
TurboHopp: Accelerated Molecule Scaffold Hopping
with Consistency Models

Kiwoong Yoo1, Owen Oertell2, Junhyun Lee3, Sanghoon Lee1,3, and Jaewoo Kang∗1,3

1AIGEN Sciences
2Cornell University
3Korea University

kiwoong.yoo@aigensciences.com, ojo2@cornell.edu, ljhyun33@korea.ac.kr,
sanghoon.lee@aigensciences.com, kangj@korea.ac.kr

Abstract

Navigating the vast chemical space of druggable compounds is a formidable
challenge in drug discovery, where generative models are increasingly employed
to identify viable candidates. Conditional 3D structure-based drug design (3D-
SBDD) models, which take into account complex three-dimensional interactions
and molecular geometries, are particularly promising. Scaffold hopping is an
efficient strategy that facilitates the identification of similar active compounds by
strategically modifying the core structure of molecules, effectively narrowing the
wide chemical space and enhancing the discovery of drug-like products. However,
the practical application of 3D-SBDD generative models is hampered by their
slow processing speeds. To address this bottleneck, we introduce TurboHopp,
an accelerated pocket-conditioned 3D scaffold hopping model that merges the
strategic effectiveness of traditional scaffold hopping with rapid generation capa-
bilities of consistency models. This synergy not only enhances efficiency but also
significantly boosts generation speeds, achieving up to 30 times faster inference
speed as well as superior generation quality compared to existing diffusion-based
models, establishing TurboHopp as a powerful tool in drug discovery. Supported
by faster inference speed, we further optimize our model, using Reinforcement
Learning for Consistency Models (RLCM), to output desirable molecules. We
demonstrate the broad applicability of TurboHopp across multiple drug discovery
scenarios, underscoring its potential in diverse molecular settings.

1 Introduction

The vast chemical space, with up to 1063 potential molecules (molecular weight under 500Da)
(Kirkpatrick and Ellis [2004]), presents immense challenges in drug discovery, where the process
often extends over a decade and incurs costs in the billions. Recent strides in molecular design
have introduced advanced generative models that excel in de-novo generation and optimization
within 3D molecular space (Isert et al. [2023]). Despite these technological advances, challenges
persist, such as ensuring synthesizability (Gao et al. [2021], Fialková et al. [2021]) and maintaining
desirable drug-like properties. The scarcity of protein-ligand complex data further complicates
these demanding issues. While 1D/2D models attempt to address these challenges though various
methods (Loeffler et al. [2024]), they often fall short in representing true 3D structures, and typically
necessitating additional steps for proper conformation generation. On the other hand, 3D models

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

(Ragoza et al. [2022], Luo et al. [2022], Baillif et al. [2023], Peng et al. [2022]), which directly
incorporate spatial structures, show greater promise in activity prediction regarding 3D structures
but are hindered by significantly slower inference speeds (Baillif et al. [2023]), which limit their
practical applications such as fine-tuning via Reinforcement Learning (Ding and Jin [2024], Baillif
et al. [2023], Wallace et al. [2023]). Recent research efforts, such as those by Lee and Cho [2024],
have started fine-tuning 3D-autoregressive models with specialized reward functions to align with
these stringent standards. Yet, notably absent are attempts involving Structure-Based Drug Design
Diffusion Models(3D-SBDD DMs), as the prolonged inference times remain a formidable barrier,
precluding the adoption of similar methodologies. In this work, we address this gap by successfully
applying reinforcement learning to 3D-SBDD DMs, overcoming the challenge of prolonged inference
times and demonstrating the feasibility of such approaches in practical drug design scenarios.

3D-SBDD-DMs (Guan et al. [2023, 2024], Schneuing et al. [2022], Torge et al. [2023], Igashov
et al. [2024]) exhibit powerful generative capabilities but suffer from slow processing speeds due
to their reliance on iterative sampling. Addressing these speed limitations is critical for several
reasons. Primarily, faster processing speeds are essential for accelerating hit discovery phases, which
could significantly increase the likelihood of identifying quality hits within a shorter time period.
Additionally, the high computational demands of these models not only escalate costs but also limit
access to advanced optimization techniques, thereby restricting the generation of molecules with
desirable properties such as synthesizability, high binding affinity, and drug-likeness. Furthermore,
real-time applications, such as interactive modeling sessions with human experts, require rapid model
inference to provide effective feedback and facilitate iterative testing (Sundin et al. [2022]). By
enhancing the speed of these models, it may be possible to enable real-time applications, allowing for
on-the-fly modifications and adaptations during interactive sessions. Addressing the speed limitations
of diffusion models is thus essential to fully realize these objectives and leverage the full potential of
3D-SBDD-DMs in practical applications.

To address slow inference of diffusion models, various strategies have been adopted to enhance their
efficiency, in the computer vision domain such as improvement of solvers, optimization of diffusion
processes, and model distillation techniques (Cao et al. [2024]). The emergence of consistency
models and its variants (Song and Dhariwal [2023], Ding and Jin [2024], Song et al. [2023]), heralds
a rapid, efficient alternative capable of delivering high-quality results with significantly reduced
computational demands. However, these acceleration attempts have been minimally explored in the
context of 3D drug design.

In this work, we present an efficient E(3)-equivariant consistency model that combines the rapid
generation capabilities of consistency models with the effectiveness of scaffold hopping (Fig. 1).
To substantiate the reliability and robustness of model performance, subsequent sections will detail
results and comparisons with established diffusion and consistency models. Moreover, we incorporate
reinforcement learning (RL) techniques (Oertell et al. [2024]) to further refine our model based on
objectives that are challenging to address through direct modeling alone, demonstrating its capability
to surmount limitations encountered by previous 3D-SBDD models (Harris et al. [2023]).

Our contributions are as follows:

• We propose a target-aware equivariant consistency model tailored for scaffold-hopping,
achieving speeds up to 30 times faster than traditional DDPM-based models while achieving
higher drug-likeness, synthesizability, connectivity and binding affinity.

• By leveraging faster inference speeds, we apply Reinforcement Learning (RL) to enhance
binding affinity scores and reduce steric clashes without redocking in 3D-SBDD—a strategy
not previously explored with diffusion models. This approach enables targeted optimizations
in molecule design and opens up opportunities to tackle metrics that were previously
challenging to address through direct modeling.

2 Related Works

2.1 Scaffold Hopping

Scaffold hopping is a key strategy in drug discovery aimed at identifying new compounds that
share biological activities but differ structurally from known molecules. This approach is crucial for

2

High activity

Mid activity

Low activity

High activity

Mid activity

Low activity

a) Diffusion Model + De Novo generation b) Consistency Model + Scaffold Hopping

Figure 1: (a) Previous diffusion-based SBDD models methodically explore vast chemical space for
pocket-active molecules, with short arrows symbolizing a gradual, step-wise inference process. (b)
TurboHopp efficiently generates active ligands using a consistency model, which accelerates inference
and reduces the number of steps, as illustrated by the longer arrows. Moreover, it strategically
leverages the functional groups of high-activity reference molecules, shown as colored areas on the
diagram, to optimize the exploration within targeted chemical space.

500 100 150 200 250 500

…

…

TurboHopp

DiffHopp

Generation Steps
100 200 300 400 500

0.8

0.6

0.4

0.2

QED

Generation Steps

a) Comparison of QED over Generation Steps b) Progression of Generated Outputs over Generation Steps

Figure 2: (a) Comparison of QED scores, with TurboHopp (blue) reaching peak values faster
compared to DiffHopp (red), throughout the generation process. (b) Progression of generated outputs
of both models. Final steps are highlighted with red boxes.

enhancing drug properties and navigating intellectual property challenges. It includes techniques
like heterocycle replacements, ring modifications, peptidomimetics for stability, and topology-based
hopping, which innovates on molecular shape while maintaining activity (Sun et al. [2012]). Deep-
learning models, particularly in topology-based hopping, explore complex molecular structures to
predict novel scaffolds, driving forward drug discovery by enabling the design of therapeutics with
optimized efficacy and patentability (Torge et al. [2023]).

2.2 Diffusion-Based Molecular Generative Models and Limitations

Diffusion-based molecular generative models (DMs) apply noise processes and their reversal to
generate novel molecular structures. These range from de-novo, non-conditional molecule creation to
precision drug design within protein pockets, and extend to specific tasks like scaffold hopping and
linker generation (Hoogeboom et al. [2022], Vignac et al. [2023], Huang et al. [2022], Guan et al.
[2023, 2024], Huang et al. [2024], Torge et al. [2023], Igashov et al. [2022]).

Despite their broad applicability, these models encounter substantial constraints. First, the iterative
reversal of noise through SDEs or ODEs often requires extensive computation, typically hundreds to

3

thousands of iterations, resulting in slow model inference. This significantly constrains the speed at
which new, active molecules can be identified, diminishing the practical efficacy of these models in
time-sensitive applications (Baillif et al. [2023]). Second, diffusion models often produce molecular
poses that fail to comply with key biophysical constraints, as highlighted by recent evaluations (Harris
et al. [2023]). Guan et al. [2023, 2024] struggle significantly in generating biophysically realistic
molecular poses. Their strain energies are notably high, with median values around 1241.7 kcal/mol
and 1243.1 kcal/mol, substantially exceeding the preferable baseline of 102.5 kcal/mol from the
CrossDocked dataset (Francoeur et al. [2020]). Additionally, both models exhibit considerable issues
with protein clashes: Schneuing et al. [2022] shows a high rate of steric clashes with a mean score
of 15.33 before redocking, and Guan et al. [2023] also has a problematic level, with a mean score
of 9.08 prior to redocking. These high levels of steric clashes suggest that the molecules often have
conformations that are too cramped or improperly aligned for effective protein binding, highlighting
significant challenges in their ability to produce physically and biologically plausible interactions.

2.3 Consistency Models

Initially utilized in the vision domain, consistency models are either developed by distilling knowledge
from existing diffusion models or trained as standalone entities. Defined as a distinct class of
generative models (Song et al. [2023]), they address the computational inefficiencies of traditional
diffusion models that require multiple iterative steps to remove noise and generate data. By directly
transforming noise into data, consistency models significantly reduce generation time and offer the
flexibility of multi-step sampling to improve output quality.

2.4 RL for Consistency Models

Reinforcement Learning for Consistency Models (RLCM) is a framework that enhances the speed
and efficacy of training generative models through reinforcement learning (Oertell et al. [2024]). It
builds upon the fast inference speed of consistency models, enabling rapid training and inference
cycles. RLCM is particularly useful as it fine-tunes models to optimize for specific reward functions,
especially those hard to capture through direct modeling. In the molecule generation domain, to our
knowledge there have been no attempts at fine-tuning diffusion or consistency models for task-specific
purposes yet. By leveraging RLCM, we show promising evidence for mitigating issues in 3D-SBDD
DMs (Harris et al. [2023]), and believe that future iteration on the reward functions with our methods
will enhance their practical applicability and effectiveness.

3 Methods

3.1 Notations and Problem Definition

Notations Atoms within proteins and ligands are represented by the graph G = {h, x}, where
h ∈ RN×F are node features and x ∈ RN×3 are the Cartesian coordinates of the atoms. The atomic
elements are encoded as one-hot vectors within h. We consider only those protein pocket atoms that
are within an 8 Ångström radius of the ligand, simplifying the protein structure to a Cα representation
with node features hP encoding residue types as one-hot vectors. Edges between atoms are defined
for those within a 5 Ångström radius, incorporating both the distance dij and a normalized direction
vector xi−xj

dij
.

Problem Definition Given a context u which integrates the functional groups of a molecule denoted
as g, and a protein pocket p, our focus is to generate a scaffold, a key substructure of a molecule
Z. A generative model, defined as Pθ(Z|u) maps uniform Gaussian noise to conditional probability
distribution Z given u. Ultimately, we aim to make sampling of scaffolds for any given molecular
context u within the set as efficient as possible, without losing overall quality.

Dataset We follow the dataset preprocessing scheme regarding filtering of compounds and deter-
mining of scaffolds as done in Torge et al. [2023], filtering those above QED of 0.3, training on
19,378 protein-ligand complexes in PDBBind. We also adopt the same scaffold extraction method,
using Murko-Bemis method (Bemis and Murcko [1996]).

4

3.2 Background

Diffusion Models In DDPMs, noise is incrementally added to the original data, represented as
Z0, until it is completely transformed into a noise-dominated state ZT after T steps. This process is
governed by an SDE:

dZ = f(Z, t)dt+ u(t)dw (1)

where w represents standard Brownian motion, f(Z, t) is a drift function, and u(t) is a diffusion
coefficient associated with the noise process. The reverse diffusion process is described by another
SDE which incorporates the backward flow of time through w̃, a Brownian motion in reverse, and
modifies the forward SDE with a term involving the gradient of the log probability density.:

dZ = [f(Z, t)− u(t)2∇Z log pθ(Z)]dt+ u(t)dw̃ (2)

The denoising process can be mathematically framed as an ordinary differential equation (ODE), also
known as the Probability Flow ODE (Song et al. [2020]), whose solution trajectories have the same
marginal density at time t:

dZ = [f(Z, t)− 1

2
u(t)2∇Z log pθ(Z)]dt (3)

During training phase, Diffusion Models (DMs) learn to estimate the score, given by∇Z log pθ(Z)
with a score model sθ(Z, t). Following the modifications by Karras et al. [2022], the drift term f(Z, t)

is set to zero and the diffusion term is defined as u(t) =
√
2t. Consequently, the empirical Probability

Flow ODE becomes:
dZ

dt
= −tsθ(Z, t) (4)

This form is used to solve the ODE backwards in time, starting from a noise state Z̃ sampled from
N (0, t2I). Using numerical ODE solvers like Euler and Heun, the model computes the trajectory
{Zt}t∈[0,T], resulting in Z̃0 as an approximate reconstruction of the original data distribution.

Consistency Function We develop an equivariant consistency function f : (Zt, t | u)→ Zϵ for
a solution trajectory Zt of an ODE across t ∈ [ϵ, T], where ϵ is near zero. This function meets
both self-consistency, ensuring f(Zt, t | u) is uniform for all (Zt, t) on the trajectory, and boundary
conditions, mandating f(Zϵ, ϵ) = Zϵ at the smallest time step ϵ. Successfully achieving these
conditions guarantees that each solution Zt can be traced back to its original state Z0. The function
maintains SE(3)-equivariance, adjusting centers as per methodologies outlined in Xu et al. [2022],
and outputs both coordinates and node features.

3.3 Model Architecture

Reference
Functional group

Scaffold

Pocket

Noise

𝒙𝝉𝟎
𝒉𝝉𝟎

𝒙𝝉𝒃𝒆𝒔𝒕
𝒉𝝉𝒃𝒆𝒔𝒕

𝒛𝒃𝒆𝒔𝒕

𝒇𝜽

𝝉𝟎 𝝉𝟏 𝝉𝟐 %	%	%
𝒖

𝝉𝒃𝒆𝒔𝒕

𝒖: context 𝝉: time point𝒙: atom coordinates 𝒉: node features 𝒛: generated scaffold

Figure 3: Model Architecture of TurboHopp. Given a reference ligand and its corresponding protein
pocket, an equivariant consistency model samples scaffolds conditioned on pocket substructure and
functional groups. Models are trained to map points on the same PF-ODE path to the original data
given context.

5

We wish to construct a new sample scaffold Z given a molecular context u (u is the concatenation of
the pocket p and functional groups g). An equivariant consistency function fθ(Z|u) is parameterized
by a free-form deep neural network Fθ which is a (Z, t) related SE (3)-equivariant model. Theoreti-
cally, it can be any architecture that is SE(3)-equivariant. We use an adaptation of the equivariant
Geometric Vector Perceptron (GVP) architecture (Jing et al. [2020]). As done in (Torge et al. [2023]),
all features are embedded into a shared feature space using separate MLPs. The time factor t is
embedded with a linear layer and added together as the input. As done in Torge et al. [2023], hidden
node features h′ and x′ are obtained though message-passing layers. The outputs of the consistency
function are x′

t, h
′
t = x′

z, ϕout(h
′
Z) where ϕoutis an MLP to map from embedding space to original

data space. As shown in Eq. (5), we separate coordinates and node features and parameterize the
consistency model with a learnable function fθ using skip connections.

fθ(xt, t | u) = zskip(t)xt + zout(t)x
′
t fθ(ht, t | u) = zskip(t)ht + zout(t)h

′
t (5)

zskip(t) =
σ2

data

(t− ϵ)2 + σ2
data

zout(t) =
σdata(t− ϵ)√
(t− ϵ)2 + σ2

data

(6)

zskip(t) and zout(t) are differentiable time-dependent functions satisfying zskip(ϵ) = 1 and zout(ϵ) = 0,
thus ensuring the function fθ adheres to the boundary condition and retains differentiability. Given
σdata as the standard deviation of data, when t = ϵ, setting zskip(ϵ) = 1 and zout(ϵ) = 0 ensures that
the condition fθ(Zϵ) = Zϵ is naturally satisfied. The functions zskip, zout, and Fθ are differentiable.
As stated in Fan et al. [2023a], since zt and Fθ are both SE-(3) equivariant, and zskip(t) and zout(t)
are invariant scalars , the SE (3)-equivariance is guaranteed.

3.4 Model Training

We apply Algorithm 1 for training our consistency model. Scaffold Z extracted from the dataset
is segmented into its coordinate and feature components, x and h, respectively. Next, adjustments
are made to the coordinates and features along the ODE trajectory {xt}t∈[ϵ,T] and {ht}t∈[ϵ,T],
respectively, by incorporating perturbations ϵx and ϵh. The loss function L(θ) reduces discrepancies
between successive time steps fθ(Zn+1, tn+1|u) and fθ(Zn, tn|u), ensuring self-consistency.

Let fn,x
θ and fn,h

θ denote the coordinate and feature components of fθ(Zn, tn|u), respectively.
Similarly, let fn+1,x

θ and fn+1,h
θ denote the coordinate and feature components of fθ(Zn+1, tn+1|u).

The loss function L(θ) is defined as:

L(θ) = MSE(fn+1,x
θ , fn,x

θ) + MSE(fn+1,h
θ , fn,h

θ) (7)

To enhance the stability of the training process for fθ, a secondary function fθ− , which utilizes
parameters θ− as the exponential moving average (EMA) of θ, is employed. This methodology
effectively reduces the variability between consecutive predictions by accounting for incremental
perturbations, as detailed in Song and Dhariwal [2023]. The combined loss function measures the
mean squared error (MSE) between adjacent states for both coordinates x and features h:

Parameter updates are conducted using stochastic gradient descent for θ, while θ− is incrementally ad-
justed using an EMA protocol where µ indicates the decay rate, enhancing the model’s responsiveness
and accuracy.

L(θ, θ−) = MSE(fn+1,x
θ , fn,x

θ−) + MSE(fn+1,h
θ , fn,h

θ−) (8)

θ− = µθ− + (1− µ)θ (9)

3.5 Reinforcement Learning Architecture

We adopt RLCM from Oertell et al. [2024], where we biject a Markov decision process to multistep
consistency model inference. More formally, we adopt this mapping:

st =
∆ (Z̃τt , τt,u) π(at|st) =∆ fθ

(
Z̃τt , τt|u

)
+ ε P (st+1|st,at) =

∆ (δZ̃τt+1
, δτt+1

, δu)

at =
∆ Z̃τt+1

µ =∆ (N (0, I), δτ0 , p(u)) RH(sH) = r(fθ(Z̃τH , τH ,u),u)

6

Table 1: DiffHopp VS TurboHopp VS TurboHopp Metric Sampling .Results on models trained on
PDBBind. Mean and standard deviation of the common molecular metrics for the molecules from the
baseline models as well as time-step variations of our model."metric" refers that inference was done
with metric-based sampling. QVina score (kcal/mol) refers to estimated binding affinity measured by
QVina2. Time refers to average time (seconds) required to generate a batch of molecules per complex.
Best metrics are in bold. 2nd best are underlined.

Method Connectivity (↑) Diversity (↑) Novelty (↑) QED (↑) SA (↑) QVina (↓) Steps Time

DiffHopp 0.918±0.23 0.589±0.17 0.999±0.01 0.621±0.12 0.662±0.14 -7.923±3.29 500 107.10
DiffHoppEGNN 0.752±0.41 0.641±0.15 1.000±0.01 0.510±0.12 0.592±0.11 -7.210±1.45 500 -
DiffHoppmetric 0.927±0.26 0.597±0.20 1.000±0.02 0.634±0.18 0.670±0.13 -7.783±2.78 500 442.48

TurboHopp-50 0.872±0.19 0.562±0.18 1.000±0.00 0.576±0.12 0.635±0.25 -7.823±1.53 50 3.19
TurboHopp-100 0.948±0.22 0.563±0.23 0.997±0.09 0.589±0.19 0.724±0.12 -8.272±1.21 100 5.69
TurboHopp-150 1.000±0.00 0.573±0.12 1.000±0.00 0.618±0.19 0.715±0.13 -8.277±1.87 150 15.82

TurboHopp-50metric 0.917±0.28 0.612±0.21 1.000±0.00 0.583±0.20 0.631±0.15 -7.865±1.72 50 3.83
TurboHopp-100metric 0.997±0.06 0.561±0.22 1.000±0.00 0.664±0.19 0.737±0.11 -8.319±1.38 100 7.14
TurboHopp-150metric 1.000±0.00 0.569±0.22 1.000±0.00 0.648±0.19 0.727±0.11 -8.219±1.722 150 20.88

PDBBind Test 1.000±0.00 - 1.000±0.00 0.599±0.17 0.742±0.11 -8.712±0.18

where ε represents the noise added during the noising procedure of the consistency model.

As with Oertell et al. [2024], we create a mapping from MDP states to noised states along the
consistency model trajectory. Likewise, we follow a deterministic transition from the state to the
predicted action. This action is a combination of the output from the consistency model convolved
with random noise in accordance with the DDPM stochastic differential equation (Ho et al. [2020],
Song et al. [2021]). Because this policy now becomes stochastic, we can apply Algorithm 3 (a
modified version of reinforce with a clipping). The agent then receives a reward at the end of the
trajectory corresponding to a combination of desirable chemical attributes. We use PPO (Schulman
et al. [2017]) for the core optimization strategy but others like REBEL (Gao et al. [2024]) have been
shown to work for RLCM optimization with sometimes stronger results.

3.6 Metric-based Sampling

By leveraging the inherent efficiency of consistency models, we tailor molecule designs to precise
standards. Contrary to the fixed-step approach suggested by Song et al. [2023], our strategy utilizes a
flexible, customizable metric that adapts to the variability in protein conditions, as evidenced by our
empirical findings shown in Fig. 8. This approach allows for dynamic adjustment during generation,
ensuring optimal results by selecting scaffolds with the highest evaluated scores. This not only boosts
efficiency but also significantly enhances molecule properties, achieving superior docking and QED
scores that surpass those found in the initial dataset.

In Algorithm 2, initial samples are drawn from random Gaussian noise Z̃T ∼ N (0, T 2I).fθ is then
applied to generate initial scaffolds from these samples: Z̃t = fθ(ZT , T). Across a sequence of time
points {τ1, τ2 . . . τN−1} we iteratively refine the generated scaffold. After reaching a designated step
m, we score metrics to assesses the quality of each Zt. Then we select the one with the best metric at
the end of all the iterations as the final output. Our metric function is based on drug-likeness and
synthesizability.

4 Experiments and Results

4.1 Performance Comparison with DDPM-based baseline

In this section, we compare 3D scaffold generation qualities between TurboHopp and DiffHopp
(Torge et al. [2023]), a DDPM-based scaffold-hopping model. For TurboHopp, we also vary the
number of steps in multi-step generation.

Evaluation Metrics We evaluate sampling quality using several metrics outlined in Torge et al.
[2023] . Drug-likeness and synthetic accessibility are assessed with Bickerton et al. [2012] and Ertl

7

Table 2: TurboHopp VS TurboHopp-RLCM with Metric Sampling. We optimized TurboHopp-
100 with RLCM using rdocking score. Single optimization task is based on multiple reference protein-
ligand complexes of the PDBBind testset; we do not optimize one protein at a time. To fully
support faster parallel multi ligand - multi protein docking, we used AutoDockGPU instead of
QVina2. Binding affinity scores surpassed reference docking scores without losing drug-likeliness
and synthesizability.

Method Connectivity (↑) Diversity (↑) Novelty (↑) QED (↑) SA (↑) Vina (↓) Steps Time

TurboHopp-100metric 0.997±0.06 0.561±0.22 1.000±0.00 0.664±0.19 0.737±0.11 -8.298±1.82 100 7.14
TurboHoppRL-50metric 0.980±0.14 0.869±0.17 0.936±0.17 0.619±0.18 0.680±0.13 -9.804±2.84 50 3.69

PDBBind Test 1.000±0.00 - 1.000±0.00 0.599±0.17 0.742±0.11 -8.643±2.08

and Schuffenhauer [2009] respectively. Connectivity is defined as the percentage of fully connected
molecules without fragments. Diversity is calculated using Tanimoto Dissimilarity, according to
Alhossary et al. [2015]. Novelty is determined by the proportion of molecules that were not present in
the training dataset. Additionally, we use Vina Score from QVina2 Alhossary et al. [2015] to estimate
binding affinity.

Results and Discussion Under the same context conditions, for a batch of 150 molecules, Turbo-
Hopp generates on average 5-30 times faster than baseline model (Torge et al. [2023]). Furthermore,
as shown in Table 1, compared to DMs, performance is superior in all metrics except diversity,
which most likely falls compared to DMs due to the fact that consistency models are trained to
have consistent results for data on the same trajectory. Also as total steps for multi-step generation
increases, we can see an increase in diversity, due to outputs being refined less as steps decrease.

We applied the same score-based sampling method to the baseline model (DiffHoppScored) and
compared to the model without using it (DiffHopp). All metrics rose except binding affinity. However,
in DiffHopp, this method significantly reduces sampling efficiency, as it necessitates more frequent
evaluations of the generated products towards the end. In contrast, TurboHopp had a major increase
in all metrics with a small downside of increased generation time of only a few seconds. This is
possible due to the fact that there are less steps required to generate during multi-step generation,
thus less steps to evaluate afterwards. This illustrates how, with the right methods, efficient sampling
can significantly enhance the search for high-quality molecules within chemical space.

4.2 Performance Optimization using RLCM

In this section, we describe the optimization of our model using two specifically designed reward
functions, each aimed at achieving distinct objectives in molecular design:

• Binding Affinity: To enhance binding affinity, we began training with TurboHopp-100 and
reduced the sampling steps to 50. The reward function is defined as:

rdocking score(s) = −2 {DS(s)−RS(s)}+QED(s) +
10− SA(s)

9
+ C(s) (10)

where DS(s) and RS(s) represent the docking scores of the generated and reference
molecules, respectively, highlighting the importance of relative score differences during
learning. SA(s) signifies synthetic accessibility, and C(s) denotes connectivity. Following
the insights from Lee et al. [2023], we incorporate QED and SA to mitigate reward hacking,
with connectivity included to ensure the structural validity of the molecules.

• Protein Steric Clashes: Steric clashes are defined as interactions where the distance between
a protein and ligand atom is less than their combined van der Waals radii by a tolerance
of 0.5 Å, indicating an energetically unfavorable and often physically implausible pose,
crucial for SBDD performance evaluation. We refer to Harris et al. [2023] for estimating
number of clashes. To robustly manage steric clashes, we retained the original 100 steps
from TurboHopp-100. The corresponding reward function is:

rsteric clash(s) = C(s) +QED(s)− (SC(s)−RSC(s)) (11)

8

Table 3: TurboHopp VS 3D-SBDD inpainting models. Results on models trained on CrossDocked.
"Inpainting" refers to models using inpainting method explained in Algorithm 1. "metric" refers that
inference was done with metric-based sampling. QVina score (kcal/mol) refers to estimated binding
affinity measured by QVina2. Time refers to average time (seconds) required to generate a batch of
molecules per complex. Best metrics are in bold. 2nd best are underlined.

Method Validity(↑) Connectivity (↑) Diversity (↑) Novelty (↑) QED (↑) SA (↑) QVina (↓) Time

TargetDiffinpainting 0.927±0.13 0.826±0.12 0.841±0.13 0.914±0.08 0.424±0.11 0.661±0.14 -5.896±1.93 740.33
DecompDiffinpainting 0.876±0.33 0.722±0.17 0.856±0.21 0.895±0.18 0.420±0.07 0.648±0.15 -6.225±0.87 1263.72

TurboHopp-100 0.990±0.10 0.853±0.36 0.484±0.27 0.936±0.24 0.488±0.21 0.702±0.13 -7.051±2.14 6.17
TurboHopp-100metric 0.993±0.08 0.906±0.29 0.486±0.28 0.935±0.25 0.502±0.21 0.710±0.14 -7.204±2.00 8.18

CrossDocked Test 1.000±0.00 - 1.000±0.00 0.599±0.17 0.476±0.21 0.727±0.14 -7.510±2.36

where SC and RSC denote the steric clash scores for the generated and reference molecules,
respectively, with the difference between these scores included to weigh their importance
accurately.

For both models, we initially optimize QED and Connectivity for 50 and 100 steps, respectively,
and subsequently finetune each task with the defined rewards metrics. Table 2 shows that though
metric-based sampling and RLCM, docking scores surpass those of the training dataset.

Unlike in the reward conditioned image generation setting (Fan et al. [2023b], Black et al. [2024]),
we omit any KL regularization to the base model during training. This decision stems from the
nature of drug discovery where overfitting is less of a concern as long as the model maintains high
scores in targeted areas. Furthermore, we empirically found that our approach does not significantly
compromise diversity and novelty.

Optimization Metrics We optimize TurboHoppRL for the same test set we used for evaluating
TurboHopp (refer to Table 2). Optimization encompasses QED, synthesizability, connectivity, docking
score and number of protein clashes. For training stability and computational efficiency, we utilize
AutodockGPU (Tang et al. [2022]) to estimate binding affinities, replacing QVina2 (Alhossary et al.
[2015]) used for Section 4.1 .

Connectivity

Validity

In
fe

re
nce

Speed

Docking

Score

Uniqueness

Novelty

Q
ED

SAScore

LipinskiScore

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

-8

-6

-4

-2

0.2

0.4

0.6

0.8

4

3

2

1

0.2

0.4

0.6

0.8

0.
20.
40.
60.
8

0.8

0.6

0.4

0.2

Figure 4: Compared to TurboHopp-100 (Red),
TurboHoppRL-50 (Blue) has enhancing binding affin-
ity without losing performance in other metrics.

Fig. 4 and Table 2 compares
TurboHopp-100 and TurboHoppRL-
50. During training, we achieved
higher binding affinity scores of
about 2-3 kcal/mol compared to
TurboHopp-100. Examples can be
found at Fig. 10.

As highlighted in Fig. 7, we also
fine-tuned a model to minimize steric
clashes, achieving promising results
as shown in Fig. 11. However, op-
timizing the reward function further
could further enhance clash minimiza-
tion and improve the balance between
metrics, which we propose as a direc-
tion for future research. While RL
fine-tuned models are not necessar-
ily expected to generalize to unseen
molecules in drug discovery, there
is potential for some generalization
capabilities (Oertell et al. [2024]), a
topic also reserved for future explo-
ration.

9

4.3 Performance Comparison with diffusion-based 3D-SBDD inpainting models

Our model is compared with other diffusion based 3D-SBDD models, Guan et al. [2023] and Guan
et al. [2024]. Inpainting was applied (Lugmayr et al. [2022], Algorithm 4) on recent conditional
de-novo diffusion models to create variations suitable for fair comparison. The same Bemis-Murcko
scaffold determines scaffolds and functional groups. With regards to sampling conditions, the number
of atoms is fixed to the reference scaffold for all models. For Guan et al. [2024], since it additionally
uses bond diffusion, a bond mask was created accordingly, and reference priors are used while
sampling. The sampling hyperparameters for inpainting (resampling and jump length parameters)
were determined by finding the ones with best validity. Also, since these models were trained on
CrossDocked, our model was additionally trained on CrossDocked for fair comparison. The same
train-test split suggested in Guan et al. [2024] is followed, with an additional QED minimum filter of
0.3 when constructing the dataset. Only the alpha carbon residues of the protein pocket atoms are
used to reduce computational burden.

Results and Discussion Table 3 shows that despite having lower diversity, our model has much
faster generation speed as well as relatively high docking score compared to inpainting versions of
reference SBDD models. Our findings show that a custom scaffold-hopping model outperforms a
repurposed de-novo model.

Geometric properties and ring distributions (Appendix E) were also compared. Results show that
our model has closer bond length/angle/atom-atom length distributions to the reference molecules
compared to Guan et al. [2023], but poorer results compared in bond/torsion angles. In all aspects,
Guan et al. [2024] was outstanding largely because it learns the distribution of bonds while ours do
not. For ring distributions, results show that our model is capable of generating similar ring types
compared to the reference. In future research, we plan to design our model to learn bond properties
as well.

5 Conclusion

We introduced TurboHopp, an equivariant conditional consistency model that significantly boosts
generation efficiency and outperforms traditional DDPM-based models in various metrics. Empirical
results indicate that our model achieves a 5-30 times improvement in generation speed while main-
taining or enhancing traditional quality metrics. Additionally, by leveraging this increased inference
speed, we demonstrated that reinforcement learning (RL) is feasible for 3D-SBDD-DMs, enabling
the fine-tuning of generative models to meet specific requirements. Most importantly, our method has
the potential to be adapted to numerous variations explored within 3D-SBDD-DMs, increase speed
and efficiency.

Key areas for improvement and future research include enhancing the denoising model, expanding
dataset size, and diversifying reward functions for drug discovery tasks. Incorporating bond diffusion
(Peng et al. [2023]) and including hydrogens in proteins and molecules could significantly bolster
the robustness of the denoising model. In the consistency model, techniques such as eliminating
the Exponential Moving Average (EMA), adopting Pseudo-Huber loss, and refining noise and loss
schedules may yield more robust outcomes (Song and Dhariwal [2023]). Furthermore, for RLCM,
exploring reward functions that integrate steric energies and interaction fingerprints presents a
promising avenue for future research.

Acknowledgements

This work was supported in part by the National Research Foundation of Korea [NRF-
2023R1A2C3004176]; the Ministry of Health & Welfare, Republic of Korea [HR20C0021(3)];
the ICT Creative Consilience program through the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the MSIT [IITP-2024–2020-0-01819];
the Ministry of Health & Welfare and Ministry of Science and ICT, Republic of Korea [RS-2024-
00462471]; the Artificial intelligence industrial convergence cluster development project funded by
the Ministry of Science and ICT (MSIT, Korea) & Gwangju Metropolitan City; and the Information
and Communications Promotion Fund through the National IT Industry Promotion Agency (NIPA),
funded by the Ministry of Science and ICT (MSIT), Republic of Korea.

10

References
Peter Kirkpatrick and Clare Ellis. Chemical space. Nature, 432(7019):823–824, 2004.

Clemens Isert, Kenneth Atz, and Gisbert Schneider. Structure-based drug design with geometric deep
learning. Current Opinion in Structural Biology, 79:102548, 2023.

Wenhao Gao, Rocío Mercado, and Connor W Coley. Amortized tree generation for bottom-up
synthesis planning and synthesizable molecular design. arXiv preprint arXiv:2110.06389, 2021.

Vendy Fialková, Jiaxi Zhao, Kostas Papadopoulos, Ola Engkvist, Esben Jannik Bjerrum, Thierry
Kogej, and Atanas Patronov. Libinvent: reaction-based generative scaffold decoration for in silico
library design. Journal of Chemical Information and Modeling, 62(9):2046–2063, 2021.

Hannes H Loeffler, Jiazhen He, Alessandro Tibo, Jon Paul Janet, Alexey Voronov, Lewis H Mervin,
and Ola Engkvist. Reinvent 4: Modern ai–driven generative molecule design. Journal of Chemin-
formatics, 16(1):20, 2024.

Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Generating 3d molecules conditional on
receptor binding sites with deep generative models. Chemical science, 13(9):2701–2713, 2022.

Shitong Luo, Jiaqi Guan, Jianzhu Ma, and Jian Peng. A 3d molecule generative model for structure-
based drug design. arXiv preprint arXiv:2203.10446, 2022.

Benoit Baillif, Jason Cole, Patrick McCabe, and Andreas Bender. Deep generative models for 3d
molecular structure. Current Opinion in Structural Biology, 80:102566, 2023.

Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2mol: Efficient
molecular sampling based on 3d protein pockets. In International Conference on Machine Learning,
pages 17644–17655. PMLR, 2022.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning, 2024.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. arXiv preprint arXiv:2311.12908, 2023.

Daeseok Lee and Yongjun Cho. Fine-tuning pocket-conditioned 3d molecule generation via rein-
forcement learning. In ICLR 2024 Workshop on Generative and Experimental Perspectives for
Biomolecular Design, 2024.

Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equiv-
ariant diffusion for target-aware molecule generation and affinity prediction. arXiv preprint
arXiv:2303.03543, 2023.

Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang,
and Quanquan Gu. Decompdiff: diffusion models with decomposed priors for structure-based
drug design. arXiv preprint arXiv:2403.07902, 2024.

Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell,
Pietro Lió, Carla Gomes, Max Welling, et al. Structure-based drug design with equivariant diffusion
models. arXiv preprint arXiv:2210.13695, 2022.

Jos Torge, Charles Harris, Simon V Mathis, and Pietro Lio. Diffhopp: A graph diffusion model for
novel drug design via scaffold hopping. arXiv preprint arXiv:2308.07416, 2023.

Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal Frossard,
Max Welling, Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion model
for molecular linker design. Nature Machine Intelligence, pages 1–11, 2024.

Iiris Sundin, Alexey Voronov, Haoping Xiao, Kostas Papadopoulos, Esben Jannik Bjerrum, Markus
Heinonen, Atanas Patronov, Samuel Kaski, and Ola Engkvist. Human-in-the-loop assisted de novo
molecular design. Journal of Cheminformatics, 14(1):86, 2022.

11

Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, and
Stan Z Li. A survey on generative diffusion models. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Owen Oertell, Jonathan D Chang, Yiyi Zhang, Kianté Brantley, and Wen Sun. Rl for consistency
models: Faster reward guided text-to-image generation. arXiv preprint arXiv:2404.03673, 2024.

Charles Harris, Kieran Didi, Arian Jamasb, Chaitanya Joshi, Simon Mathis, Pietro Lio, and Tom
Blundell. Posecheck: Generative models for 3d structure-based drug design produce unrealistic
poses. In NeurIPS 2023 Generative AI and Biology (GenBio) Workshop, 2023.

Hongmao Sun, Gregory Tawa, and Anders Wallqvist. Classification of scaffold-hopping approaches.
Drug discovery today, 17(7-8):310–324, 2012.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pages 8867–8887.
PMLR, 2022.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation, 2023.

Lei Huang, Hengtong Zhang, Tingyang Xu, and Ka-Chun Wong. Mdm: Molecular diffusion model
for 3d molecule generation, 2022.

Zhilin Huang, Ling Yang, Zaixi Zhang, Xiangxin Zhou, Yu Bao, Xiawu Zheng, Yuwei Yang, Yu Wang,
and Wenming Yang. Binding-adaptive diffusion models for structure-based drug design. arXiv
preprint arXiv:2402.18583, 2024.

Ilia Igashov, Hannes Stärk, Clément Vignac, Victor Garcia Satorras, Pascal Frossard, Max Welling,
Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion models for molecular
linker design. arXiv preprint arXiv:2210.05274, 2022.

Paul G Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B Iovanisci, Ian Snyder,
and David R Koes. Three-dimensional convolutional neural networks and a cross-docked data set
for structure-based drug design. Journal of chemical information and modeling, 60(9):4200–4215,
2020.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887–2893, 1996.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022.

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron Dror.
Learning from protein structure with geometric vector perceptrons. In International Conference on
Learning Representations, 2020.

Zhiguang Fan, Yuedong Yang, Mingyuan Xu, and Hongming Chen. Ec-conf: An ultra-fast diffu-
sion model for molecular conformation generation with equivariant consistency. arXiv preprint
arXiv:2308.00237, 2023a.

12

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhaolin Gao, Jonathan D. Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley,
Thorsten Joachims, J. Andrew Bagnell, Jason D. Lee, and Wen Sun. Rebel: Reinforcement learning
via regressing relative rewards, 2024.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1:1–11, 2009.

Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast, accurate,
and reliable molecular docking with quickvina 2. Bioinformatics, 31(13):2214–2216, 2015.

Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
distribution generation. In International Conference on Machine Learning, pages 18872–18892.
PMLR, 2023.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. arXiv preprint arXiv:2305.16381, 2023b.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning, 2024.

Shidi Tang, Ruiqi Chen, Mengru Lin, Qingde Lin, Yanxiang Zhu, Ji Ding, Haifeng Hu, Ming Ling,
and Jiansheng Wu. Accelerating autodock vina with gpus. Molecules, 27(9):3041, 2022.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 11461–11471, 2022.

Xingang Peng, Jiaqi Guan, Qiang Liu, and Jianzhu Ma. Moldiff: addressing the atom-bond in-
consistency problem in 3d molecule diffusion generation. arXiv preprint arXiv:2305.07508,
2023.

13

https://arxiv.org/abs/1707.06347

A Algorithm Pseudocode

In this section we present the pseudocode for consistency model training (Algorithm 1), consistency
model sampling (Algorithm 2), RL training (Algorithm 3), and inpainting. (Algorithm 4)

Algorithm 1 Training
1: Input: dataset D = {(Zi, ui)}i∈M , where M refers to the number of data points in D, Zi is

composed of xi and hi, initial model parameter θ, learning rate η, step schedule N (·), EMA
decay rate schedule µ(·), θ− ← θ and k ← 0;

2: repeat
3: Sample z, u ∼ D, and n ∼ U [1, N(k)− 1];
4: Decompose z into x and h;
5: Sample ϵv ∼ N (0, I) for v ∈ {x, h};
6: Subtract center of gravity from ϵx;
7: Define fn,v

θ ← fθ(v + tn · ϵv, tn|u) for v ∈ {x, h};
8: L(θ, θ−)←∑

v∈{x,h} MSE(fn+1,v
θ , fn,v

θ);
9: θ ← θ − η∇θL(θ, θ

−);
10: θ− ← µ(k)θ− + (1− µ(k))θ;
11: k ← k + 1;
12: until convergence

Algorithm 2 Sampling with Scoring and Selection
1: Input: Consistency model fθ(·, ·) = (fx

θ ,fh
θ), sequence of time points {τ1, τ2, . . . , τN−1} where

τ1 > τ2 > . . . > τN−1, evaluation starting point m, where 1 ≤ m ≤ N − 1
2: Sample ϵx ∼ N (0, I) and ϵh ∼ N (0, I)
3: Subtract center of gravity from ϵx
4: ϵ← [ϵx, ϵh]

5: Z̃T ← ϵ
6: z ← fθ(Z̃T , T |u)
7: Initialize max_score← −∞
8: Initialize Zbest ← null
9: for n = 1 to N − 1 do

10: Sample ϵx ∼ N (0, I) and ϵh ∼ N (0, I)
11: Subtract center of gravity from ϵx
12: ϵ← [ϵx, ϵh]

13: Z̃τn ← z +
√
τn − τn+1 · ϵ

14: z ← fθ(Z̃τn , τn|u)
15: if n ≥ m then
16: score← CustomScore(z)
17: if score > max_score then
18: max_score← score
19: Zbest ← z
20: end if
21: end if
22: end for
23: output: Zbest

14

Algorithm 3 Policy Gradient Version of RLCM
1: Input: Consistency model policy πθ = fθ(·, ·) + ε, finetune horizon H , context set set C, batch

size b, inference pipeline P
2: for i = 1 to M do
3: Sample b contexts from C, u ∼ C.
4: Z ← P (fθ, H,u) ▷ where Z is the batch of molecules
5: Normalize rewards r(·, ·) per context
6: Split Z into k minibatches.
7: for each minibatch do
8: for t = 0 to H do
9: Accumulate gradients of θ using rule:

∇θ

[
min

{
r(x0, c) ·

πθi+1
(at|st)

πθi(at|st)
, r(x0, c) · clip

(
πθi+1

(at|st)
πθi(at|st)

, 1− ε, 1 + ε

)}]
10: end for
11: Update parameters based on accumulated gradients.
12: end for
13: end for
14: Output trained consistency model fθ(·, ·)

Algorithm 4 TargetDiff/DecompDiff Inpainting Procedure
Set number of atoms to generate based on reference scaffold. Get scaffold mask m.
Move center of mass of protein atoms to zero.
Sample initial molecular atom coordinates xT ∼ N (0, I)

4: Sample initial bond types/atom types by vT = one_hot(argmaxi gi), where g ∼ Gumbel(0, 1)
for t = T, . . . , 1 do

for u = 1, . . . , U do
1) Get known

8: xknown
t−1 =

√
αtx0 + (1− αt)ϵ, where ϵ ∼ N (0, I)

log c = log(αtv0 + (1− αt)/K)
vknown
t−1 = one_hot(argmaxi[gi + log ci]), where g ∼ Gumbel(0, 1)

2) Get unknown
12: xunknown

t−1 = 1√
αt

(
xt − βt√

1−αt
eθ(xt, t)

)
+ σtz, z ∼ N (0, I)

vunknown
t−1 = Compute the posterior atom types c(vt, eθ(vt, t))

3) Merge according to mask m
xt−1 = m⊙ xknown

t−1 + (1−m)⊙ xunknown
t−1

16: vt−1 = m⊙ vknown
t−1 + (1−m)⊙ vunknown

t−1
if u < U and t > 1 then

Sample xt from the posterior qθ(xt−1 | xt)
Sample vt from the posterior qθ(vt−1 | vt)

20: end if
end for

end for
return M with coordinates x0 and atom types/ bond types v0

15

B Information on Hyperparameters and Experiment Details

Parameter setting for TurboHopp
Setting Parameters

TurboHopp
Denoiser: GVP

layers: 6
hidden features: 256
GNN layers: 7
Attention: True
Embedding size: 64

Optimizers: Adam
γ: 1e-3
β: (0.9, 0.995)

Dataset: PDBBind filtered
Device: 4x NVIDIA A100 GPUs

timesteps: 150, 100, 50, 25
batch size: 256
lr: 1e-4
schedule: ReduceLROnPlateau (min: 1e-6, factor:
0.9)
num epochs: 5500
σmin: 0.002
σmax: 80.0
σdata: 0.5
ρ: 7.0

Parameter setting for RLCM

Setting Parameters

Parameters for Docking Objective and Steric
Clashes
Dataset: PDBBind filtered test set
Device: 8x NVIDIA A100 GPUs

gradient accumulation steps: 1
batch size: 215
num epochs: 200
sample iters: 1
buffer size: 32
min count: 16
train batch size per gpu: 215
num inner epochs: 1
lr: 1e-5
clip range: 1e-4
max grad norm: 10

16

C RLCM and Consistency Model Training Curves

For reproducibility, we present the curves from our training runs for both the consistency model and
the use of RLCM.

0 10 20 30 40 50

Epochs

−10.50

−10.25

−10.00

−9.75

−9.50

−9.25

−9.00

−8.75

−8.50

Mean Docking Score

0 10 20 30 40 50

Epochs

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

Mean SA

0 10 20 30 40 50

Epochs

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Mean Connectivity

0 10 20 30 40 50

Epochs

0.50

0.52

0.54

0.56

0.58

Mean QED

0 10 20 30 40 50

Epochs

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Mean Reward

Figure 5: Training curves for the metrics which compose of the loss function. Notice that all either
increase or maintain approximately the same value. Connectivity and QED score slightly decrease
because we start from a previously RL finetuned checkpoint which optimizes only for connectivity,
SA, and QED score.

0 500 1000 1500 2000 2500 3000

Iterations

0.0

0.5

1.0

1.5

2.0

V
al

id
at

io
n

T
ot

al
L

os
s

TurboHopp150

0 500 1000 1500 2000 2500

Iterations

0.0

0.5

1.0

1.5

2.0

V
al

id
at

io
n

T
ot

al
L

os
s

TurboHopp100

0 500 1000 1500 2000 2500

Iterations

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

V
al

id
at

io
n

T
ot

al
L

os
s

TurboHopp50

0 500 1000 1500 2000 2500

Iterations

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

V
al

id
at

io
n

T
ot

al
L

os
s

TurboHopp25

Figure 6: Training curves of total validation loss for different step size variants. We train a number
of consistency models to empirically determine the optimal tradeoff between step size fidelity and
speed. Turbohopp25 had low validity and proved to be too unstable for consistent generations.

17

1
0

50

100

150

200

250

C
la

sh
es

Initial Checkpoint

1
0

50

100

150

200

250

C
la

sh
es

Final Checkpoint

Figure 7: Plot of clashes before and after finetuning with a reward function mentioned in the main text.
The initial Turbohopp-100 model was a RLCM finetuned model for connectivity, synthesizability, and
QED score (rsteric clash. Notice the shift toward smaller number of clashes during training. However,
we believe that further iteration of the reward function will lead to more effective finetuning but we
leave this to future work.

18

D Sample Molecules

𝝉𝒃𝒆𝒔𝒕

𝝉𝒍𝒂𝒔𝒕

0.846 0.720 0.818 0.877 0.862

0.461 0.449 0.431 0.429 0.295

Figure 8: Examples of samples generated for PDB 6QQW with drug-likeliness. 1st row samples
collected during multi-step phase with best scores and 2nd row indicates samples from the final step.
Connectivity and overall metrics increased when we adopted custom score-based sampling.

-8.44 kcal/mol -8.64 kcal/mol

-8.56 kcal/mol-7.71 kcal/mol

Reference: -7.60 kcal/mol

Figure 9: Scaffolds generated for PDB ID 6E6W by TurboHopp-100. Reference molecule is in yellow,
while generated molecules are in green. Functional groups are the carboxylic acid and hydroxyl
groups in the upper corner. Dotted lines in refer to ligand-receptor intermolecular interactions: green,
blue, yellow, purple being pi-cation, pi-pi stacking, hydrogen bonds, halogen bonds respectively.
Compared to reference molecule, generated molecules had new interactions and higher binding
affinity, while maintaining similar binding pose.

19

6G2O

6N8X

6E6W

6NPP

-9.34 kcal/mol -9.62 kcal/mol -11.85 kcal/mol

-5.23 kcal/mol -5.41 kcal/mol -9.36 kcal/mol

-8.15 kcal/mol -8.24 kcal/mol -10.64 kcal/mol

-7.56 kcal/mol -7.68 kcal/mol -10.09 kcal/mol

Figure 10: Comparison of Reference molecule(Yellow), and molecules generated by Turbo-
Hopp(Green) and TurboHopp-RL(Orange). Notice that Turbohopp and TurboHopp-RL generate
molecules that have higher binding affinity with the protein.

20

6JSF

6QR9

6IBZ

6QMR

Figure 11: Comparison of Reference molecule(Yellow), and molecules generated by Turbo-
Hopp(Green) and TurboHopp-RL(Orange). Red box indicates collision points with protein atoms.
TurboHopp-RL generates molecules that has less clashes with the protein.

21

E Geometric Properties Comparison between TurboHopp and 3D-SBDD
inpainting models

Table 4: Jensen-Shannon divergence between bond distance distributions of generated VS refer-
ence(CrossDocked)

Bond TargetDiffinpainting DecompDiffinpainting TurboHopp-100
C–C 0.4984 0.2516 0.4376
C=C 0.6303 0.2962 0.4743
C–N 0.4833 0.2188 0.4178
C=N 0.6300 0.3913 0.5339
C–O 0.3882 0.2841 0.3809
C=O 0.3953 0.2395 0.3552
C:C 0.6829 0.2058 0.5562
C:N 0.6705 0.2734 0.5743

Table 5: Jensen-Shannon divergence between atom-atom distance distributions of generated VS
reference(CrossDocked)

Bond TargetDiffinpainting DecompDiffinpainting TurboHopp-100
C-C 0.55 0.28 0.45
all 0.17 0.08 0.13

Table 6: Percentage of different ring sizes for reference(CrossDocked) and model-generated
molecules.

Ring Size Ref. TargetDiffinpainting DecompDiffinpainting TurboHopp-100
3 1.70 4.77 0.00 7.85
4 0.00 1.12 4.00 0.81
5 30.20 30.08 37.21 21.16
6 67.40 57.91 41.70 62.51
7 0.70 5.28 14.06 6.19
8 0.00 0.81 2.54 1.12
9 0.00 0.05 0.48 0.31

Table 7: Jensen-Shannon Divergence of Top 3 Torsion Angle Distributions (CrossDocked)

Metric DecompDiffinpainting TargetDiffinpainting TurboHopp
CCNC 0.184 0.204 0.207
CCCC 0.264 0.249 0.197
C:C:C:C 0.178 0.258 0.383

Table 8: Jensen-Shannon Divergence of Top 5 Bond Angle Distributions (CrossDocked)

Metric DecompDiffinpainting TargetDiffinpainting TurboHopp
CNC 0.208 0.274 0.321
CCN 0.168 0.207 0.332
C:C:C 0.096 0.120 0.324
CCC 0.231 0.231 0.298
CCO 0.229 0.263 0.319

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have claimed our model’s performance and contributions based on empiri-
cal findings and experimental results. Our model can be easily adapted to similar frameworks
using diffusion models for drug discovery.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have added limitations and possible further research studies in the conclu-
sion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [NA]
Justification: Our focus remains on empirical findings and application, bypassing the need
for formal theoretical frameworks or validations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will share our code/checkpoints upon acceptance. In the paper, we provide
the algorithms for training model, RL, and inference. We also share training curves for
model training and RL as well as hyperparameters required to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

24

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the data we used to train our model, and upon code release, we
will specify preprocessing code ,modifications, as well as environment for reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the hyperparameters in the appendix. Further, we use a standardized
dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All claims of statistical significance were justified through a number of trials.
Multiple seeds are not needed for RLCM since we are applying a method previously shown
to work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the compute resources required in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes we read the ethics guidlines and are abiding by them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please check the conclusion section of the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Models are not yet going to be released and we will take into account proper
safeguards when releasing models with high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All terms of use and licences are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not do any crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not do crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Works
	Scaffold Hopping
	Diffusion-Based Molecular Generative Models and Limitations
	Consistency Models
	RL for Consistency Models

	Methods
	Notations and Problem Definition
	Background
	Model Architecture
	Model Training
	Reinforcement Learning Architecture
	Metric-based Sampling

	Experiments and Results
	Performance Comparison with DDPM-based baseline
	Performance Optimization using RLCM
	Performance Comparison with diffusion-based 3D-SBDD inpainting models

	Conclusion
	Algorithm Pseudocode
	Information on Hyperparameters and Experiment Details
	RLCM and Consistency Model Training Curves
	Sample Molecules
	Geometric Properties Comparison between TurboHopp and 3D-SBDD inpainting models

