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ABSTRACT

Knowledge graph completion (KGC) seeks to predict missing entities (e.g., heads or tails) or rela-
tionships in knowledge graphs (KGs), which often contain incomplete data. Traditional embedding-
based methods, such as TransE and ComplEx, have improved tail entity prediction but struggle to
generalize to unseen entities during testing. Textual-based models mitigate this issue by leveraging
additional semantic context; however, their reliance on negative triplet sampling introduces high
computational overhead, semantic inconsistencies, and data imbalance. Recent BERT-based ap-
proaches, like KG-BERT, show promise but depend heavily on entity descriptions, which are often
unavailable in KGs. Critically, existing methods overlook valuable structural information in the KG
related to the entities and relationships. To address these challenges, we propose Context-Aware
BERT for Knowledge Graph Completion (CAB-KGC), a novel model that utilizes contextual in-
formation from linked entities and relations within the graph to predict tail entities. CAB-KGC
eliminates the need for entity descriptions and negative triplet sampling, significantly reducing com-
putational complexity while enhancing performance. Additionally, we introduce the Evaluation
based on Distance from Average Solution (EDAS) criterion to the KG domain, enabling a more
comprehensive evaluation across diverse metrics. Our experiments on standard datasets, including
FB15k-237, WN18RR, CoDEx-S, and ConceptNet100K, demonstrate that CAB-KGC outperforms
state-of-the-art methods on three datasets. Notably, CAB-KGC achieves improvements in Hit@1 of
6.88%, 14.32%, and 17.13% on WN18RR, CoDEx-S, and ConceptNet100K, respectively. Further-
more, EDAS rankings establish CAB-KGC as the top-performing model, highlighting its effective-
ness and robustness for KGC tasks.

1 INTRODUCTION

Knowledge graphs (KGs) are structured representations of information about entities E and relationships R, expressed
as triplets T , each triplet consisting of a head, a relationship, and a tail (h, r, t). Google introduced the concept of KG,
as a comprehensive framework for storing and organizing interconnected data on entities and relationships (Chen
et al., 2020). While there are many publicly available large KGs such as WordNet (Miller, 1995), DBpedia (Auer
et al., 2007), FreeBase (Bollacker et al., 2008), and UMLs (Liang et al., 2024) in use, some domain-specific KGs, such
as NATION, LOCATION, and SPORTS, are also employed in research and testing. (Liang et al., 2024). Integrated
with deep learning and big data, KGs are increasingly being utilized in intelligent systems for tasks like question-
answering, recommendation, and natural language processing (Li & Hou, 2017). KGs, despite their effectiveness,
are however often incomplete, missing data in the form of entities (heads/tails) or relationships between the entities,
which limits their potential as gaps in knowledge reduce the performance of downstream applications (Ding & Jia,
2018). To address this, the Knowledge Graph Completion (KGC) or Link Prediction problem aims at predicting
these missing entities E and their interrelationships R thereby enhancing KG density (Lin et al., 2015). In this work,
we specifically focus on tail entity prediction, which involves inferring the missing tails in incomplete triplets. Tail
prediction is generally more challenging than relation prediction due to the higher diversity and volume of unique
entities compared to relationships set in most KGs.

Various strategies have been proposed to address KGC, broadly categorized into knowledge graph embedding (KGE)
methods, text-based methods, and large language model-based approaches. KGE-based methods represent entities
and relationships as low-dimensional vectors (embeddings) and use them to predict the likelihood of an entity or
relationship being in a triplet (Vashishth et al., 2020). However, these methods can only learn embeddings for entities
and relations seen in the training data (Xie et al., 2016). When new entities or relationships appear during testing, their
embeddings remain randomly initialized, leading to the ”unseen entity and relationship” problem. This significantly
impacts model performance in tail entity (h, r, ?) prediction. Furthermore, these models learn fixed representations for
entities and relations, despite potential variations in meaning or importance across different triples(Yao et al., 2019).
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Text-based models like StaR and ConvE utilize neighborhood information from the knowledge graph, utilizing star
geometries or convolutions to improve predictions, but they face limitations related to scalability, model complexity,
and the ability to handle highly diverse or complex relational structures or may rely on computationally expensive
techniques like path ranking and random walks (Bordes et al., 2013; Yang et al., 2014; Vashishth et al., 2020). Modern
textual-BERT-based models like KG-BERT and MEM-KGC leverage BERT-based language models, enhancing KGC
performance by incorporating semantic knowledge from large text corpora (Choi et al., 2021; Yao et al., 2019; Wang
et al., 2022). However, they also struggle in the absence of explicit KG structure, particularly for lexically similar
candidates, and often require entity descriptions, which are not available in many KG datasets.

Recently, LLM-based models have adopted tailored prompting techniques to improve prediction accuracy (Zhang
et al., 2020b). However, these prompt-based approaches face challenges in efficiently incorporating large-scale KG-
specific facts into prompts and struggle when dealing with knowledge graphs from domains that the LLMs have
limited prior knowledge of (Wei et al., 2023). A very recent work, DIFT (Liu et al., 2024) finetunes generative LLMs,
like LLaMA-2-7B, for KGC by combining it with an embedding-based model. Aside from promping issues, such
approaches are of high computational cost associated with training large LLMs like LLaMA-2-7B, which can be
resource-intensive and impractical for many real-world applications. These limitations of current models underscore
the necessity for a more efficient and trainable KGC approach that eliminates reliance on entity descriptions and
negative triplet sampling. Instead, such a model should leverage structural properties of KGs, including contextual
information, to ensure broad applicability across diverse knowledge graphs.

Furthermore, current KGC models commonly use assessment metrics such as mean rank (MR), mean reciprocal rank
(MRR), and Hit@K for evaluating and ranking models, but they come with notable limitations. In particular, most
of the KGC models exhibit inconsistencies across these evaluations (Li et al., 2024). For instance, a model may
excel in MRR and Hit@3 while performing poorly in Hit@1. These inconsistencies complicate the identification of
a single best-performing approach across different datasets. MRR, which emphasizes the rank of the first correct
prediction, often disproportionately rewards models for achieving high precision at the top of the ranking, ignoring
overall coverage. Conversely, Hits@K, which measures the proportion of correct predictions within the top K ranks,
can mask issues related to ranking quality by focusing on whether correct answers exist in a limited range rather
than their exact position. Both metrics can be overly influenced by dataset-specific characteristics, such as entity
frequency, sparsity, or graph topology, leading to biased or misleading performance assessments. Moreover, these
metrics are typically evaluated in isolation, requiring manual interpretation and weighting to understand trade-offs
between precision and coverage. Their reliance on single-ground-truth assumptions can further distort results in cases
where multiple valid predictions exist but are not explicitly captured in the dataset. These limitations highlight the
need for an aggregated, dataset-agnostic metric, that balances precision and coverage while reducing biases inherent
to individual datasets.

To address the limitation of current KGC approaches, we propose a Context-Aware BERT for Knowledge Graph
Completion (CAB-KGC) approach that extracts contextual information from the entities and relationships associated
with the head entity and the relation in question. This context is then integrated with the BERT model to enhance
the prediction of tail entities. Additionally, we introduce the use of an alternative evaluation criterion in KG domain,
Evaluation based on Distance from Average Solution (EDAS), which allows for a more nuanced analysis and ranking
of methodologies. Our results indicate that CAB-KGC outperforms existing KGC methods, including KG-BERT (Yao
et al., 2019), MTL-KGC (Kim et al., 2020), and MEM-KGC (Choi et al., 2021), in terms of Mean Reciprocal Rank
(MRR) and Hit@K, specifically for k = 1 and 3 (Tapley Hoyt et al., 2022). The EDAS evaluation further corroborates
the performance of CAB-KGC, positioning it as a leading approach in the field. To summarize, this study makes the
following contributions to the KG domain:

• We introduce CAB-KGC approach for tail prediction, which uniquely leverages head entity context and
relationship context — distinctive structural KG features overlooked in prior methods — to achieve state-of-
the-art performance on multiple datasets.

• CAB-KGC eliminates reliance on entity descriptions unlike other models, enabling applicability to datasets
with sparse descriptive information.

• By utilizing cross-entropy loss, CAB-KGC avoids dependence on negative sample training, thereby enhanc-
ing training speed and resilience against negative sample selection.

• Our work introduces the use of Evaluation based on Distance from Average Solution (EDAS) methodology to
address ranking challenges in KGC arising from variability across performance metrics, providing a reliable
comparative framework.

• Extensive experiments on various benchmark datasets demonstrate that CAB-KGC reliably excels in tail
entity prediction.
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2 RELATED WORK

KGC is a significant challenge in Knowledge Graph Analysis (KGA), which explicitly predicts missing data in KG.
The missing data may be head (?, r, t), tail (h, r, ?), or relationship (h, ?, t).The existing literature provides multiple
KGC methods, which can be classified into two that have gained considerable attention: Knowledge Graph Embedding
(KGE) and language model based approaches.

Embedding-based techniques (KGE) capture a graph’s underlying semantics by representing entities and relationships
as continuous vectors. These can further categorize into translation distance-based methods and semantic or textual
matching-based methods (Wang et al., 2017). The first group includes TransE (Bordes et al., 2013), RotatE (Sun et al.,
2019), and others approaches (Nickel et al., 2011; Trouillon et al., 2016; Wang et al., 2019; Vashishth et al., 2020;
Zhang et al., 2020a), which train a scoring function to measure the distance between entities, modeling interactions as
translation operations. In contrast, semantic or textual matching methods, such as DistMult (Yang et al., 2014), rely
on scoring functions that compute the similarity between entities and relationships. These methods identify the most
likely tail entity during testing by evaluating scores across all entities that share a specific head and relationship.

In translation-based methods, relationships play a crucial role as they facilitate translations between entities (h, t),
allowing the scoring function to compute triplet scores. TransE, a foundational model in this category, represents
entities and relationships in a shared d-dimensional vector space and calculates triplet scores using the function
TransEf (h, t) = −||h+ r − t||, where h, r, and t are vectors in Rd (Bordes et al., 2013). It assumes that h+ r ∼= t,
enabling it to efficiently model simple relational patterns. However, TransE struggles with complex relationship types
such as 1 − N , N − 1, and N − N mappings (Wang et al., 2014). RotatE addresses this limitation by represent-
ing entities and relationships in a complex vector space Cd and employing rotations to model relationships, with its
scoring function defined as RotatEf (h, r, t) = −||h ◦ r − t|| (Sun et al., 2019). Building on this, DualE combines
rotation and translation operations in dual quaternion space to improve expressiveness (Cao et al., 2021). Similarly,
HAKE uses a polar coordinate system to capture semantic hierarchies, offering enhanced capability for modeling hi-
erarchical relations (Zhang et al., 2020a). In contrast, semantic-based approaches like DistMult utilize matrix-based
operations to assess the similarity between entities and relationships. The scoring function for DistMult is expressed
as DistMultf (h, r, t) = hT diag(r)t, where h, r, and t are elements of Rd (Yang et al., 2014). This method excels
at capturing compositional semantics through matrix multiplication. However, despite its effectiveness in modeling
some types of relationships, DistMult is inherently limited in its ability to predict missing KG information accurately
due to its symmetric nature and inability to handle asymmetric relationships effectively (Zhang et al., 2020a).

Some recent studies leverage text-based models for KGC (Devlin et al., 2019). Among these, KG-BERT, proposed
by (Yao et al., 2019), was the first to utilize BERT for the KGC problem. KG-BERT treats knowledge graph triplets
as ordered sequences and applies a binary cross-entropy loss function to classify these sequences. While KG-BERT
achieves reasonable performance in inferring valid triplets, it falls short in ranking tasks, particularly in metrics such
as Hits@1 and Hits@3, when compared to state-of-the-art approaches. Building on this foundation, another study
(Kim et al., 2020) introduced a multi-task learning framework (MT-DNN) (Liu et al., 2019), combining KGC with
auxiliary tasks such as relationship prediction and an enhanced evaluation mechanism. This approach demonstrated
improved overall performance, leveraging multi-task learning to outperform KG-BERT. Another model, MEM-KGC
(Choi et al., 2021) employs a masked language model strategy by masking the tail entity in a triplet and predicting
it using relationships and available entity descriptions. While MEM-KGC demonstrates notable improvements, its
reliance on textual descriptions restricts its applicability across diverse KGs. Most of these text-based KGC models
require entity and relationship descriptions to predict missing entities. They however face limitations when applied
to datasets like UMLs, National, Location, DBpedia, Family, Kinship, KG20C (Liang et al., 2024) and ConceptNet
(Speer et al., 2017), which often lack detailed entity descriptions.

Some hybrid approaches have also been explored. For instance, a hybrid technique (Zhang et al., 2020b) combines
LLMs with traditional KGE methods, encoding KG entities and relationships in a shared vector space to serve as ini-
tial embeddings. These embeddings are refined through traditional models like TransE or RotatE, enabling improved
loss detection and iterative optimization. Similarly, DIFT(Liu et al., 2024) leverages fine-tuned LLaMA-2-7B models,
guided by discrimination instructions from embedding-based models. This approach employs a knowledge adaptation
module to enhance the LLM’s reasoning capabilities within the KG domain. While DIFT achieves state-of-the-art per-
formance, its reliance on computationally intensive LLMs like LLaMA-2-7B presents a significant drawback, making
it less practical for resource-constrained applications.

To summarize, existing KGC methodologies face several limitations. Embedding-based models, such as TransE and
RotatE, struggle with unseen entities and relationships. Their reliance on pre-defined embeddings restricts adaptability
to new information, reducing generalizability across diverse knowledge graph structures. Additionally, these methods
often require extensive negative sampling during training, significantly increasing computational costs, particularly on
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large datasets. Similarly, text-based and LLM-based approaches, including KG-BERT and MEM-KGC, are heavily
dependent on the availability of descriptive entity information, which is often sparse or inconsistent in many datasets.
Moreover, approaches like KICGPT and DIFT require complex prompt engineering and fine-tuning, adding to their
computational and resource intensity.

A key shortcoming of current KGC approaches is the under-utilization of structural features inherent in knowl-
edge graphs. Most methods fail to incorporate meaningful contextual information from the graph’s struc-
ture, such as neighboring entities and relationships associated with given head entity and relationship. Ta-
ble 1 summarizes existing KGC approaches alongside the structural features they utilize, highlighting the
gaps in leveraging these critical components. Essential structural features that can provide significant con-
textual knowledge include the head context-entities (information about neighboring entities), the head context-
relations (information about neighboring relations), and the relationship context (details involving the relation ).

Table 1: Methods and Components of KG Currently Used in KGC, Considered ( ), Not Con-
sidered (#). The components are the Head context-entities, the Head context-relations, and the
Relationship context. The novelty of the proposed CAB-KGC method lies in its unique integration
of the three structural features of KG i.e., the neighbor entity information, the surrounding relation
information, and the relationship context, enabling enhanced contextual understanding and supe-
rior performance in KGC.

Methods Exploiting KG Structural Feature Head context-entities Head context-relations Relationship context

TransE (Bordes et al., 2013) # # #
DistMult (Yang et al., 2014) # # #
RotatE (Sun et al., 2019) # # #
HAKE (Zhang et al., 2020a) # # #
DualE (Cao et al., 2021) # # #
Pre-train-KGC (Lv et al., 2022) # # #
TuckER (Wang et al., 2019) # # #
TransH (Wang et al., 2014) # # #
TransD (Ji et al., 2015) # # #
ComplEx (Trouillon et al., 2016) # # #
ConvE (Dettmers et al., 2018) # # #
KG-BERT (Yao et al., 2019) # # #
MEM-KGC (Choi et al., 2021) # # #
NNKGC (Wang et al., 2022)  # #
SimKGC (Wang et al., 2022) # # #
Proposed CAB-KGC    

The novelty of our pro-
posed CAB-KGC model
lies in its comprehensive
integration of these three
structural components. By
capturing the neighboring
entity information, sur-
rounding relation details,
and relationship context,
CAB-KGC provides a
richer contextual under-
standing that enhances
prediction accuracy and
generalization capabilities.
Unlike existing methods,
it combines textual and
structural information,
offering a significant
advancement in predictive
performance for KGC.
The next section presents
the design and implementation of the CAB-KGC model.

3 METHODOLOGY

This section describes the CAB-KGC technique, which predicts tail entities given a head entity and a relationship from
a knowledge graph. Before illustrating the model, a brief description of the problem is provided.

Problem Formulation (see Table 2 for all relevant notations): Consider a knowledge graph G(E,R, T ) as a collection
of triplets T , where each triplet is given as (h, r, t). Here, h ∈ E is the head entity, t ∈ E is the tail entity, and
r ∈ R represents the relationship between them. Given an incomplete triple (h , r , ?), CAB-KGC model predicts
the missing tail t (represented by ? in the incomplete triple) .

To achieve accurate tail prediction, the proposed CAB-KGC method extracts contextual information from the knowl-
edge graph surrounding the head entity and the relationship in question, and leverages this context within a BERT
model to learn and generate precise predictions. Figure 1 provides a detail overview of the CAB-KGC model. Given
a head h and a relationship r, our model predicts the tail entity t , in the following steps:

Step 1. Extract Head Context Hc: To extract the contextual information for the head, i.e. Hc, we first identify the
relationships r that are associated with the head entity h, i.e., the relationship neighborhood R(h). If k relationships
are associated with the head h from the set R of all relationships ri in the graph G, then:

R(h) = Ak
i=1 ({ri | (h, ri, ej) ∈ T, ej ∈ E}) (1)

where A(·) is some aggregator function (in our case, it is the concatenation operation ∥ ), T is the set of training
triplets, E is the set of all entities and ri represents each relation associated with h.
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Table 2: Mathematical Notations and Symbols

Notation Description Notation Description
e, ei entity or node r, rj relationship
h head entity node t tail entity node
E Entities Set R Relationships Set
Hc Head (h) context Rc Relationship context
T Set of Triplets NT Total number of triplets

R(h) Relations connected to head h E(h) Entities connected to head h
P (ti | hi, ri) Tail ti probability given head hi and relationship ri ranki Rank of the true tail entity ti in the prediction

↓ Results: Lower is better ↑ Results: Higher is better
Xi Individual result of each component WPav Weighted Positive Average

N(WPav) Normalized Weighted Positive Average N(WNav) Normalized Weighted Negative Average
M The final aggregated evaluation score A(·) Any Aggregator Function

WNav Weighted Negative Average

Figure 1: A concise overview of the CAB-KGC model pipeline for predicting the tail entity, given a head entity h and a relationship
r. The box on the left illustrates the calculation of head context Hc. Hc is formed as a union of R(h) and E(h). Here, R(h) is the
set of all relations (r1, r2, r3 and r4) involving the head entity h, while E(h) is the set of all neighboring entities (e2, e3, e4, and
e5) directly related to h. The box on the right shows the calculation of relationship context Rc. Rc comprises the set of all entities
(e3, e7, e2, and e6) associated via relationship r. These contextual features — Hc and Rc — alongside h and r are then fed as
input to the BERT model as depicted in the middle of the figure. The BERT model, combined with a linear classifier and softmax,
generates probabilities for tail entities.

Next, we find the entities e that are neighbors (i.e., have a direct connection) with the head entity h, i.e., entity
neighborhood E(h) using the identified relationships in R(h). Assuming m neighbor entities, E(h) is expressed as:

E(h) = Am
i=1 ({ei | (h, rj , ei) ∈ T, rj ∈ R}) (2)

where R is the set of all relations and ei represents each entity directly associated with h.

The head context Hc is then calculated as the union of the connected relations R(h) and the neighbor entities E(h),
as shown below in Equation 3.

Hc = (R(h)) ∪ (E(h)) (3)

Conceptually, the head context Hc represents the entity-centric local knowledge. It pulls out:

1. Entities directly linked to the head entity E(h): This captures local neighborhood information, essentially
providing a ”snapshot” of the immediate surroundings of the head entity in the graph. This structural infor-
mation helps the model identify how the head entity h is positioned within its local neighborhood (e.g., is it
a hub, part of a chain, etc.).

5



Under review as a conference paper at ICLR 2024

2. Relations associated with these neighboring entities R(h): By including the relationships between the head
entity and its neighbors, we bring in a semantic understanding of the types of relationships the entity h is
generally involved in.

Therefore, the head context’s role is to provide specificity. By narrowing the focus to the immediate surroundings of
the head entity h, it helps the model differentiate between plausible tail entities based on the specific neighborhood
structure.

Step 2. Extract Relationship Context Rc: To acquire the relationship context Rc, we identify all the entities associ-
ated with the operational relationship r in the knowledge Graph G. Rc is given as:

Rc = Al
i,j=1 ({ei, ej | (ei, r, ej) ∈ T}) (4)

where ei, ej are entities in E connected by the relation r.

Conceptually, the relation context Rc represents relation-centric global knowledge. It pulls out all entities connected
via the given relation r. Instead of focusing on the head entity’s neighborhood, this provides a global perspective on
the nature of the relation r itself and the patterns or clusters involving the relation r. This helps the model learn global
patterns about how this relation typically connects entities across the entire KG (e.g., relation capital of connects
countries and cities). Relation context Rc also provides the model with the knowledge of the distribution or variability
of the manifestation of the relation r in the KG. This helps the model refine predictions by learning how the relation r
operates beyond the local context of the head entity.

In other words, the relation context’s role is to provide generalization. By considering global patterns of the relation,
it acts as a regularizer, ensuring that the model aligns with broader relational constraints in the KG.

Together, the head and relation contexts allow the model to leverage local specificity (head context) and ensure global
consistency (relation context). This innovation solves the ”description sparsity” problem in dealing with datasets
without descriptions.

Step 3. Prepare Input Sequence for BERT Classifier: The contextual information extracted in above steps forms
the input to BERT. Specifically, the input sequence contains h, Hc from Equation 3, r, and Rc from Equation 4, as
shown below:

Input Sequence = [CLS] h, Hc [SEP ] r, Rc (5)

where [CLS] is BERT’s classifier token and [SEP] is the separator token.

Step 4. Predict and train with BERT Classifier: A classification layer is added on top of the BERT model, which
aims to classify all the entities from Entity set E. Once the BERT classifier receives the input, it processes it through
various transformer layers, provides a contextualized representation of each token and uses that to classify the input.
The classifier model predicts the tail entity by employing a softmax function over the output pooled representation to
calculate the probability for all the available tail entities. The input-output description of the model is given as:

(BERT Output) = BERT(Input Sequence) (6)
P (t | h, r) = softmax(W · BERT Output) (7)

where W is a learnable weight matrix.

Putting above equations together, the CAB-KGC model can be expressed as:

CAB-KGC(t | h, r) = softmax(W · BERT(h,Hc, r, Rc)) (8)

The CAB-KGC model is trained using cross-entropy loss, which compares the probability distribution of the predicted
label with the true label for the tail entity. The cross-entropy loss is given by:

L = −
N∑
i=1

yi logP (ti | h, r)g (9)

In this equation the one-hot encoded true label for the tail object ti is indicated as yi. The predicted probability for the
true tail entity could be denoted as P (ti | h, r), where h is the head and r is the relation.
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3.1 EXPERIMENTS

Datasets: We assess the proposed CAB-KGC model on various commonly used KG datasets. The survey work by
Liang et al. (2024) provides a comprehensive collection of freely available datasets for KGC and reasoning tasks via
their GitHub repository 1. These datasets are briefly explained here:

• FB15k-237 (Toutanova & Chen, 2015) is an updated version subset of the FB15k dataset, where the inverse
triplets have been removed to increase the difficulty of the KGC. It has 14,541 entities, 237 relationships,
272,115 training triplets, 17,535 validation triplets, and 20,466 testing triplets.

• WN18RR, is the subset of WN18 where the reverse triplets are removed, making it more complex for the
models to incorporate the problem of KGC (Miller, 1995). It contains 40,943 entities, 11 relationships,
86,835 training triplets, 2,924 validation triplets, and 2,824 testing triplets.

• The CoDEx-S KG dataset, sourced from Wikidata, is an inclusive benchmark covering multi-domain, diverse
and interpretable content, offering a thorough and authentic testing environment (Safavi & Koutra, 2020).
It has 2,034 entities, 42 relationships, 32,888 training triplets, 3,654 validation triplets, and 3,656 testing
triplets.

• ConceptNet100K, is a sparse subset of ConceptNet KG, which is a graph version of the Open Mind Com-
mon Sense project (Speer et al., 2017). It consists of semantically rich, interconnected nodes that encode
human-like reasoning about everyday concepts and relationships. It includes 78,334 entities, 34 relation-
ships, 100,000 training triplets, 1,200 validation triplets, and 1,200 testing triplets.

Hyperparameters: The experiments used a batch size of 16 and a learning rate of 5e-5, Adam as the optimizer and
cross-entropy as the loss function. The experiments were accomplished on an NVIDIA GeForce RTX 3090 GPU with
24 GB of memory. Training for the CAB-KGC model and its variants was halted once evaluation metrics stabilized to
the third decimal place, typically within 30 epochs.

Evaluation: Various standard evaluation metrics in KGC, as given in Equation 10, such as MRR, and Hit@k, are
utilized to assess the performance of the proposed method and other state-of-the-art approaches

MRR =
1

N

N∑
i=1

1

ranki
; Hits@k =

1

N

N∑
i=1

1(ranki ≤ k) (10)

where ranki is the correct entity rank position in the descending order sorted list of predicted scores for the i-th triplet.
The function 1(ranki ≤ k) is a ranking function that outputs one if the true entity is ranked within the top k predictions
and 0 otherwise.

Evaluation based on Distance From Average Solution (EDAS) : The alternative evaluation based on distance from
average solution (EDAS) assessment criteria we use in our study is a flexible option that assesses methods based on
a wider range of parameters and provides a more comprehensive performance assessment (Ghorabaee et al., 2015).
Using multiple ranking criteria, EDAS overcomes the constraints of MRR and Hit@K, ensuring a complete evaluation
of models across all relevant ranks. EDAS provides a final rank for each method, making it simple for the reader
to evaluate and rank it (Torkayesh et al., 2023). It assesses the schema by taking into account the average solution
it generates. The average solution is determined by calculating the sum of positive and negative distances from the
mean values. Results with the most outstanding aggregated validation score M value correspond to the highest-ranked
results. The average value for each criterion, whether beneficial (MRR and Hit@k higher is better) or non-beneficial
(MR lower is better), is computed using the following formula:

Average Value =

∑n
i=1 Xi

n
(11)

In the given equation, Xi denotes the value of each evaluation criterion (MR, MRR, or Hit@k) for i-th method, while
n quantifies the total number of values. Next, for each method, the positive distance from average (PDA) and negative
distance from average (NDA) are calculated as follows:

Non-Beneficial Criteria:
PDAij =

max(0,Avgj −Xij)

Avgj

NDAij =
max(0, Xij − Avgj)

Avgj

Beneficial Criteria:
PDAij =

max(0, Xij − Avgj)

Avgj

NDAij =
max(0,Avgj −Xij)

Avgj

(12)

1https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning
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Here Xij represents the value of the j-th criterion for the i-th method. Positive Distance Analysis (PDA) is the measure
of the positive deviation from the average for the i-th method and j-th criterion. Alternatively, negative distance
analysis (NDA) is the measure of the negative deviation from the average for the i-th method and j-th criterion.
Additionally, for each approach, the weighted positive and negative distances are computed in the following ways:

WPavi =
1

m

m∑
j=1

PDAij , WNavi =
1

m

m∑
j=1

NDAij (13)

where m represents the total number of criteria. Weighted Positive Average WPavi represents the weighted sum of
positive distances from the average for the i-th method. The weighted sum of negative distances from the average for
the i-th method is denoted as Weighted Negative Average WNavi. In the subsequent stage, normalization is performed.
For the normalization of the weighted sums, the following equations are employed:

N(WPavi) =
WPavi

max(WPav)
, N(WNavi) =

WNavi
max(WNav)

(14)

where N(WPavi) and N(WNavi) denote the normalized weighted positive and negative distances for the i-th method
respectively. Finally, the evaluation score M for each approach is computed in the following manner:

Mi =
1

2
(N(WPavi) + (1−N(WNavi))) (15)

where Mi denotes the aggregated validation score for the i-th method. The values of Mi determine a method ranking.
The outcome with the highest M score is given the top rank. A detailed example of EDAS calculations is provided in
Appendix A.
Advantages of EDAS over Conventional Assessment Methods: The conventional assessment procedures for KGC
tasks, such as Mean Reciprocal Rank (MRR) and Hit@k, are effective for computing specific aspects of model perfor-
mance but have limitations. Using the EDAS metric (Torkayesh et al., 2023) derived from MRR and Hits@K offers
below advantages for evaluating and ranking KGC models:

• Aggregated and Reliable Assessment Metrics: EDAS combines the strengths of MRR (focusing on ranking
precision) and Hits@K (highlighting prediction coverage) into a unified metric. MRR emphasizes the rank
of the first correct prediction, while Hits@K accounts for the presence of correct predictions within a top-
K range. EDAS ensures neither is overlooked. By leveraging multiple metrics, EDAS reduces the risk of
over-fitting to one specific evaluation criterion, offering a more robust measure of a model’s ranking ability.

• Single-Valued Comparative Scoring for Benchmarking: EDAS provides a consolidated score, making it eas-
ier to compare models without needing to interpret multiple metrics (e.g., MRR, Hits@1, Hits@3, Hits@10)
individually. This is particularly useful for benchmarking across papers, datasets, or use cases. When in-
terpreting MRR and Hit s@K together, there is often ambiguity about how much weight to assign to each
metric. EDAS inherently balances these contributions.

• Dataset-Agnostic Evaluations: EDAS enables the evaluation of model performance across diverse datasets
with varying characteristics (e.g., size, density, and graph structure). This uniform metric avoids biases in-
troduced by dataset-specific peculiarities, ensuring that results are comparable. Since MRR and Hits@K can
be skewed by dataset construction (e.g., sparsity or entity frequency), aggregating them into a single EDAS
score smoothens these effects, providing a holistic measure. This may also help control the false optimism
in metrics. MRR and Hits@K can sometimes produce overly optimistic results in isolation due to dataset id-
iosyncrasies or trivial solutions (e.g., predicting frequent entities). EDAS penalizes such biases by balancing
performance measures across datasets. Furthermore, by aggregating results across multiple datasets, EDAS
ensures that a model’s strengths are not over-represented due to favorable dataset characteristics, leading to
fairer comparisons.

3.2 RESULTS

The experimental findings in Tables 3 and 4 present a comprehensive comparison of CAB-KGC against state-of-the-
art methodologies across FB15k-237, WN18RR, CoDEx-S, and ConceptNet100k datasets. Evaluated metrics include
Mean Reciprocal Rank (MRR), Hits@1, Hits@3, and Hits@10. Table 5 further provides EDAS rankings, synthesizing
performance across these datasets. Below, we summarize key insights and patterns.

Performance on FB15k-237 and WN18RR CAB-KGC demonstrates strong performance on WN18RR, achieving
an MRR of 0.685, outperforming the prior best model, NNKGC (MRR = 0.674). It also secures the highest Hits@1
(0.637) and competitive Hits@3 and Hits@10 scores (0.687 and 0.737), highlighting its strength in capturing complex
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patterns. On FB15k-237, CAB-KGC delivers competitive results but falls slightly behind methods like DIFT and
NBFNet, achieving an MRR of 0.350 and Hits@10 of 0.462. This performance gap suggests room for improvement
in handling dense, interconnected graph structures.

Performance on CoDEx-S and ConceptNet100k CAB-KGC achieves top performance on CoDEx-S and Concept-
Net100k, consistently surpassing baselines. On CoDEx-S, it achieves an MRR of 0.55 and Hits@10 of 0.764, outper-
forming the next-best approach, ComplEx (MRR = 0.46, Hits@10 = 0.646). Similarly, for ConceptNet100k, CAB-
KGC achieves an MRR of 0.35 and Hits@10 of 0.546, exceeding BiQUE (MRR = 0.32, Hits@10 = 0.533). These
results underscore CAB-KGC’s superior ability to integrate contextual and structural information in semantically rich
and diverse datasets.

Table 3: Comparison of the proposed and baseline methods on the datasets FB15k-237 and WN18RR. The optimal outcome for
each metric is highlighted in bold, while the second-best result is underlined. The circle symbol # denotes that the results have
been extracted from the study conducted by Wei et al. (Wei et al., 2023), while the symbol 2 indicates that the results have been
extracted from the study conducted by Yao et al. in (Yao et al., 2019).

Dataset FB15k-237 WN18RR

Methods MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10

Embedding-Based Methods
RESCAL (Nickel et al., 2011) # 0.356 0.266 0.390 0.535 0.467 0.439 0.478 0.516
TransE (Bordes et al., 2013) # 0.279 0.198 0.376 0.441 0.243 0.043 0.441 0.532
TuckER (Wang et al., 2019) # 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526
ComplEx (Trouillon et al., 2016) # 0.247 0.158 0.275 0.428 0.440 0.410 0.460 0.510
ConvE (Dettmers et al., 2018) 0.631 0.239 0.350 0.491 0.460 0.390 0.430 0.480
DistMult (Yang et al., 2014) # 0.241 0.155 0.263 0.419 0.430 0.390 0.440 0.490
RotatE (Sun et al., 2019) # 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
CompGCN (Vashishth et al., 2020) # 0.355 0.264 0.390 0.535 0.479 0.443 0.494 0.546
HittER (Chen et al., 2021) # 0.344 0.246 0.380 0.535 0.496 0.449 0.514 0.586
HAKE (Zhang et al., 2020a) # 0.346 0.250 0.381 0.542 0.497 0.452 0.516 0.582
BiQUE (Guo & Kok, 2021) 0.365 0.270 0.401 0.555 0.504 0.459 0.519 0.588

Text-and Description-Based Methods
Pretrain-KGE (Zhang et al., 2020b) # 0.332 - - - 0.235 - - -
StAR (Wang et al., 2021) # 0.263 0.171 0.287 0.452 0.364 0.222 0.436 0.647
MEM-KGC (w/o EP) (Choi et al., 2021) # 0.339 0.249 0.372 0.522 0.533 0.473 0.570 0.636
MEM-KGC (w/ EP) (Choi et al., 2021) # 0.346 0.253 0.381 0.531 0.557 0.475 0.604 0.704
SimKGC(Wang et al., 2022) # 0.333 0.246 0.363 0.510 0.671 0.585 0.731 0.817

LLM-Based Methods
ChatGPTzero-shot (Zhu et al., 2024) 2 - 0.237 - - - 0.190 - -
ChatGPTone-shot (Zhu et al., 2024) 2 - 0.267 - - - 0.212 - -
DIFT (Liu et al., 2024) 0.439 0.364 0.468 0.586 0.617 0.569 0.638 0.708
KICGPT (Wei et al., 2023) 2 0.412 0.327 0.448 0.554 0.549 0.474 0.585 0.641

GNN-Based Method
NBFNet (Zhu et al., 2021) 0.415 0.321 0.454 0.599 0.551 0.497 0.573 0.666
NNKGC(Li & Yang, 2023) # 0.338 0.252 0.365 0.515 0.674 0.596 0.722 0.812

Proposed
CAB-KGC (Hc Only) 0.310 0.263 0.331 0.403 0.420 0.492 0.556 0.616
CAB-KGC (Rc Only) 0.280 0.187 0.255 0.271 0.321 0.345 0.371 0.398
CAB-KGC 0.350 0.322 0.399 0.462 0.685 0.637 0.687 0.737

Table 4: Comparison of the proposed and baseline methods on the datasets CoDEx-S and ConceptNet100k. The optimal outcome
for each metric is highlighted in bold, while the second-best result is underlined. CoDEx-S results are taken from (Safavi & Koutra,
2020) and ConceptNet results are reported in (Guo & Kok, 2021).

Dataset CoDEx-S ConceptNet100k

Methods MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10

RESCAL (Nickel et al., 2011) 0.40 0.293 - 0.623 - - - -
TransE (Bordes et al., 2013) 0.44 0.339 - 0.638 - - - -
TuckER (Wang et al., 2019) 0.44 0.339 - 0.638 - - - -
ComplEx (Trouillon et al., 2016) 0.46 0.370 - 0.646 0.114 0.074 0.125 0.190
ConvE (Dettmers et al., 2018) 0.44 0.343 - 0.635 0.209 0.140 0.229 0.340
BiQUE (Guo & Kok, 2021) - - - - 0.320 0.216 0.359 0.553
CAB-KGC 0.55 0.423 0.647 0.764 0.35 0.253 0.400 0.546
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Comparative Ranking Analysis (EDAS) The EDAS framework evaluates KGC methods holistically by normalizing
positive (WPav) and negative (WNav) distances across metrics. Detailed calculations of these values are available in
Appendix A, Table 7. We exclude missing values for any criterion metrics associated with a method to ensure consis-
tency and fairness in the computations. CAB-KGC ranks highest (Rank 1), demonstrating robust performance across
datasets. DIFT (Rank 2) and NNKGC (Rank 3) follow closely, while conventional embedding models like RESCAL
(Rank 14) and DistMult (Rank 18) show weaker results. Text-based methods, such as MEM-KGC (Rank 8), outper-
form basic embedding models, but CAB-KGC’s balanced use of textual and structural features provides a clear ad-
vantage. Insights and Hypothesis Validation The findings strongly indicate that CAB-KGC outperforms traditional
KGE, textual techniques, and LLM procedures across various datasets. The main hypothesis behind CAB-KGC’s
design to integrate relational and neighboring contextual information with BERT, significantly enhances tail entity
predictions. This is evident from its consistent improvements in MRR, Hits@k, and EDAS metrics across all datasets.
While FB15k-237 performance suggests opportunities for optimization in dense networks, CAB-KGC demonstrates
exceptional flexibility and accuracy, establishing itself as a leading approach for knowledge graph completion.

4 ABLATION

The ablation study (see Table 3 )assesses the contributions of the Head Context (Hc) and Relation Context (Rc) com-
ponents in the CAB-KGC model on FB15k-237 and WN18RR datasets. The Hc-Only configuration, encapsulating the
adjacent entities and relationships only, attains reasonable performance with an MRR of 0.310 and Hits@10 of 0.403
on FB15k-237, and an MRR of 0.420 and Hits@10 of 0.616 on WN18RR. The Rc-Only, which utilizes global rela-
tional patterns, shows inferior performance compared to Hc-Only, achieving an MRR of 0.280 and Hits@10 of 0.271
on FB15k-237, and an MRR of 0.321 and Hits@10 of 0.398 on WN18RR, highlighting the constraints of depending
exclusively on global context.

5 CONCLUSION

Table 5: EDAS rankings of the models.

Methods EDAS Rank
RESCAL (Nickel et al., 2011) 14
TransE (Bordes et al., 2013) 16
TuckER (Wang et al., 2019) 11
ComplEx (Trouillon et al., 2016) 17
ConvE (Vashishth et al., 2020) 10
DistMult (Yang et al., 2014) 18
RotatE (Sun et al., 2019) 15
CompGCN (Vashishth et al., 2020) 12
HittER (Chen et al., 2021) 20
HAKE (Zhang et al., 2020a) 13
BiQUE (Liu et al., 2024) 7
StAR (Wang et al., 2021) 19
MEM-KGC (w/o EP) (Choi et al., 2021) 9
MEM-KGC (w/ EP) (Choi et al., 2021) 8
SimKGC (Wang et al., 2022) 4
DIFT (Liu et al., 2024) 2
KICGPT (Wei et al., 2023) 6
NBFNet (Zhu et al., 2021) 5
NNKGC (Li & Yang, 2023) 3
CAB-KGC (Liu et al., 2024) 1

The CAB-KGC method presents an accurate and effi-
cient method for KGC by employing neighboring con-
textual information of the head entity and the relation
in question. It overcomes the constraints of current
KGE-based methods and LLM mechanisms, illustrat-
ing improvements across diverse datasets using mul-
tiple metrics. The results demonstrated that the pro-
posed approach, CAB-KGC, performed better than the
most advanced methods of KGC on multiple bench-
mark datasets. The performance of our method exceeded
that of existing methods in terms of both MRR and
Hit@k measures. In particular, in Hit@1 over WN18RR,
CoDEx-S, and ConceptNet100K, CAB-KGC has im-
proved over SOTA by 6.88%, 14.32%, and 17.13% re-
spectively. Additionally, CAB-KGC ranks as the top per-
former across datasets in EDAS ranking. Our ablation
studies revealed that including the context of the head
and relationship has a significant impact on model per-
formance. This validates the hypothesis regarding the
significance of including contextual information about
the KG entity and relationship. The results highlight
the broader implications of utilizing contextual informa-
tion in KGC. CAB-KGC improves accuracy and offers
a practical and scalable solution by eliminating the de-
mand for entity descriptions and negative triplet sampling. In future studies, we may utilize more contextual data,
such as spatial and temporal information, to potentially expand the techniques’ effectiveness. Furthermore, optimizing
the model for large-scale KGs can verify its applicability across domains and datasets.The comprehensive CAB-KGC
model, integrating Hc-Only and Rc-Only, attains optimal performance, underscoring these elements’ synergistic rela-
tionship. This verifies that the integration of Hc-only and Rc-Only allows the model to utilize both local specificity
and global generalization, resulting in enhanced performance in tail entity prediction.
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A EVALUATION BASED ON DISTANCE FROM AVERAGE SOLUTION (EDAS)

This section provides a detailed step-by-step procedure for the EDAS assessment method followed for KGC. The
EDAS approach offers significant benefits and guidance to decision-makers when dealing with complex data that
includes many variations. In EDAS, the average solution is found by calculating the distance between positive and
negative values from the mean. Generally, the final M score with the highest value is the highest-ranked. Supposing
this is our final results matrix:

Position Xij MR (non-beneficial) MRR (beneficial) Hit@1 (beneficial) Hit@3 (beneficial) Hit@5 (beneficial) Hit@10 (beneficial)
Method 1 X12 X13 X14 X15 X16 X17

Method 2 X22 X23 X24 X25 X26 X27

Method 3 X32 X33 X34 X35 X36 X37

Method 4 X42 X43 X44 X45 X46 X47

Method 5 X52 X53 X54 X55 X56 X57

Method 6 X62 X63 X64 X65 X66 X67

Table 6: Results matrix with position indicators Xij .

Step 1: Mean values

MR average value =
X12 +X22 +X32 +X42 +X52 +X62

n
...

...

Hit@10 average value =
X17 +X27 +X37 +X47 +X57 +X67

n

Step 2: PDA and NDA Calculation Beneficial PDA and NDA measurements MRR, Hit@1, Hit@3, Hit@5, Hit@10
(higher better):

PDAij =
max(0, Xij − Avgj)

Avgj
, NDAij =

max(0,Avgj −Xij)

Avgj

Method 1 MRR (Step 2, Beneficial Example ):

PDA (MRR)13 =
max(0, X13 − MRR average value)

MRR average value
, NDA (MRR)13 =

max(0,MRR average value −X13)

MRR average value

Non-beneficial MR (lower better):

PDAij =
max(0,Avgj −Xij)

Avgj
, NDAij =

max(0, Xij − Avgj)

Avgj

Method 1 MR (Step 2, Non-beneficial Example):

PDA (MR)12 =
max(0,MR average value −X12)

MR average value
, NDA (MR)12 =

max(0, X12 − MR average value)
MR average value

Step 3: Weighted PDA and NDA

WPavi =
1

m

m∑
j=1

PDAij

Method 1 (Step 3, Weighted PDA Example):

WPav1 =
PDA(MR)12 + PDA(MRR)13 + PDA(Hit@1)14 + PDA(Hit@3)15 + PDA(Hit@5)16 + PDA(Hit@10)17

n

WNavi =
1

m

m∑
j=1

NDAij
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Method 1 (Step 3, Weighted NDA Example):

WNav1 =
NDA(MR)12 + NDA(MRR)13 + NDA(Hit@1)14 + NDA(Hit@3)15 + NDA(Hit@5)16 + NDA(Hit@10)17

n

Step 4: Normalization of Weighted PDA and NDA In this step, WPav and WNav distances are normalized:

N(WPavi) =
WPavi

max(WPav)
, N(WNavi) =

WNavi

max(WNav)

Step 5: Final M Score Calculation Compute the final M score and determine the ranking based on the M values. The
higher M reflects a superior rank:

Mi =
1

2
(N(WPavi) + (1−N(WNavi)))

Table 7 provides a detailed EDAS assessment of various models. While traditional metrics such as MRR or Hit@K
identify top-ranked models, EDAS offers a deeper insight into performance consistency and robustness. For example,
RotatE and NNKGC have similar MRR values, but EDAS ranks NNKGC significantly higher (Rank 3) compared
to RotatE (Rank 15) over FB15k-237, highlighting NNKGC’s more consistent performance. Similarly, HittER and
SimKGC exhibit the same Hit@1 over FB15k-237, but EDAS ranks HittER at 20 and SimKGC at 4, showcasing
differences in their overall behavior. Two models may have comparable MRR or Hit@K values but differ signif-
icantly in their weighted positive (WPav) and negative (WNav) distances from the mean. EDAS integrates these
variances into WPav and WNav scores, which are normalized to compute a final M-value. The M-value synthesizes
overall performance, incorporating both consistent behavior and deviations, offering a more holistic evaluation than
traditional metrics alone. This demonstrates that EDAS provides a nuanced and comprehensive assessment of model
performance, highlighting aspects often overlooked by conventional measures.

Table 7: The comparison of proposed and existing methods using EDAS assessment across all datasets used in the
paper. Where WPav and WNav represent weighted positive and negative distances, respectively. The normalized
values are denoted as N(WPav) and N(WNav), while M represents the final score and Ranks denote the rank based on
M.

Model WPav WNav NWPav NWNav M Rank
RESCAL (Nickel et al., 2011) 0.0121 0.0543 0.0455 0.0543 0.4956 14
TransE (Bordes et al., 2013) 0.0029 0.2113 0.0110 0.2113 0.3999 16
TuckER (Wang et al., 2019) 0.0181 0.0306 0.0677 0.0306 0.5186 11
ComplEx (Trouillon et al., 2016) 0.0110 0.2557 0.0413 0.2557 0.3928 17
ConvE (Vashishth et al., 2020) 0.0514 0.1000 0.1925 0.1000 0.5462 10
DistMult (Yang et al., 2014) 0 0.2321 0 0.2321 0.3839 18
RotatE (Sun et al., 2019) 0.0045 0.0444 0.0169 0.0444 0.4862 15
CompGCN (Vashishth et al., 2020) 0.0154 0.0321 0.0575 0.0321 0.5127 12
HittER (Chen et al., 2021) 0.0080 1 0.0298 1 0.0149 20
HAKE (Zhang et al., 2020a) 0.0108 0.0196 0.0406 0.0196 0.5105 13
BiQUE (Liu et al., 2024) 0.0925 0.0707 0.3464 0.0707 0.6378 7
StAR (Wang et al., 2021) 0.0066 0.2396 0.0246 0.2396 0.3925 19
MEM-KGC (w/o EP) (Choi et al., 2021) 0.0273 0.0087 0.1023 0.0087 0.5468 9
MEM-KGC (w/ EP) (Choi et al., 2021) 0.0595 0.0031 0.2229 0.0031 0.6099 8
SimKGC (Wang et al., 2022) 0.1650 0.0163 0.6182 0.0163 0.8009 4
DIFT (Liu et al., 2024) 0.2363 0 0.8852 0 0.9426 2
KICGPT (Wei et al., 2023) 0.1247 0 0.4671 0 0.7335 6
NBFNet (Zhu et al., 2021) 0.1450 0 0.5432 0 0.7716 5
NNKGC (Li & Yang, 2023) 0.1659 0.0099 0.6214 0.0099 0.8058 3
CAB-KGC (Liu et al., 2024) 0.2670 0.0072 1 0.0072 0.9964 1
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B SUPPLEMENTARY ASSESSMENT OF CAB-KGC ON SMALL DATASETS

We additionally evaluated the proposed CAB-KGC model on various small datasets, including NATION, LOCATION,
SPORT, and UML datasets. The GitHub repository Awesome-Knowledge-Graph-Reasoning 2 provides a comprehen-
sive collection of freely available datasets for Knowledge Graph Completion (KGC) and reasoning tasks. This repos-
itory is a valuable resource for researchers and practitioners, offering well-curated datasets to facilitate the evaluation
and benchmarking of knowledge graph reasoning models. To further validate CAB-KGC, a detailed experimental
study was conducted using metrics such as MRR, Hit@1, and Hit@3 on these datasets, comparing different variations
of CAB-KGC. As shown in Table 8, the results indicate that CAB-KGC consistently outperforms other variations.
These findings demonstrate that integrating knowledge graphs, neighboring entities, and relationship information sig-
nificantly enhances the performance of KGC. Additionally, the evaluation mechanism EDAS, developed in this study,
was utilized to assess the proposed model, other LLMs, and CAB-KGC variations across datasets like nations, loca-
tions, sports, and UMLs. Detailed experimental results confirm that CAB-KGC effectively, offering a more robust and
accurate solution for KGC tail prediction.

Table 8: Comparison of the Proposed CAB-KGC and other Pre-trained models across various KG datasets

Dataset Models MRR ↑ Hit@1 ↑ Hit@3 ↑ Ranks

Nation BERT Seq 0.266 0.0796 0.3215 3

RoBERT 0.3101 0.1244 0.3214 2

DistilBERT 0.2713 0.0746 0.3025 6

CAB-KGC-H c 0.3211 0.1493 0.3333 4

CAB-KGC-R c 0.3179 0.1493 0.3333 5

Proposed CAB-KGC 0.3326 0.1642 0.3333 1

Location BERT Seq 0.1156 0.0769 0.1231 5

RoBERT 0.5018 0.4154 0.5692 4

DistilBERT 0.5394 0.4601 0.5846 3

CAB-KGC-H c 0.5375 0.4308 0.6154 2

CAB-KGC-R c 0.1249 0.0769 0.1385 6

Proposed CAB-KGC 0.5788 0.4615 0.6769 1

Sport BERT Seq 0.4437 0.1536 0.7039 4

RoBERT 0.4767 0.1704 0.9944 2

DistilBERT 0.4509 0.1441 0.9413 3

CAB-KGC-H c 0.5004 0.1307 0.7263 1

CAB-KGC-R c 0.4255 0.1397 0.5196 5

Proposed CAB-KGC 0.5319 0.2263 0.9749 1

UMLs BERT Seq 0.2537 0.0923 0.2738 2

RoBERT 0.207 0.1044 0.2753 5

DistilBERT 0.256 0.1009 0.2693 3

CAB-KGC-H c 0.2313 0.0989 0.2265 4

CAB-KGC-R c 0.2287 0.0947 0.2482 6

Proposed CAB-KGC 0.2687 0.1132 0.2809 1

2https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning
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