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ABSTRACT

In time series, variables often exhibit high-dimensional characteristics. The cor-
relation between variables tends to be intricate, encompassing aspects such as
non-linearity and time dependency. Understanding the interaction of variables
and comprehending the distribution of their values can significantly enhance the
effectiveness of time series data analysis tasks, such as forecasting and anomaly
detection. Hence, in this paper, we start from the tensor time series, which can
encode higher dimensional information than classic multivariate time series, and
aim to discover and leverage their fine-grained time-dependent causal relations
to contribute to a more accurate analysis. To this end, we first form an aug-
mented Granger Causality model, named TBN-Granger Causality, which adds
time-respecting Bayesian Networks to the time-lagged Neural Granger Causality
through a bi-level optimization, such that the overlooking of instantaneous effects
in typical causal time series analysis can be addressed. Then, we propose an end-
to-end deep generative model, named TacSas, which takes the historical tensor
time series, outputs the future tensor time series, and detects possible anomalies
by leveraging the TBN-Granger Causality in the history. Moreover, we show Tac-
Sas not only can capture the ground-truth causality but also can be applied when
the ground-truth causal structures are hardly available, to help forecasting and
anomaly detection. For evaluations, besides synthetic benchmark data, we have
four datasets from the climate domain benchmark database ERA5 as the real-
world tensor time series for forecasting. Moreover, we extend ERA5 with the ex-
treme weather database NOAA for testing anomaly detection accuracy. We show
the effectiveness of TacSas in different time series analysis tasks by comparing
causal baselines, forecasting baselines, and anomaly detection baselines.

1 INTRODUCTION

Time series analysis is indispensable in various application domains. Time-series forecasting, for
example, can facilitate traffic planning (Li et al., 2018; Zhao et al., 2020b). Time-series anomaly
patterns can optimize high-tech equipment deployment (Hundman et al., 2018; Su et al., 2019). In
the real world, time series variables usually contain high-dimensional features. Taking the climate
time series data as an example, multiple variables such as temperature, wind, atmospheric water
content, and solar radiation co-appear on the time axis. Although we can access their tabular rep-
resentations, their interactions are typically complex (e.g., non-linear, time-dependent), making it
difficult to understand and capture the time series evolution trend and latent distribution of values.
As a result, this complexity may lead to sub-optimal performance in time series analysis, such as
time series forecasting and anomaly detection. Motivated by the above, structured learning in
time series has recently gained much attention, such as (Li et al., 2018; Wu et al., 2020; Zhao et al.,
2020a; Cao et al., 2020; Shang et al., 2021; Deng and Hooi, 2021; Marcinkevics and Vogt, 2021;
Geffner et al., 2022; Tank et al., 2022; Spadon et al., 2022; Gong et al., 2023). Among others, causal
graphs as a directed acrylic graph structure provide more explicit and interpretable correlations be-
tween variables, thus enabling a better understanding of the underlying physical mechanisms and
dynamic systems for time series (Guo et al., 2021).

As a widely applied causal structure in time series understanding and explanation, Granger Causal-
ity (Granger, 1969; Arnold et al., 2007) discovers causal relations among variables in an autoregres-
sive (or time-lagged) manner. The discovered Granger Causal structures can help many time series
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analysis tasks, like building parsimonious prediction models such as Earth System (Runge et al.,
2019). Moreover, real-world time series data can have many variables, and their causal relations
can be more complex, i.e., non-linear and instantaneous, which require complex causality discovery
beyond the classic Granger model. On the one hand, some nascent non-linear (or neural) Granger
models have been proposed (Nauta et al., 2019; Xu et al., 2019; Tank et al., 2022; Khanna and Tan,
2020; Huang et al., 2020; Pamfil et al., 2020; Marcinkevics and Vogt, 2021; Geffner et al., 2022). On
the other hand, how to effectively integrate instantaneous causal effects with neural Granger models
has the great research potential (Moneta et al., 2013; Wild et al., 2010; Dahlhaus and Eichler, 2003;
Malinsky and Spirtes, 2018; Assaad et al., 2022) but remains largely under-explored (Pamfil et al.,
2020; Gong et al., 2023).

Figure 1: (a) Tensor Time-Series Data: The Red
Cell Means the Possible Anomaly. (b) Visualiza-
tion of (Neural) Granger Causality’s Time-Lagged
Property without Instantaneous Effects.

Motivated by the above analysis, in this pa-
per, we start from the tensor time series
data as shown in Figure 1(a), in which the
3D structure contains higher dimensions than
typical 2D multivariate time series data. For
example, tensor time series can represent
multivariate climate time series data (e.g.,
temperature, wind, and atmospheric water
content) with corresponding spatial informa-
tion (e.g., longitude, latitude, and geocode).
After that, we aim to build a comprehen-
sive causality model for this tensor time se-
ries, which could not only capture non-linear
and time-lagged causality (like the Granger
model (Granger, 1969; Tank et al., 2022)) but
also offset the ignored instantaneous causal
effects at each timestamp, as shown in Figure 1(b). Our ultimate goal is to leverage the discovered
comprehensive causality to understand the trend and latent distribution of the historical tensor time
series and finally contribute to the analysis tasks like tensor time series forecasting and anomaly
detection.

To this end, we first propose a comprehensive causal model named Time-Respecting Bayesian Net-
work Augmented Neural Granger Causality, i.e., TBN-Granger Causality. Theoretically, discover-
ing TBN-Granger Causality relies on a bi-level optimization. The inner optimization discovers a
sequence of Bayesian Networks at each timestamp t respectively for representing the instantaneous
causal effects among variables (i.e., which causality is responsible for the instantaneous feature gen-
eration). Then, the outer optimization realizes integrating time-respecting Bayesian Networks with
time-lagged neural Granger causality in an autoregressive manner. Empirically, to embed TBN-
Granger Causality into guiding the tensor time series analysis tasks like forecasting and anomaly
detection, we propose an end-to-end deep generative model, called Time-Augmented Causal Time
Series AnalysiS Model, i.e., TacSas.

Different from previous causal time series analysis works (Nauta et al., 2019; Xu et al., 2019;
Khanna and Tan, 2020; Pamfil et al., 2020; Huang et al., 2020; Marcinkevics and Vogt, 2021; Tank
et al., 2022; Geffner et al., 2022; Gong et al., 2023), TacSas takes a step further from merely verify-
ing whether the ground-truth causal structures in a synthetic setting are discovered. Moreover, it also
investigates how to capture good causal structures when the ground-truth structures are hardly avail-
able to guide time series analysis tasks further. Thus, TacSas adopts the generative learning manner,
which does not need any labeled causal structures or time series. Furthermore, TacSas is end-to-end,
meaning that it can not only discover TBN-Granger Calsuality from the observed time series, TacSas
can but also seamlessly use it to forecast future time series and detect possible anomalies.

To evaluate TacSas, we first use the synthetic benchmark, Lorenz-96 (Lorenz, 1996), to verify that
TacSas can indeed capture ground-truth causal structures with high accuracy. Then, we extend
to the real-world setting and test if TacSas can utilize the captured causality to finish tensor time
series forecasting and identify anomalies. We have four tensor time series datasets from the hourly
climate benchmark database ERA5 (Hersbach et al., 2018) and align them with the weather anomaly
database NOAA 1. The results show that TacSas outperforms forecasting and detection baselines.

1https://www.ncdc.noaa.gov/stormevents/ftp.jsp
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2 PRELIMINARY

Tensor Time Series. As shown in Figure 1(a), we have tensor time series data stored in X ∈
RN×D×T . Note that a slice of X , i.e., X (i, :, :) ∈ RD×T , i ∈ {1 . . . , N}, is typically denoted as
the common multivariate time series data (Su et al., 2019; Zhao et al., 2020a). In this way, tensor
time series can be understood as multiple multivariate time series data. Such tensor time series data
can usually be found in the real world. For example, in each element X (i, d, t) of the nationwide
weather data X , i ∈ {1 . . . , N} can be the spatial locations (e.g., counties), d ∈ {1 . . . , D} can be
the weather features (e.g., temperature and humidity), and t ∈ {1 . . . , T} can be the time dimension
(e.g., hours). Throughout the paper, we use the calligraphic letter to denote a 3D tensor (e.g., X )
and the bold capital letter to denote a 2D matrix (e.g., X).

Problem Definition. In this paper, we aim to discover and utilize comprehensive causal structures
for tensor time-series analysis tasks, including forecasting and anomaly detection. To be more spe-
cific, given the tabular data X ∈ RN×D×T as shown in Figure 1, we aim to forecast the future data
X ′ ∈ RN×D×τ , where τ is a forecasting window. Additionally, with the forecasted X ′, we also aim
to detect if X ′ contains abnormal values.

3 TACSAS: DISCOVERING TBN-GRANGER CAUSALITY FOR TENSOR TIME
SERIES FORECASTS AND ANOMALY DETECTIONS

In this section, we introduce how TacSas discovers TBN-Granger Causality in the historical tensor
time series and utilizes it to guide tensor time series forecasting and anomaly detection. The overall
framework of TacSas is shown in Figure 2.

The upper component of Figure 2 represents the data preprocessing part (i.e., converting raw inputX
to latent representationH) of TacSas through a pre-trained autoencoder. The goal of this component
is leveraging comprehensive causality (e.g., TBN-Granger Causality) to achieve seamless forecast-
ing and anomaly detection. The theoretical reasoning and necessity are introduced in Sec.3.3, and
the empirical validation is demonstrated in Appendix B.2.

The lower component of Figure 2 shows how TacSas discovers TBN-Granger Causality in the his-
torical tensor time series (in the form of H other than X ) and generates future tensor time series.
In brief, the optimization of TacSas is bi-level. First, the inner optimization captures instantaneous
effects among variables at each timestamp, respectively, which describes the inner-time feature gen-
eration. These causal structures are then stored in the form of a sequence of Bayesian Networks.
The details are introduced in Sec.3.1. Second, the outer optimization discovers the Neural Granger
Causality among variables in a time window with the support of a sequence of Bayesian Networks
(i.e., TBN-Granger Causality). After introducing details in Sec.3.2, we derive the formal equation
of TBN-Granger Causality, Eq. 3.7.

Figure 2: Proposed TacSas for Discovering and Utilizing TBN-Granger Causality in Tensor Time-
Series Forecasting and Anomaly Detection.
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3.1 INNER OPTIMIZATION OF TACSAS FOR IDENTIFYING INSTANTANEOUS CAUSAL
RELATIONS IN TENSOR TIME SERIES

Generally speaking, the inner optimization produces a sequence of Bayesian Networks for each
observed timestamp. At time t, the instantaneous causality is discovered based on input features
H(:, :, t) = H(t) ∈ RN×H , and is represented by a directed acyclic graph G(t) = (A(t) ∈
RN×N ,H(t) ∈ RN×H). To be specific, A(t) is a weighted adjacency matrix of the Bayesian
Network at time t, and each cell represents the coefficient of causal effects between variables u
and v ∈ {1, . . . , N}. The features (e.g., H(v, :, t)) are transformed from the input raw features
(e.g., X (v, :, t)). The transformation is causality-agnostic but necessary for downstream time series
analysis tasks, with details introduced in Sec.3.3.

The reasoning for discovering the instantaneous causal effects in the form of the Bayesian Network
originates from a widely adopted assumption of causal graph learning (Zheng et al., 2018; Yu et al.,
2019; Guo et al., 2021; Geffner et al., 2022; Gong et al., 2023): there exists a ground-truth causal
graph S(t) that specifies instantaneous parents of variables to recover their value generating process.
Therefore, in our inner optimization, the goal is to discover the causal structure S(t) at each time
t by recovering the generation of input features H(t). Specifically, given the observed H(t), we
aim to estimate a structure A(t), through which a certain distribution Z(t) could generate H(t) for
t ∈ {1, . . . , T}. In this way, the instantaneous causal effects are discovered, and the corresponding
structures are encoded in A(t). The generation function is expressed as follows.∑

t

logP(H(t)) =
∑
t

log

∫
P(H(t)|Z(t))P(Z(t))dZ(t) (3.1)

where the generation likelihood P(H(t)|Z(t)) also takes A(t) as input. The complete formula is
shown in Eq. 3.3.

For Eq 3.1, on the one hand, it is hard to get the prior distribution P(Z(t)), which is highly related
to the distribution of ground-truth causal graph distribution P(S(t)) at time t (Geffner et al., 2022).
On the other hand, for the generation likelihood P(H(t)|Z(t)), the actual posterior P(Z(t)|H(t))
is also intractable. Thus, we resort to the variational autoencoder (VAE) (Kingma and Welling,
2014). In this way, the actual posterior P(Z(t)|H(t)) can be replaced by the variational posterior
Q(Z(t)|H(t)), and the prior distribution P(Z(t)) is approximated by a Gaussian distribution. Fur-
thermore, the inside encoder and decoder modules should take the structure A(t) as the input. This
design can be realized by various off-the-shelf variational graph autoencoders such as VGAE (Kipf
and Welling, 2016), etc. However, the inner optimization is coupled with the outer optimization, i.e.,
the instantaneous causality will be integrated with cross-time Granger causality to make inferences.
The inner complex neural architectures and parameters may render the outer optimization module
hard to train, especially when the outer module itself needs to be complex. Therefore, we extend
the widely-adopted linear Structural Equation Model (SEM) (Zheng et al., 2018; Yu et al., 2019;
Geffner et al., 2022; Gong et al., 2023) to the time-respecting setting as follows.

For Q(Z(t)|H(t)), the encoder equation is expressed as

Z(t) = (I −A(t)⊤)f
θ
(t)
enc

(H(t)) (3.2)

For P(H(t)|Z(t)), the decoder equation is expressed as

H(t) = f
θ
(t)
dec

((I −A(t)⊤)−1Z(t)) (3.3)

As analyzed above2, f
θ
(t)
enc

and f
θ
(t)
dec

do not need complicated neural architectures. Therefore, we can

use two-layer MLPs for them. Then, the objective function L(t)
DAG for discovering the instantaneous

causality at time t is expressed as follows, which corresponds to the inner optimization.

min
θ
(t)
enc,θ

(t)
dec,A

(t)

L(t)
DAG = DKL(Q(Z(t)|H(t))∥P(Z(t)))− EQ(Z(t)|H(t))[logP(H(t)|Z(t))]

s.t.
∑
t

Tr[(I +A(t) ◦A(t))N ]−N = 0, for t ∈ {1, . . . , T}
(3.4)

2The complete forms of Q(Z(t)|H(t)) and P(H(t)|Z(t)) are QA(t)(Z(t)|H(t)) and PA(t)(H(t)|Z(t)),
we omit the subscript A(t) for brevity.
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where the first term in L(t)
DAG is the KL-divergence measuring the distance between the distribution

of generated Z(t) and the pre-defined Gaussian, and the second term is the reconstruction loss
between the generated Z(t) with the original input H(t). Note that there is an important constraint,
i.e., Tr[(I+A(t) ◦A(t))N ]−N = 0, on A(t) ∈ RN×N . Tr(·) is the trace of a matrix, and ◦ denotes
the Hadamard product. The meaning of the constraint is explained as follows. The constraint in
Eq. 3.4, i.e., Tr[(I+A(t)◦A(t))N ]−N = 0 regularizes the acyclicity of A(t) during the optimization
process, i.e., the learned A(t) should not have any possible closed-loops at any length.

Lemma 3.1 Let A(t) be a weighted adjacency matrix (negative weights allowed). A(t) has no
N -length loops, if Tr[(I +A(t) ◦A(t))N ]−N = 0.

The intuition is that there will be no k-length path from node u to node v on a binary adjacency ma-
trix }(u, v) = 0. Compared with original acyclicity constraints in (Yu et al., 2019), our Lemma 3.1
gets rid of the λ condition. Then we can denote α(A(t)) = Tr[(I + A(t) ◦ A(t))N ] − N and use
Lagrangian optimization for Eq. 3.4 as follows.

min
θ
(t)
enc,θ

(t)
dec,A

(t)

L(t)
DAG = DKL(Q(Z(t)|H(t))∥P(Z(t)))− EQ(Z(t)|H(t))[logP(H(t)|Z(t))]

+ λ α(A(t)) +
c

2
|α(A(t))|2, for t ∈ {1, . . . , T}

(3.5)

where λ and c are two hyperparameters, and larger λ and c enforce α(A(t)) to be smaller.

Theorem 3.1 If the ground-truth instantaneous causal graph S(t) at time t generates the features
of variables following the normal distribution, then the inner optimization (i.e., Eq. 3.4) can identify
S(t) under the standard causal discovery assumptions (Geffner et al., 2022).

3.2 OUTER OPTIMIZATION OF TACSAS FOR INTEGRATING INSTANTANEOUS CAUSALITY
WITH NEURAL GRANGER CAUSALITY

Given the inner optimization, Bayesian Networks can be obtained at each timestamp t, which means
that multiple instantaneous causalities are discovered. Thus, in the outer optimization, we integrate
these evolving Bayesian Networks into Granger Causality discovery. First, the classic Granger
Causality (Granger, 1969) is discovered in the form of the variable-wise coefficients across different
timestamps (i.e., a time window) through the autoregressive prediction process. The prediction
based on the linear Granger Causality (Granger, 1969) is expressed as follows.

H(t) =

L∑
l=1

W (l)H(t−l) + e(t) (3.6)

where H(t) ∈ RN×D denotes the features of N variables at time t, e(t) is the noise, and L is the
pre-defined time lag indicating how many past timestamps can affect the values of H(t). Weight
matrix W (l) ∈ RN×N stores the cross-time coefficients captured by Granger Causality, i.e., matrix
W (l) aligns the variables at time t− l with the variables at time t. To compute those weights, several
linear methods are proposed, e.g., vector autoregressive model (Arnold et al., 2007).

Facing non-linear causal relationships, neural Granger Causality discovery (Tank et al., 2022) is
recently proposed to explore the nonlinear Granger Causality effects. The general principle is to
represent causal weights W by deep neural networks. To integrate instantaneous effects with neural
Granger Causality discovery, our TBN-Granger Causality is defined as follows.

Ĥ(i, :)(t) = fΘi
[(A(t−1),H(t−1)), . . . , (A(t−L),H(t−L))] /* TBN-Granger Causality */ (3.7)

where L is the lag (or window size) in the Granger Causality, and i is the index of the i-th variable.
fΘi

is a neural computation unit with all parameters denoted as Θi, whose input is an L-length time-
ordered sequence of (A,H). And fΘi

is responsible for discovering the TBN-Granger Causality for
variable i at time t from all variables that occurred in the past time lag l. The choice of neural unit
fΘi

is flexible, such as MLP and LSTM (Tank et al., 2022). Different neural unit choices correspond
to different causality interpretations. In our proposed TacSas model, we use graph recurrent neural
networks (Wu et al., 2021), and the causality interpretations are introduced in Sec3.3.
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In the outer optimization, to evaluate the prediction under the TBN-Granger Causality, we use the
mean absolute error (MAE) loss on the prediction and the ground truth, which is effective and widely
applied to time-series forecasting tasks (Li et al., 2018; Shang et al., 2021).

min
Θi,A(t−1),...,A(t−l)

Lpred =
∑
i

∑
t

|H(i, :)(t) − Ĥ(i, :)(t)| (3.8)

where Θi,A
(t−1), . . . ,A(t−l) are all the parameters for the prediction Ĥ(i, :)(t) of variable i at time

t. The composition and update rules are expressed below.

For updating fΘi
, we employ the recurrent neural structure to fit the input sequence. Moreover,

the sequential inputs also contain the structured data A. Therefore, we use the graph recurrent
neural architecture (Li et al., 2018) because it is designed for directed graphs, whose core is a gated
recurrent unit (Chung et al., 2014).

R(t) = sigmoid(WR∗A(t) [H(t) ⊕ S(t−1)] + bR)

C(t) = tanh(WC∗A(t) [H(t) ⊕ (R(t) ⊙ S(t−1))] + bC)

U (t) = sigmoid(WU∗A(t) [H(t) ⊕ S(t−1)] + bU )

S(t) = U (t) ⊙ S(t−1) + (I −U (t))⊙C(t)

(3.9)

where R(t), C(t), and U (t) are three parameterized gates, with corresponding weights W and bias
b. H(t) is the input, and S(t) is the hidden state. Gates R(t), C(t), and U (t) share the similar struc-
tures. For example, in R(t), the graph convolution operation for computing the weight WR∗A(t) is
defined as follows, and the same computation applies to gates U (t) and C(t).

WR∗A(t) =

K∑
k=0

θRk,1(D
(t)
out

−1
A(t))k + θRk,2(D

(t)
in

−1
A(t)⊤)k (3.10)

where θRk,1, θRk,2 are learnable weight parameters; scalar k is the order for the stochastic diffusion

operation (i.e., similar to steps of random walks); D(t)
out

−1
A(t) and D

(t)
in

−1
A(t)⊤ serve as the transi-

tion matrices with the in-degree matrix D
(t)
in and the out-degree matrix D

(t)
out; −1 and ⊤ are inverse

and transpose operations.

For updating each of {A(t−1), . . . ,A(t−l)}, we take A(t−l) as an example to illustrate. The opti-
mal A(t−l) stays in the space of {0, 1}N×N . To be specific, each edge A(t−l)(i, j) can be parame-
terized as θ(t−l)

i,j following the Bernoulli distribution. However, N2l is hard to scale, and the discrete
variables are not differentiable. Therefore, we adopt the Gumbel reparameterization from (Jang
et al., 2017; Maddison et al., 2017). It provides a continuous approximation for the discrete distri-
bution, which has been widely used in the graph structure learning (Kipf et al., 2018; Shang et al.,
2021). The general reparameterization form can be written as A(t−l)(i, j) = softmax(FC((H(i, :
)(t−l)||H(j, :)(t−l)) + g)/ξ), where FC is a feedforward neural network, g is a scalar drawn from
a Gumbel(0, 1) distribution, and ξ is a scaling hyperparameter. Different from (Kipf et al., 2018;
Shang et al., 2021), in our setting, the initial structure input is constrained by the causality discov-
ery, which originates from the inner optimization step. Hence, the structure learning in the outer
optimization takes the adjacency matrix from the inner optimization as the initial input, which is

A
(t−l)
outer(i, j) = softmax(A

(t−l)
inner(i, j) + g)/ξ) (3.11)

where A
(t)
inner(i, j) is the structure learned by our inner optimization through Eq. 3.4, A(t)

outer(i, j)
is the updated structure, and g is a vector of i.i.d samples drawn from a Gumbel(0, 1) distribution.
In outer optimization, Eq. 3.8 fine-tunes the evolving Bayesian Networks to make the intra-time
causality fit the cross-time causality well. Note that, the outer optimization w.r.t. A(t) may break
the acyclicity, and another round of inner optimization may be necessary.

3.3 DEPLOYMENT OF TACSAS FOR TIME SERIES FORECASTING AND ANOMALY
DETECTION

In this section, we introduce how TacSas achieves tensor time series forecasting and anomaly detec-
tion in threefold: data preprocessing, neural architecture selection, and training procedure.
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First (data preprocessing), in addition to forecasting, TacSas is also for anomaly detection. Thus,
we design the hidden featureH extraction in TacSas motivated by the Extreme Value Theory (Beir-
lant et al., 2004) or so-called Extreme Value Distribution (Siffer et al., 2017) in streaming data.
Remark 3.1 According to the Extreme Value Distribution (Fisher and Tippett, 1928), under the lim-
iting forms of frequency distributions, extreme values have the same kind of distribution, regardless
of original distributions.
An example (Siffer et al., 2017) can help interpret and understand the Extreme Value Distribution
theory. Maximum temperatures or tide heights have more or less the same distribution even though
the distributions of temperatures and tide heights are not likely to be the same. As rare events have
a lower probability, there are only a few possible shapes for a general distribution to fit. Inspired by
this observation, we can design a simple but effective module in TacSas to achieve anomaly detec-
tion, i.e., a pre-trained autoencoder model that tries to explore the distribution of normal features in
X as shown in Figure 2. As long as this autoencoder model can capture the latent distribution for
normal events, then the generation probability of a piece of time series data can be utilized as the
condition for detecting anomaly patterns. This is because the extreme values are identified with a
remarkably low generation probability. To be specific, after the forecast H(t) is output, the gener-
ation probability of H(t) into X(t) through the pre-trained autoencoder can be used to detect the
anomalies at t.

Second (neural architecture selection), we encode fΘi into a sequence-to-sequence
model (Sutskever et al., 2014). That is, given a time window (or time lag), TacSas could forecast the
corresponding features for the next time window. Moreover, with W (l) in Eq. 3.6 and fΘi

in Eq. 3.7,
we can observe that the classical linear Granger Causality W (l) can be discovered for each time lag.
In other words, each time lag has its own discovered coefficients, but fΘi

is shared by all time lags.
This sharing manner is designed for scalability and is called Summary Causal Graph (Marcinkevics
and Vogt, 2021; Assaad et al., 2022). The underlying intuition is that the causal effects mainly de-
pend on the near timestamps. Further, for the neural Granger Causality interpretation in fΘi , we
follow the rule (Tank et al., 2022) that if the j-th row of (WR∗A(t) , WC∗A(t) , and WU∗A(t) ) are
zeros, then variable j is not the Granger-cause for variable i in this time window.

Third (training procedure), as shown in Figure 2, the autoencoder can be pre-trained with recon-
struction loss (e.g., MSE) ahead of the inner and outer optimization, to obtain H for the feature
latent distribution representation. By utilizing all input H, the inner optimization learns the se-
quential Bayesian Networks, and the outer optimization aligns Bayesian Networks with the neural
Granger Causality to produce all the forecast H′. The inner and outer optimization can be trained
interchangeably.

4 EXPERIMENTS

The ground-truth causality discovery experiments in the synthetic benchmark, Lorenz 96 Sys-
tem (Lorenz, 1996), are shown in Appendix B.1, where our TacSas can capture the true causality
with the competitive high accuracy. Then, in this section, we test TacSas on utilizing its discovery
for time series forecasting and anomaly detection.

4.1 EXPERIMENT SETUP

Datasets. Our forecasting data (i.e., hourly tensor time series data) originates from climate do-
main benchmark ERA5 (Hersbach et al., 2018)3. To be specific, we select four datasets covering
45 weather features (i.e., wind gusts, rain, etc.) from 2384 counties in the United States of Amer-
ica during 2017–2020. Moreover, we choose thunderstorms as the anomaly pattern to be detected
after forecasting. The thunderstorm record is identified in NOAA database5 hourly and nation-
wide, i.e., 1 means a thunderstorm happens in the corresponding hour at a certain location, and 0
means no thunderstorm happens. We processed the geocode to align weather features in ERA5 with
anomaly patterns in NOAA. The geographic distribution and anomaly pattern frequency distribution
are shown in Appendix E.

3https://cds.climate.copernicus.eu/cdsapp#!/home
4100 of 238 counties are top-ranked counties for the thunderstorm (anomaly label) frequency, and the rest

are randomly selected.
5https://www.ncdc.noaa.gov/stormevents/ftp.jsp
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Baselines. Besides the causality discovery baseline in Appendix B, the first category is for tensor
time series forecasting: (1) GRU (Chung et al., 2014) is a classical sequence to sequence generation
model. (2) DCRNN (Li et al., 2018) is a graph convolutional recurrent neural network, of which the
input graph structure is given, not causal, and static (i.e., shared by all timestamps). In this viewpoint,
we let each node randomly distribute its unit weights to others. (3) GTS (Shang et al., 2021) is also
a graph convolutional recurrent neural network that does not need the input graph but learns the
structure based on the node features, but the learned structure is also shared by all timestamps and
is not causal. To compare the performance of DCGNN (Li et al., 2018) and GTS (Shang et al.,
2021) with TacSas, causality is the control variable since we make all the rest (e.g., neural network
type, number of layers, etc.) identical for them. The second category is for anomaly detection
on tensor time series: (1) DeepSAD (Ruff et al., 2020), (2) DeepSVDD (Ruff et al., 2018), and
(3) DROCC (Goyal et al., 2020). Since these three have no forecast abilities, we let them use the
ground-truth observations, and our TacSas utilizes the forecast features during anomaly detection
experiments. Also, these three baselines are designed for multi-variate time-series data, not tensor
time-series. Thus, we flatten our tensor time series along the spatial dimension and report the average
performance for these three baselines over all locations.

Next, we introduce forecasting and anomaly detection performance. Details about split and hyper-
parameters are in Appendix C. More ablation studies can be found in Appendix B.3.

4.2 FORECASTING PERFORMANCE

In Table 1, we present the forecasting performance in terms of mean absolute error (MAE) on the
testing data of three algorithms, namely DCGNN (Li et al., 2018), GTS (Shang et al., 2021), ST-
SSL (Ji et al., 2023), our TacSas, and TacSas++ (i.e., TacSas with persistence forecast constraints).
Here, we set the time window as 24, meaning that we use the past 24 hours tensor time series to
forecast the future 24 hours in an autoregressive manner. Moreover, for baselines and TacSas, we
set fΘi in Eq.3.7 shared by all weather variables to ensure the scalability, such that we do not need
to train N recurrent graph neural networks for a single prediction. In Table 1, we can observe a gen-
eral pattern that our TacSas outperforms the baselines with GTS performing better than DCGNN.
For example, with 2017 as the testing data, our TacSas performs 39.44% and 36.16% better than
DCRNN and GTS. An explanation is that the temporally fine-grained causal relationships can con-
tribute more to the forecasting accuracy than non-causal directed graphs, since DCGNN, GTS, and
our TacSas all share the graph recurrent manner. TacSas however, discovers causalities at different
timestamps, while DCGNN and GTS use feature similarity based connections. Moreover, ST-SSL
achieves competitive forecasting performance via contrastive learning on time series. Motivated by
contrastive manner, TacSas++ is proposed by persistence forecast constraints. That is, the current
forecast of TacSas is further calibrated by its nearest time window (i.e., the last 24 hours in our
setting).

Table 1: Forecasting Error (MAE, 10−2)

ERA5-2017 (↓) ERA5-2018 (↓) ERA5-2019 (↓) ERA5-2020 (↓)
GRU 1.8834 ± 0.0126 1.9764 ± 0.1466 1.6194 ± 0.2645 1.7859 ± 0.2324

DCRNN 0.0819 ± 0.0025 0.0797 ± 0.0049 0.0799 ± 0.0035 0.0826 ± 0.0033
GTS 0.0777 ± 0.0054 0.0766 ± 0.0029 0.0760 ± 0.0031 0.0742 ± 0.0021

TacSas 0.0496 ± 0.0017 0.0499 ± 0.0017 0.0502 ± 0.0016 0.0488 ± 0.0019
ST-SSL 0.0345 ± 0.0051 0.0330 ± 0.0018 0.0361 ± 0.0021 0.0348 ± 0.0020

TacSas++ 0.0271 ± 0.0004 0.0276 ± 0.0004 0.0282 ± 0.0003 0.0265 ± 0.0004

Figure 3: Time-Respecting Bayesian Networks of
at the Same Hour of Two Consecutive Days.

To evaluate our explanation, we visualize
causal connections at different times in Fig-
ure 3. Specifically, we show the Bayesian Net-
work of 238 counties at the same hour on two
consecutive days in the training data (i.e., May
1st and May 2nd, 2018). Interestingly, we can
observe that two patterns in Figure 3 are almost
identical at first glance. That could be the rea-
son why DCRNN and GTS can perform well
using the static structure. However, upon closer
inspection, we find that these two are quite dif-
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ferent to some extent if we zoom in, such as, in the upper right corner. Although the values have
a tiny divergence, their volume is quite large. In two matrices of Figure 3, the number of different
cells is 28,509, and the corresponding percentage is 28509

238×238 ≈ 0.5033. We suppose that discovering
those value-tiny but volume-big differences makes TacSas outperform, to a large extent.

4.3 ANOMALY DETECTION

After forecasting, we can have the hourly forecast of weather features at certain locations, denoted
as X ′. Then, we use the encoder-decoder model in Figure 2 to calculate the feature-wise generation
probability using mean squared error (MSE) between X ′ and its generation X̄ ′. Thus, we can cal-
culate the average of feature-wise generation probability as the condition of anomalies to identify if
an anomaly weather pattern (e.g., a thunderstorm) happens in an hour in a particular location. In Ta-
ble 2, we use the Area Under the ROC Curve (i.e., AUC-ROC) as the metric, repeat the experiments
four times, and report the performance of TacSas with baselines.

Table 2: Anomaly Detection Performance (AUC-ROC)

NOAA-2017 (↑) NOAA-2018 (↑) NOAA-2019 (↑) NOAA-2020 (↑)
DeepSAD 0.5305 ± 0.0481 0.5267 ± 0.0406 0.5563 ± 0.0460 0.6420 ± 0.0054

DeepSVDD 0.5201 ± 0.0045 0.5603 ± 0.0111 0.6784 ± 0.0112 0.5820 ± 0.0205
DROCC 0.5319 ± 0.0661 0.5103 ± 0.0147 0.6236 ± 0.0992 0.5630 ± 0.1082
TacSas 0.5556 ± 0.0010 0.5685 ± 0.0011 0.6298 ± 0.0184 0.6745 ± 0.0185

From Table 2, we can observe that the detection module of TacSas achieves very competitive per-
formance. An explanation is that, based on the anomalies distribution shown in Table 3, it can be
observed that the anomalies are very rare events. Our generative manner could deal with the very
rare scenario by learning the feature latent distributions instead of the (semi-)supervised learning
manner. For example, the maximum frequency of occurrences of thunderstorms is 770 (i.e., Jun
2017), which is collected from 238 counties over 30 × 24 = 720 hours, and the corresponding
percentage is 770

238×30×24 ≈ 0.45%. Recall Remark 3.1, facing such rare events, we possibly find a
single distribution to fit various anomaly patterns.

5 RELATED WORK

In recent times, there has been a growing focus on structured learning in the context of time se-
ries data (Li et al., 2018; Wu et al., 2020; Zhao et al., 2020a; Cao et al., 2020; Shang et al., 2021;
Deng and Hooi, 2021; Marcinkevics and Vogt, 2021; Geffner et al., 2022; Tank et al., 2022; Spadon
et al., 2022; Gong et al., 2023), which learned structures contribute to various time series analysis
tasks like forecasting, anomaly detection, imputation, etc. As a directed and interpretable struc-
ture, causal graphs attract much research attention in this research topic (Guo et al., 2021). Granger
Causality is a classic tool for discovering the cross-time variable causality in time series (Granger,
1969; Arnold et al., 2007). Facing complex patterns in time series data, different upgraded Granger
Causality discovery methods emerge in different directions. Also, neural Granger Causality tools
are recently proposed (Tank et al., 2022; Nauta et al., 2019; Khanna and Tan, 2020; Marcinkevics
and Vogt, 2021; Xu et al., 2019; Huang et al., 2020), which utilizes the deep neural network to dis-
cover the nonlinear Granger causal coefficients and serve for the time-series forecasting tasks better.
For example, in (Tank et al., 2022), authors introduce how to use multi-layer perception (MLPs)
and long short-term memory (LSTMs) to realize the Neural Granger Causality for the forecasting
task and how to interpret the Granger causal coefficients from neurons in deep networks. However,
Granger Causality or Neural Granger Causality focuses on cross-time variable causality discovery
and overlooks the instantaneous (or intra-time) variable causality. Also, how to utilize the discovered
comprehensive causality to contribute to the downstream time series analysis tasks is under-explored
mainly, especially in a setting where the ground-truth causal structures are hardly available for eval-
uation. More related work for spatial-temporal data forecasting and anomaly detection is discussed
in Appendix D.

6 CONCLUSION

In this paper, we first propose TBN-Granger Causality to align the instantaneous causal effects with
time-lagged Granger causality. Moreover, we design TacSas to use TBN-Granger Causality on time
series analysis tasks like forecasting and anomaly detection in the real-world tensor time-series data
and perform extensive experiments, where the results show the effectiveness of TacSas.
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A THEORETICAL ANALYSIS

A.1 PROOF OF LEMMA 3.1

Following (Yu et al., 2019), at each time t, we can extend (I+A(t) ◦A(t))N by binomial expansion
as follows.

(I +A(t) ◦A(t))N = I +

N∑
k=1

(
N
k

)
(A(t))k (A.1)

Since
I ∈ RN×N (A.2)

then
Tr(I) = N (A.3)

Thus, if
(I +A(t) ◦A(t))N −N = 0 (A.4)

then
(A(t))k = 0, for any k (A.5)

Therefore, A(t) is acyclic, i.e., no closed-loop exists in A(t) at any possible length. Overall, the
general idea of Lemma 3.1 is to ensure that the diagonal entries of the powered adjacency matrix
have no 1s. There are also other forms for acyclicity constraints obeying the same idea but in
different expressions, like exponential power form in (Zheng et al., 2018).

A.2 SKETCH PROOF OF THEOREM 3.1

According to Theorem 1 from (Geffner et al., 2022), the ELBO form as our Eq. 3.4 could identity the
ground-truth causal structure S(t) at each time t. The difference between our ELBO and the ELBO
in (Geffner et al., 2022) is entries in the KL-divergence. Specifically, in (Geffner et al., 2022), the
prior and variational posterior distributions are on the graph level. Usually, the prior distribution of
graph structures is not easy to obtain (e.g., the non-IID and heterophyllous properties). Then, we
transfer the graph structure distribution to the feature distribution that the Gaussian distribution can
model. That’s why our prior and variational posterior distributions in the KL-divergence are on the
feature (generated by the graph) level.

B EMPIRICAL ANALYSIS

B.1 GROUND-TRUTH CAUSALITY DISCOVERY ABILITY OF TACSAS

Lorenz-96 model (Lorenz, 1996) is a famous synthetic system of multivariate time-series, e.g., X ∈
RP×T is a P -dimensional time series whose dynamics can be modeled as follows.

dX(i, t)

dt
= (X(i+ 1, t)−X(i− 2, t))X(i− 1, t)−X(i, t) + F, for i ∈ {1, 2, . . . , P} (B.1)

where X(0, t) = X(P, t), X(−1, t) = X(P − 1, t), X(P + 1, t) = X(1, t), and F is the forcing
constant determining the level of nonlinearity and chaos in the time series. With the above modeling,
the corresponding ground-truth Granger causal structures can be simulated, involving multivariate,
nonlinear, and sparse (Tank et al., 2022).

To generate the ground-truth causal structures, there are two parameters, i.e., the number of variables
(i.e., P ) and the number of timestamps (i.e., T ). Therefore, we control these two parameters and
report the accuracy of TacSas discovered causal structures against the ground-truth ones (i.e., 0/1 ad-
jacency matrices), compared with the state-of-the-art causality discovery method GVAR (Marcinke-
vics and Vogt, 2021). The comparison is shown in Figure 4 after eight experiment trials with mean
and variance computed, where we can observe our TacSas achieve the competitive accuracy of dis-
covering the ground-truth causal structures. Also, by comparing Figure 4(a) and (b) (and Figure 4(c)
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(a) P=10, F=500 (b) P=10, F=800

(c) P=20, F=500 (d) P=20, F=800

Figure 4: Accuracy of Causality Discovery in Lorenz-96 with Varying Number of Variables (i.e., P )
and Timestamps (i.e., T ).

and (d)), we can see that fixing the number of variables (i.e., P ), increasing the time series length
(i.e., T ) may help discover the causality. And by comparing Figure 4(a) and (c) (and Figure 4(b)
and (d)), we can see that fixing the time length (i.e., T ), increasing the number of variables (i.e., P )
may make the causality easier to be discovered.

B.2 VALIDATION OF ANOMALY DETECTION ABILITY OF TACSAS

Another capability of TacSas is anomaly detection. Based on the analysis of Remark 3.1, the detec-
tion function of TacSas originates from the accurate expression of the feature distribution. Although
our forecast features have better accuracy than selected baselines (e.g., DCGNN and GTS), we need
to verify if the forecast features still have a negligible divergence from the ground-truth features in
terms of distribution. If so, we can safely use the forecast features to detect anomalies.

Figure 5: Ablation of TacSas on Cross-
Validation Group #2 (i.e., 2018 as testing)

Therefore, we design the ablation study. We remove
the forecasting part of TacSas i.e., we let the encoder
and decoder in Figure 2 directly learn the distribu-
tion of ground-truth features (instead of forecast fea-
tures) and then test reconstruction loss on ground-
truth features. In Figure 5, we show the feature
reconstruction loss (i.e., mean squared error) curve
of the encoder and decoder on the validation set as
the epoch increases. After the training of the en-
coder and decoder is converged, we can also observe
that the ground-truth feature reconstruction loss does
not have a very large divergence from the forecast
features. Now, we are ready to do the following
anomaly detection experiments.
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B.3 ABLATION STUDY

As shown in Table 1, the GRU (Chung et al., 2014) method does not perform well. A latent reason
is that it can not take any structural information from the time series. Motivated by this guess, we
designed the following ablation study on the forecasting task. The ablated TacSas is designed by
only keeping the forget gate in Eq. 3.9, i.e., the last equation in Eq. 3.9, then all the rest of the gates
follow the GRU method. As shown in Figure 6, we can see that only taking partial time-respecting
causal structural information could not enable TacSas to achieve the best performance, but accepting
this partial information can help GRU improve the performance compared with Table 1.

Figure 6: Ablation Study on Forecasting Task.

C IMPLEMENTATION

C.1 HYPERPARAMETER SEARCH

In Eq. 3.5, instead of fixing the hyperparameter λ and c during the optimization. Increasing the val-
ues of hyperparameter λ and c can reduce the possibility that learned structures break the acyclic-
ity (Yu et al., 2019), such that one iterative way to increase hyperparameters λ and c during the
optimization can be expressed as follows.

λi+1 ← λi + ciα(A
(t)
i ) (C.1)

and

ci+1 =

{
ηci if |α(A(t)

i )| > γ|α(A(t)
i−1)|

ci otherwise
(C.2)

where η > 1 and 0 < γ < 1 are two hyperparameters, the condition |α(A(t)
i )| > γ|α(A(t)

i−1)|means

that the current acyclicity α(A
(t)
i ) at the i-th iteration is not ideal, because it is not decreased below

the γ portion of α(A(t)
i−1) from the last iteration i− 1.

C.2 REPRODUCIBILITY

For forecasting and anomaly detection, we have four cross-validation groups. For example, focusing
on an interesting time interval each year (e.g., from May to August is the season for frequent thun-
derstorms), we set group #1 with [2018, 2019, 2020] as training, [2021] as validation, and [2017] as
testing. Thus, we have 8856 hours, 45 weather features, and 238 counties in the training set. The rest
three groups are {[2019, 2020, 2021], [2017], [2018]}, {[2020, 2021, 2017], [2018], [2019]}, and
{[2021, 2017, 2018], [2019], [2020]}, respectively. Therefore, TacSas and baselines are required to
forecast the testing set and detect the anomaly patterns in the testing set.

The synthetic data is publicly available 6. According to the corporate policy, our contributed data and
the code of TacSas will be released after the paper is published. The experiments are programmed
based on Python and Pytorch on a Windows machine with 64GB RAM and a 16GB RTX 5000 GPU.

6https://github.com/i6092467/GVAR
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D FURTHER DISCUSSION FOR SPATIAL-TEMPORAL DATA FORECASTING
AND ANOMALY DETECTION

In addition to the related work presented in Section 5, our discussion delves further into forecasting
and anomaly detection methodologies specifically applied to time series analysis. Noteworthy appli-
cations of graph learning techniques in time series forecasting span diverse domains, including but
not limited to heatwave prediction (Li et al., 2023), frost forecasts (Lira et al., 2022), identification of
underlying fields in charged particle environments (Kofinas et al., 2021), and traffic forecasting (Yu
et al., 2018; Song et al., 2020; Li and Zhu, 2021). To elucidate, our focus narrows down to model-
ing temporal interactions among objects from the perspective of latent fields. Specifically, authors
proposed an equivariant graph network in (Kofinas et al., 2023). This innovative approach integrates
field forces to unveil underlying fields within intricate spatial-temporal contexts. Moreover, a spa-
tial self-supervised learning paradigm is introduced in the study by (Ji et al., 2023). This paradigm
comprises an adaptive graph augmentation and a clustering-based generative task. Additionally, a
temporal self-supervised learning paradigm relies on a time-aware contrastive task, augmenting the
primary task of traffic flow prediction with crucial spatial and temporal signals. Beyond the realm
of value anomaly detection, our exploration extends to structural anomaly detection, exemplified by
works such as (Zhang et al., 2019). This particular approach is designed to discern latent relational
anomalies within graph structures. Confronted with diverse anomaly patterns in time series, the
proposition of a universal anomaly detection method capable of addressing all conceivable anomaly
patterns emerges as a compelling avenue for future research, prompting our interest in further ex-
ploration in this direction.

E NEW TENSOR TIME SERIES DATASET

In this section, we introduce the details of our contributed dataset in terms of meaning, statistics,
and distributions of features and anomaly labels.

E.1 GEOGRAPHIC DISTRIBUTION OF THE TIME SERIES DATA

The geographic distribution of 238 selected counties in the United States of America is shown in
Figure 7, where the circle with numbers denotes the aggregation of spatially near counties. Of 238
selected counties, 100 are selected for the top-ranked counties based on the yearly frequency of
thunderstorms. The rest are selected randomly and try to provide extra information (e.g., causality
discovery).

Figure 7: Geographic Distribution of Covered Counties in the Time Series Dataset (The number in
the circle stands for the aggregation of nearby counties).
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E.2 ABNORMAL PATTERNS OF THE TIME SERIES DATA

Table 3: Statistics of Anomaly Weather Patterns (i.e., Thunderstorm Wind) Occurrence in 238 Se-
lected Counties in the United States

Year 2017 2018 2019 2020 2021
Jan 26 3 2 41 7
Feb 53 6 9 50 8
Mar 85 16 26 63 62
Apr 93 44 140 170 60
May 245 207 263 175 218
Jun 770 302 348 331 452
Jul 306 291 457 453 701

Aug 294 269 415 354 435
Sep 61 80 122 29 123
Oct 32 32 82 60 55
Nov 20 22 9 114 11
Dec 5 15 11 8 58

E.3 FEATURE DESCRIPTION OF THE TIME SERIES DATA

Table 4: Feature Descriptions with Instance Values Sampled from Jefferson, Alabama U.S. on 9:00-
10:00, 01/05/2017, UTC

Feature Unit Description Value

100-meter wind
towards east

m s−1 This parameter is the eastward component
of the 100 m wind. It is the horizontal
speed of air moving towards the east, at
a height of 100 meters above the surface
of the Earth, in meters per second. Care
should be taken when comparing model
parameters with observations, because ob-
servations are often local to a particular
point in space and time, rather than rep-
resenting averages over a model grid box.
This parameter can be combined with the
northward component to give the speed
and direction of the horizontal 100 m wind.

-3.192476

100-meter wind
towards north

m s−1 This parameter is the northward compo-
nent of the 100 m wind. It is the horizontal
speed of air moving towards the north, at
a height of 100 meters above the surface
of the Earth, in meters per second. Care
should be taken when comparing model
parameters with observations, because ob-
servations are often local to a particular
point in space and time, rather than rep-
resenting averages over a model grid box.
This parameter can be combined with the
eastward component to give the speed and
direction of the horizontal 100 m wind.

-1.892055
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10-meter wind
gust (maximum)

m s−1 Maximum 3-second wind at 10 m height
as defined by WMO. Parametrization rep-
resents turbulence only before 01102008;
thereafter effects of convection are in-
cluded. The 3 s gust is computed every
time step, and the maximum is kept since
the last postprocessing.

3.620435

10-meter wind
gust (instanta-
neous)

m s−1 This parameter is the maximum wind gust
at the specified time, at a height of ten me-
ters above the surface of the Earth. The
WMO defines a wind gust as the maxi-
mum of the wind averaged over 3-second
intervals. This duration is shorter than a
model time step, and so the ECMWF In-
tegrated Forecasting System (IFS) deduces
the magnitude of a gust within each time
step from the time-step-averaged surface
stress, surface friction, wind shear, and sta-
bility. Care should be taken when compar-
ing model parameters with observations,
because observations are often local to a
particular point in space and time, rather
than representing averages over a model
grid box.

3.178461

10-meter wind to-
wards east

m s−1 This parameter is the eastward component
of the 10m wind. It is the horizontal speed
of air moving towards the east, at a height
of ten meters above the surface of the
Earth, in meters per second. Care should
be taken when comparing this parameter
with observations because wind observa-
tions vary on small space and time scales
and are affected by the local terrain, veg-
etation, and buildings that are represented
only on average in the ECMWF Integrated
Forecasting System (IFS). This parameter
can be combined with the V component of
10m wind to give the speed and direction
of the horizontal 10m wind.

-1.094084

10-meter wind to-
wards north

m s−1 This parameter is the northward compo-
nent of the 10m wind. It is the horizon-
tal speed of air moving towards the north,
at a height of ten metres above the surface
of the Earth, in metres per second. Care
should be taken when comparing this pa-
rameter with observations, because wind
observations vary on small space and time
scales and are affected by the local ter-
rain, vegetation and buildings that are rep-
resented only on average in the ECMWF
Integrated Forecasting System (IFS). This
parameter can be combined with the U
component of 10m wind to give the speed
and direction of the horizontal 10m wind.

-1.119224
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Atmospheric wa-
ter content

kg m−2 This parameter is the sum of water vapor,
liquid water, cloud ice, rain, and snow in a
column extending from the surface of the
Earth to the top of the atmosphere. In old
versions of the ECMWF model (IFS), rain
and snow were not accounted for.

9.287734

Atmospheric wa-
ter vapor content

kg m−2 This parameter is the total amount of wa-
ter vapor in a column extending from the
surface of the Earth to the top of the atmo-
sphere. This parameter represents the area
averaged value for a grid box.

9.287452

Dewpoint K This parameter is the temperature to which
the air, at 2 meters above the surface of the
Earth, would have to be cooled for satura-
tion to occur. It is a measure of the humid-
ity of the air. Combined with temperature
and pressure, it can be used to calculate rel-
ative humidity. 2m dew point temperature
is calculated by interpolating between the
lowest model level and the Earth’s surface,
taking account of the atmospheric condi-
tions. This parameter has units of kelvin
(K). Temperature measured in kelvin can
be converted to degrees Celsius (°C) by
subtracting 273.15.

269.059570

High cloud cover Dimensionless The proportion of a grid box covered by
cloud occurring in the high levels of the
troposphere. High cloud is a single-level
field calculated from cloud occurring on
model levels with a pressure less than 0.45
times the surface pressure. So, if the sur-
face pressure is 1000 hPa (hectopascal),
high cloud would be calculated using lev-
els with a pressure of less than 450 hPa
(approximately 6km and above (assum-
ing a ”standard atmosphere”)). The high
cloud cover parameter is calculated from
the cloud for the appropriate model levels
described above. Assumptions are made
about the degree of overlap/randomness
between clouds in different model levels.
Cloud fractions vary from 0 to 1.

0.224129
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Low cloud cover Dimensionless This parameter is the proportion of a grid
box covered by cloud occurring in the
lower levels of the troposphere. Low cloud
is a single level field calculated from cloud
occurring on model levels with a pressure
greater than 0.8 times the surface pressure.
So, if the surface pressure is 1000 hPa
(hectopascal), low cloud would be calcu-
lated using levels with a pressure greater
than 800 hPa (below approximately 2km
(assuming a ”standard atmosphere”)). As-
sumptions are made about the degree of
overlap/randomness between clouds in dif-
ferent model levels. This parameter has
values from 0 to 1.

0.000000

Gravitational po-
tential energy

m2 s−2 This parameter is the gravitational poten-
tial energy of a unit mass, at a particular
location at the surface of the Earth, relative
to mean sea level. It is also the amount of
work that would have to be done, against
the force of gravity, to lift a unit mass to
that location from mean sea level. The
(surface) geopotential height (orography)
can be calculated by dividing the (surface)
geopotential by the Earth’s gravitational
acceleration, g (=9.80665 m s-2 ). This pa-
rameter does not vary in time.

NaN

Medium cloud
cover

Dimensionless This parameter is the proportion of a grid
box covered by cloud occurring in the mid-
dle levels of the troposphere. Medium
cloud is a single level field calculated from
cloud occurring on model levels with a
pressure between 0.45 and 0.8 times the
surface pressure. So, if the surface pres-
sure is 1000 hPa (hectopascal), medium
cloud would be calculated using levels
with a pressure of less than or equal to
800 hPa and greater than or equal to
450 hPa (between approximately 2km and
6km (assuming a ”standard atmosphere”)).
The medium cloud parameter is calcu-
lated from cloud cover for the appropri-
ate model levels as described above. As-
sumptions are made about the degree of
overlap/randomness between clouds in dif-
ferent model levels. Cloud fractions vary
from 0 to 1.

0.000000
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Maximum tem-
perature

k This parameter is the highest temperature
of air at 2m above the surface of land, sea
or inland water since the parameter was
last archived in a particular forecast. 2m
temperature is calculated by interpolating
between the lowest model level and the
Earth’s surface, taking account of the at-
mospheric conditions. This parameter has
units of kelvin (K). Temperature measured
in kelvin can be converted to degrees Cel-
sius (°C) by subtracting 273.15.

273.357666

Maximum pre-
cipitation rate

kg m−2 s−1 The total precipitation is calculated from
the combined large-scale and convective
rainfall and snowfall rates every time step
and the maximum is kept since the last
postprocessing.

0.000000

Mean sea level
pressure

Pa This parameter is the pressure (force per
unit area) of the atmosphere at the sur-
face of the Earth, adjusted to the height
of mean sea level. It is a measure of the
weight that all the air in a column verti-
cally above a point on the Earth’s surface
would have, if the point were located at
mean sea level. It is calculated over all sur-
faces - land, sea and inland water. Maps of
mean sea level pressure are used to iden-
tify the locations of low and high pressure
weather systems, often referred to as cy-
clones and anticyclones. Contours of mean
sea level pressure also indicate the strength
of the wind. Tightly packed contours show
stronger winds. The units of this parameter
are pascals (Pa). Mean sea level pressure
is often measured in hPa and sometimes is
presented in the old units of millibars, mb
(1 hPa = 1 mb = 100 Pa).

101550.976562

Minimum tem-
perature

k This parameter is the lowest temperature
of air at 2m above the surface of land, sea
or inland waters since the parameter was
last archived in a particular forecast. 2m
temperature is calculated by interpolating
between the lowest model level and the
Earth’s surface, taking account of the at-
mospheric conditions. See further infor-
mation. This parameter has units of kelvin
(K). Temperature measured in kelvin can
be converted to degrees Celsius (°C) by
subtracting 273.15.

273.357666

Minimum precip-
itation rate

kg m−2 s−1 The total precipitation is calculated from
the combined large-scale and convective
rainfall and snowfall rates every time step
and the minimum is kept since the last
postprocessing.

0.000000
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Precipitation type Dimensionless This parameter describes the type of pre-
cipitation at the surface, at the specified
time. A precipitation type is assigned
wherever there is a non-zero value of pre-
cipitation. The ECMWF Integrated Fore-
casting System (IFS) has only two pre-
dicted precipitation variables: rain and
snow. Precipitation type is derived from
these two predicted variables in combina-
tion with atmospheric conditions, such as
temperature. Values of precipitation type
defined in the IFS: 0: No precipitation, 1:
Rain, 3: Freezing rain (i.e. supercooled
raindrops which freeze on contact with the
ground and other surfaces), 5: Snow, 6:
Wet snow (i.e. snow particles which are
starting to melt); 7: Mixture of rain and
snow, 8: Ice pellets. These precipitation
types are consistent with WMO Code Ta-
ble 4.201. Other types in this WMO table
are not defined in the IFS.

0.000000

Rain water
content of atmo-
sphere

kg m−2 This parameter is the total amount of water
in droplets of raindrop size (which can fall
to the surface as precipitation) in a column
extending from the surface of the Earth to
the top of the atmosphere. This parame-
ter represents the area averaged value for a
grid box. Clouds contain a continuum of
different sized water droplets and ice par-
ticles. The ECMWF Integrated Forecast-
ing System (IFS) cloud scheme simplifies
this to represent a number of discrete cloud
droplets/particles including: cloud water
droplets, raindrops, ice crystals and snow
(aggregated ice crystals). Droplet for-
mation, conversion and aggregation pro-
cesses are also highly simplified in the IFS.
0.000000

0.000000

Snow density kg m−3 This parameter is the mass of snow per cu-
bic metre in the snow layer. The ECMWF
Integrated Forecasting System (IFS) repre-
sents snow as a single additional layer over
the uppermost soil level. The snow may
cover all or part of the grid box. This pa-
rameter is defined over the whole globe,
even where there is no snow. Regions with-
out snow can be masked out by only con-
sidering grid points where the snow depth
(m of water equivalent) is greater than 0.0.

99.999985
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Snow depth m of water
equivalent

This parameter is the amount of snow from
the snow-covered area of a grid box. Its
units are metres of water equivalent, so it
is the depth the water would have if the
snow melted and was spread evenly over
the whole grid box. The ECMWF Inte-
grated Forecasting System (IFS) represents
snow as a single additional layer over the
uppermost soil level. The snow may cover
all or part of the grid box.

0.000000

Snowfall m of water
equivalent

This parameter is the accumulated snow
that falls to the Earth’s surface. It is the
sum of large-scale snowfall and convective
snowfall. Large-scale snowfall is gener-
ated by the cloud scheme in the ECMWF
Integrated Forecasting System (IFS). The
cloud scheme represents the formation and
dissipation of clouds and large-scale pre-
cipitation due to changes in atmospheric
quantities (such as pressure, temperature
and moisture) predicted directly at spatial
scales of the grid box or larger. Convective
snowfall is generated by the convection
scheme in the IFS, which represents con-
vection at spatial scales smaller than the
grid box. In the IFS, precipitation is com-
prised of rain and snow. This parameter is
accumulated over a particular time period
which depends on the data extracted. For
the reanalysis, the accumulation period is
over the 1 hour ending at the validity date
and time. For the ensemble members, en-
semble mean and ensemble spread, the ac-
cumulation period is over the 3 hours end-
ing at the validity date and time. The units
of this parameter are depth in metres of wa-
ter equivalent. It is the depth the water
would have if it were spread evenly over
the grid box. Care should be taken when
comparing model parameters with obser-
vations, because observations are often lo-
cal to a particular point in space and time,
rather than representing averages over a
model grid box.

0.000000
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Soil temperature
(0 to 7 cm)

K This parameter is the temperature of the
soil at level 1 (in the middle of layer 1).
The ECMWF Integrated Forecasting Sys-
tem (IFS) has a four-layer representation
of soil, where the surface is at 0cm: Layer
1: 0 - 7cm, Layer 2: 7 - 28cm, Layer
3: 28 - 100cm, Layer 4: 100 - 289cm.
Soil temperature is set at the middle of
each layer, and heat transfer is calculated
at the interfaces between them. It is as-
sumed that there is no heat transfer out of
the bottom of the lowest layer. Soil tem-
perature is defined over the whole globe,
even over ocean. Regions with a water sur-
face can be masked out by only consider-
ing grid points where the land-sea mask
has a value greater than 0.5. This param-
eter has units of kelvin (K). Temperature
measured in kelvin can be converted to de-
grees Celsius (°C) by subtracting 273.15.

276.865784

Soil temperature
(7 to 28 cm)

K This parameter is the temperature of the
soil at level 2 (in the middle of layer 2).
The ECMWF Integrated Forecasting Sys-
tem (IFS) has a four-layer representation
of soil, where the surface is at 0cm: Layer
1: 0 - 7cm, Layer 2: 7 - 28cm, Layer
3: 28 - 100cm, Layer 4: 100 - 289cm.
Soil temperature is set at the middle of
each layer, and heat transfer is calculated
at the interfaces between them. It is as-
sumed that there is no heat transfer out of
the bottom of the lowest layer. Soil tem-
perature is defined over the whole globe,
even over ocean. Regions with a water sur-
face can be masked out by only consider-
ing grid points where the land-sea mask
has a value greater than 0.5. This param-
eter has units of kelvin (K). Temperature
measured in kelvin can be converted to de-
grees Celsius (°C) by subtracting 273.15.

282.708038

26



Under review as a conference paper at ICLR 2024

Soil temperature
(28 to 100 cm)

K This parameter is the temperature of the
soil at level 3 (in the middle of layer 3).
The ECMWF Integrated Forecasting Sys-
tem (IFS) has a four-layer representation
of soil, where the surface is at 0cm: Layer
1: 0 - 7cm, Layer 2: 7 - 28cm, Layer
3: 28 - 100cm, Layer 4: 100 - 289cm.
Soil temperature is set at the middle of
each layer, and heat transfer is calculated
at the interfaces between them. It is as-
sumed that there is no heat transfer out of
the bottom of the lowest layer. Soil tem-
perature is defined over the whole globe,
even over ocean. Regions with a water sur-
face can be masked out by only consider-
ing grid points where the land-sea mask
has a value greater than 0.5. This param-
eter has units of kelvin (K). Temperature
measured in kelvin can be converted to de-
grees Celsius (°C) by subtracting 273.15.

286.920227

Soil temperature
(100 to 289 cm)

K This parameter is the temperature of the
soil at level 4 (in the middle of layer 4).
The ECMWF Integrated Forecasting Sys-
tem (IFS) has a four-layer representation
of soil, where the surface is at 0cm: Layer
1: 0 - 7cm, Layer 2: 7 - 28cm, Layer
3: 28 - 100cm, Layer 4: 100 - 289cm.
Soil temperature is set at the middle of
each layer, and heat transfer is calculated
at the interfaces between them. It is as-
sumed that there is no heat transfer out of
the bottom of the lowest layer. Soil tem-
perature is defined over the whole globe,
even over ocean. Regions with a water sur-
face can be masked out by only consider-
ing grid points where the land-sea mask
has a value greater than 0.5. This param-
eter has units of kelvin (K). Temperature
measured in kelvin can be converted to de-
grees Celsius (°C) by subtracting 273.15.

290.265320

Snow water
content of atmo-
sphere

k m−2 This parameter is the total amount of water
in the form of snow (aggregated ice crys-
tals which can fall to the surface as pre-
cipitation) in a column extending from the
surface of the Earth to the top of the at-
mosphere. This parameter represents the
area averaged value for a grid box. Clouds
contain a continuum of different sized wa-
ter droplets and ice particles. The ECMWF
Integrated Forecasting System (IFS) cloud
scheme simplifies this to represent a num-
ber of discrete cloud droplets/particles in-
cluding: cloud water droplets, raindrops,
ice crystals and snow (aggregated ice crys-
tals). Droplet formation, conversion and
aggregation processes are also highly sim-
plified in the IFS.

0.000069
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Soil water (0 to 7
cm)

m3m−3 This parameter is the volume of water in
soil layer 1 (0 - 7cm, the surface is at 0cm).
The ECMWF Integrated Forecasting Sys-
tem (IFS) has a four-layer representation
of soil: Layer 1: 0 - 7cm, Layer 2: 7
- 28cm, Layer 3: 28 - 100cm, Layer 4:
100 - 289cm. Soil water is defined over
the whole globe, even over ocean. Re-
gions with a water surface can be masked
out by only considering grid points where
the land-sea mask has a value greater than
0.5. The volumetric soil water is associ-
ated with the soil texture (or classification),
soil depth, and the underlying groundwater
level.

0.439442

Soil water (7 to
28 cm)

m3m−3 This parameter is the volume of water in
soil layer 2 (7 - 28cm, the surface is at
0cm). The ECMWF Integrated Forecast-
ing System (IFS) has a four-layer represen-
tation of soil: Layer 1: 0 - 7cm, Layer 2:
7 - 28cm, Layer 3: 28 - 100cm, Layer 4:
100 - 289cm. Soil water is defined over
the whole globe, even over ocean. Re-
gions with a water surface can be masked
out by only considering grid points where
the land-sea mask has a value greater than
0.5. The volumetric soil water is associ-
ated with the soil texture (or classification),
soil depth, and the underlying groundwater
level.

0.447512

Soil water (28 to
100 cm)

m3m−3 This parameter is the volume of water in
soil layer 3 (28 - 100cm, the surface is at
0cm). The ECMWF Integrated Forecast-
ing System (IFS) has a four-layer represen-
tation of soil: Layer 1: 0 - 7cm, Layer 2:
7 - 28cm, Layer 3: 28 - 100cm, Layer 4:
100 - 289cm. Soil water is defined over
the whole globe, even over ocean. Re-
gions with a water surface can be masked
out by only considering grid points where
the land-sea mask has a value greater than
0.5. The volumetric soil water is associ-
ated with the soil texture (or classification),
soil depth, and the underlying groundwater
level.

0.387898
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Soil water (100 to
289 cm)

m3m−3 This parameter is the volume of water in
soil layer 4 (100 - 289cm, the surface is at
0cm). The ECMWF Integrated Forecast-
ing System (IFS) has a four-layer represen-
tation of soil: Layer 1: 0 - 7cm, Layer 2:
7 - 28cm, Layer 3: 28 - 100cm, Layer 4:
100 - 289cm. Soil water is defined over
the whole globe, even over ocean. Re-
gions with a water surface can be masked
out by only considering grid points where
the land-sea mask has a value greater than
0.5. The volumetric soil water is associ-
ated with the soil texture (or classification),
soil depth, and the underlying groundwater
level.

0.380035

Solar radiation Jm−2 This parameter is the amount of solar radi-
ation (also known as shortwave radiation)
that reaches a horizontal plane at the sur-
face of the Earth. This parameter com-
prises both direct and diffuse solar radia-
tion.
Radiation from the Sun (solar, or short-
wave, radiation) is partly reflected back to
space by clouds and particles in the at-
mosphere (aerosols) and some of it is ab-
sorbed. The rest is incident on the Earth’s
surface (represented by this parameter).
To a reasonably good approximation, this
parameter is the model equivalent of what
would be measured by a pyranometer (an
instrument used for measuring solar radia-
tion) at the surface. However, care should
be taken when comparing model param-
eters with observations, because observa-
tions are often local to a particular point
in space and time, rather than representing
averages over a model grid box.
This parameter is accumulated over a par-
ticular time period which depends on the
data extracted. The units are joules per
square metre (J m-2). To convert to watts
per square metre (W m-2), the accumulated
values should be divided by the accumu-
lation period expressed in seconds. The
ECMWF convention for vertical fluxes is
positive downwards.

0.000000

Solar radiation
(clear sky)

Jm−2 Clear-sky downward shortwave radiation
flux at surface computed from the model
radiation scheme.

0.000000
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Solar radiation
(top of atmo-
sphere)

Jm−2 This parameter is the incoming solar radi-
ation (also known as shortwave radiation)
minus the outgoing solar radiation at the
top of the atmosphere. It is the amount
of radiation passing through a horizontal
plane. The incoming solar radiation is the
amount received from the Sun. The outgo-
ing solar radiation is the amount reflected
and scattered by the Earth’s atmosphere
and surface.
This parameter is accumulated over a par-
ticular time period which depends on the
data extracted. The units are joules per
square metre (J m-2). To convert to watts
per square metre (W m-2), the accumulated
values should be divided by the accumula-
tion period expressed in seconds.
The ECMWF convention for vertical
fluxes is positive downwards

0.000000

Solar radiation
(total sky)

J m−2 This parameter is the amount of solar
(shortwave) radiation reaching the surface
of the Earth (both direct and diffuse) minus
the amount reflected by the Earth’s surface
(which is governed by the albedo), assum-
ing clear-sky (cloudless) conditions. It is
the amount of radiation passing through a
horizontal plane. Clear-sky radiation quan-
tities are computed for exactly the same at-
mospheric conditions of temperature, hu-
midity, ozone, trace gases and aerosol
as the corresponding total-sky quantities
(clouds included), but assuming that the
clouds are not there. Radiation from
the Sun (solar, or shortwave, radiation) is
partly reflected back to space by clouds and
particles in the atmosphere (aerosols) and
some of it is absorbed. The rest is incident
on the Earth’s surface, where some of it is
reflected. The difference between down-
ward and reflected solar radiation is the
surface net solar radiation. This parameter
is accumulated over a particular time pe-
riod which depends on the data extracted.
For the reanalysis, the accumulation period
is over the 1 hour ending at the validity date
and time. For the ensemble members, en-
semble mean and ensemble spread, the ac-
cumulation period is over the 3 hours end-
ing at the validity date and time. The units
are joules per square metre (J m-2 ). To
convert to watts per square metre (W m-2 ),
the accumulated values should be divided
by the accumulation period expressed in
seconds. The ECMWF convention for ver-
tical fluxes is positive downwards.

0.000000

30



Under review as a conference paper at ICLR 2024

Solar radiation
(top of atmo-
sphere) (clear
sky)

J m−2 This parameter is the incoming solar radi-
ation (also known as shortwave radiation)
minus the outgoing solar radiation at the
top of the atmosphere, assuming clear-sky
(cloudless) conditions. It is the amount
of radiation passing through a horizontal
plane. The incoming solar radiation is the
amount received from the Sun. The outgo-
ing solar radiation is the amount reflected
and scattered by the Earth’s atmosphere
and surface, assuming clear-sky (cloud-
less) conditions. Clear-sky radiation quan-
tities are computed for exactly the same at-
mospheric conditions of temperature, hu-
midity, ozone, trace gases and aerosol as
the total-sky (clouds included) quantities,
but assuming that the clouds are not there.
This parameter is accumulated over a par-
ticular time period which depends on the
data extracted. For the reanalysis, the accu-
mulation period is over the 1 hour ending
at the validity date and time. For the en-
semble members, ensemble mean and en-
semble spread, the accumulation period is
over the 3 hours ending at the validity date
and time. The units are joules per square
metre (J m-2 ). To convert to watts per
square metre (W m-2 ), the accumulated
values should be divided by the accumu-
lation period expressed in seconds. The
ECMWF convention for vertical fluxes is
positive downwards.

0.000000

Temperature K This parameter is the temperature in the at-
mosphere. It has units of kelvin (K). Tem-
perature measured in kelvin can be con-
verted to degrees Celsius (°C) by subtract-
ing 273.15.

272.976929

Surface pressure Pa This parameter is the pressure (force per
unit area) of the atmosphere at the surface
of land, sea and inland water. It is a mea-
sure of the weight of all the air in a col-
umn vertically above a point on the Earth’s
surface. Surface pressure is often used in
combination with temperature to calculate
air density. The strong variation of pres-
sure with altitude makes it difficult to see
the low and high pressure weather systems
over mountainous areas, so mean sea level
pressure, rather than surface pressure, is
normally used for this purpose. The units
of this parameter are Pascals (Pa). Sur-
face pressure is often measured in hPa and
sometimes is presented in the old units of
millibars, mb (1 hPa = 1 mb= 100 Pa).

99115.242188
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Thermal radia-
tion

Jm−2 This parameter is the amount of thermal
(also known as longwave or terrestrial)
radiation emitted by the atmosphere and
clouds that reaches a horizontal plane at
the surface of the Earth. The surface of
the Earth emits thermal radiation, some of
which is absorbed by the atmosphere and
clouds. The atmosphere and clouds like-
wise emit thermal radiation in all direc-
tions, some of which reaches the surface
(represented by this parameter). This pa-
rameter is accumulated over a particular
time period which depends on the data ex-
tracted. The units are joules per square me-
tre (J m-2). To convert to watts per square
metre (W m-2), the accumulated values
should be divided by the accumulation pe-
riod expressed in seconds.

845375.562500

Thermal ra-
diation (clear
sky)

Jm−2 Clear-sky downward longwave radiation
flux at surface computed from the model
radiation scheme.

849147.312500

Thermal radi-
ation (top of
atmosphere)

J m−2 The thermal (also known as terrestrial or
longwave) radiation emitted to space at
the top of the atmosphere is commonly
known as the Outgoing Longwave Radi-
ation (OLR). The top net thermal radia-
tion (this parameter) is equal to the neg-
ative of OLR. This parameter is accumu-
lated over a particular time period which
depends on the data extracted. For the re-
analysis, the accumulation period is over
the 1 hour ending at the validity date and
time. For the ensemble members, ensem-
ble mean and ensemble spread, the accu-
mulation period is over the 3 hours ending
at the validity date and time. The units are
joules per square metre (J m-2 ). To con-
vert to watts per square metre (W m-2 ), the
accumulated values should be divided by
the accumulation period expressed in sec-
onds. The ECMWF convention for vertical
fluxes is positive downwards.

-854573.250000
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Thermal radi-
ation (top of
atmosphere)
(clear sky)

J m−2 This parameter is the thermal (also known
as terrestrial or longwave) radiation emit-
ted to space at the top of the atmosphere,
assuming clear-sky (cloudless) conditions.
It is the amount passing through a horizon-
tal plane. Note that the ECMWF conven-
tion for vertical fluxes is positive down-
wards, so a flux from the atmosphere to
space will be negative. Clear-sky radia-
tion quantities are computed for exactly
the same atmospheric conditions of tem-
perature, humidity, ozone, trace gases and
aerosol as total-sky quantities (clouds in-
cluded), but assuming that the clouds are
not there. The thermal radiation emitted
to space at the top of the atmosphere is
commonly known as the Outgoing Long-
wave Radiation (OLR) (i.e., taking a flux
from the atmosphere to space as positive).
Note that OLR is typically shown in units
of watts per square metre (W m-2 ). This
parameter is accumulated over a particu-
lar time period which depends on the data
extracted. For the reanalysis, the accumu-
lation period is over the 1 hour ending at
the validity date and time. For the ensem-
ble members, ensemble mean and ensem-
ble spread, the accumulation period is over
the 3 hours ending at the validity date and
time. The units are joules per square metre
(J m-2 ). To convert to watts per square
metre (W m-2 ), the accumulated values
should be divided by the accumulation pe-
riod expressed in seconds.

-853921.937500

Total cloud cover Dimensionless This parameter is the proportion of a grid
box covered by cloud. Total cloud cover
is a single level field calculated from the
cloud occurring at different model lev-
els through the atmosphere. Assump-
tions are made about the degree of over-
lap/randomness between clouds at differ-
ent heights. Cloud fractions vary from 0
to 1.

0.224129
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Total precipita-
tion

m This parameter is the accumulated liq-
uid and frozen water, comprising rain and
snow, that falls to the Earth’s surface.
It is the sum of large-scale precipitation
and convective precipitation. Large-scale
precipitation is generated by the cloud
scheme in the ECMWF Integrated Fore-
casting System (IFS). The cloud scheme
represents the formation and dissipation of
clouds and large-scale precipitation due to
changes in atmospheric quantities (such as
pressure, temperature and moisture) pre-
dicted directly by the IFS at spatial scales
of the grid box or larger. Convective pre-
cipitation is generated by the convection
scheme in the IFS, which represents con-
vection at spatial scales smaller than the
grid box. This parameter does not include
fog, dew or the precipitation that evapo-
rates in the atmosphere before it lands at
the surface of the Earth. This parameter is
accumulated over a particular time period
which depends on the data extracted. For
the reanalysis, the accumulation period is
over 1 hour, ending at the validity date and
time. For the ensemble members, ensem-
ble mean and ensemble spread, the accu-
mulation period is over the 3 hours ending
at the validity date and time. The units of
this parameter are depth in metres of water
equivalent. It is the depth the water would
have if it were spread evenly over the grid
box. Care should be taken when compar-
ing model parameters with observations,
because observations are often local to a
particular point in space and time, rather
than representing averages over a model
grid box.

0.000000

34


	Introduction
	Preliminary
	TacSas: Discovering TBN-Granger Causality for Tensor Time Series Forecasts and Anomaly Detections
	Inner Optimization of TacSas for Identifying Instantaneous Causal Relations in Tensor Time Series
	Outer Optimization of TacSas for Integrating Instantaneous Causality with Neural Granger Causality
	Deployment of TacSas for Time Series Forecasting and Anomaly Detection

	Experiments
	Experiment Setup
	Forecasting Performance
	Anomaly Detection

	Related Work
	Conclusion
	Theoretical Analysis
	Proof of Lemma 3.1
	Sketch Proof of Theorem 3.1

	Empirical Analysis
	Ground-Truth Causality Discovery Ability of TacSas
	Validation of Anomaly Detection Ability of TacSas
	Ablation Study

	Implementation
	Hyperparameter Search
	Reproducibility

	Further Discussion for Spatial-Temporal Data Forecasting and Anomaly Detection
	New Tensor Time Series Dataset
	Geographic Distribution of the Time Series Data
	Abnormal Patterns of the Time Series Data
	Feature Description of the Time Series Data


