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[Masking - Text Element]

Instr: Add a cartoon image of a boy with a big smile and 
two fingers up in a peace sign to the top right corner. Ensure 
the boy's head and arms are visible, and the cartoon figure 
should not overlap with the text in the top or in the middle.

[Inpainting - Non-Text Element]

[Masking - Non-Text Element]

[Inpainting - Text Element]

Instr: Locate the "Some of the causes" section. Delete the 
text with red bullets in this section including the red bullets.

Instr: Locate the pen illustration at the bottom right of the 
document, near the line above the footer. Remove the pen 
illustration entirely.

Instr:  1. Add a Title:

   - Location: Top-center of the document.

   - Content: "ふすま100%で作る\nゴーフルのレシピ".

2. Adjust Text Alignment:

   - Ensure the newly added title is centered at the top of the 
document, above the existing text.

Figure 1: We introduce ADOPD-Instruct, a large-scale multimodal dataset designed for document
editing tasks. ADOPD-Instruct includes comprehensive instructions for entity-level editing, encom-
passing both textual content and non-text design elements in visually-rich documents. Each example
includes the original document, the segmentation mask indicating the element to be edited, the target
document after editing, and a human-curated instruction.

ABSTRACT

Visually-rich document editing is a complex multimodal task with a wide range
of real-world applications. Despite increasing interest, there is a significant
lack of publicly available datasets offering detailed entity-level annotations and
step-by-step instructions for the editing process. To address this, we introduce
ADOPD-Instruct, a multimodal dataset designed specifically for document edit-
ing tasks. ADOPD-Instruct includes visually-rich documents, precise entity-level
masks highlighting elements to be edited, and step-by-step edit instructions, tar-
geting both the masking and inpainting processes for text and non-text design
elements. ADOPD-Instruct instructions have been carefully curated by human
annotators to ensure high quality across the dataset. We conduct extensive evalua-
tions of current Multimodal Large Language Models (MLLMs) and image editing
models using various image backbones to assess their performance on document
editing. The results reveal substantial challenges: current MLLMs struggle to
generate accurate and detailed instructions, while image editing models often fail
to follow instructions precisely, particularly with text edits. These findings under-
score the limitations of existing models and highlight the importance of annotated
datasets like ADOPD-Instruct for advancing this domain. Dataset is available at:
https://huggingface.co/datasets/adopd-instruct/ADOPD-Instruct.
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1 INTRODUCTION

Visually-rich document editing is a crucial task with a wide range of downstream applications, from
automated document generation to personalized document creation, where precise edits can signifi-
cantly impact the quality and effectiveness of the final product. Despite its importance, progress in
automated document editing has been limited, largely due to the lack of comprehensive document
datasets with fine-grained, entity-level dense annotations of edits across different modalities.

Previous efforts in creating visually rich document datasets (Zhong et al., 2019; Li et al., 2020;
Pfitzmann et al., 2022; Cheng et al., 2023) have focused primarily on annotating document labels
for layout analysis. These annotations, which include categories like title, section, paragraph, figure,
and table, are more suited for layout manipulations than for content editing. In contrast, ADOPD (Gu
et al., 2024), a public document decomposition dataset, introduce entity-level annotations that better
align with document editing tasks. However, ADOPD lacks accompanying annotations or instruc-
tions for the editing process, limiting its applicability. Recently, DocEdit (Mathur et al., 2023) offers
a fixed set of commands for editing, but the usecase is retricted to structured document files.

Table 1: Comparison of ADOPD-Instruct
with related document datasets.

Dataset Size Segmentation? Instr.?
PubLayNet 360k Layout-level ✗
DocBank 500k Layout-level ✗
DocLayNet 81k Layout-level ✗
M6Doc 9k Layout-level ✗
ADOPD 120k Entity-level ✗
DocEdit 28k Layout-level ✓

ADOPD-Instruct 181k Entity-level ✓

To address the issue of data scarcity, we intro-
duce ADOPD-Instruct, a publicly available multimodal
dataset with detailed annotations and step-by-step in-
structions for entity-level editing in visually-rich docu-
ments. Table 1 compares other visually-rich document
datasets with our ADOPD-Instruct. ADOPD-Instruct
is built upon ADOPD (Gu et al., 2024) documents. We
first use GPT-4o (OpenAI, 2024) to generate initial edit-
ing instructions, which are then refined by human anno-
tators to ensure accuracy and validity. Given the com-
plexity of document editing, ADOPD-Instruct focuses on two key document editing processes,
namely Masking and Inpainting. Recognizing the multimodal nature of the task, we treat text and
non-text element editing as distinct subtasks, collecting separate instructions for each.

We conduct extensive experiments to evaluate the performance of current models on visually-rich
document understanding and editing tasks. Human assessments of GPT-4o-generated instructions
indicate that while the model demonstrates considerable potential, there are still common errors such
as inaccurate descriptions, incomplete edits, and omissions of crucial details for reconstruction. We
further evaluate eight open-source multimodal large language models (MLLMs) on a simplified
document editing setup where only a single text or non-text design element is edited. Experimental
results show that the instructions generated by current open-source MLLMs did not fully achieve
the level of detail and precision found in human-written instructions when describing intricate edits
between visually-rich documents.

We further evaluate four image editing models on instruction-guided document editing tasks. The
results indicate that these models face challenges in following detailed, multi-step instructions, par-
tially due to the gap between the long and complex instructions required for document editing and
the simpler, single-step instructions on which the models were originally trained. Additionally, we
observe that Stable Diffusion-based models encountered difficulties when inpainting text elements,
further highlighting the limitations of current models in handling document-specific edits. These
findings emphasize the need for continued research and the development of datasets like ADOPD-
Instruct, which can provide more suitable benchmarks for advancing document editing capabilities.

Our contributions are summarized as follows:

• We curate ADOPD-Instruct, a large-scale multimodal dataset with entity-level annotations and
step-by-step instructions for visually-rich document editing, with a particular emphasis on the
Masking and Inpainting of both text elements and non-text design components.

• We conduct extensive empirical studies on ADOPD-Instruct to evaluate the performance of state-
of-the-art MLLMs in visually-rich document understanding, as well as the efficacy of leading
image editing models in document editing tasks.

• We highlight the limitations of current MLLMs and image editing models in performing visually-
rich document editing tasks, emphasizing the necessity for more sophisticated methodologies to
enhance model performance in this domain.
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2 RELATED WORK

2.1 VISUALLY-RICH DOCUMENT DATASET

Visually-rich document (VRD) datasets are essential for advancing document study. Pub-
LayNet (Zhong et al., 2019), DocBank (Li et al., 2020), DocLayNet (Pfitzmann et al., 2022)
and M6Doc (Cheng et al., 2023) provide large-scale labeled datasets for understanding document
layout structures, focusing on the segmentation of elements like paragraphs, images, and tables.
RVL-CDIP (Harley et al., 2015) and FUNSD (Jaume et al., 2019) focus on document classifi-
cation and form understanding, enabling models to handle complex documents with varied for-
mats. XFUND (Xu et al., 2022) incorporates multilingual annotations and entity linking for vi-
sually complex forms. The ADOPD dataset (Gu et al., 2024) enhances document analysis with
high-quality document images and dense annotations for visual entities and text bounding boxes.
DocEdit (Mathur et al., 2023) explores document editing using a fixed set of commands, but fo-
cus more on modifying structured document files. Related to this line, TRIN (Zhang et al., 2024)
collects a dataset with text-rich images with captions, text bounding boxes, and QA instructions;
and LayoutLLM (Luo et al., 2024) specifically incorporates layout-aware information in its training
dataset related to documents. While much efforts on dataset have been made in VRD, there is
currently no publicly available dataset specifically tailored for fine-grained entity-level document
editing or generation. This gap highlights the need for comprehensive datasets that facilitate diverse
fine-grained editing tasks in visually-rich documents.

2.2 INSTRUCTION-GUIDED IMAGE EDITING

Instruction-guided image editing has gained significant attention due to its potential for intuitive,
user-driven modifications. Early approaches, such as GAN-based models (Isola et al., 2017) and
VAEs (Kingma & Welling, 2014), primarily target tasks like object removal, inpainting, and style
transfer. Methods like DeepFill (Yu et al., 2018; 2019) and EdgeConnect (Nazeri et al., 2019)
advance inpainting by utilizing contextual cues, though they typically require manual masks or
simple prompts. LaMa (Suvorov et al., 2022), incorporating Fast Fourier Convolutions, further
improved natural image inpainting and removal tasks. Recent advancements in instruction-based
image editing leverage multimodal models such as Stable Diffusion (Rombach et al., 2022), In-
structPix2Pix (Brooks et al., 2023), and DALLE-2 (Ramesh et al., 2022), and excel in scene-level
manipulation. However, existing models are primarily trained on natural image datasets and strug-
gle with fine-grained entity-level editing in visually-rich documents, particularly when handling text
and complex design elements. Text-Diffuser (Chen et al., 2023a; 2024a) has made progress in text
generation using diffusion models, but it faces challenges in generating or editing longer and more
complex text sequences, which is a common scenario in document editing. GlyphDraw (Ma et al.,
2023; 2024) investigates text rendering in image generation by conditioning on glyph information.
DnD-Transformer (Chen et al., 2024b) introduces an innovative depth dimension for autoregression
alongside the traditional spatial dimension, demonstrating potential for improving text rendering in
image generation tasks. Overall, most existing models are optimized for natural images and lack
the multimodal reasoning and fine-grained understanding required for editing intricate document
structures that involve both text and design components. Various datasets have been proposed for
image editing tasks, including MagicBrush (Zhang et al., 2023), Emu Edit (Sheynin et al., 2024),
HQ-Edit (Hui et al., 2024), and UltraEdit (Zhao et al., 2024). However, the source images in these
datasets primarily consist of natural images from databanks such as MSCOCO, or model-generated
images. These sources differ significantly from the document images used in our dataset, highlight-
ing the unique nature and focus of our work.

3 ADOPD-INSTRUCT DATASET

3.1 TASK FORMULATION FOR VISUALLY-RICH DOCUMENT EDITING

ADOPD-Instruct is a multimodal dataset curated for the intrinsic entity-level editing in visually-
rich documents. We decompose the document editing process into two primary tasks: Masking
and Inpainting. Figure 1 provides illustrative examples of these two tasks. Each data instance in
ADOPD-Instruct comprises a visually-rich document image Idoc, a detailed step-by-step instruc-
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(a) Annotated #text-element for each
document.

(b) #Token in instructions for the
two document editing tasks.

(c) Relative sizes of the text or
non-text elements for editing.

Figure 2: Distributions relevant to ADOPD-Instruct dataset. (a) The histogram plot of the number of
annotated text elements for each document with the lineplot showing the cumulative percentage. (b)
Distribution of the number of tokens in instructions for documents in the Masking and Inpainting
tasks. (c) Distribution of the relative size of the annotated text and non-text design elements for
editing compared to the full canvas, with the x-axis on log-scale.

tion tinstr describing the editing procedure, an object-level segmentation masks Imask indicating the
precise location of the edits, and the corresponding target document image Îdoc post-edit.

The dataset offers fine-grained and context-aware descriptions of the editing process, with a focus
on both text and non-text design elements within the document. In the Masking process, the ob-
jective is to effectively remove specified design elements, ensuring the result is visually coherent.
Conversely, the Inpainting process involves reconstructing design elements based on provided in-
structions. For text elements, these instructions specify not only the text content but also details such
as text alignment. For non-text design elements, the instructions encompass the visual characteris-
tics necessary for accurate reconstruction. This dual-task setup allows ADOPD-Instruct to support
a wide range of document editing scenarios, thereby advancing research in automated document
design and modification.

3.2 DATA CURATION PROCESS

Initial Data Collection. The construction of our dataset builds on visually-rich documents from
the ADOPD dataset (Gu et al., 2024). ADOPD offers high-quality document images with dense
annotations, including text bounding boxes, segmentation masks for visual elements, and document
images with masked-out elements.

Model-Assisted Data Annotation. We use GPT-4o (OpenAI, 2024) to generate step-by-step in-
structions for document editing. Specifically, we input the document images Idoc and Îdoc, along
with the segmentation mask Imask, prompting the model to describe the editing process required to
transform Idoc into Îdoc. For the Masking task, Idoc represents the original document image, while
Îdoc is the corresponding ground truth with the designated elements masked. Conversely, in the
Inpainting task, Idoc is the masked document image, and Îdoc is the original complete document.

Table 2: Results of manual
verification for 6k randomly
sampled GPT-4o-generated
instructions describing the
document editing process.

% of 6k Instructions
Wrong Edit 43.55%
Incomplete Edit 15.12%
Hallucination 2.93%
Wrong Location 1.63%

While the instructions are primarily written in English, the doc-
ument editing tasks often involve content in multiple languages.
This is particularly true for edits on text elements in our ADOPD-
Instruct dataset, which includes multilingual documents with non-
alphabetic characters such as Korean, Japanese, and Chinese, etc.
GPT-4o demonstrates strong OCR capabilities, enabling it to detect
and transcribe foreign characters into the initial instruction drafts.
This preliminary transcription facilitates the human curation pro-
cess, especially in multilingual contexts.

Human Verification and Curation. As noted in prior stud-
ies(Yin et al., 2023; Huang & Zhang, 2024), MLLM-generated con-
tent often suffers from issues such as hallucination, factual inaccu-
racies, and inconsistencies. Table 2 summarizes the common errors
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found in GPT-4o-generated instructions, based on manual inspection of 6k examples from the previ-
ous MLLM-assisted annotation process. To address these issues, we employ human annotators from
LabelBox1 to review and curate the instructions. Annotators evaluated each image pair pIdoc, Îdocq

alongside the corresponding instruction tinstr, ensuring clarity, precision, and completeness. When
errors such as wrong edits, incorrect locations, incomplete steps, or hallucinations were identified,
instructions were manually refined to ensure accurate editing.

3.3 EXPLORING ADOPD-INSTRUCT

Table 3: Statistics of ADOPD-Instruct.

Task Edit Object Type Size

Masking
Single Text Element 42k
Single Non-Text Element 32k
All Text Elements 14k

Inpainting
Single Text Element 44k
Single Non-Text Element 34k
All Text Elements 15k

Statistics. Table 3 presents the number of examples
for each document editing task in ADOPD-Instruct.
Based on the document decomposition annotations from
ADOPD (Gu et al., 2024), ADOPD-Instruct includes
tasks involving editing a single text or non-text design el-
ement, as well as a more complex setup where all anno-
tated text elements in visually-rich documents are masked
or inpainted. Figure 2(a) shows the number of text ele-
ments in ADOPD-Instruct documents. Figure 2(b) shows
the distribution of instruction lengths for the two editing
tasks. For Masking, the mean and median number of tokens are 95.5 and 80.0, respectively, while
for Inpainting, the mean is 138.4 and the median 108.0. Instructions for the Inpainting task are
generally longer due to the need for additional details, including the position of the edit, the content
to be added, and layout, alignment, font or color specifications, etc.

Granularity of Design Element. Figure 2(c) illustrates the distribution of relative sizes for each
element annotated in the document editing tasks. For text elements, the mean and median relative
sizes compared to the full design canvas are 3.1% and 1.5%, with a standard deviation of 4.4%. In
contrast, for non-text design elements, the mean is 5.6%, the median 1.0%, and the standard de-
viation is significantly higher at 15.8%. These statistics suggest that ADOPD-Instruct focuses on
intrinsic document editing for well-cropped design components, as the elements being edited are
generally small. This setup aligns with common scenarios where users adjust specific design ele-
ments within visually-rich documents. Additionally, the relatively fixed sizes of text spans contrast
with the broader range of shapes and sizes for non-text elements, making ADOPD-Instruct both
diverse and challenging.

4 EXPERIMENTS

4.1 INSTRUCTION GENERATION FOR DOCUMENT EDITING

Task Setup. To assess how well existing open-source MLLMs can identify and describe intrinsic
document edits with detailed instructions, we first evaluate their performance in generating step-by-
step instructions for document editing. The MLLMs are provided with an input design document, a
mask image indicating the edit location, and the corresponding target document after the edits. The
tested MLLMs are then asked to generate instructions to describe the editing process. We create a
test set of 4k examples from ADOPD-Instruct, with 2k for Masking and 2k for Inpainting, equally
divided between text and non-text elements. To simplify the setup, we focus on examples where
only a single text or non-text design element is edited.

Baseline Models. We evaluate eight open-source MLLMs that support multiple image inputs dur-
ing inference: (1) Otter-7B (Li et al., 2023b), built on OpenFlamingo (Awadalla et al., 2023; Zhu
et al., 2023), with additional instruction tuning on MIMIC-IT (Li et al., 2023a); (2) IDEFICS-
9B (Laurençon et al., 2023), another reproduction of Flamingo (Alayrac et al., 2022); (3) FUYU-
8B (Bavishi et al., 2023), which uses a decoder-only transformer that processes images as linearly
projected patches, without a dedicated visual encoder; (4) mPLUG-Owl-7B (Ye et al., 2024), which
combines a ViT-L/14 visual encoder (Dosovitskiy et al., 2021) with LLaMA-7B (Touvron et al.,
2023) as the LLM backbone; (5) mPLUG-Owl3-7B (Ye et al., 2024), leveraging Siglip-400M (Zhai

1https://labelbox.com/

5

https://labelbox.com/


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 4: We ask the MLLMs to generate instructions describing the editing process dealing with a
single text or non-text elements, and evaluate the quality of the generated instructions with the fol-
lowing automatic metrics: BLEU-4 (B-4), ROUGE (R.), METEOR (M.), CIDEr (C.), BERTScore
(BERTS.), and CLIPScore (CLIPS.). Values in bold are the top-performer while values with
underline rank the second.

Task Model Text Elements Non-Text Elements
B-4 R. M. C. BERTS. CLIPS. B-4 R. M. C. BERTS. CLIPS.

Masking

Otter-7B 1.39 15.52 6.46 0.41 78.67 54.05 1.50 15.51 6.54 0.52 78.29 55.89
FUYU-8B 0.80 6.72 4.25 0.16 77.63 63.37 0.56 5.71 3.56 0.05 76.80 62.09
IDEFICS-9B 4.44 13.29 11.28 0.23 80.12 49.01 4.17 12.71 11.10 0.08 80.19 50.68
mPLUG-Owl-7B 10.88 28.41 19.36 0.75 85.82 61.68 10.52 27.93 19.79 0.51 86.13 61.00
mPLUG-Owl3-7B 0.01 6.89 2.20 0.14 82.87 51.93 0.01 7.56 2.51 0.13 83.39 53.56
InternVL1.5-26B 9.75 25.71 18.28 0.66 85.06 65.53 8.83 23.83 17.30 0.27 84.81 64.08
InternVL2-8B 7.69 23.62 19.33 0.05 85.20 64.75 7.39 22.96 18.81 0.03 84.77 64.36
InternVL2-76B 8.85 26.18 20.18 0.24 85.82 65.77 8.21 24.67 19.63 0.23 85.39 65.87

Inpainting

Otter-7B 0.38 11.53 4.50 0.28 75.32 53.35 0.36 12.17 4.68 0.33 76.64 55.42
FUYU-8B 0.22 6.38 3.60 0.09 77.38 63.52 0.20 5.61 3.19 0.13 76.91 62.39
IDEFICS-9B 1.49 11.45 7.92 0.15 78.26 48.09 1.24 10.62 7.45 0.12 78.62 50.25
mPLUG-Owl-7B 3.41 22.27 13.47 1.23 83.22 61.53 3.41 21.51 13.45 0.78 83.70 60.97
mPLUG-Owl3-7B 0.00 5.10 1.48 0.35 81.40 51.52 0.02 5.75 1.63 0.16 82.21 52.88
InternVL1.5-26B 4.21 21.13 13.94 3.43 82.87 65.70 3.42 19.53 12.84 0.75 82.87 64.34
InternVL2-8B 4.81 21.18 17.30 0.29 85.07 67.05 3.81 19.33 15.48 0.36 84.43 65.71
InternVL2-76B 5.84 23.34 17.60 1.38 85.47 67.02 4.60 21.18 16.15 1.09 84.95 65.97

et al., 2023) as the visual encoder and Qwen2 (Yang et al., 2024) as the LLM; (6) InternVL1.5-
26B (Chen et al., 2023b), which integrates InternViT-6B (Chen et al., 2024c) with InternLM2-
20B (Cai et al., 2024); (7) InternVL2-8B (OpenGVLab, 2024); (8) InternVL2-76B (OpenGVLab,
2024), built on LLaMA3-70B (MetaAI, 2024).

Automatic Metrics. We use the following automatic metrics for text generation evaluation:
BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), CIDEr (Vedantam et al., 2015),
and SPICE (Anderson et al., 2016) that measures n-gram similarity; BERTScore (Zhang* et al.,
2020) that compares text embedding similarity, and CLIPScore (Hessel et al., 2021) that compares
CLIP embedding similarity between the input text and the reference image.

Zero-shot Inference. We conduct zero-shot inference on all tested MLLMs. The evaluation re-
sults are shown in Table 4. Across both Masking and Inpainting tasks, mPLUG-Owl and InternVL2-
76B show higher scores in several categories, indicating relatively stronger performance. However,
the overall n-gram-based and embedding-based metric scores suggest that the instructions generated
by current open-source MLLMs are still far from achieving the quality of human-written instruc-
tions. This discrepancy highlights the challenges these models face in understanding and generating
precise, fine-grained instructions for visually-rich document editing. Notably, there is no model
that consistently excels across all metrics, further reinforcing the need for improvement in this area.
Examples of instructions generated by the tested MLLMs can be found in Appendix C.

Figure 3: Comparison of instructions
generated by InternVL-8B finetuned
with varying data mixtures. The x-
axis indicates the percentage of doc-
uments in the finetuning dataset that
require editing of all text elements.

Effect of Finetuning Data. We further investigate the
effects of fine-tuning MLLM with various configurations
of ADOPD-Instruct. Specifically, while keeping the total
amount of training data constant, we manipulate the ratio
of data dedicated to editing single elements versus data fo-
cused on editing all text elements within the document. The
former configuration mirrors our testing data, while the lat-
ter represents a more complex editing scenario involving
intricate modifications, which we refer to as the “challenge
set”. This ablation study aims to provide insights into which
types of data most effectively enhance training performance
and to inform future data collection efforts.

For each configuration, we employ a total of 20,000 data
samples to finetune the InternVL-8B model with LoRA tun-
ing (Hu et al., 2022). Figure 3 presents the BERTScore and
CLIPScore for each testing task across the different training
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Table 5: We compare the performance of four image editing models, namely LaMa, Inpaint-
Anything (IA), InstructPix2Pix (IPix2Pix), and ZONE, using the following metrics: FID, LPIPS,
PSNR, SSIM, and CLIPScore-i (CS.-i). For clarity, we also provide details on the visual backbone
(either Fast Fourier Convolutions (FFCs) or Stable Diffusion (SD)) and the input guidance (ground-
truth segmentation masks or SAM-refined masks) used alongside the original document image and
ADOPD-Instruct instructions (instr.) for each model. Values in bold are the top-performer while
values with underline rank the second.

Task # Model Backbone Input Guidance Text Elements Non-Text Elements
FIDÓ LPIPSÓ PSNRÒ SSIMÒ CS.-iÒ FIDÓ LPIPSÓ PSNRÒ SSIMÒ CS.-iÒ

Masking

1 LaMa FFCs mask 0.23 0.34 82.21 99.75 99.80 0.03 0.02 85.35 99.96 100.00
2 IA SD mask+instr. 6.30 3.42 33.43 96.73 98.39 8.13 4.91 34.55 95.75 98.19
3 IPix2Pix SD instr. 29.19 35.37 18.01 74.47 88.18 30.40 39.26 17.14 72.84 88.92
4 ZONE SD mask(SAM)+instr. 21.25 29.20 23.78 87.49 95.17 23.75 33.30 22.58 86.33 95.56

Inpainting

5 LaMa FFCs mask 4.78 4.27 31.02 97.23 97.36 8.13 6.01 30.13 95.61 97.27
6 IA SD mask+instr. 6.57 3.22 28.63 95.16 97.07 7.74 5.10 29.40 91.67 97.31
7 IPix2Pix SD instr. 26.96 36.17 17.64 72.98 87.16 29.26 40.32 16.80 71.99 88.04
8 ZONE SD mask(SAM)+instr. 20.25 29.35 23.35 86.40 94.97 22.53 33.49 22.34 86.06 95.17

data mixtures. Compared to the zero-shot results reported
in Table 4, the finetuned InternVL-8B demonstrates improved performance on both metrics, regard-
less of the data mixture ratio.

A closer examination reveals that the BERTScore remains relatively stable for both the Masking
and Inpainting tasks, as well as for both text and non-text elements, when the proportion of the
“challenge set” is below 50%. However, the score declines more significantly when the ”challenge
set” percentage exceeds this threshold. In contrast, the CLIPScore exhibits a different trend; the
Masking instruction scores generally increase as more ”challenge set” data is incorporated into the
fine-tuning process. For the Inpainting task, the instruction scores initially rise but begin to decline
when the mixture percentage approaches 40%-60%. These results suggest that incorporating certain
challenging and out-of-domain data during fine-tuning can enhance the model’s performance for
document editing tasks, highlighting the potential benefits of diverse training datasets.

4.2 INSTRUCTION-FOLLOWING DOCUMENT EDITING

Task Setup. This task aims to examine existing models’ performance on instruction-following
document editing. We provide the model with the step by step instructions of edits together with
the design document that awaits editing. For models that are able to take in additional modality, we
also provide the mask image to specify where the edits take place. The models are asked to generate
edited images following the instruction.

Baseline Models. We evaluate four image editing models in our experiments: (1) LaMa (Su-
vorov et al., 2022), built upon an inpainting network architecture that uses Fast Fourier Convolu-
tions (FFCs) (Chi et al., 2020); (2) Inpaint-Anything (Yu et al., 2023), which applies Stable Diffu-
sion (Rombach et al., 2022) on specific regions. We modify the original interactive version, which
utilizes SAM (Kirillov et al., 2023) for object mask refinement, by replacing SAM masks with
ground-truth image masks in our experiments; (3) InstructPix2Pix (Brooks et al., 2023), a model
that finetunes Stable Diffusion using text-based edits generated by GPT-3 (Brown et al., 2020) and
paired images from Prompt-to-Prompt (Hertz et al., 2023); (4) ZONE (Li et al., 2023c), an inte-
gration of InstructPix2Pix and SAM, further enhanced with a Fast Fourier Transform-based edge
smoother to ensure seamless blending between the edited region and the original image.

Automatic Metrics. Following previous work (Brooks et al., 2023; Li et al., 2023c), we use
the following metrics to evaluate image editing performance: FID (Heusel et al., 2017) mea-
sures the similarity between generated and real images, with lower scores indicating better quality;
LPIPS (Zhang et al., 2018) quantifies perceptual differences between images, capturing human-like
judgments; PSNR (Horé & Ziou, 2010) assesses image reconstruction quality, with higher values
indicating better fidelity; SSIM (Wang et al., 2004) assesses pixel-wise errors from the perspec-
tive of luminance, contrast, and structure; CLIPScore-i computes the cosine similarity between the
CLIP (Radford et al., 2021) embeddings of the generated image and the target ground-truth.
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Effect of Model Structure. We conduct zero-shot inference and show the evaluation results in
Table 5. For the Masking task, the FFC-based LaMa (#1) significantly outperforms the SD-based
models. Among the three SD-based models, ZONE (#4) improves upon InstructPix2Pix (#3) by
incorporating a refined segmentation mask predicted by SAM, focusing its edits only within the
masked regions and enhances its performance. However, compared to Inpaint-Anything (#2) that
relies on ground-truth masks, ZONE with SAM-predicted masks still lags behind.

In the Inpainting task, the performance of LaMa drops noticeably across all metrics (#5 vs. #1),
which can be attributed to its inability to integrate instructions for placing new design elements.
LaMa can only utilize the segmentation mask to restore missing areas based on surrounding pat-
terns, but it cannot generate new content as instructed, limiting its utility in more complex editing
scenarios. For the SD-based models, we witness the same trend as in the Masking task – ZONE (#8)
continues to outperform its base model InstructPix2Pix (#7), while Inpaint-Anything (#6) achieves
the best performance among the three SD-based models. The key difference lies in the mask input:
Inpaint-Anything uses ground-truth segmentation masks, whereas ZONE relies on masks refined by
SAM based on inferred editing instructions. The mask refinement process in ZONE struggles with
accuracy when processing long and complicated instructions for ADOPD-Instruct’s visually-rich
document editing tasks, reflecting limitations in its instruction-understanding capabilities. Notably,
Inpaint-Anything (#6), which utilizes both segmentation mask and instructions, performs similarly
to LaMa (#5) which does not take instructions. This close performance gap indicates that current
SD-based solutions for document editing, while capable of handling simple inpainting tasks, are still
far from generating high-quality edits in response to complex multimodal instructions.

Case Study Figure 4 presents examples of documents edited by the compared models. LaMa
excels in the Masking task (Fig. 4 (3a-f)), producing document images that closely resemble the
ground truth. However, it struggles with the Inpainting task (Fig. 4 (3g-l)), as it cannot generate
specific objects based on instructions. Inpaint-Anything occasionally masks the target element with
irrelevant patterns (Fig. 4 (4a, 4c)) or transforms elements without masking them (Fig. 4 (4b, 4g)).
Its SD backbone has difficulty rendering text (Fig. 4 (4g-i)) but performs reasonably when following
instructions and rendering non-text elements (Fig. 4 (4j-l)). InstructPix2Pix edits the entire docu-
ment image and may alter color tones (Fig. 4 (5a, 5h, 5k, 5l)) or unintentionally modify elements
that should remain unchanged (Fig. 4 (5c: glasses disappear, 5i: human face modified, 5j: back-
ground altered)). Additionally, it struggles to follow document editing instructions and often fails
to edit the specified elements. Similarly, ZONE faces challenges in understanding instructions, and
its SAM-based mask refinement mechanism sometimes misidentifies what to edit (Fig. 4 (6j: the
generated mansion extends beyond its boundaries, overlapping other design elements)).

The case study highlights the significant challenges faced by current image editing models in
visually-rich document editing tasks. This underscores the importance of our ADOPD-Instruct
dataset, which is designed to address these limitations by offering diverse, instruction-rich scenarios
that encourage more robust model development.

Error Analysis & Insights. LaMa (Suvorov et al., 2022) is specifically designed and trained for
mask inpainting tasks, excelling at removing objects from selected regions and restoring those areas
with content that seamlessly matches the surrounding patterns. As illustrated in Figure 4, LaMa
demonstrates outstanding performance on the Masking task, producing outputs that are nearly iden-
tical to the ground-truth masking results. However, LaMa’s input is limited to masks alone, and it
does not incorporate editing instructions. This limitation prevents it from adding new content or per-
forming edits specified in the instructions for the Inpainting task. As a result, LaMa’s performance
on the Inpainting task often appears as if it is merely copying the input document image, particularly
when no meaningful instruction-driven modifications are made. In contrast, other baseline models,
such as InpaintAnything (Yu et al., 2023), InstructPix2Pix (Brooks et al., 2023), and ZONE (Li et al.,
2023c), which are built upon Stable Diffusion (Rombach et al., 2022), struggle with the complexity
of document editing instructions. These instructions are typically longer and more intricate com-
pared to those encountered during their training. Consequently, these models may distort the entire
canvas or perform incorrect edits in the wrong regions, leading to results that deviate significantly
from the intended outcome.

Specifically, we observed that Stable Diffusion-based models struggle greatly with text rendering,
particularly in the context of document editing. While prior works such as TextDiffuser (Chen et al.,
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Figure 4: Comparisons of document editing results on ADOPD-Instruct. From top to bottom, the
figure displays: (1) the input document image for editing, (2) the mask image indicating the edit
region, the predictions from (3) LaMa, (4) Inpaint-Anything, (5) InstructPix2Pix, (6) Zone, followed
by (7) the target document image. From left to right, panels (a)-(f) illustrate results for the Masking
task, while panels (h)-(m) show results for the Inpainting task.

2023a; 2024a) have explored text rendering using Stable Diffusion, these efforts primarily focus
on short text snippets – typically only two to three words – and are exclusively trained on English
text. In contrast, document editing tasks in our scenario often involve inpainting text elements that
span entire paragraphs. Moreover, our ADOPD-Instruct dataset includes annotations for languages
beyond English, incorporating non-alphabetic characters such as Korean, Japanese, and Chinese.
These multilingual and multi-character requirements significantly increase the complexity of the
editing instructions, exposing the limitations of existing image editing models.

Notably, all document editing inferences in our experiments were conducted in a zero-shot setting,
without any finetuning of the tested models. The observed suboptimal performance highlights the
domain gap between the training data of current image editing models and the specific challenges of
document editing tasks. This performance disparity can largely be attributed to the lack of annotated
datasets tailored to the document domain, which restricts the ability of these models to generalize
effectively. Our empirical analysis underscores the limitations of current image editing models in
handling complex scenarios like visually-rich documents. To address this gap, we introduced the
ADOPD-Instruct dataset, which we believe will serve as a valuable resource for advancing future
models in this domain. By enabling more robust training and evaluation on document-specific tasks,
ADOPD-Instruct has the potential to significantly improve the capabilities of image editing models
in real-world applications.

5 CONCLUSION

In this work, we present ADOPD-Instruct, a large-scale multimodal dataset specifically designed
for document editing tasks. Through the release of ADOPD-Instruct, we hope to spur further re-
search into instruction-guided document editing and multimodal document reasoning, providing a
foundational resource for developing more robust and capable models.
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A HUMAN CURATION INTERFACE

Figure 5: The LabelBox annotating interface when curating GPT-4o generated instructions.

B FINETUNED INTERNVL-8B EVALUATION RESULTS

Table 6 shows the evaluation scores of the InternVL-8B models finetuned with various dataset mix-
ture ratios as discuss in Section 4.1.

Table 6: We ask the finetuned InternVL-8B models to generate instructions describing the editing
process dealing with a single text or non-text elements, and evaluate the quality of the generated
instructions with the following automatic metrics: BLEU-4 (B-4), ROUGE (R.), METEOR (M.),
CIDEr (C.), BERTScore (BERTS.), and CLIPScore (CLIPS.). Values in bold are the top-performer
while values with underline rank the second. “All”: documents that requires editing all text elements.
“Single”: documents that only needs editing single text or non-text elements.

Task Model Text Elements Non-Text Elements
B-4 R. M. C. BERTS. CLIPS. B-4 R. M. C. BERTS. CLIPS.

Masking

All0%-Single100% 31.37 52.56 30.59 45.74 90.48 63.38 27.47 48.83 28.38 22.20 89.23 64.50
All20%-Single80% 31.33 52.30 30.45 45.01 90.39 63.61 27.25 48.44 28.10 25.30 89.01 64.34
All40%-Single60% 30.44 51.62 30.41 44.26 90.25 63.87 26.71 48.24 28.32 19.45 89.13 64.23
All60%-Single40% 30.93 52.07 30.58 43.05 90.48 63.43 26.27 47.46 27.80 20.85 88.90 64.82
All80%-Single20% 29.25 50.43 29.96 36.66 90.01 63.97 24.90 45.89 27.25 14.96 88.47 64.99
All100%-Single0% 27.15 48.60 29.20 29.03 89.47 64.48 23.63 44.55 26.47 10.15 88.01 65.83

Inpainting

All0%-Single100% 19.10 39.58 25.15 38.08 90.03 66.51 11.69 33.11 20.35 18.51 87.94 67.57
All20%-Single80% 19.28 39.85 25.28 35.96 90.18 67.03 11.43 32.71 20.02 18.07 87.81 67.20
All40%-Single60% 18.92 39.56 25.04 40.26 90.02 67.20 11.27 32.57 20.11 19.18 87.84 67.51
All60%-Single40% 18.77 39.65 25.24 38.70 90.16 66.74 11.09 32.63 20.17 17.11 87.92 67.72
All80%-Single20% 18.27 39.04 25.11 35.93 90.06 66.11 10.56 31.96 20.00 15.51 87.63 66.91
All100%-Single0% 17.88 38.93 25.02 37.15 89.97 65.84 10.44 31.65 19.58 13.88 87.43 66.95
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C INSTRUCTIONS GENERATED BY MLLMS

Table 7: Instructions generated by the eight tested MLLMs on the Masking task for editing single
text element.

Model Generated Instruction
Ground Truth 1. Remove Text: - Remove the text ”morelifechanger.in” from the lower-left

corner of the first design document.
2. Save and Review: - Save the changes and review the design to ensure it
matches the second design document.

Otter-7B Given the insight ’There is a small change in the second document, it is a different
color.’, the suitable answer should be: change color.

IDEFICS-9B The first two images are two design documents that are almost the same, the
differences are indicated in the third mask image
. Please write the specific instructions to modify the first design document to
match the second design document.
The first two images are two design documents that are almost the same, the
differences are indicated in the third mask image
. Please write the specific instructions to modify the first design document to
match the second design document.
The first two images are two design documents that are almost the same, the
differences are indicated in the third mask image
. Please write the specific instructions to modify the first design document to
match the second design document.
The first two images are two design documents that are almost the same, the
differences are indicated in the third mask image
. Please write the specific instructions to modify the first design document to
match the second design document.
The first two images are two design documents that are almost the same, the
differences are indicated in the third mask image
. Please write the specific instructions to modify the first design document to
match the second design document.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

FUYU-8B 1. Name the icons: The icons ”Phone,” ”Mail,” ”FaceTime,” and ”Messenger”
are icons that depict various communication tools.
2. Description: The first design document lists the icons, their functions, and
their names.
3. Location: The first design document lists the location ”Smartphone,” ”Mobile
Phone,” ”Cell Phone,” ”Tablet,” ”Tablet PC,” ”Cell Phone PC,” ”Tablet PC PC,”
”Tablet PC PC PC,” and ”Tablet PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
PC PC PC PC PC PC PC PC PC PC

mPLUG-Owl-7B The first two design documents are nearly the same, but there are some differ-
ences in the third mask image. To modify the first design document to match the
second design document, follow these instructions:
1. Include a black background in the background layer of the first design docu-
ment to match the background of the second design document.
2. Add a white border around the design to make it consistent with the second
design document’s white outline.
3. Add a black line separating each section of the design, following the same
format as in the second document (e.g., a horizontal line separating the first and
second sections and a vertical line separating the second and third sections).
4. Adjust and resize the images and text elements within the design to fit the new
layout, ensuring that they align properly with the new background and border.
5. Save the modified design document and ensure that the new changes have been
applied correctly.

mPLUG-Owl3-7B change the background to a black screen.
InternVL1.5-26B To modify the first design document to match the second design document, follow

these steps:
1. Ensure that the background color of the first design document is changed to
match the background color of the second design document.
2. Adjust the font size of the text in the first design document to match the font
size in the second design document.
3. Change the font style of the text in the first design document to match the font
style in the second design document.
4. If there are any additional elements or text in the second design document that
are not present in the first, add them to the first design document.
5. If there are any elements or text in the first design document that are not present
in the second, remove them from the first design document.
6. Ensure that the overall layout of the first design document is consistent with
the layout of the second design document.
By following these steps, the first design document will be modified to match the
second design document.
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InternVL2-8B To modify the first design document to match the second design document, follow
these specific instructions:
1. Background: - Change the background to a solid color. The second design
document has a solid black background.
2. Text: - Adjust the text to match the second design document. - The text in the
second design document is in a white, cursive font. - The text in the first design
document is in a white, serif font. - Change the font to a cursive, white font.
3. Icons: - Ensure the icons are identical to those in the second design document.
- The icons in the first design document are slightly different in color and style
compared to the second design document. - Match the colors and style of the
icons to those in the second design document.
4. Layout: - Adjust the layout to match the second design document. - The
layout in the first design document is slightly different in terms of spacing and
alignment. - Adjust the spacing and alignment of the icons and text to match the
second design document.
5. Color Scheme: - Ensure the color scheme matches the second design doc-
ument. - The color scheme in the first design document is slightly different. -
Match the colors used in the second design document.
By following these instructions, the first design document can be modified to
match the second design document.

InternVL2-76B To modify the first design document to match the second design document, follow
these specific instructions:
1. Text Alignment: - In the first design document, the text ”Advent of technology,
losing sense of human relationship, Save it” is aligned to the left. - In the second
design document, the text is centered. - Instruction: Center align the text ”Advent
of technology, losing sense of human relationship, Save it” in the first design
document.
2. Text Font Size: - The text font size in the first design document appears slightly
larger compared to the second design document. - Instruction: Reduce the font
size of the text ”Advent of technology, losing sense of human relationship, Save
it” in the first design document to match the font size in the second design docu-
ment.
3. Text Position: - The text in the first design document is positioned slightly
higher compared to the second design document. - Instruction: Move the text
”Advent of technology, losing sense of human relationship, Save it” downward
in the first design document to match the vertical position in the second design
document.
4. Text Spacing: - The line spacing between the words in the first design doc-
ument appears tighter compared to the second design document. - Instruction:
Increase the line spacing (leading) between the words in the first design docu-
ment to match the spacing in the second design document.
By following these instructions, the first design document will be modified to
match the second design document.
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Table 9: Instructions generated by the eight tested MLLMs on the Inpainting task for editing single
non-text design element.

Model Generated Instruction
Ground Truth 1. Image Addition: - Location: Under the section titled ”MESURER LA TAILLE

DE BAGUE AVEC UN CALIBREUR” and to the left of the numbered list.
- Add Content: The image of the calibrator with a belt-like structure with a trans-
parent background.
Ensure that the new image is properly aligned and scaled to match the design
consistency of the original document. The rest of the content remains unchanged.

Otter-7B The logical choice, given the rationale ’The first two documents are almost the
same. the only difference is the color in the third image.’, would be: change color.

IDEFICS-9B The first two images are two design documents that are almost the same, the
differences are indicated in the third mask image
. Please write the specific instructions to modify the first design document to
match the second design document.
The first two images are two design documents that are almost the same, the
differences are indicated in the third mask image
. Please write the specific instructions to modify the first design document to
match the second design document.
The first two images are two design documents that are almost the same, the
differences are indicated in the third mask image
. Please write the specific instructions to modify the first design document to
match the second design document.
The first two images are two design documents that are almost the same, the
differences are indicated in the third mask image
. Please write the specific instructions to modify the first design document to
match the second design document.

FUYU-8B 1. Passez le bout du Calibreur à travers la boı̂te (comme une ceinture) pour créer
une forme de boı̂te. 2. Faites glisser de calibreur autour de votre doigt. 3. Lisez
votre taille de bague loesque vous avez attendu la boı̂ne taille. 4. Lisez votre
taille de bague lorsque vous avez attendu la boı̂ne taille. 5. Mesurez la taille de
bague avant de la mettre en milieu. 6. Mesurez la taille de bague après avoir
mis le doigt dans la boı̂te. 7. Faites glisser de calibreur autour de votre doigt. 8.
Mesurez la taille de bague après avoir mis le doigt dans la boı̂te. 9. Faites glisser
de calibreur autour de votre doigt. 10. Mesurez la taille de bague après avoir mis
le doigt dans la boı̂te.
1. Placez une règle une fois bague. 2. Mesurez votre taille de bague pour
déterminer bague. 3. Mesurez votre taille de bague après avoir mis le doigt
dans la boı̂te. 4. Mesurez la taille de bague après avoir mis le doigt dans la boı̂te.
5. Faites glisser de calibreur autour de votre doigt. 6. Mesurez la taille de bague
après avoir mis le doigt dans la boı̂te. 7. Mesurez la taille de bague après avoir
mis le doigt dans la boı̂te. 8. Faites glisse de calibreur autour de votre doigt. 9.
Mesurez la taille de bague après avoir mis le doigt dans la boı̂te. 10. Faites glisse
d’un calibreur autour de votre doigt.
1. Placez une règle une fois bague.
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mPLUG-Owl-7B To modify the design document in the third image to match the design document
in the second image, follow these steps:
1. Open the first design document and make sure you have the correct dimensions
of the design.
2. Open the second design document and check the dimensions of the elements
and text.
3. Copy and paste the elements from the second design document into the first
design document, ensuring that the placement and alignment are correct.
4. Adjust the dimensions of the elements as necessary to align them with their
counterparts in the second design document.
5. Make any necessary changes to the text and other elements to ensure consis-
tency with the second document’s layout.
6. Save the modified document and use it as the final template for creating the
design.

mPLUG-Owl3-7B change the color of the document to white.
InternVL1.5-26B The third image is a black rectangle with a white border.
InternVL2-8B To modify the first design document to match the second design document, you

need to make the following changes:
1. Title and Header: - Change the title ”GUIDE DES TAILLES” to ”GUIDE
DES TAILLES DE BAGUE” to match the second design document.
2. Section Titles: - Change the section titles ”MESURER LA TAILLE DE
BAGUE AVEC UN CALIBREUR” and ”MESURER LA TAILLE DE BAGUE
AVEC UNE RÈGLE” to ”MESURER LA TAILLE DE BAGUE AVEC UN CAL-
IBREUR” and ”MESURER LA TAILLE DE BAGUE AVEC UNE RÈGLE” re-
spectively, to match the second design document.
3. Instructions: - For each section, ensure the instructions are identical to those
in the second design document.
4. Measurement Table: - Ensure the measurement table is identical to the one in
the second design document. The measurements and corresponding sizes should
be the same.
5. Images: - Replace the image of the ring in the first design document with the
image of the ring in the second design document.
6. Color Scheme: - Ensure the color scheme of the first design document matches
the second design document. The pink header and white background should be
consistent.
7. Font and Style: - Ensure the font and style of the text in the first design
document match the second design document. The font should be consistent
throughout.
By making these changes, the first design document will match the second design
document in terms of layout, content, and visual elements.

InternVL2-76B To modify the first design document to match the second design document, follow
these specific instructions:
1. Change the Image in the First Section: - Replace the image of the gold ring
with a heart in the first section with the image of a white bracelet with a ruler.
2. Update the Text in the First Section: - Replace the text ”MESURER LA
TAILLE DE BAGUE AVEC UN CALIBREUR” with ”MESURER LA TAILLE
DE BAGUE AVEC UN RÈGLE.”
3. Modify the Steps in the First Section: - Update the steps to reflect the use
of a ruler instead of a caliper: 1. Place the ruler on one of your well-adjusted
bracelets or have someone else help you with this. 2. Measure with the ruler
the interior diameter of the bracelet to determine the size you need. 3. Note this
measurement in millimeters and use the table below to find the correct size.
By following these instructions, the first design document will be modified to
match the second design document.
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