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Abstract

Riemannian neural networks, which extend deep learning techniques to Rieman-
nian spaces, have gained significant attention in machine learning. To better classify
the manifold-valued features, researchers have started extending Euclidean multi-
nomial logistic regression (MLR) into Riemannian manifolds. However, existing
approaches suffer from limited applicability due to their strong reliance on specific
geometric properties. This paper proposes a framework for designing Riemannian
MLR over general geometries, referred to as RMLR. Our framework only requires
minimal geometric properties, thus exhibiting broad applicability and enabling its
use with a wide range of geometries. Specifically, we showcase our framework
on the Symmetric Positive Definite (SPD) manifold and special orthogonal group
SO(n), i.e.,the set of rotation matrices in Rn. On the SPD manifold, we develop
five families of SPD MLRs under five types of power-deformed metrics. On SO(n),
we propose Lie MLR based on the popular bi-invariant metric. Extensive experi-
ments on different Riemannian backbone networks validate the effectiveness of our
framework. The code is available at https://github.com/GitZH-Chen/RMLR.

1 Introduction
In recent years, significant advancements have been achieved in Deep Neural Networks (DNNs),
enabling them to effectively analyze complex patterns from various types of data, including images,
videos, and speech [29, 38, 27, 66]. However, most existing models have primarily assumed the
underlying data with a Euclidean structure. Recently, a growing body of research has emerged,
recognizing that the latent spaces of many applications exhibit non-Euclidean geometries, such as
Riemannian geometries [9]. Various frequently-encountered manifolds in machine learning have
posed interesting challenges and opportunities, including special orthogonal groups SO(n) [67, 31],
symmetric positive definite (SPD) [30, 10, 42, 73, 18, 19], Gaussian [14, 47], Grassmannian [32, 72]
spherical [56], and hyperbolic manifolds [23]. These manifolds share an important Riemannian
property — their Riemannian operators, including geodesics, exponential & logarithmic maps,
and parallel transportation, often possess closed-form expressions. Leveraging these Riemannian
operators, researchers have successfully generalized different types of DNNs into manifolds, dubbed
Riemannian neural networks.

Although Riemannian networks demonstrated success in many applications, most approaches still
rely on Euclidean spaces for classification, such as tangent spaces [30, 31, 10, 47, 69, 71, 48, 49, 37,
70, 15], ambient Euclidean spaces [68, 57, 58], or coordinate systems [12]. However, these strategies
distort the intrinsic geometry of the manifold, undermining the effectiveness of Riemannian networks.
Researchers have recently started directly developing Riemannian Multinomial Logistic Regression
(RMLR) on manifolds. Inspired by the idea of hyperplane margin [39], Ganea et al. [23] developed
a hyperbolic MLR in the Poincaré ball for Hyperbolic Neural Networks (HNNs). Motivated by
HNNs, Nguyen and Yang [50] developed three kinds of gyro SPD MLRs based on three distinct gyro
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structures of the SPD manifold. In parallel, Chen et al. [16] proposed a framework for building SPD
MLRs induced by the flat metrics on the SPD manifold. Nguyen et al. [51] proposed gyro MLRs
for the Symmetric Positive Semi-definite (SPSD) manifold based on the product of gyro spaces.
However, these classifiers often rely on specific Riemannian properties, limiting their generalizability
to other geometries. For instance, the hyperbolic MLR [23] relies on the generalized law of sine,
while the gyro MLRs [50, 51] rely on the gyro structures.

This paper presents a framework of RMLR over general geometries. In contrast to previous works, our
framework only requires the explicit expression of the Riemannian logarithm, which is the minimal
requirement in extending the Euclidean MLR into manifolds. Since this property is satisfied by many
commonly encountered manifolds in machine learning, our framework can be broadly applied to
various types of manifolds. Empirically, we showcase our framework on the SPD manifold and
rotation matrices. On the SPD manifold, we systematically propose SPD MLRs under five families
of power-deformed metrics. We also present a complete theoretical discussion on the geometric
properties of these metrics. In the Lie group of SO(n), we propose Lie MLR based on the widely
used bi-invariant metric to build the Lie MLR. Our work is the first to extend the Euclidean MLR
into Lie groups. Besides, our framework incorporates several previous Riemannian MLRs, including
gyro SPD MLRs in [50], SPD MLRs in [16], and gyro SPSD MLRs in [51].

Our SPD MLRs are validated on four SPD backbone networks, including SPDNet [30] on the
radar and human action recognition tasks and TSMNet [37] on the electroencephalography (EEG)
classification tasks for the Riemannian feedforward network, RResNet [36] on the human action
recognition task for the Riemannian residual network, and SPDGCN [76] on the node classification
for the Riemannian graph neural network. Our Lie MLR is validated on the classic LieNet [31]
backbone for the human action recognition task. Compared with previous non-intrinsic classifiers,
our MLRs achieve consistent performance gains. Especially, our SPD MLRs outperform the previous
classifiers by 14.23% on SPDNet and 13.72% on RResNet for human action recognition, and
4.46% on TSMNet for EEG inter-subject classification. Furthermore, our Lie MLR can improve
both the training stability and performance. In summary, our main theoretical contributions are
the following: (a) We develop a general framework for designing Riemannian MLR over general
geometries, incorporating several previous Riemannian MLRs on different geometries. (b) We
systematically propose 5 families of SPD MLRs based on different geometries of the SPD manifold.
(c) We propose a novel Lie MLR for deep neural networks on SO(n).

Main theoretical results: We solve the Riemannian margin distance to the hyperplane in Thm. 3.2
and present our RMLR framework in Thm. 3.3. As shown in Tab. 1, our RMLR incorporates several
existing MLRs on different geometries. Thm. 4.2 showcases our RMLR on the SPD manifold under
five families of metrics summarized in Tab. 2. To remedy the numerical instability of BWM geometry
on the SPD manifold, we also propose a backpropagation-friendly solver for the SPD MLR under
BWM in App. F.2.2. Thm. 5.2 proposes the Lie MLR for the Lie group SO(n). Due to the page
limits, we put all the proofs in App. H.

2 Preliminaries

This section provides a brief review of the basic geometries of SPD manifolds and special orthogonal
groups. Detailed review and notations are left in Apps. B and B.1.

SPD manifolds: The set of n×n symmetric positive definite (SPD) matrices is an open submanifold
of the Euclidean space Sn of symmetric matrices, referred to as the SPD manifold Sn

++ [3]. There
are five kinds of popular Riemannian metrics on Sn

++: Affine-Invariant Metric (AIM) [52], Log-
Euclidean Metric (LEM) [3], Power-Euclidean Metrics (PEM) [22], Log-Cholesky Metric (LCM)
[41], and Bures-Wasserstein Metric (BWM) [5]. Note that, when power equals 1, the PEM is reduced
to the Euclidean Metric (EM). Thanwerdas and Pennec [63] generalized AIM, LEM, and EM into
two-parameters families of O(n)-invariant metrics, i.e.,(α, β)-AIM, (α, β)-LEM, and (α, β)-EM,
with min(α, α + nβ) > 0. We denote the metric tensor of (α, β)-AIM, (α, β)-LEM, (α, β)-EM,
LCM, and BWM as g(α,β)-AIM, g(α,β)-LEM, g(α,β)-EM, gLCM, and gBWM, respectively.

Rotation matrices: The special orthogonal group SO(n) is the set of n× n orthogonal matrices
with unit determinant, the elements of which are also referred to as rotation matrices. As shown in
[25], SO(n) forms a Lie group. We adopt the widely used bi-invariant Riemannian metric [8].
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3 Riemannian multinomial logistic regression
Inspired by [39], Ganea et al. [23], Nguyen and Yang [50], Chen et al. [16], Nguyen et al. [51]
extended the Euclidean MLR into hyperbolic, SPD, and SPSD manifolds. However, these classifiers
rely on specific Riemannian properties, such as the generalized law of sines, gyro structures, and flat
metrics, which limits their generality. In this section, we first revisit several existing MLRs and then
propose our Riemannian classifiers with minimal geometric requirements.

3.1 Revisiting existing multinomial logistic regressions
Given C classes, the Euclidean MLR computes the multinomial probability of each class:

∀k ∈ {1, . . . , C}, p(y = k | x) ∝ exp (⟨ak, x⟩ − bk) , (1)

where bk ∈ R, and x, ak ∈ Rn\{0}. As shown in [23], the Euclidean MLR can be reformulated by
the margin distance to the hyperplane:

p(y = k | x) ∝ exp (sign(⟨ak, x− pk⟩)∥ak∥d(x,Hak,pk
)) , (2)

Hak,pk
= {x ∈ Rn : ⟨ak, x− pk⟩ = 0}, (3)

where ⟨ak, pk⟩ = bk, and Hak,pk
is a hyperplane.

Eqs. (2) and (3) can be naturally extended into manifolds M by Riemannian operators:

p(y = k | S) ∝ exp
(
sign(⟨Ãk,LogPk

(S)⟩Pk
)∥Ãk∥Pk

d̃(S, H̃Ãk,Pk
)
)
, (4)

H̃Ãk,Pk
= {S ∈ M : gPk

(LogPk
S, Ãk) = 0}, (5)

where Pk ∈ M, Ãk ∈ TPk
M\{0}, gPk

is the Riemannian metric at Pk, and LogPk
is the Riemannian

logarithm at Pk. The margin distance is defined as an infimum:

d̃(S, H̃Ãk,Pk
)) = inf

Q∈H̃Ãk,Pk

d(S,Q). (6)

The MLRs proposed in [39, 23, 50, 16] can be viewed as different implementations of Eq. (4)-
Eq. (6). To calculate the MLR in Eq. (4), one has to compute the associated Riemannian metrics,
logarithmic maps, and margin distance. The associated Riemannian metrics and logarithmic maps
often have closed-form expressions on the frequently-encounter manifolds in machine learning.
However, the computation of the margin distance can be challenging. On the Poincaré ball of
hyperbolic manifolds, the generalized law of sines simplifies the calculation of Eq. (6) [23]. However,
the generalized law of sines is not universally guaranteed on other manifolds. Additionally, Chen
et al. [16] developed a closed-form solution of margin distance on the SPD manifold under any
metric pulled back from Euclidean spaces. For curved manifolds, solving Eq. (6) would become a
non-convex optimization problem. To address this challenge, Nguyen and Yang [50] defined gyro
structures on the SPD manifold and proposed a pseudo-gyrodistance to calculate the margin distance.
Similarly, Nguyen et al. [51] proposed a pseudo-gyrodistance on the SPSD manifold based on the
gyro product space. However, gyro structures do not necessarily exist in general geometries. In
summary, the aforementioned methods often rely on specific properties of their associated Riemannian
metrics, which usually do not generalize to general geometries.

3.2 Riemannian multinomial logistic regression
Recalling Eqs. (4) and (5), the least requirement of extending Euclidean MLR into manifolds is the
well-definedness of LogPk

(S) for each k. In this subsection, we will develop Riemannian MLR,
which depends solely on the Riemannian logarithm, without additional requirements, such as gyro
structures and generalized law of sines. In the following, we always assume the well-definedness of
the Riemannian logarithm. We start by reformulating the Euclidean margin distance to the hyperplane
from a trigonometry perspective and then present our Riemannian MLR.

As we discussed before, obtaining the margin distance of Eq. (6) could be challenging. Inspired
by [50], we resort to the perspective of trigonometry to reinterpret Euclidean margin distance. In
Euclidean space, the margin distance is equivalent to

d(x,Ha,p)) = sin(∠xpy∗)d(x, p), with y∗ = argmax
y∈Ha,p\{p}

(cos∠xpy). (7)

We extend Eq. (7) to manifolds by the Riemannian trigonometry and geodesic distance, the counter-
parts of Euclidean trigonometry and distance.
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Definition 3.1 (Riemannian Margin Distance). Let H̃Ã,P be a Riemannian hyperplane defined in
Eq. (5), and S ∈ M. The Riemannian margin distance from S to H̃Ã,P is defined as

d(S, H̃Ã,P ) = sin(∠SPY ∗)d(S, P ), (8)

where d(S, P ) is the geodesic distance, and Y ∗ = argmax(cos∠SPY ) with Y ∈ H̃Ã,P \{P}. The
initial velocities of geodesics define cos∠SPY :

cos∠SPY =
⟨LogP Y,LogP S⟩P

∥LogP Y ∥P , ∥LogP S∥P
, (9)

where ⟨·, ·⟩P is the Riemannian metric at P , and ∥ · ∥P is the associated norm.

The Riemannian margin distance in Def. 3.1 has a closed-form expression.

Theorem 3.2. [↓] The Riemannian margin distance defined in Def. 3.1 is given as

d(S, H̃Ã,P ) =
|⟨LogP S, Ã⟩P |

∥Ã∥P
. (10)

Putting the Eq. (10) into Eq. (4), we can a closed-form expression for Riemannian MLR.

Theorem 3.3 (RMLR). [↓] Given a Riemannian manifold {M, g}, the Riemannian MLR induced by
g is

p(y = k | S ∈ M) ∝ exp
(
⟨LogPk

S, Ãk⟩Pk

)
, (11)

where Pk ∈ M, Ãk ∈ TPk
M\{0}, and Log is the Riemannian logarithm.

Ãk in Eq. (11) can not be directly viewed as a Euclidean parameter, as Ãk ∈ TPk
M depends on Pk

and Pk varies during the training. However, the tangent vector Ãk can be generated from a tangent
space at a fixed point. Several tricks can be used, such as Riemannian parallel transportation [21],
vector transportation [1], the differential of Lie group or gyrogroup translation [64, 65]. Following
previous work [23, 16, 50], we focus on parallel transportation and Lie group translation:

Ãk = ΓQ→Pk
Ak, (12)

Ãk = LPk⊙Q−1
⊙ ∗,QAk, (13)

where Q ∈ M is a fixed point, Ak ∈ TQM\{0}, Γ is the parallel transportation along geodesic
connecting Q and Pk, and LPk⊙Q−1

⊙ ∗,Q denotes the differential map at Q of left translation LPk⊙Q−1
⊙

with Pk ⊙Q−1
⊙ denoting Lie group product and inverse. In this way, Ak lies in a fixed tangent space

and, therefore, can be optimized by a Euclidean optimizer.

Remark 3.4. We make the following remarks w.r.t. our Riemannian MLR.

(a). The reformulation of Eq. (7) in gyro MLR [50, 51] and ours are different. Gyro MLR adopts gyro
trigonometry and gyro distance to reformulate Eq. (7), while our method directly uses Riemannian
trigonometry and geodesic distance.

(b). Compared with the MLRs on hyperbolic, SPD, or SPSD manifolds in [23, 50, 16, 51], our
framework enjoys broader applicability, as our framework only requires the Riemannian logarithm.
This property is commonly satisfied by most manifolds encountered in machine learning, such as the
five metrics on SPD manifolds mentioned in Sec. 2, the invariant metric on SO(n) [8], and hyperbolic
& spherical manifolds [11, 56]. Besides, several existing MLRs on different geometries are special
cases of our Riemannian MLR, which are detailed in Tab. 1.

(c). The well-definedness of the Riemannian logarithm is a much weaker requirement compared to
the existence of the gyro structure. The gyro structure not only requires the Riemannian logarithm
but also implicitly requires geodesic completeness [50, Eqs. (1-2)]. For instance, on SPD manifolds,
EM and BWM [63] are incomplete, undermining the well-definedness of gyro operations.

4 SPD multinomial logistic regressions
This section showcases our RMLR framework on the SPD manifold. We first systematically discuss
the power-deformed geometries of SPD manifolds. Based on these metrics, we will develop five
families of deformed SPD MLRs.
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Table 1: Several MLRs on different geometries are special cases of our MLR.

MLR Geometries Requirements Incorporated
by Our MLR

Euclidean MLR (Eq. (1)) Euclidean geometry N/A ✓(App. C)

Gyro SPD MLRs [50] AIM, LEM & LCM on Sn
++ Gyro structures ✓(Rem. 4.3)

Gyro SPSD MLRs [51] SPSD product gyro spaces Gyro structures ✓(App. D)

Flat SPD MLRs [16] (α, β)-LEM & (θ)-LCM on Sn
++

Pullback metrics from
the Euclidean space ✓(Rem. 4.3)

Ours General Geometries Riemannian logarithm N/A

(", $, %)-AIM

(", $, %)-EM

(", $, %)-LEM

Riemannian Metrics on 
SPD Manifolds

"-LCM

O ' -Invariant Metrics

("-BWM

Figure 1: Illustration on the deformation (left) and Venn diagram (right) of metrics on SPD manifolds,
where IEM, SREM, and 1

4 PAM denotes Inverse Euclidean Metric, Square Root Euclidean Metric,
and Polar Affine Metric scaled by 1/4.

4.1 Deformed geometries of SPD manifolds

Table 2: Properties of deformed metrics on SPD manifolds (θ ̸= 0 and min(α, α+ nβ) > 0).

Name Properties

(θ, α, β)-LEM Bi-Invariance, O(n)-Invariance, Geodesically Completeness

(θ, α, β)-AIM Lie Group Left-Invariance, O(n)-Invariance, Geodesically Completeness

(θ, α, β)-EM O(n)-Invariance

θ-LCM Lie Group Bi-Invariance, Geodesically Completeness

2θ-BWM O(n)-Invariance

As discussed in Sec. 2, there are five popular Riemannian metrics on SPD manifolds. These metrics
can be all extended into power-deformed metrics. For a metric g on Sn

++, the power-deformed metric
is defined as

g̃P (V,W ) =
1

θ2
gP θ ((ϕθ)∗,P (V ), (ϕθ)∗,P (W )) ,∀P ∈ Sn

++, V,W ∈ TPSn
++, (14)

where ϕθ(P ) = P θ is the matrix power, and (ϕθ)∗,P is the differential map. The deformed metric g̃
can interpolate between a LEM-like metric (θ → 0) and g (θ = 1) [61]. Previous work has extended
(α, β)-AIM, (α, β)-LEM, LCM, and BWM into power-deformed metrics and (α, β)-LEM is proven
to be invariant under the power deformation [17]. We denote these metrics as (θ, α, β)-AIM [59],
(α, β)-LEM [17], 2θ-BWM [61], and θ-LCM [17], respectively. The deformation of these metrics
is discussed in App. E.1. We further define the power-deformed metric of (α, β)-EM by Eq. (14),
denoted as (θ, α, β)-EM. We have the following for the deformation of (θ, α, β)-EM.

Proposition 4.1. [↓] (θ, α, β)-EM interpolates between (α, β)-LEM (θ → 0) and (α, β)-EM (θ = 1).

So far, all five popular Riemannian metrics on SPD manifolds have been generalized into power-
deformed families of metrics. We summarize their associated properties in Tab. 2 and present their
theoretical relation in Fig. 1. We leave technical details in App. E.2.

4.2 Five families of SPD multinomial logistic regressions
This subsection presents five families of specific SPD MLRs by our general framework in Thm. 3.3
and metrics discussed in Sec. 4.1. We focus on generating Ãk by parallel transportation from
the identity matrix, except for 2θ-BWM. Since the parallel transportation under 2θ-BWM would
undermine numerical stability (please refer to App. F.2.1 for more details), we resort to a newly
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Figure 2: Conceptual illustration of SPD hyperplanes induced by five families of Riemannian metrics.
The black dots denote the boundary of S2

++.

developed Lie group operation [62]:

S1 ⊙ S2 = L1S2L
T
1 ,∀S1, S2 ∈ Sn

++. (15)

where L1 = Chol(S1) is the Cholesky decomposition.

Theorem 4.2 (SPD MLRs). [↓] By abuse of notation, we omit the subscripts k of Ak and Pk. Given
SPD feature S, the SPD MLRs, p(y = k | S ∈ Sn

++), are proportional to

(α, β)-LEM : exp
[
⟨log(S)− log(P ), A⟩(α,β)

]
, (16)

(θ, α, β)-AIM : exp

[
1

θ
⟨log(P− θ

2SθP− θ
2 ), A⟩(α,β)

]
, (17)

(θ, α, β)-EM : exp

[
1

θ
⟨Sθ − P θ, A⟩(α,β)

]
, (18)

θ-LCM : exp

[
1

θ
⟨⌊K̃⌋ − ⌊L̃⌋+

[
Dlog(D(K̃))−Dlog(D(L̃))

]
, ⌊A⌋+ 1

2
D(A)⟩

]
, (19)

2θ-BWM : exp

[
1

4θ
⟨(P 2θS2θ)

1
2 + (S2θP 2θ)

1
2 − 2P 2θ,LP 2θ (L̄AL̄⊤)⟩

]
, (20)

where A ∈ TISn
++\{0} is a symmetric matrix, log(·) is the matrix logarithm, LP (V ) is the solution

to the matrix linear system LP [V ]P + PLP [V ] = V , known as the Lyapunov operator, Dlog(·) is
the diagonal element-wise logarithm, ⌊·⌋ is the strictly lower part of a square matrix, and D(·) is a
diagonal matrix with diagonal elements of a square matrix. Besides, log∗,P is the differential maps
at P , K̃ = Chol(Sθ), L̃ = Chol(P θ), and L̄ = Chol(P 2θ).
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Figure 3: Conceptual illustra-
tion of a Lie hyperplane. Each
pair of antipodal black dots
corresponds to a rotation ma-
trix with an Euler angle of π,
while the green dots denote a
Lie hyperplane.

The Lyapunov operator in Eq. (20) requires the eigendecomposi-
tion. However, the backpropagation of eigendecomposition involves
1/(σi−σj) [34], undermining the numerical stability. Therefore, we
propose a numerically stable backpropagation for the Lyapunov
operator, detailed in App. F.2.2.

As 2× 2 SPD matrices can be embedded into R3 as an open cone
[74], we illustrate SPD hyperplanes induced by five families of
metrics in Fig. 2.

Remark 4.3. Our SPD MLRs extend the existing SPD MLRs [50, 16].
The pseudo-gyrodistance to a SPD hyperplane in [50, Thms. 2.23-
2.25] is incorporated by our Thm. 3.2, while the flat SPD MLRs
under (α, β)-LEM and θ-LCM in [16, Cor. 4.1] are special cases
of our Thm. 4.2. Furthermore, our approach extends the scope of
prior work as neither [16] nor [50] explored SPD MLRs based on
(θ, α, β)-EM and 2θ-BWM. The gyro operations in [50, Eq. (1)]
implicitly requires geodesic completeness, whereas (θ, α, β)-EM
and 2θ-BWM are incomplete. As neither (θ, α, β)-EM nor 2θ-BWM belong to pullback Euclidean
metrics, the framework presented in [16] cannot be applied to these metrics. To the best of our
knowledge, our work is the first to apply PEM and BWM to establish Riemannian neural networks,
opening up new possibilities for utilizing these metrics in machine learning applications. Besides,
neither Nguyen and Yang [50] nor Chen et al. [16] explore the deformed metrics for building SPD
MLRs.
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Table 3: Comparison of SPDNet with LogEig against SPD MLRs on the Radar dataset.

Architectures LogEig MLR
(θ, α, β)-AIM (θ, α, β)-EM (α, β)-LEM 2θ-BWM θ-LCM

(1,1,0) (1,1,0) (1,1,1/8) (1,1,0) (1,1,1) (0.5) (0.25) (1) (0.5)

2-Block 92.88±1.05 94.53±0.95 94.24±0.55 94.93±0.60 93.55±1.21 95.64±0.83 92.22±0.83 94.99±0.47 93.49±1.25 94.59±0.82
5-Block 93.47±0.45 94.32±0.94 95.11±0.82 95.01±0.84 94.60±0.70 95.87±0.58 93.69±0.66 94.84±0.68 93.93±0.98 95.16±0.67

Table 4: Comparison of SPDNet with LogEig against SPD MLRs on the HDM05 dataset.

Architectures LogEig MLR
(θ, α, β)-AIM (θ, α, β)-EM (α, β)-LEM 2θ-BWM θ-LCM

(1,1,0) (1,1,0) (0.5,1.0,1/30) (1,1,0) (0.5) (1) (0.5)

1-Block 57.42±1.31 58.07±0.64 66.32±0.63 71.65±0.88 56.97±0.61 70.24±0.92 63.84±1.31 65.66±0.73
2-Block 60.69±0.66 60.72±0.62 66.40±0.87 70.56±0.39 60.69±1.02 70.46±0.71 62.61±1.46 65.79±0.63
3-Block 60.76±0.80 61.14±0.94 66.70±1.26 70.22±0.81 60.28±0.91 70.20±0.91 62.33±2.15 65.71±0.75

Table 5: Inter-session experiments of TSMNet with different MLRs on the Hinss2021 dataset.

Classifiers LogEig MLR
(θ, α, β)-AIM (θ, α, β)-EM (α, β)-LEM 2θ-BWM θ-LCM

(1,1,0) (0.5,1,0.05) (1,1,0) (1,1,0) (0.5) (1) (1.5)

Balanced Acc. 53.83±9.77 53.36±9.92 55.27±8.68 54.48±9.21 53.51±10.02 55.54±7.45 55.71±8.57 56.43±8.79

Table 6: Inter-subject experiments of TSMNet with different MLRs on the Hinss2021 dataset.

Classifiers LogEig MLR
(θ, α, β)-AIM (θ, α, β)-EM (α, β)-LEM 2θ-BWM θ-LCM

(1,1,0) (1.5,1,0) (1,1,0) (1.5,1,1/20) (1,1,0) (0.5) (0.75) (1) (0.5)

Balanced Acc. 49.68±7.88 50.65±8.13 51.15±7.83 50.02±5.81 51.38±5.77 51.41±7.98 50.26±7.23 51.67±8.73 52.93±7.76 54.14±8.36

5 Lie multinomial logistic regression
This section introduces our Lie MLR on SO(n) based on the general RMLR framework in Thm. 3.3.
The Riemannian metric on SO(n) is assumed to be the invariant metric in Tab. 13.

The two ways to generate Ãk in RMLR, i.e.,Eqs. (12) and (13), are equivalent on SO(n).

Lemma 5.1. [↓]
ΓQ→P = LPQ−1∗,Q,∀P,Q ∈ SO(n). (21)

Similar with SPD MLRs, we set Q = I . The Lie MLR on SO(n) is presented in the following.

Theorem 5.2. [↓] The Lie MLR on SO(n) is given as

p(y = k | R ∈ SO(n)) ∝ ⟨log(P⊤
k S), Ak⟩, (22)

where Pk ∈ SO(n) and Ak ∈ so(n).

We refer to the Riemannian hyperplanes (Eq. (5)) on SO(n) as Lie hyperplanes. As SO(3) is
homeomorphic to 3-dimensional real projective space RP3 [26], Fig. 3 illustrates Lie hyperplanes in
the closed ball in R3 of radius π.

6 Experiments
We first validate our SPD MLRs on four SPD neural networks: SPDNet [30] and TSMNet [37] for
Riemannian feedforward networks, RResNet [36] for Riemannian residual networks, and SPDGCN
[76] for Riemannian graph neural networks. Then, we proceed with experiments of our Lie MLR
under the classic LieNet architecture [31]. The classifier in all the above networks is the LogEig MLR
(matrix logarithm + FC + softmax), a Euclidean MLR on the tangent space at the identity matrix. We
substitute the original non-intrinsic LogEig MLR in each baseline model with our RMLRs. Notably,
the gyro SPD MLRs [50] are special cases of our SPD MLRs under the standard AIM, LEM, and
LCM ((θ, α, β) = (1, 1, 0)), while flat SPD MLRs [16] are incorporated by our SPD MLRs under
(α, β)-LEM and θ-LCM. More implementation details are presented in App. G.

6.1 Experiments on the proposed SPD MLRs
In the following, we abbreviate SPD MLR-metric as metric. For instance, (θ, α, β)-AIM denotes the
baseline endowed with the SPD MLR induced by (θ, α, β)-AIM and (1,1,0) as the value of (θ, α, β).
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6.1.1 Experiments on the Riemannian feedforward network
We evaluate our SPD MLRs for Riemannian feedforward networks under the SPDNet and TSMNet
backbones. Following [30, 10], on SPDNet, we use the Radar dataset [10] for radar recognition
and the HDM05 dataset [44] for human action recognition. TSMNet [37] is one of the state-
of-the-art methods for the EEG classification task. Following [37], we use the Hinss2021 [28]
dataset. For each family of SPD MLRs, we report the SPD MLR induced from the standard metric
(θ = 1, α = 1, β = 0), and the one induced from the deformed metric with best (θ, α, β). Besides, if
the standard SPD MLR is already saturated, we only report the results of the standard one. Under
each metric, We highlight the results in bold of our SPD MLR under the best hyperparameters. We
visualize the results in App. G.1.6.

Radar: In line with [10], we evaluate our classifiers under two network architectures: 2-Block and
5-Block configurations. The 10-fold results (mean±std) are presented in Tab. 3. Note that the SPD
MLR induced by standard AIM is saturated. Generally speaking, our SPD MLRs achieve superior
performance against the vanilla LogEig MLR. Moreover, for most families of metrics, the associated
SPD MLRs with proper (θ, α, β) outperform the standard SPD MLR, demonstrating the effectiveness
of our parameterization. Besides, among all SPD MLRs, the ones induced by (α, β)-LEM achieve
the best performance.

HDM05: Following [30], three architectures are adopted: 1-Block, 2-Block and 3-Block configura-
tions. The 10-fold results (mean±std) are presented in Tab. 4. Note that the standard SPD MLRs under
AIM, LEM, and BWM are already saturated on this dataset. As the Radar dataset, similar observations
can be made on this dataset. Our SPD MLRs can bring consistent performance gain for SPDNet, and
properly selected hyperparameters can bring further improvement. Particularly, among all the SPD
MLRs, the ones based on the 2θ-BWM and (θ, α, β)-EM achieve the best performance. Compared
to the vanilla LogEig MLR, the highest performance improvement is 14.23%, highlighting our
approach’s effectiveness. Notably, since 2θ-BWM and (θ, α, β)-EM are geodesically incomplete and
not pulled back from a Euclidean space, the SPD MLR under these two metrics can not be derived
by the framework of gyro or flat MLR. This contrast confirms the applicability of our theoretical
framework to a broader range of geometries.

Hinss2021: The results (mean±std) of leaving 5% out cross-validation are reported in Tabs. 5 and 6.
Once again, our intrinsic classifiers demonstrate improved performance compared to the LogEig
MLR in both inter-session and inter-subject scenarios. Besides, the SPD MLRs based on θ-LCM
achieve the best performance, outperforming the vanilla classifier by 2.6% for inter-session and
by 4.46% for inter-subject. This finding highlights the versatility of our framework.

Table 7: Comparison of LogEig against SPD MLRs under the RResNet architecture.

Datasets LogEigMLR (θ, α, β)-AIM (θ, α, β)-EM (α, β)-LEM 2θ-BWM θ-LCM

HDM05 58.17 ± 2.07 60.23 ± 1.26 71.89 ± 0.60 (↑ 13.72) 59.44 ± 0.87 69.85 ± 0.23 65.76 ± 0.96
NTU60 45.22 ± 1.23 48.94 ± 0.68 52.24 ± 1.25 46.99 ± 0.41 50.56 ± 0.59 53.63 ± 0.95 (↑ 8.41)

6.1.2 Experiments on the Riemannian residual network
Following [36], we use the HDM05 and NTU60 [55] datasets on the RResNet backbone. For
the hyperparameter (θ, α, β) in our SPD MLRs, we borrow the best ones from Tab. 4. Tab. 7
reports the 10-fold and 5-fold results on the HDM05 and NTU datasets. The SPD MLRs still
consistently outperform the vanilla LogEig MLR. Besides, similar to the SPD MLRs under the
SPDNet backbone for action recognition (Tab. 4), the SPD MLR based on θ-LCM, 2θ-BWM, or
(θ, α, β)-EM outperforms the vanilla LogEig MLR by a large margin. Especially, the highest
performance improvement is 13.72% and 8.4% on these two datasets.

6.1.3 Experiments on the Riemannian graph network
We use SPDGCN [76] as the backbone network for the Riemannian graph network. Following [76],
we use the Disease [2], Cora [54], and Pubmed [46] datasets for node classification. The 10-fold
average and maximum results of the vanilla LogEig MLR against our SPD MLR with best (θ, α, β)
are reported in Tab. 8. Similar to the previous results, our SPD MLRs outperform the LogEig MLR.
Besides, the SPD MLR based on (α, β)-LEM generally achieves the best performance for SPDGCN.

6.1.4 Ablations of SPD MLRs on direct classification
For a more straightforward comparison, we compare LogEig against our SPD MLRs for direct
classification. We adopt the Radar, HDM05, and Hinss2021 datasets. We follow the preprocessing of
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Table 8: Comparison of LogEig against SPD MLRs under the SPDGCN architecture.

Classifiers Disease Cora Pubmed

Mean±STD Max Mean±STD Max Mean±STD Max

LogEig MLR 90.55 ± 4.83 96.85 78.04 ± 1.27 79.6 70.99 ± 5.12 77.6
(θ, α, β)-AIM 94.84 ± 2.27 98.43 79.79 ± 1.44 81.6 77.83 ± 1.08 80
(θ, α, β)-EM 90.87 ± 5.14 98.03 79.05 ± 1.23 81 78.16 ± 2.41 79.5
(α, β)-LEM 96.33 ± 2.19 98.82 79.89 ± 0.99 81.8 78.16 ± 2.41 79.5
2θ-BWM 91.93 ± 3.64 96.85 73.46 ± 2.18 77.7 73.22 ± 4.06 78.1
θ-LCM 93.01 ± 2.14 98.43 77.59 ± 1.20 80.1 74.46 ± 5.81 78.9

Table 9: Comparison of LogEig against SPD MLRs for direct classification.

Classifiers Radar HDM05 Hinss2021
Inster-session Inster-subject

LogEig MLR 91.93 ± 1.30 48.43 ± 1.25 39.76 ± 7.60 44.66 ± 7.17

(θ, α, β)-AIM 95.21 ± 0.81 49.17 ± 1.08 41.14 ± 7.26 45.89 ± 6.52
(θ, α, β)-EM 92.25 ± 1.20 61.60 ± 0.69 45.78 ± 8.51 (↑ 6.02) 45.84 ± 4.75
(α, β)-LEM 95.09 ± 0.57 49.05 ± 0.91 40.88 ± 7.46 46.02 ± 5.96 (↑ 1.36)
2θ-BWM 94.89 ± 0.41 66.77 ± 1.34 (↑ 18.34) 44.84 ± 8.00 45.21 ± 7.44
θ-LCM 95.67 ± 0.61 (↑ 3.74) 58.66 ± 0.51 43.17 ± 6.21 45.10 ± 6.20

SPDNet and TSMNet to model features into the SPD manifold and directly use LogEig or our SPD
MLRs for classification. The average results are presented in Tab. 9. The hyperparameters (θ, α, β)
are borrowed from Tabs. 3 to 6. Our SPD MLRs consistently outperform the vanilla LogEig MLR.
Particularly on the HDM05 dataset, the highest performance improvement by our SPD MLRs is
18.34%, surpassing the non-intrinsic LogEig MLR by a large margin. Ablations on model efficiency
are also discussed in App. G.1.5.

6.2 Experiments on the proposed Lie MLR

Table 10: Results of LogEig MLR against Lie MLR under the LieNet architecture.

Classifiers G3D HDM05

Mean±STD Max Mean±STD Max

LogEig MLR 87.91±0.90 89.73 76.92±1.27 79.11
Lie MLR 89.13±1.7 92.12 78.24±1.03 80.25

We apply our Lie MLR into the classic SO(n) network, i.e.,LieNet [31], where features are on the
Lie group of SO(3) × · · · × SO(3). Following LieNet [31], we use G3D [6] and HDM05 [44]
datasets. We also extend the Riemannian optimization package geoopt [4] into SO(3), allowing for
Riemannian optimization. We find that Riemannian SGD performs best for LieNet. Tab. 10 presents
the 10-fold average results of LieNet with or without Lie MLR. Note that on the HDM05 datasets, the
LieNet might fail to converge, fluctuating between the validation accuracy of 70% - 75%. Therefore,
we select 10-fold best performance out of 20-fold experiments. It can be observed that our Lie MLR
can improve the performance of LieNet. Besides, our Lie MLR can also improve the training stability.
On the HDM05 dataset, LieNet fails to converge in 8 out of 20 folds. However, when endowed with
our Lie MLR, LieNet+LieMLR only encounters convergence failures in 2 folds.

7 Conclusions
This paper presents a novel and versatile framework for designing RMLR for general geometries,
with a specific focus on SPD manifolds and SO(n). On the SPD manifold, we systematically explore
five families of Riemannian metrics and utilize them to construct five families of deformed SPD
MLRs. On SO(n), we develop the Lie MLR for classifying rotation matrices. Extensive experiments
demonstrate the superiority of our intrinsic classifiers. We expect that our work could present a
promising direction for designing intrinsic classifiers on diverse geometries.
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A Limitations and future avenues
Limitation: Recalling our RMLR in Eq. (11), our RMLR might be over-parameterized. In our RMLR,
each class would require a Riemannian parameter Pk and Euclidean parameter Ak. Consequently,
as the number of classes grows, the classification layer would become burdened with excessive
parameters. We will address this problem in future work.

Future work: We highlight the advantage of our approach compared to existing methods that
our framework only requires the Riemannian logarithm, which is commonly satisfied by various
manifolds encountered in machine learning. Therefore, as a future avenue, our framework offers
various possibilities for designing intrinsic classifiers for neural networks on other manifolds.

B Preliminaries
B.1 Notations
We briefly summarize the notations in Tab. 11 for better clarity.

Table 11: Summary of notations.

Notation Explanation

{M, g} or abbreviated as M A Riemannian manifold
TPM The tangent space at P ∈ M

gP (·, ·) or ⟨·, ·⟩P The Riemannian metric at P ∈ M
∥ · ∥P The norm induced by ⟨·, ·⟩P on TPM
LogP The Riemannian logarithm at P
ΓP→Q The Riemannian parallel transportation along the geodesic connecting P and Q
Ha,p The Euclidean hyperplane
H̃Ã,P The Riemannian hyperplane
⊙ A Lie group operation

{M,⊙} A Lie group
P−1
⊙ The group inverse of P under ⊙
LP The Lie group left translation by P ∈ M
f∗,P The differential map of the smooth map f at P ∈ M
f∗g The pullback metric by f from g
Sn
++ The SPD manifold

SO(n) The special orthogonal group
Sn The Euclidean space of symmetric matrices
Ln
+ The Cholesky manifold, i.e.,the set of lower triangular matrices with positive diagonal elements

Ln The Euclidean space of n× n real lower triangular matrices
⟨·, ·⟩ or · : · The standard Frobenius inner product

ST ST = {(α, β) ∈ R2 | min(α, α+ nβ) > 0}
⟨·, ·⟩(α,β) The O(n)-invariant Euclidean inner product
g(α,β)-LEM The Riemannian metric of (α, β)-LEM
g(α,β)-AIM The Riemannian metric of (α, β)-AIM
g(α,β)-EM The Riemannian metric of (α, β)-EM
gBWM The Riemannian metric of BWM
gLCM The Riemannian metric of LCM
log(·) The matrix logarithm
Chol(·) Cholesky decomposition
Dlog(·) The diagonal element-wise logarithm
⌊·⌋ The strictly lower triangular part of a square matrix
D(·) A diagonal matrix with diagonal elements from a square matrix
LP [·] The Lyapunov operator

(·)θ or ϕθ(·) The matrix power
Q(·) Return an orthogonal matrix by QR decomposition

skew(·) skew(A) = A−A⊤

2

B.2 Brief review of Riemannian geometry
Intuitively, manifolds are locally Euclidean spaces. Differentials are the generalization of derivatives
in classic calculus. For more details on smooth manifolds, please refer to [64, 40]. Riemannian
manifolds are the manifolds endowed with Riemannian metrics, which can be intuitively viewed as
point-wise inner products.

Definition B.1 (Riemannian Manifolds). A Riemannian metric on M is a smooth symmetric covariant
2-tensor field on M, which is positive definite at every point. A Riemannian manifold is a pair
{M, g}, where M is a smooth manifold and g is a Riemannian metric.

W.l.o.g., we abbreviate {M, g} as M. The Riemannian metric g induces various Riemannian opera-
tors, including the geodesic, exponential, and logarithmic maps, and parallel transportation. These
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operators correspond to straight lines, vector addition, vector subtraction, and parallel displacement
in Euclidean spaces, respectively [52, Tabel 1]. A plethora of discussions on Riemannian geometry
can be found in [21].

When a manifold M is endowed with a smooth operation, it is referred to as a Lie group.

Definition B.2 (Lie Groups). A manifold is a Lie group, if it forms a group with a group operation ⊙
such that m(x, y) 7→ x⊙ y and i(x) 7→ x−1

⊙ are both smooth, where x−1
⊙ is the group inverse of x.

Lastly, we review the definition of pullback metric, a common technique in Riemannian geometry.
This idea is a natural generalization of bijection from set theory.

Definition B.3 (Pullback Metrics). Suppose M,N are smooth manifolds, g is a Riemannian metric
on N , and f : M → N is smooth. Then the pullback of g by f is defined point-wisely,

(f∗g)p(V1, V2) = gf(p)(f∗,p(V1), f∗,p(V2)), (23)

where p ∈ M, f∗,p(·) is the differential map of f at p, and Vi ∈ TpM. If f∗g is positive definite, it
is a Riemannian metric on M, which is called the pullback metric defined by f .

Table 12: The associated Riemannian operators and properties of five basic metrics on SPD manifolds.

Metrics gP (V,W ) LogP Q ΓP→Q(V ) Properties

(α, β)-LEM ⟨log∗,P (V ), log∗,P (W )⟩(α,β) (log∗,P )
−1 [log(Q)− log(P )] (log∗,Q)

−1 ◦ log∗,P (V )
O(n)-Invariance,

Geodesically Completeness

(α, β)-AIM ⟨P−1V,WP−1⟩(α,β) P 1/2 log
(
P−1/2QP−1/2

)
P 1/2 (QP−1)1/2V (P−1Q)1/2

Lie Group Left-Invariance,
O(n)-Invariance,

Geodesically Completeness

(α, β)-EM ⟨V,W ⟩(α,β) Q− P V O(n)-Invariance

LCM
∑

i>j ṼijW̃ij +
∑n

j=1 ṼjjW̃jjL
−2
jj (Chol−1)∗,L

[
⌊K⌋ − ⌊L⌋+ D(L)Dlog(D(L)−1D(K))

]
(Chol−1)∗,K

[
⌊Ṽ ⌋+ D(K)D(L)−1D(Ṽ )

] Lie Group Bi-Invariance,
Geodesically Completeness

BWM 1
2 ⟨LP [V ],W ⟩ (PQ)1/2 + (QP )1/2 − 2P U

[√
δi+δj
σi+σj

[
U⊤V U

]
ij

]
U⊤ O(n)-Invariance

B.3 Basic geometries of SPD manifolds
Let Sn

++ be the set of n× n symmetric positive definite (SPD) matrices. As shown in [3], Sn
++ is an

open submanifold of the Euclidean space Sn of symmetric matrices. There are five kinds of popular
Riemannian metrics on Sn

++: Affine-Invariant Metric (AIM) [52], Log-Euclidean Metric (LEM) [3],
Power-Euclidean Metrics (PEM) [22], Log-Cholesky Metric (LCM) [41], and Bures-Wasserstein
Metric (BWM) [5]. Note that, when power equals 1, the PEM is reduced to the Euclidean Metric
(EM). The standard LEM, AIM, and EM have been generalized into parametrized families of metrics.
We define ST = {(α, β) ∈ R2 | min(α, α + nβ) > 0}, and denote the O(n)-invariant Euclidean
metric on Sn [63] as

⟨V,W ⟩(α,β) = α⟨V,W ⟩+ β tr(V ) tr(W ), (24)

where (α, β) ∈ ST, and ⟨·, ·⟩ is the Frobenius inner product. By O(n)-invariant Euclidean metric
on Sn, Thanwerdas and Pennec [63] generalized AIM, LEM, and EM into two-parameters families
of O(n)-invariant metrics, i.e.,(α, β)-AIM, (α, β)-LEM, and (α, β)-EM, with (α, β) ∈ ST. We
denote the metric tensor of (α, β)-AIM, (α, β)-LEM, (α, β)-EM, LCM, and BWM as g(α,β)-AIM,
g(α,β)-LEM, g(α,β)-EM, gLCM, and gBWM, respectively.

For any SPD points P,Q ∈ Sn
++ and tangent vectors V,W ∈ TPSn

++, we follow the notations in
Tab. 11 and further denote Ṽ = Chol∗,P (V ), W̃ = Chol∗,P (W ), L = CholP , and K = CholQ.
For parallel transportation under the BWM, we only present the case where P,Q are commuting
matrices, i.e.,P = UΣU⊤ and Q = U∆U⊤. We summarize the associated Riemannian operators
and properties in Tab. 12. Although there also exist other metrics on SPD manifolds [60, 61, 63],
their lack of closed-form Riemannian operators makes them problematic to be applied in machine
learning.

B.4 Basic geometry of rotation matrices

Table 13: The associated Riemannian operators on Rotation matrices.

Operators gR(A1, A2) LogR S ΓR→S(A) Projection Map ΠR(U) Retraction of A ∈ TRSO(n) at R

Expression ⟨A1, A2⟩ log(R⊤S) A skew(R⊤U) Q = Q(R+RA)
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We denote R ∈ SO(n), A1, A2 ∈ TRSO(n), U ∈ Rn×n, skew(A) = A−A⊤

2 , and Q(·) as the
function return an orthogonal matrix by QR decomposition. There are two equivalent representations
for the tangent vector on SO(n). In this paper, we use the Lie algebra representation, i.e.,TRSO(n) ∼=
so(n) as the set of skew-symmetric matrices. We summarize all the necessary Riemannian ingredients
for SO(n) in Tab. 13.

For the specific case of R ∈ SO(3), R can be represented by the Euler angle and axis [26, Sec. 3.2]:

θ(R) = arccos

(
tr(R)− 1

2

)
, (25)

ω (R) =
1

2 sin (θ (R))

(
R(3, 2)−R(2, 3)
R(1, 3)−R(3, 1)
R(2, 1)−R(1, 2)

)
. (26)

Besides, the matrix logarithm on SO(3) can be calculated without decomposition [45, Ex. A.14]:

log(R) =

{
0, if θ(R) = 0

θ(R)
2 sin(θ(R))

(
R−RT

)
, otherwise

, (27)

where θ is the Euler angle. Obviously, the matrix logarithm is related to the Euler angle and axis
when θ ̸= 0.

C RMLR as a natural extension of the Euclidean MLR
Proposition C.1. When M = Rn is the standard Euclidean space, the RMLR defined in Thm. 3.3
becomes the Euclidean MLR in Eq. (1).

Proof. On the standard Euclidean space Rn, Logy x = x− y,∀x, y ∈ Rn. Besides, the differential
maps of left translation and parallel transportation are the identity maps. Therefore, given x, pk ∈ Rn

and ak ∈ Rn/{0} ∼= T0Rn/{0}, we have

p(y = k | x ∈ Rn) ∝ exp(⟨Logpk
x, ak⟩pk

), (28)

∝ exp(⟨x− pk, ak⟩), (29)
∝ exp(⟨x, ak⟩ − bk), (30)

where bk = ⟨x, pk⟩.

D Gyro SPSD MLR as special cases of our RMLR
Gyro SPSD MLR [51] is derived by the product of the Grassmannian and SPD gyro spaces. This
section will show that the gyro SPSD MLR is the special case of our RMLR on the product geometry
of the SPSD manifold. We first review some necessary results about gyro SPSD MLR and then show
the equivalence.

Following the notations in [51], we denote the Grassmannian with canonical metric under the projector
and ONB perspective as Gr(p, n) and G̃r(p, n), respectively. The space of n × n SPSD matrices
with a fixed rank p, denoted as S+

n,p, forms an SPSD manifold [7]. As shown in [7, 51], the SPSD
manifold is a product space, i.e.,S+

n,p
∼= G̃r(p, n) × Sp

++. In other words, every P ∈ S+
n,p can be

decomposed as P = UPSPU
⊤
P with Up ∈ G̃r(p, n) and SP ∈ Sp

++. We further denote Sp,g
++ as the

SPD manifold with metric g, where g could be AIM, LEM, and LCM. As shown in [51], the gyro
space in S+

n,p can be defined by the product of gyro spaces of G̃r(p, n) and Sp,g
++. By this product

structure, Nguyen et al. [51] proposed the SPSD Pseudo-gyrodistance to a hyperplane.

Definition D.1. (SPSD Hypergyroplanes [51]) Let P,W ∈ G̃r(p, n)×Sn,g
++. Then hypergyroplanes

in structure space G̃r(p, n)× Sn,g
++ are defined as

Hpsd,g
W,P =

{
Q ∈ G̃r(p, n)× Sn,g

++ : ⟨⊖psd,gP ⊕psd,g Q,W ⟩psd,g = 0
}
. (31)

where ⊕psd,g and ⟨, ⟩psd,g are gyro addition and gyro inner product, which are defined in [51].
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Theorem D.2. (SPSD Pseudo-gyrodistance [51]) Let W = (UW , SW ) , P = (UP , SP ) , X =

(UX , SX) ∈ G̃r(p, n)× Sn,g
++, and Hpsd,g

A,P be a hypergyroplane in structure space G̃r(p, n)× Sn,g
++.

Then the pseudo-gyrodistance from X to Hpsd,g
A,P is given by

d̄
(
X,Hpsd,g

W,P

)
=

∣∣∣λ〈(⊖̃grUP ⊕̃grUX

) (
⊖̃grUP ⊕̃grUX

)T
, UWUT

W

〉gr
+ ⟨⊖gSP ⊕g SX , SW ⟩g

∣∣∣√
λ
(∥∥UWUT

W

∥∥gr)2 + (∥SW ∥g)2
,

(32)
where ∥.∥gr and ∥.∥g are the gyro norms on the Grassmann and SPD [51], and ⟨, ⟩gr and ⟨, ⟩g are
gyro inner products [51]. ⊕̃gr and ⊕g are gyro additions on G̃r(p, n) and Sp,g

++.

Denoting ggr as the canonical metric on G̃r(p, n) and g as AIM, LEM, or LCM, we can prove that
Thm. D.2 is the special case of our Thm. 3.2.

Theorem D.3. Under the product metric gpsd,g = λggr × g, the Riemannian hyperplane in Eq. (5)
on the SPSD manifold equals the SPSD hypergyroplane in Def. D.1. Similarly, the Riemannian
margin distance in Thm. 3.2 on the SPSD manifold equals SPSD Pseudo-gyrodistance in Thm. D.2.

Proof. Following the notations in Def. D.1 and Thm. D.2, we further denote P = UPSPU
⊤
P ,

Q = UQSQU
⊤
Q , W = UWSWU⊤

W , and X = UXSXU⊤
X with UP , UQ, UW , UX ∈ G̃r(p, n) and

SP , SQ, SW , SX ∈ Sp,g
++. Ip is the p × p identity matrix. Ĩp,n = (Ip, 0)

⊤ is the gyro identity on
G̃r(p, n). Γ̃gr, L̃og

gr
, and ⟨, ⟩grUp

are Riemannian parallel transport along a geodesic, logarithm

and Riemannian metric at Up on G̃r(p, n). Γg, Logg, and ⟨, ⟩gSp
are Riemannian parallel transport

along a geodesic, logarithm and Riemannian metric at Sp on Sp,g
++. Γpsd,g, Logpsd,g, and ⟨, ⟩psd,gX

are Riemannian parallel transport along a geodesic, logarithm and Riemannian metric at X on
S+
n,p

∼= G̃r(p, n)× Sp
++.

First, we show that the SPSD hypergyroplane equals our Riemannian hyperplane in Eq. (5). We have
the following

⟨⊖psd,gP ⊕psd,g Q,W ⟩psd,g

(1)
= λ⟨⊖grUP ⊕gr UQ, UW ⟩gr + ⟨⊖gSP ⊕g SQ, SW ⟩g

(2)
= λ⟨LoggrUP

UQ, AUW
⟩grUP

+ ⟨LoggrSP
SQ, ASW

⟩gSP

(3)
= ⟨Logpsd,gP Q, Ã⟩psd,gP

(33)

where ÃUW
= Γ̃gr

Ĩp,n→UP

(
L̃og

gr

Ĩp,n(UW )
)

, ÃSW
= Γg

Ip→SP

(
LoggIp(SW )

)
and Ã =

(ÃUW
, ÃSW

) ∈ TPS+
n,p

∼= TUP
G̃r(p, P ) ⊗ TSP

Sp,g
++ with ⊗ as the Cartesian product. The above

derivation comes from the following.

(1) The definition of gyro addition, gyro inverse, and gyro inner product on the SPSD manifold
[51, Sec. 3.3].

(2) The proof of [51, Prop. 3.2] indicates that similar results also hold on the Grassmannian.
Combining Prop. 3.2 and its counterparts in the Grassmannian, one can obtain the equation.

(3) The Riemannian product geometry.

By the product geometry of the SPSD manifold, we can immediately get

Ã = (ÃUW
, ÃSW

) = Γpsd,g
Ip,n→P

(
Logpsd,gIp,n

(W )
)

(34)

where Ip,n = Ĩp,nĨ
⊤
p,n is the gyro identity on the SPSD manifold.
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Next, we show the equivalence between SPSD pseudo-gyrodistance and our Riemannian margin
distance:

d̄
(
X,Hpsd,g

W,P

)
(1)
=

∣∣∣⟨⊖psd,gP ⊕psd,g X,W ⟩psd,g
∣∣∣

∥W∥psd,g

(2)
=

∣∣∣⟨Logpsd,gP X, Ã⟩psd,gP

∣∣∣
∥W∥psd,g

(3)
=

∣∣∣⟨Logpsd,gP X, Ã⟩psd,gP

∣∣∣∥∥∥Logpsd,gIp,n
(W )

∥∥∥psd,g
Ip,n

(4)
=

∣∣∣⟨Logpsd,gP X, Ã⟩psd,gP

∣∣∣∥∥∥Γpsd,g
Ip,n→P

(
Logpsd,gIp,n

(W )
)∥∥∥psd,g

P

(5)
=

∣∣∣⟨Logpsd,gP X, Ã⟩psd,gP

∣∣∣∥∥∥Ã∥∥∥psd,g
P

(6)
= d(S, H̃Ã,P )

(35)

(1) The definition of gyro addition, gyro inverse, gyro inner product, and gyro norm on the
SPSD manifold.

(2) Eq. (33).

(3) The definition of SPSD gyro norm [51].

(4) Riemannian parallel transportation maintains the norm of the tangent vector [21, Def. 3.1]

(5) Eq. (34)

(6) Thm. 3.2

Remark D.4. We make the following remark w.r.t. gyro and our MLR on the SPSD manifold.

1. Eq. (34) indicates that when generating Ã in our RMLR by parallel transporting a tangent
vector A ∈ TIp,nS+

n,p, Ã is the initial velocity of W in Eq. (32).

2. Putting pseudo-gyrodistance and Riemannian margin distance into Eq. (4), one can get gyro
MLR and our Riemannian MLR. Therefore, Thm. D.3 indicates the equivalence of the gyro
MLR with our RMLR on the SPSD.

3. As g are required to induce gyro structures, the metric g in gyro SPSD MLR is confined
within AIM, LEM, and LCM. However, our SPSD MLR can be the product space of the
Grassmannian and SPD manifold under other metrics, such as BWM and PEM, as our
framework does not require gyro structures.

E Theories on the deformed metrics
E.1 Limiting cases of the deformed metrics
Thanwerdas and Pennec [59] generalized (α, β)-AIM into three-parameters families of metrics by
power deformation, i.e.,(θ, α, β)-AIM. The family of (θ, α, β)-AIM comprises (α, β)-AIM for θ = 1
and approaches (α, β)-LEM with θ → 0 [59].

Chen et al. [17] extended LCM and (α, β)-LEM into power-deformed metrics, denoted as
(θ, α, β)-LEM and θ-LCM. The authors show that (θ, α, β)-LEM is equal to (α, β)-LEM, and
θ-LCM interpolates between g̃-LEM (θ → 0) and LCM (θ = 1), with g̃-LEM defined as

⟨V1, V2⟩P =
1

2
⟨Ṽ1, Ṽ2⟩ −

1

4
⟨D(Ṽ1),D(Ṽ2)⟩,∀Vi ∈ TPSn

++, (36)
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where Ṽi = log∗,P (Vi) with log∗,P as the differential map of matrix logarithm, and D(Vi) is a
diagonal matrix consisting of the diagonal elements of Vi.

Thanwerdas and Pennec [61] identified the Alpha-Procrustes metric [43] with power-deformed BWM,
denote as 2θ-BWM. Similarly, 2θ-BWM becomes BWM with θ = 0.5 [61]. We further show the
limiting case of 2θ-BWM under θ → 0.

Proposition E.1. 2θ-BWM tends to be ( 14 , 0)-LEM with θ → 0.

Before starting the proof, we first recall a well-known property of deformed metrics [61].

Lemma E.2. Let 1
θ2ϕ

∗
θg be the deformed metric on SPD manifolds pulled back from g by the matrix

power ϕθ and scaled by 1
θ2 . Then when θ tends to 0, for all P ∈ Sn

++ and all V ∈ TPSn
++, we have

(
1

θ2
ϕ∗
θg)P (V, V ) → gI(log∗,P (V ), log∗,P (V )). (37)

Now, we present our proof for the limiting cases of deformed metrics.

Proof of Prop. E.1. First, we have

gBWM
I (V, V ) =

1

4
⟨V, V ⟩. (38)

By Lem. E.2, we have the following:

g2θ-BWM
P (V, V )

θ→0−−−→ gBWM
I

(
log∗,P (V ), log∗,P (V )

)
=

1

4
⟨log∗,P (V ), log∗,P (V )⟩

= g
( 1
4 ,0)-LEM

P (V, V ) .

(39)

E.2 Proof of the properties of the deformed metrics (Tab. 2)
In this subsection, we prove the properties presented in Tab. 2. We first present a useful lemma and
then present our detailed proof. This lemma will be useful in the proof of our SPD MLRs as well.

Lemma E.3. Supposing a Riemannian manifold {M, g} and a positive real scalar a > 0, the
scaling metric ag over M shares the same Riemannian logarithmic & exponential maps and parallel
transportation with g.

Proof. Since the Christoffel symbols of ag are identical to those of g, the geodesics and parallel
transportation under both ag and g remain unchanged. The equivalence of geodesics implies that
the Riemannian exponential maps are the same for ag and g. As the inverse of the Riemannian
exponential maps, the Riemannian logarithm maps under ag and g are also identical.

According to Lem. E.3, the geodesic completeness is independent of the scaling factor a > 0. By the
definition of O(n)-, left-, right-, and bi-invariance, these invariant properties are also independent of
the scaling factor a > 0. Without loss of generality, we will omit the scaling factor in the following
proof.

Proof. Firstly, we prove O(n)-invariance of (θ, α, β)-LEM, (θ, α, β)-EM, (θ, α, β)-AIM, and 2θ-
BWM. Since the differential of ϕθ is O(n)-equivariant, and (α, β)-LEM, (α, β)-EM, (α, β)-AIM,
and BWM are O(n)-invariant [63], O(n)-invariance are thus acquired.

Next, we focus on geodesic completeness. It can be easily proven that Riemannian isometries preserve
geodesic completeness. On the other hand, (α, β)-LEM, (α, β)-AIM, and LCM are geodesically
complete [63, 41]. As a direct corollary, geodesic completeness can be obtained since ϕθ is a
Riemannian isometry.

Finally, we deal with Lie group invariance. Similarly, it can be readily proved that Lie group
invariance is preserved under isometries. LCM, LEM, and (α, β)-AIM are Lie group bi-invariant
[41], bi-invariant [3], and left-invariant [62]. As an isometric pullback metric from the standard
LEM [63], (α, β)-LEM is, therefore, Lie group bi-invariant. As pullback metrics, (θ, α, β)-LEM,
(θ, α, β)-AIM, and θ-LCM are therefore bi-invariant, left-invariant, and bi-invariant, respectively.
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F Computational details on the SPD MLR under power-deformed BWM
F.1 Matrix square roots in the SPD MLR under power-deformed BWM

In the case of MLRs induced by 2θ-BWM, computing square roots like (BA)
1
2 and (AB)

1
2 with

B,A ∈ Sn
++ poses a challenge. Eigendecomposition cannot be directly applied since BA and AB

are no longer symmetric, let alone positive definitity. Instead, we use the following formulas to
compute these square roots [43]:

(BA)
1
2 = B

1
2 (B

1
2AB

1
2 )

1
2B− 1

2 and (AB)
1
2 = [(BA)

1
2 ]⊤, (40)

where the involved square roots can be computed using eigendecomposition or singular value
decomposition (SVD).

F.2 Numerical stability of the SPD MLR under power-deformed BWM
Let us first explain why we abandon parallel transportation on the SPD MLR derived from 2θ-BWM.
Then, we propose our numerically stable methods for computing the SPD MLR based on 2θ-BWM.

F.2.1 Instability of parallel transportation under power-deformed BWM
As discussed in Thm. 3.3, there are two ways to generate Ã in SPD MLR: parallel transportation
and Lie group translation. However, parallel transportation under 2θ-BWM could cause numerical
problems. W.l.o.g., we focus on the standard BWM as 2θ-BWM is isometric to the BWM.

Although the general solution of parallel transportation under BWM is the solution of an ODE, for
the case of parallel transportation starting from the identity matrix, we have a closed-form expression
[63]:

ΓI→P (V ) = U

[√
σi + σj

2

[
U⊤V U

]
ij

]
U⊤, (41)

where P = UΣU⊤ is the eigendecomposition of P ∈ Sn
++. There would be no problem in the

forward computation of Eq. (41). However, during backpropagation (BP), Eq. (41) would require the
BP of eigendecomposition, involving the calculation of 1/(σi−σj) [33, Prop. 2]. When σi is close to
σj , the BP of eigendecomposition could be problematic.

F.2.2 Numerically stable methods for the SPD MLR under power-deformed BWM
To bypass the instability of parallel transportation under BWM, we use Lie group left translation to
generate Ã in MLRs induced from 2θ-BWM. However, there is another problem that could cause
instability. The computation of the Riemannian metric of 2θ-BWM requires solving the Lyapunov
operator, i.e.,LP [V ]P +PLP [V ] = V . Under the case of symmetric matrices, the Lyapunov operator
can be obtained by eigendecomposition:

LP [V ] = U

[
V ′
ij

σi + σj

]
i,j

U⊤, (42)

where V ∈ Sn, UV ′U⊤ = V , and P = UΣU⊤ is the eigendecomposition of P ∈ Sn
++. Similar

with Eq. (41), the BP of Eq. (42) requires 1/(σi−σj), undermining the numerical stability.

To remedy this problem, we proposed the following formula to stably compute the BP of Eq. (42).

Proposition F.1. For all P ∈ Sn
++ and all V ∈ Sn, we denote the Lyapunov equation as

XP + PX = V, (43)

where X = LP [V ]. Given the gradient ∂L
∂X of loss L w.r.t. X , then the BP of the Lyapunov operator

can be computed by:

∂L

∂V
= LP [

∂L

∂X
], (44)

∂L

∂P
= −XLP [

∂L

∂X
]− LP [

∂L

∂X
]X, (45)

where LP [·] can be computed by Eq. (42).
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Proof. Differentiating both sides of Eq. (43), we obtain
dXP +X dP + dPX + P dX = dV, (46)

=⇒ dXP + P dX = dV −X dP − dPX, (47)
=⇒ dX = LP [dV −X dP − dPX]. (48)

Besides, easy computations show that
LP [V ] : W = V : LP [W ],∀W,V ∈ Sn, (49)

where · : · denotes the standard Frobenius inner product.

Then we have the following:
∂L

∂X
: dX =

∂L

∂X
: LP [dV −X dP − dPX], (50)

=⇒ ∂L

∂X
: dX = LP [

∂L

∂X
] : dV +

(
−XLP [

∂L

∂X
]− LP [

∂L

∂X
]X

)
: dP. (51)

Remark F.2. Eq. (42) needs to be computed in the Lyapunov operator’s forward and backward
process. Therefore, in the forward process, we can save the intermediate matrices U and K with
Ki,j =

[
1

σi+σj

]
i,j

, and then use them to compute the backward process efficiently.

G Implementation details and additional experiments
This section offers additional details on the experiments of SPD and Lie MLRs.

G.1 Additional details and experiments on the SPD MLRs
G.1.1 Basic layers in SPDNet and TSMNet
SPDNet [30] is the most classic SPD neural network. SPDNet mimics the conventional densely
connected feedforward network, consisting of three basic building blocks:

BiMap layer: Sk = W kSk−1W k⊤, with W k semi-orthogonal, (52)

ReEig layer: Sk = Uk−1 max(Σk−1, ϵIn)U
k−1⊤, with Sk−1 = Uk−1Σk−1Uk−1⊤, (53)

LogEig layer: Sk = log(Sk−1). (54)
where max() is element-wise maximization. BiMap and ReEig mimic transformation and non-
linear activation, while LogEig maps SPD matrices into the tangent space at the identity matrix for
classification.

SPDNetBN [10] further proposed Riemannian batch normalization based on AIM:

Centering from geometric mean G : ∀i ≤ N, S̄i = G− 1
2SiG

− 1
2 , (55)

Biasing towards SPD parameter G : ∀i ≤ N, S̃i = G
1
2 S̄iG

1
2 . (56)

SPD domain-specific momentum batch normalization (SPDDSMBN) [37] is an improved version
of SPDNetBN. Apart from controlling the mean, it can also control variance. The key operation in
SPDDSMBN of controlling mean and variance is:

ΓI→G ◦ ΓG→I(Si)
ν

ν̄+ε , (57)
where G and v̄ are Riemannian mean and variance. Inspired by [75], during the training stage,
SPDDSMBN generates running means and running variances for training and testing with distinct
momentum parameters. Besides, it sets G and v̄ as the running mean and running variance w.r.t.
training for training and the ones w.r.t. testing for testing. SPDDSMBN also applies domain-specific
techniques [13], keeping multiple parallel BN layers and distributing observations according to the
associated domains. To crack cross-domain knowledge, v is uniformly learned across all domains,
and G is set to be the identity matrix. TSMNet [37] adopted SPDDSMBN to solve domain adaptation
in EEG classification.

In the above models, the Euclidean MLR in the co-domain of matrix logarithm (matrix logarithm +
FC + softmax) is used for classification. Following the terminology in [16], we call this classifier
as LogEig MLR. The LogEig MLR is the Euclidean classifier in the tangent space at the identity,
which might distort the innate geometry of the SPD manifold.
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G.1.2 Datasets and preprocessing
Radar2: This dataset [10] consists of 3,000 synthetic radar signals. Following the protocol in [10],
each signal is split into windows of length 20, resulting in 3,000 SPD covariance matrices of 20× 20
equally distributed in 3 classes.

HDM053: This dataset [44] contains 2,273 skeleton-based motion capture sequences executed
by various actors. Each frame consists of 3D coordinates of 31 joints of the subjects, and each
sequence can be, therefore, modeled by a 93× 93 covariance matrix. Following the protocol in [10],
we trim the dataset down to 2086 sequences scattered throughout 117 classes by removing some
under-represented classes.

Hinss20214: This dataset [28] is a recent competition dataset consisting of EEG signals for mental
workload estimation. The dataset is used for two types of experiments: inter-session and inter-subject,
which are modeled as domain adaptation problems. Recently, geometry-aware methods have shown
promising performance in EEG classification [74, 37]. We choose the SOTA method, TSMNet [37],
as our baseline model on this dataset. We follow the Python implementation5 [37] to carry out
preprocessing. In detail, the python package MOABB [35] and MNE [24] are used to preprocess the
datasets. The applied steps include resampling the EEG signals to 250/256 Hz, applying temporal
filters to extract oscillatory EEG activity in the 4 to 36 Hz range, extracting short segments ( ≤ 3s)
associated with a class label, and finally obtaining 40× 40 SPD covariance matrices.

Disease [2]: It represents a disease propagation tree, simulating the SIR disease transmission
model [2], with each node representing either an infection or a non-infection state.

Cora [54]: It is a citation network where nodes represent scientific papers in the area of machine
learning, edges are citations between them, and node labels are academic (sub)areas.

Pubmed [46]: This is a standard benchmark describing citation networks where nodes represent
scientific papers in the area of medicine, edges are citations between them, and node labels are
academic (sub)areas.

For the Disease, Cora and Pubmed datasets, we follow [76] to model features into S3
++.

G.1.3 Implementation details
SPDNet [30] and TSMNet [37]: We follow the official Pytorch code of SPDNetBN6 and TSMNet7
to implement our experiments. To evaluate the performance of our intrinsic classifiers, we substitute
the LogEig MLR in SPDNet and TSMNet with our SPD MLRs. We implement our SPD MLRs
induced from five parameterized metrics. On the Radar and HDM05 datasets, the learning rate is
1e−2, and the batch size is 30. On the Hinss2021 dataset, following [37], the learning rate is 1e−3

with a 1e−4 weight decay, and batch size is 50. The maximum training epoch is 200, 200, and
50, respectively. We use the standard-cross entropy loss as the training objective and optimize the
parameters with the Riemannian AMSGrad optimizer [4].

RResNet [36]: We focus on the AIM-based RResNet, and use the official code8 and suggested
network settings to implement the experiments on the RResNet. We conduct 10-fold and 5-fold
experiments on the HDM05 and NTU datasets. Since RResNet is developed based on SPDNet, we
use the same learning settings with the SPDNet for the action recognition task, and borrow the best
(θ, α, β) from Tab. 4 for our SPD MLRs under the RResNet backbone.

SPDGCN [76]: We use the official code9 and the suggested network settings in [76]. Note that
the SPDGCN with SPD MLR remains the same network settings as the vanilla SPDGCN. Tab. 14
presents the hyperparameters (θ, α, β) on different datasets.

2https://www.dropbox.com/s/dfnlx2bnyh3kjwy/data.zip?dl=0
3https://resources.mpi-inf.mpg.de/HDM05/
4https://zenodo.org/record/5055046
5https://github.com/rkobler/TSMNet
6https://proceedings.neurips.cc/paper_files/paper/2019/file/6e69ebbfad976d4637bb4b39de261bf7-

Supplemental.zip
7https://github.com/rkobler/TSMNet
8https://github.com/CUAI/Riemannian-Residual-Neural-Networks
9https://github.com/andyweizhao/SPD4GNNs
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Table 14: (θ, α, β) of SPD MLRs on the SPDGCN backbone.

Datasets (θ, α, β)-AIM (θ, α, β)-EM (α, β)-LEM 2θ-BWM θ-LCM

Disease (0.25,1,0) (0.25,1,0) (1,1) 0.25 0.5
Cora (0.5,1,0) (0.25,1,1/9) (1,1/9) 0.25 0.5

Pubmed (0.5,1,0) (0.5,1,0) (1,-1/3) 0.25 0.5

Network Architectures: We denote the network architecture as [d0, d1, · · · , dL], where the dimen-
sion of the parameter in the i-th BiMap layer (App. G.1.1) is di× di−1. For SPDNet, we also validate
our SPD MLRs under different network architectures on the Radar and HDM05 datasets. The network
architectures on the Radar dataset are [20, 16, 8] for the 2-block configuration and [20, 16, 14, 12,
10, 8] for the 5-block configuration, while on the HDM05 dataset, the network architectures are [93,
30] for 1-block, [93. 70, 30] for 2-block, and [93, 70, 50, 30] for 3-block. For TSMNet, the 1-block
architecture is [40,20].

Scoring Metrics: In line with the previous work [10, 37, 76, 36], we use balanced accuracy, the
average recall across classes, as the scoring metric for the Hinss2021 dataset, and accuracy for other
datasets. On the Hinss2021 dataset, models are fit and evaluated with a randomized leave 5% of
the sessions (inter-session) or subjects (inter-subject) out cross-validation (CV) scheme. On other
datasets, K-fold experiments are carried out with randomized initialization and split,

G.1.4 Hyper-parameters
We implement the SPD MLRs induced by not only five standard metrics, i.e.,LEM, AIM, EM, LCM,
and BWM, but also five families of parameterized metrics. Therefore, in our SPD MLRs, we have a
maximum of three hyper-parameters, i.e.,θ, α, β, where (α, β) are associated with O(n)-invariance
and θ controls deformation. For (α, β) in (θ, α, β)-LEM, (θ, α, β)-AIM, and (θ, α, β)-EM, recalling
Eq. (24), α is a scaling factors, while β measures the relative significance of traces. As scaling
is less important [59], we set α = 1. As for the value of β, we select it from a predefined set:
{1, 1/n, 1/n2, 0,−1/n + ϵ,−1/n2}, where n is the dimension of input SPD matrices in SPD MLRs.
The purpose of including ϵ ∈ R+ is to ensure O(n)-invariance ((α, β) ∈ ST). These chosen values
for β allow for amplifying, neutralizing, or suppressing the trace components, depending on the
characteristics of the datasets. For the deformation factor θ, we roughly select its value around
its deformation boundary, i.e.,[0.25,1.5] for (θ, α, β)-AIM, [0.5,1.5] for θ-LCM, [0.25,1.5] and
(θ, α, β)-EM, [0.25,0.75] for 2θ-BWM. The details values are listed in Tab. 15.

Table 15: Candidate values for hyper-parameters in SPD MLRs

Metric (θ, α, β)-AIM (θ, α, β)-EM θ-LCM 2θ-BWM

Candidate Values { 0.25,0.5,0.75,1,1.25,1.5 } {0.5,1,1.5 } {0.5,1,1.5 } {0.25,0.5,0.75 }

G.1.5 Model efficiency

Table 16: Training efficiency (s/epoch).

Methods Radar HDM05
Hinss2021

Inter-session Inter-subject

Baseline 1.36 1.95 0.18 8.31
AIM-MLR 1.75 31.64 0.38 13.3
EM-MLR 1.34 3.91 0.19 8.23

LEM-MLR 1.5 4.7 0.24 10.13
BWM-MLR 1.75 33.14 0.38 13.84
LCM-MLR 1.35 3.29 0.18 8.35

We adopt the deepest architectures, namely [20, 16, 14, 12, 10, 8] for the Radar dataset, [93, 70, 50,
30] for the HDM05 dataset, and [40, 20] for the Hinss2021 dataset. For simplicity, we focus on the
SPD MLRs induced by standard metrics, i.e.,AIM, EM, LEM, BWM, and LCM. The average training
time (in seconds) per epoch is reported in Tab. 16. Generally, when the number of classes is small
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(e.g.,3 in the Radar and Hinss2021 datasets), our SPD MLRs only bring minor additional training
time compared to the baseline LogEig MLR. However, when dealing with a larger number of classes
(e.g.,117 classes in the HDM05 dataset), there could be some inefficiency caused by our SPD MLRs.
This is because each class requires an SPD parameter, and each parameter might require matrix
decomposition in the forward or optimization processes during training. Nonetheless, the SPD MLRs
induced by EM or LCM generally achieve comparable efficiency with the vanilla LogEig MLR.
This is due to the fast computation of their Riemannian operators, making them efficient choices for
tasks with a larger number of classes. This result highlights the flexibility of our framework and its
applicability to various scenarios.

90

92

94

96

98
Ac

c
Radar

55

58

61

64

67

70

73 HDM05

SPDNet
MLR-( , , )-AIM

MLR-( , , )-EM
MLR-( , , )-LEM

MLR-(2 )-BWM
MLR-( )-LCM

Figure 4: Visualization of 10-fold average accuracy of SPDNet with different SPD MLRs on the
Radar and HDM05 datasets. The error bar denotes the standard deviation.

G.1.6 Visualization
We visualize the 10-fold average results of SPDNet with different classifiers on the Radar and
HDM05 datasets. We focus on the deepest architectures, i.e.,. [20,16,14,12,10,8] for the Radar
dataset, and [93,70,50,30] for the HDM05 dataset. Note that we only report the SPD MLR with the
best hyper-parameters (θ, α, β). The figures are presented in Fig. 4. All the results are sourced from
Tabs. 3 and 4.

G.2 Additional details and experiments on the Lie MLR
G.2.1 Basic layers in LieNet
LieNet [31] is the most classic neural network on rotation matrices. The latent space of LieNet is
the Lie group SON (3) = SO(3) × SO(3) · · · × SO(3), i.e.,R = (R1, · · · , RN ) ∈ SON (3). The
group and manifold structures on SON (3) are defined by product spaces. For instance, R1 ⊙R2 =
(R1

1R
2
1, · · · , R1

NR2
N ). There are three basic layers in LieNet:

RotMap layer: Rk = W k ⊙Rk−1, with W k ∈ SON (3), (58)

RotPooling layer: Rk
i =

{
Rk−1

mi,ni
, if Θ

(
Rk−1

mi,ni

)
> Θ

(
Rk−1

ni,mi

)
,

Rk−1
ni,mi

, otherwise,
, (59)

LogMap layer: Rk = log(Rk−1), (60)

where Θ(·) is the Euler angle, and (ni,mi) are two indexes. The RotMap and RotPooling layers
mimic the convolution and pooling layers, while the LogMap layer map rotation matrices into tangent
space for classification. In the official Matlab implementation, the LogMap layer is implemented
as the Euler axis-angle representation. The classification is performed by Euler axis-angle + FC +
Softmax. As the axis-angle is an equivalent representation of matrix logarithm, we call this classifier
as LogEig MLR as well. This classifier is, therefore, also non-intrinsic.

In LieNet, each rotation feature has a shape of [num, frame, 3, 3], where num and frame denote
spatial and temporal dimensions. The RotPooling layer is performed either along spatial or temporal
dimensions, while the RotMap layer is performed along spatial dimensions, i.e.,W k with a size of
[num, 3, 3].
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G.2.2 Datasets and preprocessing
For a fair comparison, we follow LieNet to use G3D [6] and HDM05 datasets to validate our Lie
MLR.

G3D[6]: This dataset consists of 663 sequences of 20 different gaming actions. Each sequence is
recorded by 3D locations of 20 joints (i.e., 19 bones).

HDM05: We trim it down by removing some under-represented sequences, resulting in 2,326
sequences scattered throughout 122 classes. Following [30], we use the code of [67] to represent
each skeleton sequence as a point on the Lie group SON×T (3), where N and T denote spatial and
temporal dimensions. As preprocessed in [30], we set T as 100 and 16 for each sequence on the G3D
and HDM05 datasets, respectively.

G.2.3 Implementation details
LieNet: Note that the official code of LieNet10 is developed by Matlab. We follow the open-sourced
Pytorch code11 to implement our experiments. To reproduce LieNet more faithfully, we made the
following modifications to this Pytorch code. We re-code the LogMap and RotPooling layers to
make them consistent with the official Matlab implementation. In addition, we also extend the
existing Riemannian optimization package geoopt [4] into SO(3) to allow for Riemannian version
of SGD, ADAM, and AMSGrad on SO(3), which is missing in the current package. However, we
find that SGD is the best optimizer for LieNet. Therefore, we use SGD as our optimizer during the
experiments.

Lie MLR: We use our Lie MLR to replace the axis-angle classifier in LieNet and call the re-
sulting network LieNet+LieMLR. To alleviate the computational burden, we set each Pk as the
dimension of [num, 3, 3], where num is the spacial dimension of the input of the Lie MLR layer.
In other words, Pk is shared in the temporal dimension. We adopt Pytroch3D [53] to calculate
the matrix logarithm. Due to the instabilities of pytorch3d.transforms.so3_log_map, we use
pytorch3d.transforms.matrix_to_axis_angle first to calculate the quaternion axis and angle,
and then convert this representation into matrix logarithm12.

Training Details: Following [31], we focus on the 3Blocks and 2Blocks architecture for the G3D
and HDM05 datasets, which are the suggested architectures for these two datasets. The learning rate
is 1e−2 on both datasets, and we further set weight decay as 1e−5 on the G3D dataset. For LieNet
and LieNet+LieMLR, we use torch.nn.utils.clip_grad_norm_ for gradient clipping with a
clipping factor of 5. The clipping is imposed to the dimensionality reduction weight in the final FC
linear on LieNet, or, accordingly, A = {A1, · · · , Ak} in the Lie MLR layer on LieNet+LieMLR.

Scoring Metrics: For the G3D dataset, following LieNet [31], we adopt a 10-fold cross-subject test
setting, where half the subjects are used for training and the other half are employed for testing. For
the HDM05 dataset, following [31], we randomly select half of the sequences for training and the
rest for testing. Due the instabilities of LieNet, we conduct 20-fold experiments and select the best
10 folds to evaluate the performance.

G.3 Hardware
All experiments use an Intel Core i9-7960X CPU with 32GB RAM and an NVIDIA GeForce RTX
2080 Ti GPU.

H Proofs
H.1 Proof of Thm. 3.2

Proof of Thm. 3.2. Let us first solve Y ∗ in Eq. (8), which is the solution to the following constrained
optimization problem:

max
Y

(
⟨LogP Y,LogP S⟩P

∥LogP Y ∥P , ∥LogP S∥P

)
s.t.⟨LogP S, Ã⟩P = 0 (61)

10https://github.com/zhiwu-huang/LieNet
11https://github.com/hjf1997/LieNet
12https://github.com/facebookresearch/pytorch3d/issues/188
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Note that Eq. (61) is well-defined due to the existence of the Riemannian logarithm. Although,
Eq. (61) is normally non-convex, Eq. (61) and Eq. (8) can be reduced to a Euclidean problem:

max
Ỹ

⟨Ỹ , S̃⟩P
∥Ỹ ∥P ∥S̃∥P

s.t.⟨Ỹ , Ã⟩P = 0, (62)

d(S, H̃Ã,P ) = sin(∠SPY ∗)∥S̃∥P , (63)

where Ỹ = LogP Y and S̃ = LogP S.

Let us first discuss Eq. (62). Denote the solution of Eq. (62) as Ỹ ∗. Note that Ỹ ∗ is not necessarily
unique. Note that ExpP is only well-defined locally. More precisely, ExpP is well-defined in an
open ball Bϵ(0) centered at 0 ∈ TPM. Therefore, Ỹ ∗ might not be in Bϵ(0). In this case, we can
scale Ỹ ∗ into Bϵ(0), and the scaled Ỹ ∗ is still the maximizer of Eq. (62). Therefore, w.l.o.g., we
assume Ỹ ∗ ∈ Bϵ(0).

Putting Ỹ ∗ into Eq. (63), Eq. (63) is reduced to the distance to the hyperplane ⟨Ỹ , Ã⟩P = 0 in the
Euclidean space {TPM, ⟨·, ·⟩P }, which has a closed-form solution:

d(S, H̃Ã,P ) =
|⟨S̃, Ã⟩P |
∥Ã∥P

, (64)

=
|⟨LogP S, Ã⟩P |

∥Ã∥P
. (65)

H.2 Proof of Thm. 3.3

Proof for Thm. 3.3 . Putting the margin distance (Eq. (10)) into Eq. (4), we have the following:

p(y = k | S) ∝ exp
(
sign(⟨Ãk,LogPk

(S)⟩Pk
)∥Ãk∥Pk

d(S, H̃Ãk,Pk
)
)
,

= exp

(
sign(⟨Ãk,LogPk

(S)⟩Pk
)∥Ãk∥Pk

|⟨LogPk
(S), Ãk⟩Pk

|
∥Ãk∥Pk

)
,

= exp
(
⟨LogPk

S, Ãk⟩Pk

)
.

(66)

H.3 Proof of Prop. 4.1

Proof for Prop. 4.1 . The Riemannian metric (α, β)-EM at I is

g
(α,β)-EM
I (V, V ) = ⟨V, V ⟩(α,β). (67)

By Lem. E.2, we have the following

g
(θ,α,β)-EM
P (V, V )

θ→0−−−→ g
(α,β)-EM
I

(
log∗,P (V ), log∗,P (V )

)
= ⟨log∗,P (V ), log∗,P (V )⟩(α,β)

= g
(α,β)-LEM
P (V, V ) .

(68)

H.4 Proof of Thm. 4.2
As the five families of metrics presented in Thm. 4.2 are pullback metrics, we first present a general
result regarding Riemannian MLRs under pullback metrics.
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Lemma H.1 (Riemannian MLRs under Pullback Metrics). Supposing {N , g} is a Riemannian
manifold and ϕ : M → N is a diffeomorphism between manifolds, the Riemannian MLR by parallel
transportation (Eq. (11) + Eq. (12)) on M under g̃ = ϕ∗g can be obtained by g:

p(y = k | S ∈ M) ∝ exp
[
⟨ ˜LogPk

S, Γ̃Q→PkAk⟩Pk

]
, (69)

= exp
[
⟨Logϕ(Pk)

ϕ(S), Ãk⟩ϕ(Pk)

]
, (70)

where Ãk = Γϕ(Q)→ϕ(Pk)ϕ∗,Q(Ak) with Ak ∈ TQM, ˜Log, Γ̃ are Riemannian logarithm and
parallel transportation under g̃, and Log,Γ are the counterparts under g.

Furthermore, if N has a Lie group operation ⊙, M could be endowed with a Lie group structure ⊙̃
by f . The Riemannian MLR by left translation (Eq. (11) + Eq. (13)) on M under g̃ and ⊙̃ can be
calculated by g and ⊙:

p(y = k | S ∈ M) ∝ exp
[
⟨ ˜LogPk

S, L̃R̃k∗,QAk⟩Pk

]
, (71)

= exp
[
⟨Logϕ(Pk)

ϕ(S), Ãk⟩ϕ(Pk)

]
, (72)

where Ãk = LRk∗,ϕ(Q) ◦ ϕ∗,Q(Ak), R̃k = Pk⊙̃Q−1
⊙̃ , Rk = ϕ(P )⊙ ϕ(Q)−1

⊙ , and L̃Pk⊙̃Q−1

⊙̃
is the

left translation under ⊙̃.

Proof for Lem. H.1. Before starting, we should point out that since ϕ is a diffeomorphism, ⊙̃ and
g̃ are indeed well defined, and {M, g̃} forms a Riemannian manifold and {M, ⊙̃} forms a Lie
group. We denote ϕ−1

∗ as the differential of ϕ−1. We first focus on the Riemannian MLR by parallel
transportation:

p(y = k | S ∈ M)

∝ exp(g̃Pk
( ˜LogPk

S, Γ̃Q→Pk
Ak))

= exp
[
gϕ(Pk)

(
ϕ∗,Pk

◦ ϕ−1
∗,ϕ(Pk)

Logϕ(Pk)
ϕ(S), ϕ∗,Pk

◦ ϕ−1
∗,ϕ(Pk)

Γϕ(Q)→ϕ(Pk)ϕ∗,Q(Ak)
)]

= exp
[
gϕ(Pk)(Logϕ(Pk)

ϕ(S),Γϕ(Q)→ϕ(Pk)ϕ∗,Q(Ak))
]
.

(73)

In the case of the Riemannian MLR by left translation, we first note that:

L̃R̃k
= ϕ−1 ◦ Lϕ(Pk)⊙ϕ(Q)−1

⊙
◦ ϕ. (74)

Therefore, the associated differential is:

L̃R̃k∗ = ϕ−1
∗ ◦ Lϕ(Pk)⊙ϕ(Q)−1

⊙ ∗ ◦ ϕ∗. (75)

Putting Eq. (75) in Eq. (71), we can obtain the results.

Now, we apply Lem. H.1 to derive the expressions of our SPD MLRs presented in Thm. 4.2. For
our cases of SPD MLRs, we set Q = I . For simplicity, we will omit the subscript k for Pk and Ak.
We will first derive the expressions of SPD MLRs under (θ, α, β)-LEM, θ-LCM, (θ, α, β)-EM, and
(θ, α, β)-AIM, as they are sourced from Eq. (70). Then we will proceed to present the expression of
MLR under 2θ-BWM, which is sourced from Eq. (72). According to Lem. E.3, the scaled metric ag
shares the same Riemannian operators as g. We will use this fact throughout the following proof.

Proof of Thm. 4.2. For simplicity, we abbreviate ϕθ as ϕ during the proof. Note that for 2θ-BWM,
ϕ should be understood as ϕ2θ. We first show ϕ(I) and the differential map ϕ∗,I , which will be
frequently required in the following proof:

ϕ(I) = I, (76)
ϕ∗,I(A) = θA,∀A ∈ TISn

++. (77)

Denoting ϕ : {Sn
++, g̃} → {Sn

++, g}, then the SPD MLR under g̃ by parallel transportation with
Q = I is

p(y = k | S ∈ M) = exp
[
gϕ(P )(Logϕ(P ) ϕ(S),ΓI→ϕ(P )θA)

]
, (78)
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Next, we begin to prove the five SPD MLRs one by one.

(α, β)-LEM: As shown by Chen et al. [20], the standard LEM is the pullback metric from the
Euclidean space Sn. Similarly, (α, β)-LEM is also a pullback metric:

{Sn
++, g

(α,β)-LEM} log−→ {Sn, g(α,β)} (79)

By Eq. (70), we have

p(y = k | S ∈ M) = exp
[
⟨log(S)− log(P ), log∗,I(A)⟩(α,β)

]
(80)

= exp
[
⟨log(S)− log(P ), A⟩(α,β)

]
. (81)

θ-LCM: Simple computations show that θ-LCM is the scaled pullback metric of standard Euclidean
metric in the Euclidean space of lower triangular matrices Ln:

{Sn
++, θ

2gθ-LCM} ϕ−→ {Sn
++, g

LCM} Chol−→ {Ln
+, g

CM} Dlog−→ {Sn, gE}, (82)

where gE is the standard Frobenius inner product, and gCM is the Cholesky metric on the Cholesky
space Ln

+ [41]. Denoting ζ = Dlog ◦Chol ◦ϕ, then we have

ζ∗,I(A) = θ

(
⌊A⌋+ 1

2
D(A)

)
,∀A ∈ TISn

++. (83)

Similar with the case of (θ, α, β)-LEM, we have

p(y = k | S ∈ M) ∝ exp

[
1

θ2
⟨ζ(S)− ζ(P ), ζ∗,IA⟩

]
, (84)

= exp

[
1

θ
⟨⌊K̃⌋ − ⌊L̃⌋+

[
Dlog(D(K̃))−Dlog(D(L̃))

]
, ⌊A⌋+ 1

2
D(A)⟩

]
,

(85)

where K̃ = Chol(Sθ), L̃ = Chol(P θ), D(K̃) is a diagonal matrix with diagonal elements from K̃,
and ⌊K̃⌋ is a strictly lower triangular matrix from K̃.

(θ, α, β)-EM: Let η = 1
|θ|ϕ. Simple computation shows that (θ, α, β)-EM is the pullback metric of

(α, β)-EM:
{Sn

++, g
(θ,α,β)-EM} η−→ {Sn

++, g
(α,β)-EM}. (86)

Besides, we have the following for η:

η∗,I(A) = sgn θA,∀A ∈ TISn
++. (87)

According to Eq. (70), we have

p(y = k | S ∈ M) ∝ exp [⟨η(S)− η(P ), sgn(θ)A⟩] , (88)

= exp

[
1

θ
⟨Sθ − P θ, A⟩(α,β)

]
. (89)

(θ, α, β)-AIM: Putting g(α,β)-AIM into Eq. (78), we have

p(y = k | S ∈ M) ∝ exp

[
1

θ2
g
(α,β)-AIM
ϕ(P ) (P

θ
2 log(P− θ

2SθP− θ
2 )P

θ
2 , P

θ
2 θAP

θ
2 )

]
, (90)

= exp

[
1

θ
⟨log(P− θ

2SθP− θ
2 ), A⟩(α,β)

]
. (91)

2θ-BWM: We first simplify Eq. (72) under the cases of SPD manifolds and then proceed to focus on
the case of g = gBWM. Denote ϕ : {Sn

++, g̃, ⊙̃} → {Sn
++, g,⊙}, where the Lie group operation ⊙

[62] is defined as

S1 ⊙ S2 = L1S2L
T
1 ,∀S1, S2 ∈ Sn

++, with L1 = Chol(S1). (92)
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Note that I is the identity element of {Sn
++,⊙}, and for any S ∈ Sn

++, the differential map of the
left translation LS under ⊙ is

LS∗,Q(V ) = LV L⊤,∀Q ∈ Sn
++,∀V ∈ TQSn

++, with L = Chol(S). (93)

For the induced Lie group {Sn
++, ⊙̃}, the left translation L̃P ⊙̃I−1

⊙̃
under ⊙̃ is

L̃P ⊙̃I−1

⊙̃
= ϕ−1 ◦ Lϕ(P )⊙ϕ(I)−1

⊙
◦ ϕ, (94)

= ϕ−1 ◦ LP 2θ ◦ ϕ. (ϕ(P )⊙ ϕ(I)−1
⊙ = P 2θ) (95)

The associated differential at I is

L̃P ⊙̃I−1

⊙̃
∗,I(A) = ϕ−1

∗,ϕ(P ) ◦ LP 2θ∗,ϕ(I) ◦ ϕ∗,I(A), (96)

= 2θϕ−1
∗,ϕ(P )(L̄AL̄⊤), (97)

where L̄ = Chol(P 2θ). Then the SPD MLRs under g̃ and ⊙̃ by left translation is

p(y = k | S ∈ M) = exp
[
2θgϕ(P )

(
Logϕ(P ) ϕ(S), L̄AL̄

⊤
)]

, (98)

Setting g = gBWM (We omit the scaling factor.), we obtain the SPD MLR under 2θ-BWM:

p(y = k | S ∈ M) = exp

[
2θ · 1

4θ2
gBWM
ϕ(P )

(
LogBWM

ϕ(P ) ϕ(S), L̄AL̄
⊤
)]

, (99)

= exp

[
1

4θ
⟨(P 2θS2θ)

1
2 + (S2θP 2θ)

1
2 − 2P 2θ,LP 2θ (L̄AL̄⊤)⟩

]
. (100)

H.5 Proof of Lem. 5.1

Proof of Lem. 5.1. During this proof, we use the ambient representation of tangent vectors. We only
need to prove the following:

ΓQ→P = LPQ−1∗,Q,∀P,Q ∈ SO(n). (101)

Given rotation matrices P,Q and a tangent vector H ∈ TQSO(n), the parallel transportation [8, Tab.
1] is

ΓQ→P (H) = PQ⊤H = PQ−1H. (102)
On the other hand, given a curve c(t) over SO(n), satisfying c(0) = Q and c′(0) = H , the differential
of the left translation LPQ−1 at Q is

LPQ−1∗,Q(H) =
dPQ−1c(t)

dt

∣∣∣∣
t=0

= PQ−1H, (103)

which concludes the proof.

H.6 Proof of Thm. 5.2

Proof of Thm. 5.2. Lem. 5.1 indicates we can use either parallel transportation or group translation.
Putting the associated expressions from Tab. 13 into Eq. (11) + Eq. (12), one can directly obtain the
results.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction (Sec. 1) accurately reflect the paper’s theoretical
and empirical contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations specifically in App. A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions are clearly claimed in each theorem, and all the proofs are
presented in App. H.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details are discussed in App. G.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

34



(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets (Apps. G.1.2 and G.2.2) are publicly available. The code will be
released after the review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In App. G, we present the experimental details for reproducing the results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Hardware is mentioned in App. G.3.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No ethic issue.
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No societal impact.
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• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Original papers and datasets have been cited.
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• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Code will be released after the review.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Answer: [NA]

Justification: No human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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