last equality follows from

E[VPWIT(2)) = v/P(ylz) |y, T(x)]

- E[me» _ VEGID) W(Z;'ng;;ﬁ(y'x) y’T(”“)] ¥ E[P(@T(&B&gﬁ'@ y’T(”C)]
_ e WRGT@) - VEG)® |
- E[ PIT(@) 'y’T( )]'

B.3 Sufficiency of similarity scores

The definition of approximate sufficiency can be extended to score functions S : X x ) — R that
measure the similarity between (X,Y).

Definition 2 (Approximate sufficient score functions). Let S : X x )Y — R be a similarity score
function. It induces a conditional density Ps on X x Y w.r.t. the base measure p via

Ps(ylz) = P(y) (')~ (S(z, 1)),
where S(z,y) = S(z,y) — Su(x) such that Ep(,[(f')~'S(2,y)] = 1 for all z. We define the

sufficiency of S in two equivalent forms:
o Variational Form Sufficiency (VFS): The variational form sufficiency of T is given by

Suffr¢(S) = Re(S) —  inf  R(S),
S: X xY—R

and the f-contrastive loss
Rf(s) = IE]P’(aa,y) [_S(l'v y)] + s lfvliR EP(w)]P’(y) [f* (S((E, y) - Sm(x)) + Sr(‘r)]’ (18)

where t* is the Fenchel-dual of {.

* Conditional Bregman Sufficiency (CBS): The conditional Bregman sufficiency of T is

defined as
P(ylz) Ps(y|x
Suffey£(S) = Ep(z) xp(y) [Bf( HE’Z(/:L))’ Ej’((Z;/) ))]7

where Bg(a,b) = f(a) — £(b) — (a — b){’(b) is the Bregman divergence of f.

Note that the excess risk of the contrastive loss equals the sufficiency of S under our definition.
Similar to Definition 1, we have

Lemma 4 (Equivalence of two forms of score sufficiency). For any similarity scoreS : X x ) — R,
the three forms of sufficiency in Definition 2 are equivalent, i.e.,

Sugvf,f(s) = Suﬁ‘cbi(S) =: Suff¢(S).

Proof of Lemma 4. (VFS) < (CBS). Let S.(z,y) = f’(z)wi]};@)) We have by Lemma 2 that

S. € argminng(g). By the definition of the (VF'S), we have
Suﬁ.vﬁf(S) = Rf(S) - Rf(S )
= Ep(z,4)[S« = S(2,9)] + Ep(aypy [£*(S(z, 9)) — £*(S ( ))]
]P’
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= ~Eo(a[5(o.0)] + Betp [5G 0] + Eeorn [{ ()

4 <l + B (aat) + 5y S0~ (500

P(2)P(y) P(y) P(y)
P(ylz) Ps(y|) S Plylz) _ Ps(ylz)
~Ercein 1 P(y) )= £( i”(y) )| = Betayecn [ St P(y) i”(y) )]
where step (i) and (ii) use f((fp)( ‘())) + f*(2) = 2(f)"(2) with z = S,(z,y) and S(z,y),

respectively. Since S(z, y) = (= ) ), it follows immediately that Suff; ¢(S) = Suffcp, ¢(S).

O
Example 4. Take f(z) = zlogx (KL-divergence). Then S,(z,y) = log (P(z,y)/[P(z)P(y)]).
By(a,b) — alog(a/b) — (a — b), and Ps(y|x) — P(y) exp(S(z, y) By [exp(S(x, )] Also, we

have
SufS) = Ri(S) ~ Ri(S.) = [ Pl og ()  (Blyle) ~ Psyhe) Plo)dy do

= Eiwp(z) [DKL(P(y\x) [ Ps(y\m))]

Example 5. Take f(z) = (x — 1)?/2 (x?-divergence). Then S. ( x,y) = Pla,y)/[P(x)P(y)] — 1,
Bi(a,b) = (a — b)?/2, and Ps(y|z) = P(y)(S(z,y) — Ey[ +1). Moreover,

[( (y|a: E”s ylx) ]

Suffx2 (S) = Rf(s) - Rf(s*) = *E]P’(z)x]P’(y)

1
2
z)—P x
I %)Z[ y'; s(y| )” Byl >]
Y
()

(ylz) P(y)
)

P
> inf (@,

ek BBy e X BWIPs(yle))].

C Proofs in Section 3

C.1 Proof of Eq. (6)

As given in Example 1 (which can be established using Lemma 2), the KL-contrastive loss has the
form

Ru(S) = Er 2 [-S(zW, 2] + E ) o, [log EL o) < [exp(S(21, 22)))]].
Recall the SimCLR loss ﬁsimdn x(S) in Eq. (2). We then have

lim ﬁsimclr,K(S) — logK
K—w

exp(S (z1 ,z (2) ) 1E ) exp(S(zil),z?)))
M ) ]* 2 [_ g )
ety op(S(=0, =) /K

= Jim, B log %{ | exp(S(z;", §2>>>/K] ~ Elexp(S(z1", 21”)] = Ra(S),
J

:1 lim E[—log
2 K—o Z

where the second equality follows from the symmetry of S in its arguments and the last equality

uses the law of large numbers (note that zil) is independent of zj(?) for j # 1) and the bounded

convergence theorem.

C.2 Proof of Theorem 1

We begin the proof by stating the following proposition that connects the excess risk with sufficiency.
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Proposition 8 (Near-minimizers of SimCLR as near-sufficient statistics;froposition 1 in Oko
et al. [28]). Suppose Assumption 1 holds and S, is a global minimizer of Remer, ik (S) as defined
in Section 3.1. Then, there exists a constant C' > 0, which depends polynomially on Bs, such that

Sfor any function f € F, its sufficiency can be bounded by its SimCLR excess risk. Namely, for any
K > 2, we have

Suff(f) < Kl,linoo [ﬁsimclr,K’(Sf) - Rsimclr,K’(S*)] < [ﬁsimclr,K(Sf) - ﬁsimc|r,K(S*)] -(1 + %)

SimCLR excess risk

A similar version of this result has been established for contrastive language-image pretraining (CLIP)
in Proposition 1 in Oko et al. [28]. The proof of Proposition 8 follows immediately from the proof
of Proposition 1 in Oko et al. [28] as the SimCLR setup can be viewed as a special case of CLIP in
which the text and image follows a symmetric distribution conditioned on their shared information.

Adopt the shorthand notation Ry for ﬁsimdr, . With Proposition 8 at hand, we obtain the following
decomposition for some C' > 0 polynomially dependent on Bs

A~

suft(f) < [Ric(s) ~ Rie(s)] - (1+ %)

K
= [Rc(S) — inf Rue(S)] + 1w Rue(Sy) ~Ruc(S)1] - (1+ )
< [Retsp) - L Retsn]-(1+ ) + [ pLRtsn) RS (1+ ).
generalization error approximation error

Therefore, it remains to prove the following bound.

(1). With probability at least 1 — §, the excess risk

2(log Bs+B-)
ﬁK(Sf) - mf Ri(Sy) < [«/log 1/6) + BQJ \/logN(u, [ - ]-")]du]

19)

for some constant C' > 0 that is polynomially dependent on Bs.

Proof of Eq. (19). Recall the definition of ﬁsimdn x in Eq. (3) and adopt the shorthand R K for FAisimdn K.

Let By := /B, (log Bs + B:), B := ¢(B¢ + 1) By B, for some absolute constant ¢ > 0. It can be
verified by Assumption 2 that F must satisfy || f||2, w < By forall f e F to ensure Assumption 1

holds. Define the zero-mean random process X y := RK(Sf) [RK (Sp)l, fe F.We will show
that

2nt?
]P’(| sup | X¢| — E[sup | X[]| = t) < 2exp ( - ”—4) forall > 0, and (20a)
feF feF 9Bg
Elsup [ X¢|] < E[| Xy, [] + E[ sup [ Xy — X4]]
fer f.jeF
B2 B 2B
N 32— log NV (u, | - |2,00, F)du  (20b)

for any f € F and some absolute constant ¢ > (. Combining the two bounds and noting

Ri(S7) — inf Ric(Sy) < 2sup|Ri(Sy) — Ric(Sy)| = 2sup [Ric(Sy) — E[Ric(Sy)]| = 2sup [ X
feF feF feF feF
(21)

yields claim (1).
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Proof of Eq. (20a). Let z; = (zgl) z@). Then {Z;}}"_, are i.i.d. pairs of augmented views. For

any i € [n1],j € [K], suppose 5(i71);<+j is replaced by some alternative sample 2(;_1yx4; =

(Eéilll)KH, Eéfll)Kﬂ,) in the calculation of FAQK(Sf). Then we have

‘Xf(Z]_, ceey Z(i—l)K+j) ceey En) - Xf<217 ceey z(i_l)K+j7 “ee ,in)|
= ‘RK(Sf)(il, e 2D K4 Zn) — RK(Sf)(El, ceey g(ifl)Kija cesZn)| < Uy + Us,
(22)
where (assuming Z; = Z for j € [n]\{(i — 1)K + j})
(2) ~(2) 210ng
*‘Sf Z(i- 1)K+J’z(z Vi) Sf( (i— 1)K+]’Z(i—1)K+j)‘ ST
and
K
1 1 M) e 1 (1) e
Uzi= o, 2 [log (7 Z exp(Sy (2 (i—)K+k 2 (i~ 1)K+l))) +log (* Z exP(Ss(Z(; 1) ki 211y 1k))
2n h K K
=1 le[K] le[K]
1 ) e 1 (1) >(2)
B [k’g (E 2 exP(Sy (221 rrrr Z(im 1)K+l))) + log (? 2 exp(Sy (2~ 1)K+l’z(i71)K+k)))]
I€[K] le[K]
© Bs | 1 M ey 52)
S o Z }‘ Z exp(S5(2(; 1)k 221y k) — Z eXP(Sf( (L DK+k> 2= 1)K+l))‘
k=1 1e[K] le[K]

1 o) ~(2)
+?’ Z eXp(Sf( )K+l’ 26 K k) Z eXp(sf( )KH’Z(iq)Kw))’
le[K] le[K]

K K
1) e (1) =2
< WK Z Z‘eXp(Sf( 2ok Zen k) ~ SPSF (G ke 2ok 41)

>
Il
—
~

Here, step (i) follows from the triangle inequality, a Taylor expansion of log(z), and Assump-

tion 1; step (ii) follows from Assumption 1 and noting that | exp(S f(zgilll) Kt zé?ll) K +l)) -

exp(Sf( (i 1)K+k, ~§22) 1)K+l)) # 0 for at most 2K terms with indices &, € [K].

Putting pieces together, we find
IRk (Sf)(Z1,- -5 Z(i—1)K 445+ -+ Zn) — R (Sf)(Z1, - s Z— 1)K 45 - - - » Zn)]

_ 2logBs + 253 —2 _ 352
n n

for any Z(;_1)x; and any i € [n1],j € [K] and all f € F. Therefore, Eq. (20a) follows from
Corollary 2.21 in [44] for functions with bounded differences.

Proof of Eq. (20b).  First, we have E[| X s, |] < ¢BZ/,/n by properties of sub-Gaussian variables
and the fact that, for any fy € F, Xy, is zero-mean with bounded differences cBg /n, as implied
by the proof of Eq. (20a). By Dudley’s entropy integral bound (see Theorem 5.22 in [44]), it
suffices to show {X £ f € F} is a zero-mean sub-Gaussian process with respect to the metric

px(f. f) = BIf = Flase/v/n.
Let |x|y = inf{t > 0 : E[¢)(x/t)] < 1} denote the Orlicz norm for random variables and let
o (u) = exp(u?) — 1. We have

|Xs = X7y, = IRk(Ss) = Ric(S7) = B[Rk (S5) = Ric(Sp)lw < e(|Us — E[Us] s, + |Us — E[Ua] )
(23)
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for some absolute constant ¢ > 0 (we allow the value of c to vary from place to place), where

ny K

_1 (1) @) (1) ey
Us = ” Z Z [S.f(z(ifl)KJrj’z(ifl)KJrj) - Sf(z( DK+ Z(i— 1)K+J):|
i=1j=1
SRS e 1 (2)
Uy = 221]21 Ulog (Kle%:(] eXp(Sf( (i— 1)K+g’ (i- 1)K+l))) +log (? ze%:q eX]D(Sf( )K+l’z(i71)K+j)>)]

1 ey e 1 (1) &)
- [log (Kle%]ﬂexp(sf( (i—1)K+j5° 2(i— 1)K+I))> + log <Kle%1<]exp(s (2 Z(i- 1)K+l’z(i—1)K+j))>:| :

It remains to show both Us — E[Us] and Uy — E[Uy] are px (f, f) sub-Gaussian.

Notice that for any (), 2(?) € X, f, f € F, by Assumption 2, we have

~

157(z1,2®) =S5z, 2™)| < B - [(f(z1), f(zP)) = (F(z1), F(z?)]

< B (If(z?)]2- FzD)s - )
(@) ~
< 2By B-|f = fl2,e0, (24)
where step (i) uses S¢(z, z) = | f(2)[3 < B} for z € X. Since z; = (2, 2 i e [n] are iid.,
it follows immediately that Us — E[Us] is 2By B | f — Fll2.00/+/n-sub-Gaussian, i.e.,
cB¢B,
[Us ~ ElUs]lv, < —Z=21F = Flace. (25)

Recall the definition of {Z;, 2,}7_, in the proof of Eq. (20a). To bound |Uyl|y,, we start with
introducing the shorthands for any fixed indices i € [n1],j € [ K]

_ 1 1 2 _ 1 1 2
Z/{k(z) = E Z GXP(Sf(Z((izl)K%,Zéizl)KH))y Vk(z) = E Z GXP(Sf(Z((izl)KHyZ((ill)KJrk))v
le[K] IE[K]

_ e (2) S e
7 Z exp (1 1 K+k7z(1',—1)K+l))a Vk(z) = 2 exp (1 DK+ 26 1)K+k))

for all k € [K]. Similar to the proof of Eq. (20a), for any given index (z — 1)K + j, we have

|U4(21a .. 'az(ifl)Kija . 7ZTL) - U4(217' . ag(ifl)KJrj)' . 72n)|
K — — ~ ~
1§ ) e (12 (42) (2]

Vi(2)
’uk(i) M()‘+‘ K(2)  Wi(2)
Vi(2)

2 K
< Bs
=2

n

Up(2)  Un(2)

~

k(2)
where the last line follows from Assumption 1 and a Taylor expansion of log(x). Moreover,

Up(2) Up(R)| _ <o (Ue(Z) —Uk(2)  Un(Z) — Un(2)
l;l‘uk(g) k(g)‘ kZl‘ Ui () Up(2) ‘

)
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where step (ii) uses Assumption 1, step (iii) uses Assumption 1, Eq. (24) and a Taylor expansion of
exp(z). Similar to the proof of Eq. (20a), by counting the number of terms in the summations that
are different and using Assumption 1, we find

K
2 U(2) — Uy (2)| < 2Bs, and
k=1

2,00+

K
Z Uy, — Up)(2) — Un — Ur)(2)| < ABsByB-|f — J|
k=1

Similar results hold for VV by symmetry. Putting pieces together, we obtain
_ _ _ _ ~ _ 4BSB,B,

|U4(z17---,z(ifl)KJrjw'-azn) —Us(z1, .. 3 Z(i—1) K45y - S Zn)| < %

Therefore, it follows from Corollary 2.21 in [44] for functions with bounded differences that

cB¢B;B;

Voo
Substituting Eq. (25) and (26) into Eq. (23), we obtain that { X, f € F} is a zero-mean sub-Gaussian
|2,00/4/. This concludes the proof of

Uy — E[U4]||, < (26)

process with respect to the metric px (f, f ) == B|f — f
Eq. (20b).

C.3 Proof of Theorem 2

Write z = g(x) with g ~ Pg 1L  ~ Px. Define hpyin = argmin,Eg-p, g~p,[(h(g(x)) —
hy())?] and h(w) = E[hmin(zM)[f(zM) = u]. Note that |hpi,(21))] = [E[hy(x)|zM)]] is
bounded by Bj, almost surely by the assumption in Theorem 2. We first show that Rg(h o f)
satisfies bound (7a) with eg replaced by ¢g = infj, Exp, g~pg[(R(g(x)) — h.(x))?]. The original
bound (7a) follows immediately since €g < eg.

Since (a + b)? < 2a% + 2b%, we have

Rg(ho f) = Eq . 2 [(h(f(21)) = ha(2))?]<2E, ) 2 [(h(f(2)) = Punin ()] + 285.
(272)

Introduce a random variable which follows the distribution of z(!) conditioned on f(z(")) and
is independent of (z(1), 2(?)) when conditioned on f(z(), ie., [ZM) ~ P,(zM|f(zM)) L
L (2™, 2] f(2M). Consider the joint distribution of the tuple (2(1), (1), 2(2)). By Bayes’
formula, we have 2 £ 2() < P_ and 22|20 ~ P(z®@|f(2D) = £(21))) and therefore

E[(/(z™)) — hnin(2®))?] € E(anin (BV) — B (2))?]

= E£(1)~]Pz7z(2)~]P’(z(2)‘f(z(l)):f(z(l)))[(hmin(g(l)) - hmin(z(Q)))Q]v (27b)
where step (i) follows from
E[(h(f(z(l))) - hrrlin(z(2)))2|f(z(1))]gE[(hmin(g(l)) - hmin(z@)))2|f(z(1))],
which uses Jensen’s inequality, the independence of 2(!) and 2(?) conditioned on f(z(!)), and the

fact that B[y, (ZM)|f(2M)] = h(f(21)). Moreover,

Ez) b, 2@ ~p(z® | f(z0)= (20 ) [ (Amin(ZP) = Aumin (23))?]

(i4) R
< Bz ap, 20 p(z@ (20 =30 [(Panin (D)) = Amin (2P))?]

+V2B}, - Eza).p, l\/DKL (Pz<z>|z<1> ('|5(1))‘ P,o)m ('|f(5(1)))>]

(idi) N
< Bz)ap, 2@ (220 =20) [(min (ZM) = hunin (22))%] + V2B3, - 4 /Suffesa(f)
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=E.00 . [(Amin(2)) = hunin(22))?] + V287 - 1 /Suffep, a(f), (27¢)

where step (ii) follows from the variational form of total variation distance and Pinsker’s inequality,
while step (iii) uses the (CBS) definition of Suffy(f) in Definition 1 and Jensen’s inequality. Lastly,
we have from a triangle inequality that

Ez(1)7z(2) [(hmin(z(l)) - hmill(z(2)))2]
< 2(Eg o) [(Amin(21)) = 7 (@))%] + Bg s [(Fanin(21V) — ha(2))%]) = 425 (27d)

Combining Eq. (27a)—(27d) yields Eq. (7a) in Theorem 2. Eq. (7b) in Theorem 2 follows immedi-
ately by noting

R(ho f) = E[(h(f(z)) — hu(@))*] = Bz [(h(f(z7)) = ha(217))?]
< 2B, o [(h(£(21) = ha())?] + 2B 00) o [(Ba (1)) = B ())?]
=2E.0) o [(h(f(zM)) — hu(@))?] + 2¢g

and using Eq. (7a).

Comments on Theorem 2. Following the same proof strategy, it can be verified that
Eq. (7a) and (7b) also hold when choosing h(u) := E[h,.(zM")|f(2(")) = u]. The main difference
in the proof is to replace hyin by h. in Eq. (27a)— (274d).

Moreover, although we consider the expected squared loss (i.e., £(x,y) = (z — y)?) for simplicity, it
can be seen from the proof that a similar version of Eq. (7a) and (7b) hold for any semimetric £(z, y)
that is convex in x for all y. This includes the absolute loss, Huber loss, losses induced by norms, etc.

C.4 Proof of Theorem 3

For any densities P, Q, define a-Rényi divergence

pos (e[ (Gep) )

for any o > 0. Note that the 1-Rényi divergence corresponds to the KL divergence. For any densities
P, Q, T, we have the following triangle-like inequality which we will repeatedly use in the proof.

Do (Pl|Q) ==

Lemma 5 (Triangle-like inequality for Rényi divergence (Lemma 26 in Bun and Steinke [4])). Let P,
Q, and T be probability densities w.r.t. the same measure. Then

ka
Da(Pl|Q) < 7 Dozt (PI[T) + Dia (TJ|Q)
Sforall k,a € (1,00).
Write z = g(z) with g ~ Pg 1L & ~ Py and define h(f(2)) = P(y|f(z)) € A([K]) as the
conditional distribution of y given f(z), where z = g(x) for some random transformation g ~ Pg.

It can be verified that h = argming,gs,, A (jk]) Pk (P (y|w) [|Q(y|f(2))). Therefore, using Lemma 5
with k& = 4/3, a = 1 (by taking the limit & — 1), we obtain

RE(ho f) = Eqy -0 [Dxr(P(yl2)|[P(ylf (z1)))]

< 4Eq y 2 [Dke(P(yl2)|[P(y]2™))] + Eq y 200 2 [Daja(Bly|z)|[P(ylf (=)

< 4§+ Eq y 20 2o [Days(P(y|2®)| [Pyl f(=)))], (28a)

where the last inequality uses the monotonicity of a-Rényi divergence w.r.t. . Similar to the proof of
Theorem 2, introduce a random variable which follows the distribution of z(*) conditioned on f(z(}))
and is independent of (z(!), z(?)) when conditioned on f(z™), i.e., [Z() ~ P, (z(M|f(z(M)) L
L (zM, 2] f(2M). Consider the joint distribution of the tuple (21, 21 2(2)). By Bayes’
formula, we have 2 £ 2() < P_ and 22|21 ~ P(z®@|f(2D) = £(21)) and thus

9

Eg y.=0,2 [Das(P(ylz®)[P(y|f (V)] < Egy 20 2 [Dajs (Plyl2®)[P(y|2M))]

—~
=
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P(y|z2))], (28b)

where step (i) uses Jensen’s inequality, the convexity of Rényi divergence w.r.t. its second argument
and the fact that E[P(y|Z2(M)|f(2(V)] = P(y|f(zV)) = f(2(V)). Moreover,

= Ez0)p, 2 ~p(=®| (=)= (30 [Das3 (P(y]2?)]

Ez)ap, 2@ ~Bz®|f(z(0)=F(z1))) [D4/3(]P(y|2(2))| |P(y|§(1)))]
(id) N
< Ez)op, 2@ ~p(z@ =2 [Das3 (P(y|2?)| [P(y[21))]

+ \/iB . EE(QNPZ l\/DKL (Pz(z)|z(1) (-‘2(1))) ]P)z(2>|z(1) (f(g(U)))]

(i)

< Ez0)ap, 20 ~pz@20 =30y [Dass(P(y|z?)[[P(y|2M)] + V2B - 4 /Suffer, a(f)
= E.) 2 [Dass(P(y[z?)|[P(y|z"M)] + V2B - [Suffer (), (28¢)

where step (ii) follows from the variational form of total variation distance, Pinsker’s inequality and
the fact that

P(y|z?)
P(y|z)

and step (iii) uses the CBS definition of Suffy( f) and Jensen’s inequality. Finally, applying Lemma 5
another time using & = 4/3 and k = 1.5 yields

E.) @ [Das(P(ylz®)|[P(y|z™M))]
< By [Da(P(y|z®)|[P(y[2))] + By 2o [D2(P(yla) [[P(y]2)))]) < €. (28d)
Combining Eq. (28a)—(28d) yields Theorem 3.

Das(P(yl= )| [P(y]21)) < D(P(y]22)|IP(y]2V)) = 108 By z(jzcon| |<5

C.5 Proof of Theorem 4

Let f(z) = (z — 1)?/2. The proof largely follows the same arguments as the proof of Theorem 1.
Thus we only provide a sketch of the proof here. First, it can be readily verified that the set of
minimizers of Ry (S) is

p(z(l),z(Z)) }

_fe.c_ , ‘ 1) H@y.. P& 27)
Ms : {S :S =S, + const for some const € R, S,(z'",2'%) Pz) - P(zD)

Moreover, basic algebra shows that ﬁchis% K (Sy) is an unbiased estimate of R¢(Sy). Thus, by the
VEFS in Definition 1, we have the decomposition

~

Suff (/) < Bi(Sy) ~ Re(S,) < [Be(S7) — inf Re(Sy)| + | inf Re(Sy) — Re(S,)].

generalization error approximation error

Therefore, it remains to show

(1). With probability at least 1 — §, the excess risk

Rf(Sf) — inf Rf < C'\;ﬁg l\/log(l/é) + B_,z_f

2
fEJ: 0

(BS+BT)

\/logN(u, |- 2,w7f)]dU]
(29)
for some absolute constant ¢ > 0.

Proof of Eq. (29). Recall the definition of Repisq x in Eq. (10) and adopt the shorthand Ry for

~

Rehisq, k- Let By := B;(Bs + B;), B := ¢(Bs + 1)B; B, for some absolute constant ¢ > 0. It
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< By forall f € F for Assumption 1

to hold. Define the zero-mean random process X y := Rk (S §)— E[Rk (S 7)), f e F. Wewill prove
that for some absolute constant ¢ > 0
ent?
P(y sup | X ;| — E[sup | X,[]| = t) < 2exp ( - ?), for all t > 0. (30a)
feF feFr S

B2 B
Bl 1) < Bl ) + B swp Xy~ X1 o2 4822 [ fog N |- e P
fer f,fe]—‘ \/7 \ﬁ

(30b)

Combining the two bounds and noting
Ri(S7) — inf Ri(Sy) < 2sup [Rc(Sy) — Ric(Sy)| = 2sup [Ri(Sy) — E[Rk (Sy)]| = 2sup X,
fer feF feF feF

yields claim (1).

Proof of Eq. (30a). Similar to the proof of Eq. (20a), we establish the bound using concentration
properties for functions with bounded differences. Following the notations in the proof of Theorem 1,

we let z; = (zi(l),zl( )
(~(1) >
(z 1HK+j° (z 1HK+j

). Forany i € [n1], j € [K], suppose Z(;_1)x; is replaced by Z(; _1)x4+; =

) in the calculation of R K (Sy). It can be verified using Assumption 1 that
|Xf(Zl, ey Z(i—l)K+j7 PN ,En) — Xf(il, ey z(i—l)K-&-jv ey En)‘

= [Re(SH)(Z1, s Bty pgs -2 Zn) — Re(SH)(EL s Bty gs -+ 2 Zn)| S —2 (31)

for some absolute constant ¢ > 0. As a result, Eq. (20a) follows immediately from Corollary 2.21
in [44] for functions with bounded differences.

Proof of Eq. (30b).  Similar to the proof of Eq. (20b), E[| X s, |] < ¢B2/+/n by the properties of zero-
mean sub-Gaussian variable X 7, and therefore, to establish Eq. (30b), it remains to show {X¢, f €

F} is a zero-mean sub-Gaussian process with respect to the metric px (f, f) := B f — ng wo/A/1.

Let |x|y = inf{t > 0 : E[¢)(x/t)] < 1} denote the Orlicz norm for random variables and let
o (u) = exp(u?) — 1. Note that for any z(1), 2(?), 2(2)" ¢ X f f € F, we have from Eq. (24) that

1S5(z1,2) = S(=1, 2®)) < (32a)
and
(S5(=0,22) = 57(z, 22))? = (5;(=1), 22)) —5;(=(V, =)
L 4B (15 (21,22) = S (1, 2@)] 4 [5,(2), 21 - 5,1, 22)))
(32b)
where step (i) uses Assumption 1. Then, following the proof of Eq. (20b), it can be verified that

¢(Bs + 1)B;B;

| X7 = Xy, = IRk (Sy) — R (Sp) — E[Ric(Sy) = Ric(S )]l < NG

D Proofs in Section 4

D.1 Proof of Theorem 6

Recall that B = B, Bg. For linear regression with misspecified model, by Theorem 11.3 in Gyorfi
et al. [12] (see also e.g., Theorem 1.1 in Audibert and Catoni [2]), we have

5 plogm

EfRin(ha)] = 7* < 8( inf Rin(hn) = 0%) + (B + %)= 2=
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for some absolute constant ¢ > 0.

Thus it suffices to show

inf Rin(hn) — 72 < ¢(B?cor/Suffi(f) + €g) (33)
neRr

for some absolute constant ¢ > 0. Equivalently, we only need to find some 7 € R? such that Ry, (hy;)
satisfies the bound in Eq. (33). On the other hand, from the proof of Theorem 2, we see that if we
choose h,(x) = {x, O,y and h(u) := E[h.(2)|f(z) = u] = (O, E[z|f(2) = u]), then the excess
risk

Rin(h) — 52 < c(B%cor/Suffe(f) + €g)

for some absolute constant ¢ > 0 by Theorem 2 and Proposition 5. Therefore, it remains to show A
is linear in f(2). Note that f(z) = Wz. Let WT = WT(WW )~ € R?*P be the generalized
inverse of W and = W17, € RP. In fact, choosing 7 = W17, € RP, we have

h(u) = (0., E[z[f(2) = u]) = (0., E[Wu + (Is = WW)z|f(2) = u]) = (6., Wu) = (7], u),

where the third equality uses the assumption that E[(I; — W W )z|W z] = 0 almost surely.

~

Comments on Theorem 6. A similar bound can be established for the risk Rji,(h;) with high
probability under additional sub-Gaussian assumptions on the representation f(z) = Wg(x) [16].
The assumption E[(I; — WTW)z|W z] = 0 essentially states that the information of the augmented
view z discarded by the encoder f does not contain any signal with a non-zero mean. Without this
assumption, there may not exist a linear function of f(z) that achieves a small risk, even though
Theorem 2 guarantees the existence of a general function of f(z) with a small risk.

D.2 Further results in Section 4.1

Following the setup in Section 4.1, we present a scenario where a linear encoder f with low KL-
sufficiency Suffy(f) can be found through SimCLR loss minimization in Eq. (3).

Let U = (Uy, Us) € R¥*4, where U; € R?*P, be some fixed unitary matrix, and define A = U, U] .
For i € [2], welet S(U;) :== {v e R? : |v|s = 1, (I — U;U; )v = 0} denote the unit sphere in the
column space of U;. Assume = € R? ~ N/(0,1,/p) and consider the random transformation g such
that 2|z £ Az + 5 conditioned on (1) € S(Uy) @ S(Us) 3, where the noise 17 ~ A(0, o2I4/p).
A concrete example of this transformation involves zeroing out the second half of the coordinates of
the sample x, adding some Gaussian noise to all coordinates, and then normalizing both halves of the
modified sample to have unit norm. Under this setup, it is readily verified that*

p /(20 [UUT + 021 uur 17 /2
P, 2 0)carp <_2<(z<2>)’[ 1 lleI ’ U1U1Tl+1021d ey Lz zoesun@sua)}

P(z)ocl - 1zes(un)@s(ua))-

Pz, z2)) 1 T,(2 p p
]P’(z(l))]P’(z(Q))oceXp (/<;<z( ),U;U] 2t )>) Lo 2@esun@sU)}s K= 202+ 2) < P

Note that (z(1), 2(?)) restricting on S(U; ) follows the joint von Mises-Fisher distribution (vMF) [8].
In this case, the optimal score S, (21, 2()) = 7({f.(2V), £.(2))) + const for 7(z) = xz and
fx(2) = Uy z. We present a sample complexity bound on learning f, in Corollary 1.

~

Corollary 1 (An upper bound on Suff o, ki (f)). Under the setup in Section D.2, let F == {f : f(z) =
Wz, WeRP*and |W|,, < Bw} for some Bw > 1, 7(x) = kx, and define f as the SimCLR

3S(U1) @ S(Uz) := {v e R : v = vy + w5 for some v1 € S(U1),v2 € S(U2)}.
4 All densities are with respect to the Lebesgue measure.
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empirical risk minimizer obtained in Eq. (3) with batch size K and n samples. Then with probability
at least 1 — 8, we have

C\ +/dplog Bw + +/log(1/0)
?) ' NG ’

Sor some constant C' > 0 depending polynomially on exp(k).

Suff ey ja(f) < (1 +

See the proof in Appendix D.3. Note that the constant exp(x) depends on the noise level 0. When
o = p'/*, finding a near-sufficient encoder is relatively easy. By combining Theorem 6 and
Corollary 1, we conclude that the encoder learned from SimCLR can achieve a small risk in the
downstream linear regression task, provided there are sufficient pretraining and downstream samples,
and data augmentation does not significantly alter the outcome of the true linear model. See
Appendix D.4 for an end-to-end statement and its proof.

D.3 Proof of Corollary 1

It suffices to apply Theorem 1 to the setup in Corollary 1.

By the boundedness of z(1), z(?) and the property that E, 1) o) <p, xp, [%] = 1, we have
(2, 22) sup P(0,z®)
P(z'", 2z 21,22 pM)P(z®)
< 2K).
) PEORGE®) S i o FEWam < D)

2,22 pMP(z@)
L. . P(z(D (2
Similarly we have inf ) ) W > exp(—2k).

By properties of the von Mises-Fisher distribution (see e.g., [24]), it can be verified that

P(z(1)7z(2)) 1 T_(2 p
PLz)P(z0)) = &y(k) - exp (n<z( ), U1 Uy 2 )>) L) z@esU@s(U)} k= 1022 —1

where
£,(1) U(p/2) 1,21 (k) I'(p/2) i 1 i p 2)!! om

\K) = T RrNn/o—1 - p . —_— K

7 (£)p/2-1 = mID(m + p/2 = ( (2m +p —2)!!

[e¢]
1, I'(p/2) /K0
< Z K< e, and Ey(k) > ——— - (5) =1 (34)
=, (2m)! 0T(p/2) “2

Thus, when 7(z) = kz, Assumption 1 and 2 are satisfied with Bs = exp(2k), B = 2k (note

that the condmon k~1 < B, is unnecessary, as from the proof of Theorem 1, we only need
I7({f(zM), 23| < log Bs, which follows from the boundedness of F).

Approximation error. The approximation error inf fe 7 Rsimair, i (S) — Rsimelr, i (S«) = 0 since
S« + ¢ is realized by f, and the link function 7(z) = ka for some normalizing constant ¢; and

ﬁsimclr,K(S*) = ﬁsimclr,K(S* + Cl)-

Generalization error. Let W := {W e RP*? ||W|,, < Bw }. First, for f;(z) = W;z (i = 1,2),
since | f1 — fall2,0 < [[W1 — Wallop - |2]2 < 2\||W1 Wa||op» it follows that

4B
og N (w, | - 2.0, F) < 10gN (5. s W) < cdp-log (14 =),

where the last inequality follows from the upper bound of the covering number of a unit ball (see e.g.,
exercise 5.8 in Wainwright [44]) and the assumption that p < d. Therefore,

2(log Bs+B.) cK
B, J VIOSN (u, | - 2.0, Fdus < e f VSN (. | - 2.0, F)dus < ex/dpr*\/log B
0 0

Combining the result on the approximation error and the generalization error and applying Theorem 1
yields the desired result.
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D.4 An end-to-end result on downstream linear regression

Combining Theorem 6 and Corollary 1, we reach at the following result on the downstream perfor-
mance of encoder learned by SimCLR.

Theorem 9 (Linear regression using the SimCLR-trained encoder). Under the setup described
in Section 4.1, let f be the empirical risk minimizer obtained from Eq. (3) in Corollary 1 on a
restricted function space F° = {f(z) = Wz e F, span(W ") = (span(WT) n span(U;)) ®
(span(WT) nspan(Us))} S F. In the downstream task, given m i.i.d. samples {(x;,y;)}7, from
y = proji_p 5 ((®, 0+)) + ¢, where x ~ N(0,14/p) follows the same distribution as in contrastive

learning, and e ~ N'(0,5%) 1 .

~

(a). Consider fitting a (random) linear model h, (x) = {f(z),n) by ordinary least squares
1 m
7= argmmneRP{le = m - 2 <f zi), m) — yi)Q}a

where z = g(x), z; = g;(x;), and g, {g}", are i.i.d. transformations from Pg as specified
in Section 4.1. Then with probability at least 1 — § over the SimCLR training, the expected

risk of the truncated linear model ﬁﬁ (z) = proji_p, p)(hq(x)) satisfies
EfRin(h4)] = B[Ea.y.o[(y —hs(2))’]]
Cy\  dY4pY4log!* By + logt4(1/6)
?) . ni/4

1
+ €g> +c(@* + BQ)Z%7

< 72 +C<B2<l +
——

irreducible risk

Error from SimCLR training Error from downstream task

where the outer expectation is over {(x;,y;, gi)}'_1, ¢ > 0 is some absolute constant,
C > 0 is some constant depending polynomially on exp(k), and eg < E[(z — z, 6,)?].

(b). In contrast, suppose in addition 7% > 1, 6.2 < Bg andm > cd, B > ¢(c*+ B3)logm/p
for some absolute constant ¢ > O then the truncated ordmary least squares estimator

hois(@) = proj_p ) ((x, Gus)) obtained from {(2, yi) )1, satisfies

E[Riin(hots)] — 0” = E[Eayy[(y — hos(x))*]] - 0” = 02%

where = denotes matching upper and lower bounds up to absolute constant factors, and the
outer expectation is over {(x;,y;)}1 ;.

We remark that the truncation in the data generation (i.e., y = projj_g g ((x, 6.)) + €) is due
to technical difficulties, however, we can choose the threshold B sufficiently large, for example,
B = O(logm), so that the truncation rarely happens in the generated data. The restriction of
the empirical risk minimization to F° ensures that the condition E[(I; — WTW) [Wz] =0in
Theorem 6 holds for any f (z) = Wz e F°. Without this restriction, when Suff (f ) is sufficiently
small, the ERM f( ) = Wz only satisfies E[(I — wWiw )z|Wz] ~ 0, and the downstream error

bound would contain an additional term depending on the Suff( f )

For the two-step estimator in (a), the first term in the SimCLR training error converges to zero as the
pretraining sample size n increases, and the second term eg is negligible when either the ground
truth E[y|x] does not vary significantly (i.e.,
negligible error (i.e., |x — z|2 is small). Thus, compared with the OLS estimator which has a risk of
order O(d/m), the two-step estimator achieves a small risk of order O(p/m) when the error from
SimCLR training is of higher order.

Proof of Theorem 9. First, we have from Corollary 1 that, with probability at least 1 — §, the learned
encoder satisfies

su() < (14 2) . YEREBw + ol
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for some constant C' > 0 depending polynomially on exp(x). Note that the bound can be directly
applied even though we consider the ERM on F° € F since f, € F° and the proof of Corollary 1
follows from an upper bound on the supremum of an empirical process, which remains valid when
restricting to a smaller function space F° < F.

~

Consider the problem of fitting a linear regression using data {(f(z;), y;)}",. We have

[E[ylf(2)]| < E[|E[y|z]]|f(2)] = E[[E[proj;_p B (=, 6.))[2]||f(2)] < B
Thus the conditions required by Theorem 1.1 in [2] are satisfied and we have
9 plogm

E[Rin(hs)] — 7 < 8("%%1) Rin(hy) = 5%) + c(B® + 5%)~—>— m

Following the proof of Theorem 6, it remains to verify the condition E[(Iq — WTW) |f4\/z] =0,

where W is the linear map in f (ie., f ( ) = Wz) This follows immediately as z follows the
uniform distribution on S(U;) @ S(Us).

Ordinary least squares estimator. Adopt the shorthand p for proj;_p p). When applying p to a vector,

we apply it coordinate-wise. Let ¥ = E[zax "] = I;/p be the covariance matrix. For the ordinary
least squares (OLS) estimator, let X = (x1 ... xm)T e R™*d denote the sample matrix,
Y=(y1 ... ym)—r € R™ denote the response vector, and £ = (g1 ... Em)T € R™ denote
the noise vector. By the definition of OLS, we have 6 — (XTX)"'XTY and

E[Rin(hois)] = 0* = E[(p((z, (X" X)X TY)) - p((a, 6.)))].

We claim two results used later. The proof of them can be found at the end of this section.

E[trace((X ' X)7'%)] = #, E[trace((X ' X)7'%)?] = () (_md_ll))d(m v
(35)
4 m? By B?
E[|[p(X6.) — X0.][3] < c e 0. eXp(—m) (36)

for some absolute constant ¢ > 0.

Choose B = c(c* + B3)log m/p for some sufficiently large absolute constant ¢ > 0. We then have
E[|[p(X8,) — X6,]||3] < m~*. On one hand, to establish the upper bound, we have

E[Rin(hois)] — 72 < E[((z, (XTX)'XTY) — (&, 6,))?]

= T1 + TQ,
where
= E[(z, (X"X)' X p(X6,)) —(z, 6,))°]
=E[< (X'X)"' X T[p(X6,) — X6,])]
<E[IX(X"X)"'S(X X)X Ty - [[p(X6.) — X6.]3]
(2\/152 trace((XTX)~18(XTX)-18)] -\ /E[|[p(X06.) — X6,]]3] YL :TZ
and

Ty :=E[({x, (XTX)1XTE))
d
m—d—1"
Here, step (i) uses Cauchy-Schwarz inequality, step (ii) and (iii) follow from claim (35) and (36)
and the choice of B. Combining the bounds on T}, T5 yields the upper bound E[R;;, (Eds)] -2 <

=2 d
co m—d—1-

= 5 E[trace((X ' X)7'%)] (@ 52
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To establish the lower bound, since E[a?] > E[b?] + E[(a — b)?] — 24/E[(a — b)?] - \/E[b?], it
follows that

E[Riin(hos)] — 52 = E[(p((z, (X X)T'XTY)) — p((z, 6.)))?]
=E[(p((x, 0. + (X X)7'XTE) — p((x, 6.)))?]
=>T5— (Ty + T5),

where
T3 = E[({z, 0, + (XTX)_lXT5> —{x, 0,)))*] = E[trace((XTX)_lZ)] = g2

Ty = 20/ T5\/T5,

Ts = E[[(p((z, 0, + (X T X) 7' XTE)) — (@, 6, + (X' X) 7' XTE)) — (p((=, 0,)) — (w, 6.)))°]
1

W7

m—d—1"

<E[[p(z, 0, + (X" X)X TE) —(x, 0, + (X" X)X TE?] + 72

where the inequality uses claim (36). To find a further upper bound of T}, 75, we first note that
(0, + (XTX)"1XTE) is independent of x, and

d
16, + (XTX) X TEI2<2B3 +2|(XTX) ' X TE|2 < ca®— +,
m

where v is some zero-mean c72-sub-Exponential variable by Theorem 1 in [16]. Under our choice of
B, following the proof of claim (36) and integrating over the sub-Exponential variable v, it can be
verified that (when choosing the absolute constant in B sufficiently large) 75 < 252/m?. Putting
the bounds on T3, T5 (and hence T}) together, we conclude that E[R“n(ﬁds)] — 52> 52 m:fiq for
some absolute constant ¢ > 0.

Proof of claim (35) and (36). Claim (35) follows directly from properties of the inverse Wishart
distribution [43]. For Claim (36), since each coordinate of X 6, are i.i.d. N'(0, |0,]3), w.l.o.g., it
suffice to show

E[lp(2) — 2|'] < cexp(~B?/c).

for z ~ N (0, 1). Note that this follows immediately since

E[lp(z) — 2|*] < CJB st exp(—s?/2)ds < cs® exp(—s%/2) < cexp(—s?/c).

D.5 Proof of Theorem 7

We prove Eq. (14) and (15) in Appendix D.5.1 and D.5.2, respectively.

D.5.1 Proof of Eq. (14)

It suffices to apply Theorem 4 to the setup in Theorem 7. With a slight abuse of notation, we use
both one-hot vectors in U?_, {e;} and integers in [S] to represent the augmented views z and do not
distinguish them in the proof. We also occasionally omit the subscripts in Py, P, when the meaning
is clear from the context.

We claim that

P(z,23) 1 & P(ylzD) Pe(y]z®) S
— 3 .yZ::l + 3 . 1{2(1):z(2)}. (37)

P(z()P(2(2) Py (y)

We will prove this claim momentarily. With this claim at hand, we have
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Approximation error. Let

fle) m (Rl =llet = 2) | Bely = Mla® —2) gy
V2 Py(y =1) Py(y = M)
It can be verified that the parameter (W,,w,) corresponding to f, lies in I'. Therefore, the

approximation error inf fe 7 R,2(Sy) — R,2(S,) = 0 since S, is realized by f, and the link function
7(z) = 2.

Generalization error. Let W = {W € RM*S
the metric ||(W1, w1) — (Wa, wa)|| == |[W71 —

’ |w/v/S| < Bw} and define
(w1 — ’w2>/\/§| on W.

First, for fi(z) = (Wiz)",w; - 27)T (i = 1,2), simple calculation shows |fi — faol2.0 <
2(Jwr — w1| v |W1 — Walop), and therefore

u uy/'S
Mg N (1t | - 2.0 F) < Tog N (5 1) < 10g N (5,1 1200 Wi ) + log N (57, )

4B 4B
SSM~log<1+l) +1og(1+7w),
u u

where Wy = {W € RM*S |[Wy < Bw}, Wa = {w € R,|w| < vSBw} and the last
inequality follows from the upper bound of the covering number of the unit ball (see e.g., Example
5.8 in [44]) and the assumption that M < S. In addition, it is readily verified that S f(z(l), z(z)) €
[~ Bs, Bs] with Bs = 4B%,S = 4M?2S for all (1), 2(2). Consequently,

Bw
BTJ \/logN(% H : ||2,0oaf)du
Bw Bw
(f \/SM 1og 1+ 1Bw d +J log 1+437W u)

< eVSMBw = ¢V SM3.

Combining the result on the approximation error and the generalization error and applying Theorem 4
yields the desired result.

Proof of claim (37). For z(!) # 2(?), by Bayes’ formula, we have

Pz, 2) 3 P(z®)|z) - P(z|zV) _ D P(z|z®?) - P(z|z(1)
P(z(M)P(2?) P(z(2) - P(z)
@ P = (21, 22)]2®) - P(z = (211, 22)]2)
- P(x = (2, 2(2))) ’

(38)
where step (i) follows from symmetry between z(), 2(2). Moreover,
1 | M
Pla = (2, 29)[z0) = 1p(@® = 2Ol = 20) = L3 B @ = 2@) B (yla = 20)

Pc(y|x62 = 2(2)) 'IEDC(y‘ZCCl = z(l)) ~]P’,(CECQ _ 2(2))

|
N —
=

= Py(y)

1A Pe(y]z®) - Pe(y|zV)
== P.(2?), 39
2;1 By y) (=) (39a)
]Pc(z) P(z), and (39b)

B(=, z<2>>““> 2B((=0, 29), 2 = (00, ) = ZP(@ = (z17,2)), (390)
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where step (ii) follows from the generation process of the augmented views (z(1), 2(?)), and step (iii)
follows from symmetry between z(1), 2(2)_ Substituting Eq. (39a) into Eq. (38), we find

P L $h Pelyl=®) Belylz )2 Pl (=)
P(z)P(z) 2\ & Py(y) Pz = (211, 2()))
M
1 P, @) . P, MYyy2 P(zMP(2(2)
_7(2 (ylz™) - Pe(y|z )) Pz (1)) (»(22) ) (40)
i\ Py (y) Pz, 2)
where the second equality uses Eq. (39b) and (39¢). Reorganizing Eq. (40), we obtain
P(z)P(z(3) 2\ o Py(y) 2Pe(2(M)Pc(22))

where we recall P.(-) is the marginal distribution of 2! (or £“2) and the second equality follows
from Bayes’ formula and the fact that ¢ 1l x“|y.

For z(1) = 2(2) — 2, using Eq. (39b) and properties of conditional distribution, we have

Po(zM = 2,22 = 2) 1 1 P(zM) = 2,22 = 2
- - 2

(20 = 2)P(2(d) = 2) - P, (2 =2) P(z® =2) P(z() = 2)P(2(?) = 2/)’

z'e[S] z'e[S]

Combining this with Eq. (41) for all z(?) % z(1) and noting that the marginal P.(-) is the uniform
distribution on [S], we obtain

Pz =220 =2 1 Pz =z2 =2 1 P.(z =z, 22 = ')
P(z) = 2)P(z) = 2) 2 Pz = 2)P.(z2 = 2) 2 ol P.(zcr = 2)P.(z2 = 2')
1 Pox® =z, =2) S
- . + =
2 Pz =2z)P(x2 =2) 2
1 R Rl S
2 5 Py 2

D.5.2 Proof of Eq. (15)

Write z = g(«). By a standard risk decomposition, we have

Ras(hp) = E[Ras(hp)] — E[Ras (Pyje (-|2))]

~ A~

= E[Rcls(hf‘)] - thfE[RCIb(h)]
_ inf Eao[DxL (Pyje (-|2)|[hr (f(2)))]

= n
LT llop v ITs [ 2<Br

approximation error

+ E[ﬁcls(hf‘)] - inf E[ﬁcls(hr‘)] .

LTy llop v [T 2<Br

~"
generalization error

We will prove that for some absolute constant ¢ > 0,

1.
approximation error < c(ecg's + Se%p(B) (Re(Sy7, ) — Rf(S*))>7 (42a)
E,
and

2. with probability at least 1 — 4,

B
generalization error < \C/—m [«/log(l/é) + M (+/log Br + \/E)] (42b)
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Approximation error. Let E, € RM*9 be the representation where

B, - L (P =1t =) | Py =Mt =y
TV Py(y=1) VPy(y = M)
for j € [S] and let E,(z) denote the z-th column of E,. Let E := (f(1) --- f(S)) € RM*S.

Given a representation f(z), consider the classifier

~

hr(f(2)) = softmax(log trun(T', f(2) + T)), where
Ty = 2Py ?(E,E, ") 'E,(Is — P1,)ET, T,:= \%Pyl/Q(E*E*T)_lE*ls,
(43)
and Py := diag{Py(y = 1),...,Py(y = M)}. It can be verified that ||T', |, < 2¢/SM/og, <
Br and |Ty||2 < v/S/og, < Br. Moreover, we have by Lemma 5 that
Eq.g[DkL (Pyjo(y]2)[[hr (f(2)))] < 2B g[DKL(Pyje (2)|[Pyjs (12)] + Eag[D2(Pyjs (12) e (f(2)))]
< 265° + Ea g [Da(Py ) (|2)|[hr (F(2)))].
Therefore, it remains to prove
- =~ ¢S exp(B)
Ex,g[D2(Py)=(-|2)llhe (f(2)))] < =5~ (Be(Sy,, ) — Bt (S))- (44)
E,
Since

~

E1“(f z )y
(Pyj= (y]2) — hr(f(2)),)?
=Eaoy e

’ [Z] he(f(2))y |
< exp(B) Eay| ) Bya(yl2) - hr(f(2)),)°]

ye[M]

Ea g D3 (Py = ([2)] hr(F(2))] < B,y [Eyep, (12

~

— exp(B) -Ea,y| Y, (Plyle® = 2) ~he(f(2)),)2], @5)
ye[M]
where the third line uses the definition of trun and claim (46) in the proof of Lemma 6, and the last
line uses the fact that Pc(y = yla® = j) = Py .(y = y[z = j) forall y € [M], j € [S]. Eq. (44)
follows immediately from Lemma 6 which gives an upper bound on the term in Eq. (45).

Generalization error. The proof follows from a standard analysis of empirical process similar to
the proof of Eq. (29) in the proof of Theorem 4. Thus, we only provide a sketch of the proof here.

LetT := {T': |Ty]lop v |Ts]2 < Br} and define the norm ||T' — T := [Ty — T flop v [T — Ty -
First, by a triangle inequality, the fact that || log hr|l, < 2B (which follows from the definition of
trun), and Corollary 2.21 in Wainwright [44] for functions with bounded differences, we have

. 5 5 log(1/6)
eneralization error < QE[ sup |Reis(hr) — E[Ras(h ] +2BY+—"—=
g FEIr>| 1s(hr) — E[Rais (hr)]| Jm
with probability at least 1 — 6. Let X := Res(hr) — E[Reis(hr)]. Then we have
2B

E[ sup [Rets(hr) — E[Reis(hr)]l| < [ Xr, ] + B[ sup | Xr - Xzl] < <= + E[ sup |Xr — Xz].
el r,Ter \/ﬁ r,Ter

Moreover, the process { Xt }rer is a zero-mean sub-Gaussian process with respect to the metric
px (T, T) := 2| loghr — log hi|s/+/m since X is the average of i.i.d. random variables bounded

by

~ ~

2 sup [(ey,, loghr(f(2:))) — ey, logh(f(2:))|

i€[m]
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~ ~

< 2|loghr(f(zi)) - logh(f ()0 < px (T, T) - v/m, and moreover
- () R A N
px(T,T) < c|logtrun(Ty, f(2) + Ty) —logtrun(Ty f(2) + Tp)|oo/v/m,
(i1) ~ _ ~
< cexp(B) - T = T[|/v/m =: B|T —=T||/v/m,

where step (i) uses | log softmax(u) — log softmax(v)]||, < 2|u — v| and step (ii) follows from

Taylor expansion of s(z) = log x, the assumption that || f(2)|2 < Bw = M. Therefore, we have by
Dudley’s integral bound (see e.g., Theorem 5.22 in Wainwright [44]) that

E[ sup |Xp — X;|] <c¢
r,Ter

CB/*/E\/ V- u
<c log N —— Il T ) du
| (Y )

cB//m : .
<) W oz (LT e ) Wlogf“ (Yt |2,rb))du
(

cB/ v/ eB/\ B
f \/logN(u,pX,{Xp,I‘e F})dugcJ;) log/\/(u,\/—m|\|-|ﬂ,r>du

0

) B

cB/v/m BrB BM log"/?(BrB BM((log"? Br + VB
<cf M2~log(1+4L)du<c og " (Br )éc (log rt ),
0 \/mu Vm \Vm

where I, = {T',, e RM*M . ||T, ||, < Br}and [, := {T', € RM : |T,|2 < Br}, and the last line
uses the covering number bound of unit balls. Putting pieces together yields the desired bound.

D.6 An auxiliary lemma

Lemma 6 (Upper bound on the term in Eq. (45)). Let the assumptions in Theorem 3 and the notations

in its proof in Appendix D.5.2 hold. Assume R¢(S7, ) — Re(S.) < co, /(S2M) for some absolute
aug *

constant ¢ > 0, then

Em,g[ Y, Pelyle = 2) - Er(f(z))y)Q] < :TS (Re(Sy, ) — Re(S4))
ye[M] E,

Sor some absolute constant ¢’ > 0.
Proof of Lemma 6. The proof consists of two steps. First, we plug the definition of hr into Eq. (6)
and simplify the expression. Then, we demonstrate that the simplified expression can be further

bounded using the excess risk R¢(S i g) — R¢(S.) of the learned encoder fyyq-

Step 1: simplify the notation. Since

1
Ligllop < Tl T}

K

1
[Vusoftmax(log w)fley = || 7=—Tar

(2 e

for any u € R%7 we have

~

Eag| 3 (Pelyle® = 2) = he(f(2)),)*] < cBa| Y] Pelyla® = 2) - trun(T,, f(2) + T), )]

ye[M] ye[M]

< CBoy| Y, Pelyla®™ = 2)— (Tuf(2) + Tu),)? .
ye[M]

where in the first inequality we use the claim that

~

[1—[trun(Tw f(2) + To)[2] < 1/2. (46)

The proof of this claim is deferred to the end of the proof of the lemma. The second inequality
follows from a Taylor expansion of s(x) = log x, the boundedness assumption that P.(y|x = z) €
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[exp(—B), 1], and noting the truncation trun(-) reduces the 5 error. Moreover, for any z € [S], by
the definition of (T',,, T') in Eq. (43)

~

T,f(z)+Ty
= V2P 2 (B,E.) ' E.[(Is - P1o)E" f(2) + 15/2]
—V2PyY*(E.E,")"'E,E, E,(2)

+V2Py 2 (B,E," ) 'E,[(Is — P1.)E" f(2) + 15/2 — E, E,(2)]
= V2Py' B, (2) + V2P *(B.E.) ' E.[(Is — P1,)E' f(2) + 15/2 — B, E,(2)].

Since 2Py 2 E, (z) = (P.(y|z® = 2))yerm] and z £ z¢1 follows the uniform distribution on
[S] by assumption, it follows that

Eo| Y, Pelyle™ = 2) = (Tuf(z) + Tv),)?)
ye[M]
< 2E.[|(B.E.T) " B.[(s - Pr.)E" J(2) + 15/2 - E. E.(2)][3]

< - EL(l[(0s - o) BT f(2) + 15/2 - BT EL ()3

*

2 PNNIPN
< 572‘”(13 - PlS)ETE + 151:5[/2 - E*TE*‘”%I*()
O'E*
2 PPN
= 5oz s = Pro)ETE = (Is = Pro) B Eulf, (47)
UE*

P(z).2?)

where the last equality follows since E,' (zW)E,(z?) = NN e

21 5@
(20, 2®) e [S],and 1 o W = 1forall z() e [9].

for any

Step 2: bound the expression by excess risk. We claim that for some absolute constant ¢ > 0,

I(Is — P1)ETE — (Is — P1,) E. " Eul},

<c|(Is — Pr)(ETE + @ls) — (Is — Pig)(E. "B + S - 15/2)[|2,, and  (48a)
I(Is = P )(ETE + dls) — (Is — Pry) (B By + S - 1s/2) [},

< 8% (Re(Sy, ) — Re(S4)). (48b)

Combining claim (48a) and (48b) and bound (47) yields the desired bound. Now, it remains to prove
these two claims.

Proof of claim (48a). Adopt the shorthand notation A = (ETE + @lg) — (E, E, + S - 15/2).
First, by the triangle inequality, it suffices to show

I(Ts = Prs)(@ — /2o < cll(Ts — Prs)Allfg

for some absolute constant ¢ > 0. Note that rank(ETE — E*TE*) < 2M, therefore, there are at
least S/2 singular values of A which equal |@ — S|/2. As a result, we have

1

I(Is = P1s)Allfo = trace(A(ls — P1s)A) = Al — glgﬁzls

1, . 1 "
> Al — 1A = 1@ = S/2)Tsllf, = 71(Ts = Pro)(@ = S/2)llf

Proof of claim (48b). Adpot the shorthands ST := (S ~ (z(l), z(2))) e RS*S and
Faus fous z(1),z(e[5]
m. P(z(D) 22 .
S." = (Su(=0,2®)) gy © ES where S, (1), 2) = HETREC Since we
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assume z < 2 follows the uniform distribution on [S], by the definition of f;ug and claim (37) in
the proof of Eq. (14)

I(1s = P1)(ETE + ils) — (Is — Pro) (B By + S - 15/2) |3,
= (s = P1)(SE, =S Mlro
- 521y,
where
Ty =Bz zorep, xp. [((Sf,, = Sa)(z1),2) —E. 5 [(S7, — Sz, 2],
Finally, by a second-order Taylor expansion of R¢(S) at S,, we have
Rf(Sfaug) — Re(Sy) =T1.

Combining the two equalities yields the claim.

Proof of claim (46). Note that for any z € [5],

11— trun(Ty f(2) + To)h] < Y] [Pe(ylz™ = 2) — trun(Ty, f(2) + Ty), |
ye[M]
< Y Pu(ylz® = 2) — (Tuf(z) + Tu),|
ye[M]

< VIS \/E[ > (Bulylze = 2) (0 7(2) + 1)),
ye[M]

where the last line follows from the assumption that ' (and hence z) follows the uniform distribution
on [S]. Thus, combining Eq. (47), claim (48a) and (48b) yields

1= () Tl < M s )~ RS <

g

DN | =

faug

E Additional experiments

We also conducted small-scale experiments in the CLIP setting (language-image pretraining, [31]) to
compare the contrastive learning losses. Namely, we use the CLIP model (RN50-quickgelu, which
consists of a ResNet-50 image encoder and 12-layer Transformer text encoder) on a 100K subsample
of the cc3m-wds dataset [33] using both KL (i.e., InfoNCE) and x2-contrastive losses (Eq. 3 and 10).
The original dataset contains about 3.3M image-text pairs, but due to limited compute, we trained on
the subsample for 32 epochs.

We evaluated the models based on their zero-shot classification performance on the ImageNet-1k
validation set (1000 classes, 500 images per class). For KL and x2-contrastive losses, we set the link
functions 7(z) to x/t and e/, respectively, with trainable temperature ¢ initialized to 1. We used a
batch size of 128 and the AdamW optimizer with weight decay 0.02, and selected the best learning
rate via 4grid search from {3e—5, le—4, 3e—4, le—3}. The optimal learning rate for both losses is
3 x107%.

Table 1: Top-5 zero-shot classification accuracy on ImageNet-1k.

Method Accuracy (%)

InfoNCE 7.5%0.3
Chi-squared 9.4+0.1
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We repeated the experiments three times and report the top-5 accuracy on the ImageNet-1k validation
set. From Table 1, we observe that in this small-scale experiment, the model trained with X2‘
contrastive loss achieves zero-shot performance comparable to that of InfoNCE. We do not claim that
the y2-contrastive loss is superior, as both methods could benefit from further hyperparameter tuning
(e.g., initial temperature) or larger datasets. However, we note that y2-contrastive loss is able to learn
representations that are useful for downstream tasks, which is consistent with our theoretical findings.
We leave more extensive experiments in the CLIP setting to future work.
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