
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SWAT: SLIDING WINDOW ADVERSARIAL TRAINING
FOR GRADUAL DOMAIN ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Domain shifts are critical issues that harm the performance of machine learning.
Unsupervised Domain Adaptation (UDA) mitigates this issue but suffers when the
domain shifts are steep and drastic. Gradual Domain Adaptation (GDA) alleviates
this problem in a mild way by gradually adapting from the source to the target
domain using multiple intermediate domains. In this paper, we propose Sliding
Window Adversarial Training (SWAT) for GDA. SWAT first formulates adversar-
ial streams to connect the feature spaces of the source and target domains. Then,
a sliding window paradigm is designed that moves along the adversarial stream to
gradually narrow the small gap between adjacent intermediate domains. When the
window moves to the end of the stream, i.e., the target domain, the domain shift is
explicitly reduced. Extensive experiments on six GDA benchmarks demonstrate
the significant effectiveness of SWAT, especially 6.1% improvement on Rotated
MNIST and 4.1% advantage on CIFAR-100C over the previous methods.

1 INTRODUCTION

Traditional machine learning assumes identical training-test data distributions, yet real-world do-
main shifts often break this assumption and degrade model performance (Farahani et al., 2021).
Unsupervised Domain Adaptation (UDA) is proposed to mitigate domain shifts by aligning feature
distributions between a labeled source domain and an unlabeled target domain (Pan & Yang, 2009;
Hoffman et al., 2018). Nevertheless, existing works (Kang et al., 2019; Tang & Jia, 2020; Yang
et al., 2020) have revealed that when the domain gaps are large, directly aligning two domains not
only fails to reduce the domain gaps, but even causes the negative transfer (Pan & Yang, 2009).

Gradual Domain Adaptation (GDA) (Kumar et al., 2020) is proposed to alleviate this problem in a
mild way by gradually adapting from the source to the target domain using multiple intermediate
domains, as shown in Fig. 1. This paper addresses the GDA problem through adversarial train-
ing. Adversarial training has been widely used in UDA and achieved impressive performance. This
training paradigm, however, faces two challenges when applying in GDA. On the one hand, pre-
vious adversarial training methods (e.g., DANN (Ganin & Lempitsky, 2015b)) globally align two
distributions through the game between generator and discriminator. This global matching cannot
handle the continuous intermediate domains in GDA (Pei et al., 2018; Shi & Liu, 2024). As a result,
the GDA problem degrades to the more difficult UDA problem.

On the other hand, the steep gradient of the adversarial training for large domain shifts will cause
discontinuities and unsmooth problems in the manifold space (Rangwani et al., 2022; Shi & Liu,
2024; Zhang et al., 2019). As machine learning methods rely on the continuous and smooth manifold
hypothesis to avoid abrupt changes in decision boundaries, this discontinuity and unsmoothness will
cause error accumulation (Kumar et al., 2020; He et al., 2023; Xiao et al., 2024).

Towards the smooth and stable distribution matching, we propose sliding window mechanism for
adversarial training. As a new training paradigm, the sliding window mechanism emerges three
advantages over the traditional adversarial training: (1) Locality: The sliding window mechanism
avoids global alignment by localizing the adversarial training range, i.e., it decomposes the con-
tinuous domain flow into multiple windows, and perform adversarial training in each window to
gradually refine the alignment. The generator only focuses on the distribution differences in the cur-
rent window, which reduces the complexity of the adversarial training. (2) Dynamic: The window
is gradually shifted from the source domain to the target with the training process, and the update

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Source Target Source Intermediate Domain Target

Abrupt
Distribution

Change

UDA Gradual Domain Adaptation (GDA)

Source Target Source Intermediate Domain Target

Abrupt
Distribution

Change

UDA Gradual Domain Adaptation (GDA)

Figure 1: Comparison of UDA and GDA. Left (UDA): A single alignment maps source features
directly onto the target domain. Right (GDA): Adaptation proceeds through a sequence of interme-
diate domains that smoothly adapt across domains, reducing abrupt distribution shifts.

frequency of generator parameters is synchronized with the speed of domain alignment, avoiding the
error accumulation caused by large optimization step in traditional adversarial training. (3) Conti-
nuity: The sliding window continuously slides on the domain stream Hz , and the continuous change
of parameter p from 0 to 1 gradually turns the optimization focus from the left domain Hl to the
right domain Hr, avoiding the discrete switching in the multi-stage training.

Incorporated the sliding window mechanism, we present Sliding Window Adversarial Training
(SWAT) method for GDA. Specifically, SWAT first formulates a bidirectional adversarial flow. This
flow is optimized by a curriculum-guided sliding window, which finely controls the transition step
between the source and the target domains, avoiding quadratic error accumulation caused by large
transfer steps of the existing self-training strategy (Kumar et al., 2020). In the adversarial training
phase, the flow generator enforces domain continuity through sliced Wasserstein optimization across
evolving domains, while the discriminator progressively filters out source-specific features through
adversarial training. This synergistic optimization achieves simultaneous domain invariance and
target discriminability (Xiao et al., 2024). The contributions are summarized as follows:

1. We propose a sliding window mechanism to improve the adversarial training, which de-
composes large domain shifts into multiple micro transfers through local, dynamic and
continuous feature alignment, enabling stable and fine-grained distribution matching.

2. We present the Sliding Window Adversarial Training (SWAT) method for GDA. SWAT
can adaptively align localized domain regions, mitigating error accumulation and enabling
smooth and robust knowledge transfer.

3. Experiments on Rotated MNIST (96.7% vs. 90.6% SOTA), Portraits (87.4% vs. 86.16%
SOTA) and CIFAR-100C (24.8% vs. 28.9%) demonstrate the effectiveness of SWAT.

2 RELATED WORK

Unsupervised Domain Adaptation (UDA) aims to mitigate domain shifts by aligning feature dis-
tributions between labeled source and unlabeled target domains. Traditional approaches leverage
statistical measures like Maximum Mean Discrepancy (MMD) (Chen et al., 2020) to enforce domain
invariance, but face limitations under severe distribution divergence: rigid MMD-based alignment
risks distorting classifier boundaries by forcibly aligning non-overlapping supports (Zhao et al.,
2019), while direct source-target alignment may erase discriminative structures, causing negative
transfer (Tang & Jia, 2020; Yang et al., 2020). Adversarial methods like DANN (Ganin & Lempit-
sky, 2015a) and CDAN (Long et al., 2018) advanced alignment via adversarial training but enforce
fixed pairwise alignment, leading to mode collapse under disjoint supports (Zhao et al., 2019) or gra-
dient competition under large gaps (Pezeshki et al., 2021). While spectral regularization (Pezeshki
et al., 2021) partially alleviates these issues, it retains rigid alignment steps.

Gradual Domain Adaptation (GDA) addresses scenarios where domain shifts occur incrementally,
decomposing the overall distribution gap into smaller, more manageable steps through intermediate
domains (Farshchian et al., 2018; Kumar et al., 2020). Existing methods employ diverse strate-
gies to model these transitions: self-training leverages pseudo-labeling to bootstrap target predic-
tions (Xie et al., 2020), gradient flow-based geodesic paths enforce smooth transitions via Rieman-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

nian manifolds (Zhuang et al., 2024), style-transfer interpolation synthesizes intermediate domains
through low-level feature mixing (Marsden et al., 2024), and optimal transport (OT) aligns domain
distributions using Wasserstein distances (He et al., 2023). While alignment alone may rigidly
match marginal distributions at the expense of discriminative structures. These issues are exacer-
bated in multi-step adaptation, where imperfectly aligned intermediates compound errors, leading
to irreversible distortion of decision boundaries. Our SWAT framework uniquely preserves source-
acquired information through bidirectional alignment, balancing between stability and plasticity,

Adversarial Domain Adaptation frameworks, including DANN (Ganin & Lempitsky, 2015a)
and CDAN (Long et al., 2018), aligh the source and target domains through adversarial training.
These methods employ gradient reversal layers or conditional adversarial networks to learn domain-
invariant representations. However, these methods enforce fixed pairwise alignment between source
and target domains, leading to mode collapse when domain supports are disjoint (Zhao et al., 2019)
or under large distribution gaps due to gradient competition (Pezeshki et al., 2021). Recent advances,
such as spectral regularization (Pezeshki et al., 2021), partially alleviate these issues but retain the
rigidity of discrete alignment steps. In contrast, SWAT reformulates domain adaptation as a con-
tinuous manifold transport process. By constructing intermediate domains along a feature transport
flow, SWAT avoids abrupt transitions and assimilates novel target modes progressively, i.e., a critical
failure point for conventional UDA and adversarial methods.

3 PROBLEM SETUP

Domain Space Let X ⊆ Rd denote the input space and Y = {1, ..., k} the label space. We model
each domain as a joint probability distribution Pt(X,Y) = Pt(X)Pt(Y |X) overZ = X×Y , where
t ∈ {0, ..., n} indexes domains along the adaptation path.

Gradually Shifting Domain In the gradually domain setting(Kumar et al., 2020), given a se-
quence of domains {Pt}nt=0 with gradually shifting distributions, where P0 is the labeled source
domain and Pn the unlabeled target domain, GDA aims to learn a hypothesis h : X → Y that
minimizes target risk ϵn(h), under two core assumptions (Kumar et al., 2020; Long et al., 2015):
(1) the distribution shifts between consecutive domains are limited, known as bounded successive
divergence, and (2) the conditional distribution of labels given inputs remains unchanged across
domains, referred to as conditional invariance:

W1(Pt, Pt+1) ≤ ∆, Pt(Y |X) = Pt+1(Y |X), ∀t ∈ {0, ..., n− 1}, (1)

whereW1 is the Wasserstein-1 distance and ∆ quantifies maximum inter-domain drift. Conditional
probability consistency ensures that label semantics remain stable during adaptation.

Model Pretraining in the source domain The goal of pretraining in the source domain is to learn
a model C : X → Y that maps input features x from the training data set D = {(x, y)} to their
corresponding labels y. Considering the loss function l, the classifier optimized on Dt is denoted by
C, defined as:

C = argmin
C

E(x,y)∼Dt
[l(C(x), y)]. (2)

Gradual Domain Adaptation Gradual domain adaptation aims to train a model C that effectively
generalizes to the target domainDn by incrementally transferring knowledge from the labeled source
domain D0 through a sequence of unlabeled intermediate domains D1,D2, . . . ,Dn−1. The adap-
tation process involves multi-step pseudo-labeling and self-training, where the model C0 is trained
on the source domain and then adapted to the intermediate domains by the following self-training
procedure ST(Ct,Dt):

ST(Ct,Dt) = argmin
C′

Ex∼Dt [l(C
′(x), ŷt(x))]. (3)

In particular, ŷt(x) = sign(Ct(x)) is the pseudo-label generated by the model Ct for unlabeled data
of Dt, where Dt denotes the unlabeled intermediate domain. Meanwhile, C ′ is the next learned
model, also denoted by Ct+1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Feature Flow Matching

Source Targetintermediate

Ex
tra

ct
or

Fe
at

ur
e

w
/o adversarial:
w

/ adversarial:

(b) Cross-domain Adversarial Training

Figure 2: (a) Illustration of sliding window mechanism, where overlapping feature spaces facilitate
smooth domain transitions along the domain sequence. (b) Incremental domain alignment with the
SWAT framework using adversarial training to preserve task performance and encourage feature
consistency across domains.

4 METHODOLOGY

The proposed SWAT decomposes large domain shifts into manageable local transitions, enabling
stable and precise distribution matching for GDA. The core components are detailed in the following.

Continuous Feature Flow As illustrated in Fig. 2(a), SWAT defines a continuous sequence of
feature distributions:

{Ht}t∈[0,n] , Ht = pt(h), (4)

over the latent space H ⊆ Rz , where each Hi is the feature manifold at adaptation step i. Here
ft : X → H and gt : H → Y denote the encoder and classifier at step t. The overall model gt ◦ ft
smoothly evolves from (f0, g0) on the source domain to (fn, gn) on the target.

Existing GDA methods formulate each pair (fi, gi) as an independent stage in the adaptation pro-
cess, where (fi+1, gi+1) is trained after (fi, gi) has converged. This leads to a sequence of dis-
crete transitions between domains. In contrast, SWAT learns a continuous sequence of models
{(fz, gz)}z∈[0,n] and aligns features along the entire pathHz . This continuous flow matching avoids
abrupt transitions and enables fine-grained adaptation at every intermediate point.

Unlike the discrete adaptation process in previous GDA methods, SWAT enables continuous feature
transferring along the domain stream Hz (z ∈ [0, n]) through a sliding window, as illustrated in
Fig. 2(b).

Sliding Window Mechanism At any step l ∈ {0, . . . , n−1}, sliding window is the pair of adjacent
domains {Hl,Hr}with r = l+1. The scalar parameter p ∈ [0, 1] controls where within that window
we align:

H(l+p) = (1− p)Hl + pHr, (5)

where H(l+p) refers to a domain located between Hl and Hr. Here, Hl and Hr refer to the left and
right critical domains, respectively. When p reaches 1, the window “slides” one step to the right (i.e.
l ← l + 1 and p resets toward 0), hence the next window will be {Hl+1,Hl+2}. As p varies from 0
to 1 and then triggers a slide, SWAT walks continuously through the entire domain stream. We then
formalize the sliding-path alignment as:

H0 ↔ H(l+p), l ∈ {0, 1, . . . , n− 1}, p ∈ [0, 1], (6)

where both l and p are parameters controlling smooth transitions across domains. This formulation
enables fine-grained domain alignment through continuously shifting intermediate representations.

Bidirectional Flow Matching Building upon the sliding window mechanism, we further incor-
porate it with the adversarial training for smooth flow matching. Specifically, we define Gm as the
transformation function that maps a representation h from the source domain space Hs to a target
domain within the domain stream Hz , where z ∈ [0, n] indicates the position of the target domain
within the stream. Conversely, Gs denotes the reverse transformation, mapping features from any

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

domain in the stream Hz back to the source domain Hs. Thus, SWAT can be expressed as the
bidirectional transformations:

Gm : Hs → Hz, Gs : Hz → Hs. (7)

We employ the Wasserstein GAN (WGAN) (Arjovsky et al., 2017) to train the SWAT model, as the
Wasserstein distance provides a more effective measure of the distance between domains, generates
higher-quality target domains Hz , and is easier to train. The objective function for the adversarial
training module is defined as:

min
D

max
G

V (Pg,Pr) = min
D

max
G

Eĥ∼Pg

h∼Pr

[
D(ĥ)−D(h)

]
+R, (8)

where ĥ represents a representation generated by the generator G, which approximates the target
domain distribution Pg . h is a representation from the real data distribution Pr, corresponding to
actual data from the target domain. D denotes the discriminator of the corresponding domain, and
different domains have different discriminators. R represents the regularization term proposed by
Gulrajani et al. (2017):

R = Eh̃∼Ph̃

[
λ
(
||∇h̃D(h̃)||2 − 1

)2
]
, (9)

where h̃ denotes a random linear interpolation of points from ĥ and h representations, and λ is a
hyperparameter controlling the strength of the regularization.

To facilitate bidirectional feature alignment between the source domainH0 and the critical domains,
we formulate bidirectional flow matching based on the minimax objective V (Pg,Pr) defined in Eq.
(8). Without loss of generality, taking the left critical domain Hl as an example, the adversarial loss
enforces cross-domain distribution matching through dual mapping paths:

Ll
adv = V (Gm(H0),Hl) + V (Gs(Hl),H0) , (10)

where Gm maps source features to the critical domain while Gs reconstructs the original domain.
The symmetrical adversarial loss Lr

adv for the right critical domain Hr follows the same dual-path
formulation.

Semantic Consistency Preservation To prevent mode collapse and maintain content integrity
during adaptation, we employ cycle-consistent regularization inspired by CycleGAN (Zhu et al.,
2017). This ensures that features cyclically transformed through H0 → Hl → H0 to preserve
semantic consistency:

Ll
cycle = Eh∼H0

[∥Gs(Gm(h))− h∥2] + Eh∼Hl
[∥Gm(Gs(h))− h∥2] . (11)

The bidirectional reconstruction regularizations enforce invertible transformations while penalizing
semantic distortions, particularly crucial for preserving task-relevant features in critical domains.

4.1 THE OVERALL OBJECTIVE

Following previous GDA methods, we optimize the self-training loss as follows:

Ll
st = Eh∼H[l(g(h), ŷ(h))], (12)

Figure 3: H(l+p) lies along the
smooth and continuous domain flow
determined by p.

where l is the cross-entropy loss. When h is from the un-
labeled domain, ŷt(x) is the pseudo-label generated by the
model g. When h is a feature generated by Gm(h0), it rep-
resents the ground-truth label of the original representation
h0 from the source domain.

As illustrated in Fig.3, the generated feature
space H(l+p) is enforced to satisfy the condition
dist(Hl,H(l+p))/dist(Hr,H(l+p)) = p/(1 − p), where
dist(·, ·) denotes a valid distance metric between two
distributions (Peyré et al., 2019; Arjovsky et al., 2017).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The overall objective is formulated as follows:

L = (1− p)Ll + pLr, (13)

where Ll is the adversarial training loss defined as: Ll = Ll
adv + Ll

cycle + Ll
st. By optimizing

Eq. 13, we achieve continuous flow matching in the feature space. For clear understanding, we
summarize the main idea of SWAT in Algorithm 1.

Algorithm 1: Sliding Window Adversarial Training (SWAT)
Input: Domains D0 (source), D1, . . . ,Dn (target); pretrained encoder f and classifier g.
Output: 1

N

∑N
i=1 1(ŷi = Yi) where ŷ = g(f(Dn)).

Initialize generators Gm, Gs and discriminators Ds, Dl, Dr.
for l← 0; l < n; l← l + 1 do

r ← l + 1
Dl ← Dr; reinitialize Dr.
H0 ← f(D0),Hl ← f(Dl),Hr ← f(Dr)
for p← 0; p ≤ 1; p← p+∆p do
L ← (1− p)L(Gm, Gs, Ds, Dl,H0,Hl) + pL(Gm, Gs, Ds, Dr,H0,Hr)
update Gm, Gs, Ds, Dl, Dr, f, g // e.g., Adam

end
end

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

Following the standard GDA protocol, we conduct extensive experiments on 6 datasets. Rotated
MNIST is constructed from MNIST (Deng, 2012), this dataset contains 50,000 source domain im-
ages (original digits) and 50,000 target domain images rotated by 45°. Intermediate domains in-
terpolate rotation angles between 0° and 45°. Color-Shift MNIST images are normalized to [0,1]
for the source domain and shifted to [1,2] for the target domain (He et al., 2023), with interme-
diate domains generated by linearly interpolating color intensity. Portraits (Ginosar et al., 2015)
are chronologically divided into 9 temporal domains (1905–2013), each with 2,000 images (Kumar
et al., 2020). The first and last domains serve as source/target; images are resized to 32×32 pixels.
Cover Type (Blackard, 1998) tabular dataset sorted by horizontal distance to water, uses 50,000
source samples, 10×40,000 intermediate domains, and 50,000 target samples (Kumar et al., 2020)
for classifying spruce fir vs. Rocky Mountain pine.

To evaluate the performance of GDA methods under high-severity shifts, we introduce a new eval-
uation protocol using the corruption benchmarks CIFAR-10C and CIFAR-100C (Hendrycks &
Dietterich, 2019). Each benchmark applies 15 corruption types at 5 severity levels to the valida-
tion and test splits of CIFAR (Krizhevsky et al., 2009). We regard the clean training images as
the source domain, the images of severity levels 1–4 (across all corruption types) as a sequence of
intermediate domains, and treat severity level 5 as the target domain. Following the RobustBench
benchmark (Croce et al., 2020; Croce & Hein, 2020), WideResNet-28 (Zagoruyko & Komodakis,
2016) and ResNeXt-29 (Xie et al., 2017) used as the source model for CIFAR10-to-CIFAR10C and
CIFAR100-to-CIFAR100C, respectively.

All results are averaged over 5 runs. Please refer to section A.1 for more detailed implementation.

5.2 EXPERIMENTAL RESULTS

Table1 reports the experiment results on Rotated MNIST, Color-Shift MNIST, Portraits and Cover
Type, respectively.

Compared with the UDA methods (He et al., 2023), Table 1 highlights the clear advantage of GDA
over traditional UDA. SWAT achieves the best accuracy on all benchmarks, indicating superior

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of domain adaptation methods on 4 GDA datasets.

Methods Gradual Rotated MNIST Color-Shift MNIST Portraits Cover Type

DANN (Ganin et al., 2016) ✗ 44.2 56.5 73.8 -
DeepCoral (Sun & Saenko, 2016) ✗ 49.6 63.5 71.9 -
DeepJDOT (Damodaran et al., 2018) ✗ 51.6 65.8 72.5 -

GST (Kumar et al., 2020) (ICML’20) ✓ 83.8 74.0 82.6 73.5
IDOL (Chen & Chao, 2021) (NeurIPS’21) ✓ 87.5 - 85.5 -
AGST (Zhou et al., 2022) (IEEE’22) ✓ 76.2 - 77.6
GGF (Zhuang et al., 2024) (ICLR’24) ✓ 67.7 - 86.2 -
GOAT (He et al., 2023) (JMLR’24) ✓ 86.4 91.8 83.6 69.9
DRO (Najafi et al., 2024) (NeurIPS’24) ✓ 53.2 - - -
AST (Shi & Liu, 2024) (NeurIPS’24) ✓ 90.6 - 84.8 -
CNF (Sagawa & Hino, 2025) (Neural Computation’25) ✓ 62.6 - 84.6 -
SWAT (Ours) ✓ 96.7 99.6 87.4 75.0

Table 2: Comparison of classification error rates (%) at severity level 5 for TTA and GDA methods
on CIFAR-10C and CIFAR-100C. Lower is better.

Method

G
ra

du
al

ga
us

si
an

sh
ot

im
pu

ls
e

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic

pi
xe

la
te

jp
eg

Mean

C
IF

A
R

-1
0C

Source only ✗ 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
BN-1 ✗ 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
TENT-cont. (Wang et al., 2020) ✗ 24.8 20.6 28.6 14.4 31.1 16.5 14.1 19.1 18.6 18.6 12.2 20.3 25.7 20.8 24.9 20.7
AdaContrast (Chen et al., 2022) ✗ 29.1 22.5 30.0 14.0 32.7 14.1 12.0 16.6 14.9 14.4 8.1 10.0 21.9 17.7 20.0 18.5
CoTTA (Wang et al., 2022) ✗ 24.3 21.3 26.6 11.6 27.6 12.2 10.3 14.8 14.1 12.4 7.5 10.6 18.3 13.4 17.3 16.2
GTTA-MIX (Marsden et al., 2022) ✗ 23.4 18.3 25.5 10.1 27.3 11.6 10.1 14.1 13.0 10.9 7.4 9.0 19.4 14.5 19.8 15.6
GST (Kumar et al., 2020) ✓ 50.0 43.9 50.3 20.6 51.2 17.2 16.7 17.5 24.3 17.5 6.9 13.2 24.9 39.9 26.6 28.1
GOAT (He et al., 2023) ✓ 72.7 65.7 73.0 46.7 54.5 34.3 41.5 24.9 41.0 26.0 9.3 46.6 26.4 58.1 30.2 43.4
SWAT (ours) ✓ 21.4 20.0 26.8 9.7 28.5 10.2 8.4 3.1 13.4 11.5 7.1 8.9 19.8 13.3 20.1 15.4

C
IF

A
R

-1
00

C

Source only ✗ 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
BN-1 ✗ 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35.0 41.5 26.5 30.3 35.7 32.9 41.2 35.4
TENT-cont. (Wang et al., 2020) ✗ 37.2 35.8 41.7 37.9 51.2 48.3 48.5 58.4 63.7 71.1 70.4 82.3 88.0 88.5 90.4 60.9
AdaContrast (Chen et al., 2022) ✗ 42.3 36.8 38.6 27.7 40.1 29.1 27.5 32.9 30.7 38.2 25.9 28.3 33.9 33.3 36.2 33.4
CoTTA (Wang et al., 2022) ✗ 40.1 37.7 39.7 26.9 38.0 27.9 26.4 32.8 31.8 40.3 24.7 26.9 32.5 28.3 33.5 32.5
GTTA-MIX (Marsden et al., 2022) ✗ 36.4 32.1 34.0 24.4 35.2 25.9 23.9 28.9 27.5 30.9 22.6 23.4 29.4 25.5 33.3 28.9
GST (Kumar et al., 2020) ✓ 49.8 56.7 32.3 22.5 41.6 25.0 23.3 30.3 32.2 38.1 22.1 27.0 33.1 40.8 35.8 33.3
GOAT (He et al., 2023) ✓ 73.4 67.9 39.1 28.7 53.8 30.2 28.7 39.3 45.7 50.0 29.4 53.7 36.8 74.3 41.2 46.2
SWAT (ours) ✓ 28.6 26.9 23.5 22.3 29.0 22.7 22.4 24.4 24.3 25.7 21.5 22.7 26.5 23.4 28.8 24.8

representation transfer performance under gradual shifts. Per-dataset trends across different numbers
of given domains (2–6) further corroborate this advantage, especially when only a few domains are
available, as illustrated in Appendix A.2, Table 5. Additional experiments and computational-cost
comparisons are provided in sections A.3 and B.

Table 2 presents classification error rates (severity level 5) on CIFAR-10C and CIFAR-100C. We
group methods into two families: Test-Time Adaptation (TTA) and GDA. For TTA, “Source only”
refers to the fixed pretrained model, and BN-1 updates batch normalization statistics on each test
batch. The other baselines, including TENT-continual (Wang et al., 2020), AdaContrast (Chen et al.,
2022), CoTTA (Wang et al., 2022), and GTTA-MIX (Marsden et al., 2022), perform online adap-
tation of either the feature extractor or the classifier. Our approach, SWAT, combines the stability
of batch-norm re-estimation with sample-wise alignment. Across both benchmarks, SWAT achieves
the lowest mean error (15.4% on CIFAR-10C, 24.8% on CIFAR-100C), outperforming the strongest
prior TTA (GTTA-MIX: 15.6%/28.9%) and GDA competitors on nearly every corruption type.

5.3 DOMAIN SHIFTS ANALYSIS

Quantitative Analysis of Domain Shifts We employ A-distance (Ben-David et al., 2010) as the
proxy of H∆H distance to quantitatively evaluate the domain shifts, as illustrated in Fig. 4. We
observe that the A-distance between the source domainH0 and the target domainHn exhibits large
fluctuations (peak at 1.498), which indicates that directly aligning two domains causes unstable
transfer or even negative transfer when the domain shifts are significantly large. In contrast, the pro-
posed SWAT maintains near-zero distances (< 0.11) to critical intermediate domainsHl,Hr across
all positions, achieving a 63.7% reduction in the average A-distance between H0 and Hn (0.104

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 0.5 1
0

0.5

1

1.5

A
-d

is
ta

nc
e

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1 distance toH0

distance toHn

distance toHl,Hr

Figure 4: The figure illustrates how the interpolated domains evolve in domain discrepancy along the
adaptation path. The horizontal axis denotes the interpolation place z ∈ [0, 1] (0 = source domain,
1 = target domain). The vertical axis represents the A-distance (Ben-David et al., 2010; Mansour
et al., 2009), a proxy for distribution divergence. On the left, the A-distance is computed with
representations of a fixed encoder, while on the right, the distance is calculated using our SWAT
representation.

(a) Source space H0 (b) Target space Hn

w/o flow matching
(c) Target space Hn

w/ flow matching
(d) H0,Hn w/o ad-
versarial training

(e) H0,Hg ,Hn w/
adversarial training

Figure 5: t-SNE visualization of feature space geometry under different domain adaptation strategies
through two complementary perspectives on Rotated MNIST (with 4 intermediate domains).

vs. 1.284), demonstrating smooth knowledge transfer. The symmetrical reduction of bidirectional
distances confirms balanced adaptation between forward and backward domain transitions.

Visualization Analysis of Domain Shifts The t-SNE visualizations (Fig. 5) reveal the geomet-
ric impact of different strategies: (1) Direct mapping to Hn without flow matching (Fig. 5(b))
causes catastrophic cluster overlap, as rigid alignment disrupts local semantic structures. (2) SWAT
(Fig. 5(c)) maintains a high percentage of H0’s cluster purity through flow matching that preserves
isometric relationships between neighboring domains Hl ↔ Hr. (3) The non-adversarial path
H0 → Hn (Fig. 5(d)) exhibits discontinuous jumps (Hausdorff distance 4.72), while our adversarial
flowH0 → Hg → Hn (Fig. 5(e)) reduces trajectory fragmentation by 75.6% (Hausdorff 1.15). This
geometric perspective demonstrates the Semantic invariance and topological continuity of SWAT in
the feature space.

Input Conv-1 Conv-2 Conv-3 Conv-4 Conv-5 Conv-6
Convolutional Neural Network Layer of the Encoder

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

vgg11
vgg13
vgg19

resnet18

resnet50

2 domains
3 domains
4 domains

(a) Feature Extraction Strategies

0 1 2 3 4
Inter-domain step counts

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

GST
NO
WGAN
GAN
GOAT

(b) Rotated MNIST

0 1 2 3 4
Inter-domain step counts

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

GST
NO
WGAN
GAN
GOAT

(c) Color-Shift M.

0 1 2 3 4
Inter-domain step counts

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
cc

ur
ac

y

GST
NO
WGAN
GAN
GOAT

(d) Portraits

Figure 6: Ablation analysis of SWAT. (a) Comparison of flow matching with feature extraction
strategies. (b-d) Performance of SWAT on Rotated MNIST, Color-Shift MNIST, and Portrait with 3
intermediate domains, showing the accuracy changes of different training strategies (NO: no adver-
sarial, GST, GOAT with 0-4 inter-domain step counts.

5.4 ABLATION STUDY

Continuous Feature Flow By progressively enabling multi-scale feature aggregation in our slid-
ing window framework, we observe significant performance improvements across 2–4 domain set-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Trends analysis of p. “Ours” denotes gradually increasing p at equal intervals, “Fixed”
keeps p a constant value of 0.5, “Rand” samples p randomly from a uniform distribution U(0, 1) at
each step, and “Sorted” adopts a fixed set of random values in ascending order.

Methods Rotated MNIST Portraits
0 1 2 3 4 0 1 2 3 4

Ours 83.3±0.9 85.0±0.5 86.1±0.4 86.9±0.2 88.1±1.5 82.9±1.2 84.6±0.2 85.0±0.9 85.1±0.2 85.3±0.1

Sorted 84.1±0.8 86.4±0.6 86.0±1.7 86.3±0.1 85.7±0.5 82.7±0.5 84.0±0.6 84.2±0.1 84.3±0.2 84.5±0.1

Rand 83.4±0.2 80.9±7.0 84.5±2.8 86.3±0.9 86.1±0.4 82.4±0.5 84.0±0.6 84.2±0.2 84.3±0.2 84.1±0.1

Fixed 83.3±0.0 83.7±0.0 83.8±0.1 83.8±0.1 84.1±0.0 83.9±0.3 83.4±0.0 83.1±2.1 84.1±0.1 84.7±0.3

Table 4: Ablation study on CIFAR-10C. The error rates (%) are computed across 6 specified do-
mains.

Setup

ga
us

si
an

sh
ot

im
pu

ls
e

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic

pi
xe

la
te

jp
eg

Mean

The full model 21.4 20.0 26.8 9.7 28.5 10.2 8.4 3.1 13.4 11.5 7.1 8.9 19.8 13.3 20.1 15.4
w/o Ladv 26.9 45.2 37.6 47.9 39.3 18.7 34.7 16.0 31.0 61.1 60.6 58.4 58.5 48.7 19.8 40.3
w/o Lcycle 30.3 40.0 46.3 29.1 35.4 26.1 57.1 21.8 18.2 46.3 98.8 36.4 62.0 53.9 21.9 41.6
w/o Lst 27.8 26.1 35.8 13.6 34.8 13.8 12.0 16.9 17.5 15.5 7.8 12.2 23.4 20.8 27.2 20.3

tings for Rotated MNIST (Fig. 6(a)). The shallowest setting, corresponding to a shallow neural
network without adversarial training, performs over 25% worse than our feature flow matching ap-
proach, highlighting the limitations of low-level features in capturing transferable representations.

Bidirectional Flow Matching In Rotated MNIST dataset (Fig. 6(b)), the accuracy without any ad-
versarial alignment (NO) drops significantly with inter-domain steps, whereas incorporating SWAT
with feature flow matching improves accuracy. For the Color-Shift MNIST dataset (Fig. 6(c)),
SWAT significantly enhances accuracy, achieving near-optimal performance across inter-domain
steps. In the Portraits dataset (Fig. 6(d)), SWAT outperforms the baseline NO method and any
previous static transport methods.

Sliding Window Mechanism Table 3 reports results with different inter-domain adaptation steps.
The sliding window mechanism (Ours) consistently achieves the best average accuracy, e.g., 88.1%
vs. 84.1% (Fixed) and 86.1% (Rand) on Rotated MNIST with substantially lower standard deviation
(±0.5 vs. ±7.0 at step 1). These results confirm that gradually increasing p produces more stable and
optimal adaptation than holding p fixed, sampling it at random, or reordering random draws.

Effectiveness of Different Components In Table 4, removing any of the three components de-
grades robustness, but the effects are asymmetric. The three components are complementary: ad-
versarial alignment reduces shift, cycle-consistency regularizes the adaptation trajectory, and self-
training refines supervision, which is consistent with our broader ablations as shown in Table 4,
showing that removing alignment or label-quality mechanisms significantly degrades performance.

6 CONCLUSION

This work proposes a sliding window mechanism to improve the adversarial training, which splits
large domain shifts into multiple micro transfers through local, dynamic and continuous feature
alignment, enabling fine-grained distribution matching. Building upon this training paradigm, we
present the Sliding Window Adversarial Training, a novel framework for GDA that incorporates the
sliding window mechanism with adversarial flow matching to enable continuous and stable feature
alignment. Extensive experimental results demonstrate the superior effectiveness and robustness of
SWAT across diverse benchmarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The problem setup, algorithm, and notation are specified in Secs. 3–4 (incl. Algorithm 1 and Figs.
2–3), while dataset construction and implementation details, including architectures, optimizers,
hyperparameters, and hardware, are documented in Sec. 5.1 and App. A.1. Our evaluation protocol
and metrics are described in Secs. 5.2–5.3, and multiple-run reporting (five seeds) with variability
is summarized in Sec. 5.2 and expanded in App. A.2–A.3 (Tables 5–9). Upon acceptance, we
will open-source the full source code, including training/evaluation scripts, configuration files, and
pretrained checkpoints to exactly reproduce all tables and figures.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv e-prints, art.
arXiv:1701.07875, January 2017. doi: 10.48550/arXiv.1701.07875.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79:151–175,
2010.

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C50K5N.

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
295–305, 2022.

Hong-You Chen and Wei-Lun Chao. Gradual domain adaptation without indexed intermediate do-
mains. Advances in neural information processing systems, 34:8201–8214, 2021.

Yiming Chen, Shiji Song, Shuang Li, and Cheng Wu. A graph embedding framework for maximum
mean discrepancy-based domain adaptation algorithms. IEEE Transactions on Image Processing,
29:199–213, 2020. doi: 10.1109/TIP.2019.2928630.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–
2216. PMLR, 2020.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver-
sarial robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas
Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation.
In Proceedings of the European conference on computer vision (ECCV), pp. 447–463, 2018.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A brief review of domain
adaptation. Advances in data science and information engineering: proceedings from ICDATA
2020 and IKE 2020, pp. 877–894, 2021.

Ali Farshchian, Juan A Gallego, Joseph P Cohen, Yoshua Bengio, Lee E Miller, and Sara A
Solla. Adversarial domain adaptation for stable brain-machine interfaces. arXiv preprint
arXiv:1810.00045, 2018.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015a.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of machine learning research, 17(59):1–35, 2016.

Shiry Ginosar, Kate Rakelly, Sarah Sachs, Brian Yin, and Alexei A Efros. A century of portraits: A
visual historical record of american high school yearbooks. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops, pp. 1–7, 2015.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Im-
proved Training of Wasserstein GANs. arXiv e-prints, art. arXiv:1704.00028, March 2017. doi:
10.48550/arXiv.1704.00028.

Yifei He, Haoxiang Wang, Bo Li, and Han Zhao. Gradual domain adaptation: Theory and algo-
rithms. arXiv preprint arXiv:2310.13852, 2023.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International
conference on machine learning, pp. 1989–1998. Pmlr, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. URL https://
arxiv.org/abs/1502.03167.

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G. Hauptmann. Contrastive adaptation network
for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. URL https://arxiv.org/abs/1412.6980.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
ages.(2009), 2009.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain
adaptation. In International conference on machine learning, pp. 5468–5479. PMLR, 2020.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
deep adaptation networks. In International conference on machine learning, pp. 97–105. PMLR,
2015.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Advances in neural information processing systems, 31, 2018.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds
and algorithms. arXiv preprint arXiv:0902.3430, 2009.

Robert A Marsden, Mario Döbler, and Bin Yang. Gradual test-time adaptation by self-training and
style transfer. arXiv preprint arXiv:2208.07736, 1(5), 2022.

Robert A Marsden, Mario Döbler, and Bin Yang. Introducing intermediate domains for effec-
tive self-training during test-time. In 2024 International Joint Conference on Neural Networks
(IJCNN), pp. 1–10. IEEE, 2024.

Amir Najafi, Amin Behjati, Ala Emrani, Yasaman Zolfimoselo, Shadrooy Shadrooy, Abolfazl Mo-
tahari, Babak Khalaj, et al. Gradual domain adaptation via manifold-constrained distribution-
ally robust optimization. Advances in Neural Information Processing Systems, 37:73693–73725,
2024.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

11

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial domain adap-
tation. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-
laume Lajoie. Gradient starvation: A learning proclivity in neural networks. Advances in Neural
Information Processing Systems, 34:1256–1272, 2021.

Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, Arihant Jain, and Venkatesh Babu Radhakr-
ishnan. A closer look at smoothness in domain adversarial training. In International conference
on machine learning, pp. 18378–18399. PMLR, 2022.

Shogo Sagawa and Hideitsu Hino. Gradual domain adaptation via normalizing flows. Neural Com-
putation, pp. 1–47, 2025.

Lianghe Shi and Weiwei Liu. Adversarial self-training improves robustness and generalization for
gradual domain adaptation. Advances in Neural Information Processing Systems, 36, 2024.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learn-
ing Research, 15(56):1929–1958, 2014. URL https://www.jmlr.org/papers/v15/
srivastava14a.html.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
In Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and
15-16, 2016, Proceedings, Part III 14, pp. 443–450. Springer, 2016.

Hui Tang and Kui Jia. Discriminative adversarial domain adaptation. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 5940–5947, 2020.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726, 2020.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7201–7211, 2022.

Zhiqing Xiao, Haobo Wang, Ying Jin, Lei Feng, Gang Chen, Fei Huang, and Junbo Zhao. Spa:
a graph spectral alignment perspective for domain adaptation. Advances in Neural Information
Processing Systems, 36, 2024.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 10687–10698, 2020.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Jianfei Yang, Han Zou, Yuxun Zhou, Zhaoyang Zeng, and Lihua Xie. Mind the discriminabil-
ity: Asymmetric adversarial domain adaptation. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16, pp. 589–606.
Springer, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Huan Zhang, Hongge Chen, Zhao Song, Duane Boning, Inderjit S Dhillon, and Cho-Jui Hsieh. The
limitations of adversarial training and the blind-spot attack. arXiv preprint arXiv:1901.04684,
2019.

12

https://www.jmlr.org/papers/v15/srivastava14a.html
https://www.jmlr.org/papers/v15/srivastava14a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant
representations for domain adaptation. In International conference on machine learning, pp.
7523–7532. PMLR, 2019.

Shiji Zhou, Lianzhe Wang, Shanghang Zhang, Zhi Wang, and Wenwu Zhu. Active gradual domain
adaptation: Dataset and approach. IEEE Transactions on Multimedia, 24:1210–1220, 2022.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

Zhan Zhuang, Yu Zhang, and Ying Wei. Gradual domain adaptation via gradient flow. In The Twelfth
International Conference on Learning Representations, 2024.

A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION

For the Rotated MNIST, Color-Shift MNIST, and Portraits datasets, we implemented a CNN with
three convolutional layers with 32 channels. After the encoder, we added a fully connected classifier
with two hidden layers of 256 units each. For the Cover Type dataset, we adopted a similar approach
using three fully connected layers with ReLU activations, where the hidden dimensions increase
from 128 to 256 to 512 units, ending with an output layer matching the number of classes.

Our transport architecture includes generators composed of a single residual block containing three
linear layers. The discriminator is built with three linear layers, each having 128 hidden units and
paired with ReLU activation functions. We used the Adam optimizer for optimization (Kingma &
Ba, 2014), Dropout for regularization (Srivastava et al., 2014), and Batch Normalization to stabilize
training (Ioffe & Szegedy, 2015). The number of intermediate domains generated between source
and target domains is treated as a hyperparameter, with the model’s performance evaluated for 0, 1,
2, 3, or 4 intermediate domains. All the code was run on NVIDIA RTX 4090 GPUs.

In addition, we followed (Kumar et al., 2020) to filter out the 10% of data points where the model’s
predictions exhibit the least confidence. However, instead of relying on the typical uncertainty
measure, we define the confidence level as the difference between the largest and the second-largest
values in the model’s output. We have found that this produces better results and we use this setting
in all comparative tests.

We pretrain the encoder and classifiers f, g on four datasets, and the results of the pretrain are shown
in Fig. 7, where the accuracy varies across multiple domains. All of our experiments, including
ablations on the GOAT, GST method in section 5.4, are performed using the same pretrained model.
With a total of six domains in the setup, the precision of the four datasets for the classifications
trained on the source domain directly using the classification results in the subsequent domains are
shown in Fig. 7. The accuracies fall roughly stepwise in line with our expectations for the problem
setup.

A.2 COMPARATIVE EXPERIMENT

Table 5 compares SWAT against GST (Kumar et al., 2020) and GOAT (He et al., 2023) on both
vision benchmarks and a tabular dataset (Cover Type), using the same encoder–classifier architecture
and low-confidence sample selection strategy throughout. SWAT consistently outperforms GST
and GOAT across every setting, with the largest gains observed when only two or three domains
are available. Narrow confidence intervals further confirm the stability of our results. By more
effectively leveraging domain flow and feature transfer SWAT delivers superior adaptation across
diverse data modalities.

A.3 RESULTS OF OUR METHOD

We present a comparison of our proposed SWAT method with multiple datasets, including Rotated
MNIST, Color-Shift MNIST, Portraits, and Cover Type, as detailed in Tables 6 through 9. Each

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D.1 D.2 D.3 D.4 D.5 D.6
20

40

60

80

100

Domain (D.)
A

cc
ur

ac
y

(%
)

Accuracy vs Domain Shift for Different Datasets

Rotated MNIST Portraits
Color-Shift MNIST Cover Type

Figure 7: Accuracy of classifiers trained on Domain 1 and evaluated across progressively changing
domains (D.2 to D.6) for four datasets: Rotated MNIST, Portraits, Color-Shift MNIST, and Cover
Type. The figure illustrates a gradual decrease in accuracy as the domain shift increases, highlighting
the impact of domain adaptation challenges.

Table 5: Comparison of SWAT and other GDA methods on 4 datasets given different numbers of
intermediate domains.

Given
Domains

Rotated MNIST Given
Domains

Color-Shift MNIST
GST GOAT SWAT GST GOAT SWAT

2 54.9± 0.2 53.5± 1.0 88.1± 1.5 2 27.0± 0.3 72.0± 6.0 98.8± 0.3
3 60.0± 0.3 57.2± 0.3 96.1± 0.1 3 34.2± 1.7 83.4± 2.9 99.5± 0.0
4 67.2± 0.6 68.4± 1.4 96.4± 0.0 4 55.0± 1.9 89.1± 3.6 99.6± 0.0
5 71.9± 0.8 78.8± 0.8 96.5± 0.2 5 66.8± 2.2 94.9± 1.0 99.6± 0.0
6 75.6± 1.4 85.8± 0.9 96.7± 0.1 6 74.0± 3.4 95.7± 0.3 99.6± 0.0

Given
Domains

Portraits Given
Domains

Cover Type
GST GOAT SWAT GST GOAT SWAT

2 75.0± 1.7 78.6± 2.2 85.3± 0.1 2 69.1± 0.1 69.0± 0.0 75.0± 0.0
3 75.1± 1.0 80.2± 1.3 84.8± 1.0 3 71.1± 0.2 69.0± 0.0 74.3± 0.2
4 78.4± 0.9 80.5± 1.3 86.1± 0.3 4 72.4± 0.1 69.0± 0.0 74.6± 0.1
5 76.4± 1.8 79.4± 0.6 87.0± 0.0 5 72.8± 0.1 69.1± 0.1 74.6± 0.1
6 80.9± 0.6 83.1± 0.6 87.4± 0.2 6 73.1± 0.1 69.3± 0.0 73.7± 0.2

experiment was repeated multiple times, with the results shown as mean values along with vari-
ance intervals. The leftmost column of each table represents the performance obtained using only
adversarial training, which corresponds to the method without flow matching.

In Tables 6 to 9, the column ”# Given Domains” indicates the number of domains included in the
experiment, comprising both the source and the target domains. The ”Inter-domain counts in SWAT”
columns indicate the number of inter-domain steps taken between the given domains in the dataset.
The entire process is equivalent to including (”# Given Domains - 1”) × (”# Inter-domain counts in
SWAT + 1”) + 1 training step, which includes self-training of GAN and the encoder f and classifier
g. For example, with four domains and three intermediate steps, the total number of training steps is
calculated as (4 - 1) × (3 + 1) + 1 = 13 small steps.

Our results demonstrate the effectiveness of the SWAT method across multiple datasets: Rotated
MNIST, Color-Shift MNIST, Portraits, and Cover Type. In each case, we vary the number of given
domains and the inter-domain steps in SWAT, comparing the model’s performance as the number of
inter-domain steps increases.

In the results presented in Table 6 (Rotated MNIST), Table 7 (Color-Shift MNIST), and Table 8
(Portraits), SWAT shows a consistent improvement in accuracy as the number of inter-domain steps
increases. Specifically, in Table 6, for the scenario where only the source and destination domains are
provided (the first row), the accuracy begins at 83.3% with zero inter-domain steps and progressively

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Comparison of the accuracy of our method for different given intermediate domains (in-
cluding source and target domains) on the Rotated MNIST dataset, as well as the 68% confidence
interval of the mean across 5 runs.

Given # Inter-domain counts in SWAT
Domains 0 1 2 3 4

2 83.3± 0.9 85.0± 0.5 86.1± 0.4 86.9± 0.2 88.1± 1.5
3 94.7± 0.5 95.1± 0.7 96.1± 0.1 96.1± 0.1 96.1± 0.2
4 95.6± 0.1 96.3± 0.0 96.4± 0.0 96.2± 0.1 96.3± 0.0
5 95.9± 0.1 96.1± 0.1 96.1± 0.2 96.5± 0.2 96.5± 0.2
6 95.9± 0.3 96.4± 0.2 95.5± 1.5 96.6± 0.1 96.7± 0.1

Table 7: Comparison of the accuracy of our method for different given intermediate domains (includ-
ing source and target domains) on the Color-Shift MNIST dataset, as well as the 68% confidence
interval of the mean across 5 runs.

Given # Inter-domain counts in SWAT
Domains 0 1 2 3 4

2 96.9± 0.6 96.6± 1.9 94.9± 5.3 98.8± 0.3 98.0± 1.0
3 97.9± 1.9 99.4± 0.1 99.4± 0.0 99.2± 0.4 99.5± 0.0
4 99.4± 0.0 99.6± 0.0 99.5± 0.0 99.5± 0.1 99.6± 0.0
5 99.5± 0.0 99.6± 0.0 99.5± 0.1 99.4± 0.3 99.5± 0.1
6 99.6± 0.0 99.4± 0.3 99.2± 0.5 99.4± 0.1 99.5± 0.1

Table 8: Comparison of the accuracy of our method for different given intermediate domains (in-
cluding source and target domains) on the Portraits dataset, as well as the 68% confidence interval
of the mean across 5 runs.

Given # Inter-domain counts in SWAT
Domains 0 1 2 3 4

2 82.9± 1.2 84.6± 0.2 85.0± 0.9 85.1± 0.2 85.3± 0.1
3 84.3± 0.1 84.3± 0.1 84.7± 0.3 84.8± 1.0 84.5± 0.1
4 84.4± 0.6 84.1± 0.1 84.5± 1.8 86.1± 0.3 85.6± 1.1
5 86.1± 0.1 87.0± 0.4 87.0± 0.2 86.7± 0.3 86.5± 0.9
6 87.4± 0.2 87.2± 0.4 86.8± 0.7 86.1± 0.5 86.1± 0.6

Table 9: Comparison of the accuracy of our method for different given intermediate domains (includ-
ing source and target domains) on the Cover Type dataset, as well as the 68% confidence interval
of the mean across 5 runs.

Given # Inter-domain counts in SWAT
Domains 0 1 2 3 4

2 74.1± 0.0 75.0± 0.0 75.0± 0.0 75.0± 0.0 75.0± 0.0
3 74.2± 0.1 74.3± 0.3 74.2± 0.5 74.0± 0.1 74.3± 0.2
4 74.5± 0.1 74.6± 0.1 74.5± 0.2 74.3± 0.1 74.3± 0.2
5 74.6± 0.1 74.3± 0.7 74.1± 0.3 74.3± 0.2 74.4± 0.1
6 73.6± 0.3 73.7± 0.2 73.7± 0.2 73.5± 0.5 73.5± 0.3

increases, reaching 88.1% at four inter-domain steps. This steady enhancement in performance un-
derscores the value of the additional inter-domain steps in improving SWAT’s generalization capac-
ity.

Furthermore, focusing on the scenario with zero inter-domain steps, the results suggest that SWAT
continues to exhibit improvements across more complex datasets. This suggests that even without
inter-domain steps, the model benefits from the progressive adversarial feature matching, enhancing
its ability to adapt and generalize effectively across domains.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In the results presented in Table 9 (Cover Type), SWAT shows relatively stable accuracy across dif-
ferent numbers of inter-domain steps. Unlike other datasets like Rotated MNIST, where accuracy
increases noticeably with inter-domain steps, the accuracy on the Cover Type dataset remains rel-
atively stable. This suggests that SWAT may already be achieving near optimal performance with
fewer inter-domain steps on this particular dataset. This could suggest that the model has already
captured the most critical features of the dataset, or that Cover Type may be less complex compared
to the other datasets, requiring fewer inter-domain steps for effective transfer learning.

It is important to highlight that the highest accuracy points are typically found in the upper-right
and lower-left corners of the table. This suggests that as the number of given domains increases,
the SWAT tends to become more complete, eliminating the need for additional intermediate steps to
refine the flow. This observation demonstrates that our method of constructing flows matching be-
tween domains is particularly effective when only a few domains are given, and the sliding window
adversarial training is highly effective all the time.

B COMPUTATIONAL COST COMPARISON

Table 10: Running time and peak GPU memory usage (on an RTX 4090) for SWAT, GOAT, and
GST (0 inter-domain step) across four benchmarks with 4 given domains and 2 inter-domain step
counts.

Method Rotated MNIST Color MNIST Portraits CoverType

SWAT 4 min 56 s / 4488 MB 4 min 59 s / 4488 MB 13 s / 5636 MB 4 min 22 s / 660 MB
GOAT 5 min 38 s / 1886 MB 5 min 43 s / 1392 MB 20 s / 1632 MB 1 min 51 s / 586 MB
GST (0-step) 59 s / 1884 MB 1 min 1 s / 1884 MB 4 s / 990 MB 31 s / 612 MB

Table 10 compares the running time and peak GPU memory consumption of SWAT against GOAT
and GST (with zero inter-domain adaptation steps) on an RTX 4090. SWAT incurs only a modest
overhead, due to its additional generators and discriminators, while delivering superior task perfor-
mance. Notably, SWAT matches or outperforms GOAT in both speed and memory usage on most
datasets (e.g., 4 min 56 s/4488 MB vs. 5 min 38 s/1886 MB on Rotated MNIST), demonstrating its
practical feasibility for large-scale domain adaptation.

C ABLATION STUDY ON LEAST CONFIDENCE

In our experiments, we observed that increasing the rejection rate of low-confidence samples, as
discussed in section A.3, improves model accuracy by preventing learning from incorrect samples
like Fig. 8. However, excessive rejection can harm the model’s generalization ability. This finding
is intended to inspire further research in this area.

0.00 0.25 0.50 0.75
Rejection Rate of Low-confidence Samples

0.6

0.8

A
cc

ur
ac

y

Cover Type
Rotated MNIST
Portraits

Figure 8: Accuracy vs. Rejection Rate of Low-confidence Samples for Rotated MNIST, Portrait
and Cover Type Datasets. Explanation This case involves four given fields and a two-step iteration
process is performed between the fields.

LLM USAGE

Model and access. We used OpenAI ChatGPT between July–September 2025.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Permitted roles.

• Writing/editing: grammar and clarity passes; occasional rephrasing; tightening ab-
stracts/captions.

• Structural support: converting bullet notes into section outlines; checklist generation for
reporting standards.

• LaTeX assistance: resolving formatting issues (tables/figures/macros) and minor template
boilerplate.

• Utility code (non-novel): small helpers such as CLI parsers, logging stubs, and plotting
scaffolds used only for figure generation.

Explicitly excluded roles. The LLM was not used for problem ideation, novelty claims, algorithm
or loss design, theoretical derivations/proofs, dataset construction or labeling, experiment design,
hyperparameter search, result selection, or writing any part that constitutes intellectual contributions.

Verification and safeguards. All LLM outputs were reviewed and either rewritten or validated by
the authors; any code was tested and aligned with our described methodology; citations, equations,
and proofs were authored and checked by us; and we avoided introducing unverifiable facts or
proprietary content.

17

	Introduction
	Related Work
	Problem Setup
	Methodology
	The Overall Objective

	Experiments
	Datasets and Implementation Details
	Experimental Results
	Domain Shifts Analysis
	Ablation Study

	Conclusion
	Experimental Details
	Implementation
	Comparative experiment
	Results of Our Method

	Computational Cost Comparison
	Ablation Study on Least Confidence

