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ABSTRACT

Learning conditional distributions 7*(+|z) is a central problem in machine learn-
ing, which is typically approached via supervised methods with paired data
(x,y) ~ m*. However, acquiring paired data samples is often challenging, espe-
cially in problems such as domain translation. This necessitates the development
of semi-supervised models that utilize both limited paired data and additional un-
paired i.i.d. samples x ~ 7 and y ~ 7, from the marginal distributions. The us-
age of such combined data is complex and often relies on heuristic approaches. To
tackle this issue, we propose a new learning paradigm that integrates both paired
and unpaired data seamlessly using data likelihood maximization techniques. We
demonstrate that our approach also connects intriguingly with inverse entropic
optimal transport (OT). This finding allows us to apply recent advances in com-
putational OT to establish a light learning algorithm to get 7*(-|«). In addition,
we derive the universal approximation property demonstrating that our approach
can theoretically recover true conditional distributions with arbitrarily small error.
Furthermore, we demonstrate through empirical tests that our method effectively
learns conditional distributions using paired and unpaired data simultaneously.

1 INTRODUCTION

Recovering conditional distributions 7*(y|x) from data is one of the fundamental problems in ma-
chine learning, which appears both in predictive and generative modeling. In predictive modeling,
the standard examples of such tasks are the classification, where x € RP= is a feature vector and
y € {0,1,..., K} is a class label, and regression, in which case x is also a feature vector and
y € RP is a real number. In generative modeling, both 2 and y are feature vectors in RP=, RPv,
respectively, representing complex objects, and the goal is to find a transformation between them.

In our paper, we focus on the case when = and y are multi-dimensional real-value vectors and
the true joint data distribution 7*(z,y) is a continuous data distribution on RP= x RPv ie., we
exclude the problems when, e.g., y is a discrete object such as the class label. That is, the scope
of our paper is the multi-dimensional probabilistic regression problems, which can be referred to
as domain translation problems, as usually x and y are feature vectors representing data from
different domains. In turn, the goal is to make a (probabilistic) prediction, where for a new object
Znew from the input domain, we aim to predict the corresponding data y (e, ) from the target
domain, according to the conditional distribution 7*(y|x).

It is very natural that to learn the conditional distributions 7*(y|z) of data one requires input-target
data pairs (z,y) ~ 7*, where 7* is the true joint distribution of data. In this case, 7*(y|x) can be
modeled via standard supervised learning approaches starting from a simple regression and ending
with conditional generative models (Mirza & Osindero, [2014; [Winkler et al., 2019). However, ac-
quiring paired data may be costly, while getting unpaired samples  ~ 7 or y ~ 7, from two
domains may be much easier and cheaper. This fact inspired the development of unsupervised (or
unpaired) learning methods, e.g., (Zhu et al., 2017; Wu et al.,2020) among many others, which aim
to somehow reconstruct the dependencies 7* (y|x) with access to unpaired data only.

While both paired (supervised) and unpaired (unsupervised) domain translation approaches are be-
ing extremely well developed nowadays, surprisingly, the semi-supervised setup when both paired
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and unpaired data is available is much less explored. This is due to the challenge of designing learn-
ing objective (loss) which can simultaneously take into account both paired and unpaired data. For
example, one potential strategy here is to heuristically combine typical paired and unpaired losses.
However, such a strategy leads to complex training objectives, see (Tripathy et al., 2019, §3.5), (Jin
et al., [2019, 83.3), (Yang & Chenl 2020, §C), (Vasluianu et al., 2021} §3), (Panda et al., 2023 Eq.
8), (Tang et al., [2024| Eq. 8). Therefore, it is reasonable to raise a question: is it possible to design
a simple loss to learn * (y|x) which naturally takes into account both paired and unpaired data?

Contributions. In our paper, we positively answer the above-raised question. Namely,

1. We introduce a novel loss function (optimization objective) designed to facilitate the learning of
conditional distributions 7*(+|z) using both paired and unpaired training samples derived from 7*
(§3.1)). This loss function is based on the well-established principle of likelihood maximization.
Our approach’s notable advantage lies in its capacity to support end-to-end learning, thereby
seamlessly integrating both paired and unpaired data into the training process.

2. We demonstrate the theoretical equivalence between our proposed loss function and the inverse
entropic optimal transport problem (§3.2). This finding enables to leverage established compu-
tational OT methods to address challenges encountered in semi-supervised learning.

3. Building upon recent advancements in the field of computational optimal transport, we provide
a light and end-to-end algorithm exploiting the Gaussian mixture parameterization specifically
tailored to optimize our proposed likelihood-based loss function (in §3.3).

4. We prove that our proposed parameterization satisfies the universal approximation property. This
finding theoretically allows our algorithm to recover 7* arbitrarily well (§3.4).

Our empirical validation in §5] shows the impact of both unpaired and paired data on overall per-
formance. In particular, our findings reveal that conditional distributions 7*(+|z) can be effectively
learned even with a modest quantity of paired data (x, y) ~ 7*, provided that a sufficient amount of

auxiliary unpaired data x ~ 77, y ~ 7, is available.

Notations. Throughout the paper, X and ) represent Euclidean spaces, equipped with the standard

norm || - ||, induced by the inner product (-,-), i.e., ¥ £ RP= and ) £ RPv. The set of absolutely

continuous probability distributions on X" is denoted by P,.(&X'). For simplicity, we use the same
notation for both the distributions and their corresponding probability density functions. The joint
probability distribution over X’ x ) is denoted by 7 with corresponding marginals 7, and 7. The
set of joint distributions with given marginals « and $ is represented by II(«, 8). We use 7(-|x)
for the conditional distribution, while 7 (y|x) represents the conditional density at a specific point y.
The differential entropy is given by H (3) = — fy B(y)log B(y) dy.

2 BACKGROUND

First, we recall the formulation of the domain translation problem (§2.1). We remind the difference
between its paired, unpaired, and semi-supervised setups. Next, we recall the basic concepts of the
inverse entropic optimal transport, which are relevant to our paper (§2.2)).

2.1 DOMAIN TRANSLATION PROBLEMS

The goal of domain translation (DT) task is to transform data samples from the source domain to
the target domain while maintaining the essential content or structure. This approach is widely used
in applications like computer vision (Zhu et al., 2017; Lin et al.| [2018}; Peng et al., [2023)), natural
language processing (Jiang et al., [2021; Morishita et al., [2022), and audio processing (Du et al.,
2022)), etc. Domain translation task setups can be classified into supervised (or paired), unsupervised
(or unpaired), and semi-supervised approaches based on the data used for training (see Figure|[I).

Supervised (Paired) Domain Translation relies on matched examples from both the source and

target domains, where each input corresponds to a specific output, enabling direct supervision during

the learning process. Formally, this setup assumes access to a set of P empirical pairs X Ysired o

{(z1,%1),.-.,(xp,yp)} ~ 7" from some unknown joint distribution. The goal here is to recover
the conditional distributions 7*(-|z) to generate samples y|Zpew for new inputs e, that are not
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present in the training data. While this task is relatively straightforward to solve, obtaining such
paired training datasets can be challenging, as it often involves significant time, cost, and effort.

Unsupervised (Unpaired) Domain Translation, in contrast, does not require direct correspon-
dences between the source and target domains (Zhu et al) [2017, Figure 2). Instead, it involves
learning to translate between domains using unpaired data, which offers greater flexibility but de-

mands advanced techniques to achieve accurate translation. Formally, we are given () unpaired

.. def . . . .
empirical samples Xunpaired = {z1,...,2g} ~ m% from the source distribution and R unpaired

samples Yunpaired & {y1,...,yr}t ~ ﬁ; from the target distribution. Our objective is to learn the
conditional distributions 7*(+|) of the unknown joint distribution 7*, whose marginals are 75, 7,
respectively. Clearly, the primary challenge in unpaired setup is that the task is inherently ill-posed,
leading to multiple potential solutions, many of which may be ambiguous or even not meaningful
(Moriakov et al., 2020). Ensuring the translation’s accuracy and relevance requires careful consid-
eration of constraints and regularization strategies to guide the learning process (Yuan et al.,[2018).
Overall, the unpaired setup is very important because of large amounts of unpaired data in the wild.
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(a) Supervised (paired) domain (b) Unsupervised (unpaired) (c) Semi-supervised domain
translation setup. domain translation setup. translation setup (our focus).
Figure 1: Visualization of domain translation setups. and colors indicated paired training

data X Ypired, while grey color indicates the unpaired training data Xypaired> Yunpaired-

Semi-supervised domain translation combines both approaches by utilizing a mix of paired and
unpaired data (Tripathy et al, [2019; Jiang et al.,|2023). This setup aims to leverage the advantages
of paired data to guide the translation process while also taking advantage of the larger volume of
unpaired data to improve the model’s performance and generalization. Formally, one assumes access
to both pairs XYiea ~ 7" and additional unpaired samples Xunpaired ~ T, Yunpaired ~ 772. Note
that since paired samples can also be used in the unpaired manner, by convention, we assume that
P < @, R and first P unpaired samples are exactly the paired ones, i.e., z.. = z, and y.. = y, for
r < R. In turn, the goal is still to learn 7*(-|z) using the available samples.

2.2  OPTIMAL TRANSPORT (OT)

The foundations of optimal transport (OT) are detailed in the seminal book by (Villani et al.|[2009).
For a more comprehensive overview, we refer to (Santambrogio, |2015; |Peyré et al., 2019).

Entropic OT (Cuturi, 2013; (Genevayl 2019). Consider source o € P,.(X) and target 8 € P,e())
distributions. Let ¢* : X x J — R be a cost function. The entropic optimal transport problem
between distributions « and S is then defined as follows:

OTex (o, B) £ min Epyrlc™(@,y)] — Bzl (7(-|2)) (D

mell(a,B)

where € > 0 is the regularization parameter. Setting € = 0 recovers the classic OT formulation (Vil-
lani et al.,2009) originally proposed by (Kantorovich, [1942)). With mild assumptions, the transport
plan 7* € TI(«, /3) that minimizes the objective (I]) exists uniquely. It is called the entropic OT plan.

We note that in the literature, the entropy regularization term in is usually —eH (7) or
+eKL (7]|a x ). However, these forms are equivalent up to constants, see discussion in (Mokrov
et al} 2024} §2) or (Gushchin et al [2023] §1). In our paper, we work only with formulation (TJ),
which is also known as the weak form of the entropic OT, see (Gozlan et al., 2017; |Backhoff-
Veraguas et al.,2019; [Backhoff-Veraguas & Pammer, 2022]).

Dual formulation. With mild assumptions on c¢*, a, 3, the following dual OT formulation holds:

OTe- c (,5) = 50 {Eama/ (0) + Bys (), } @
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where f ranges over a certain subset of continuous functions (dual potentials) with mild assumptions
on their boundness, see (Backhoff-Veraguas & Pammer, 2022, Eq. 3.3) for details. The term f¢
represents the so-called weak entropic c*-transform of f, defined as:

f7@) = min Al (@,y)] = cH(8) — Eynsf ()} 3)

It has closed-form (Mokrov et al., [2024, Eq. 14), which is given by
fc* (z) = —¢ 10g/ exp (W) dy. )
y

Inverse entropic OT. The forward OT problem (I)) focuses on determining the OT plan 7* given
a predefined cost function c¢*. In contrast, the inverse problem provides the learner with a joint
distribution 7* and requires finding a cost function ¢* such that 7* becomes the OT plan between
its marginals, 7y and 7. This setup leads to the formulation of the inverse entropic OT problem,
which can be expressed as the following minimization problem:

C

¢* € argmin [ (n«:N (e, y)] — eEprn: <w*<-x>>) oL ()|

>OTe,e (w375

where ¢ skims through measurable functions X x }) — R. The expression within the paren-
theses denotes the entropic transport cost of the plan 7* in relation to the cost ¢ between the
marginals 7} and 7, thus ensuring that it is always greater than or equal to the optimal cost
OT. (7%, W;) Consequently, the minimum achievable value for the entire objective is zero, which
occurs only when 7* corresponds to the optimal transport plan for the selected cost c*. Here, the
term —eE ;- H (7(-|2)) can be omitted, as it does not depend on c. Additionally

* Unlike the forward OT problem (), the entropic regularization parameter £ > 0 here plays no
significant role. Indeed, by substituting c(x,y) = 5¢/(x,y) and multiplying the entire objective

() by %/, one gets the inverse OT problem for ¢’. Hence, the problems associated with different
¢ are equivalent up to the change of variables, which is not the case for the forward OT (T).

* The inverse problem admits several possible solutions c¢*. For example, c*(z,y) =
—¢elog * (z,y) provides the minimum, which can be verified through direct substitution. Sim-
ilarly, cost functions of the form ¢*(z,y) = —elogm*(x,y) + u(x) + v(y) are also feasible,
as adding terms dependent only on = or y does not alter the OT plan. In particular, when
u(z) = elog 7¥(x) and v(y) = 0, one gets c*(z,y) = —e log 7* (y|x).

In practice, the joint distribution 7* is typically available only through empirical samples, meaning
that its density is often unknown. As a result, specific solutions such as ¢*(z,y) = —clog 7*(z, y)
or —e log *(y|x) cannot be directly utilized. Consequently, it becomes necessary to develop para-
metric estimators ¥ to approximate them using the available samples.

3  SEMI-SUPERVISED DOMAIN TRANSLATION VIA INVERSE ENTROPIC OT

In we develop our proposed loss function that seamlessly integrates both paired and unpaired
data samples. In we demonstrate that derived loss is inherently linked to the inverse entropic
optimal transport problem (3). In §3.3] we introduce lightweight parametrization to overcome chal-
lenges associated with optimizing the loss function. All our proofs can be found in Appendixg

3.1 Lo0oSS DERIVATION

Part 1. Data likelihood maximization and its limitation. Our goal is to approximate the true
distribution 7* by some parametric model 77, where 6 represents the parameters of the model. To
achieve this, we would like to employ the standard KL-divergence minimization framework, also
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known as data likelihood maximization. Namely, we aim to minimize

(o) (y]2) i (2) = (yla)
KL (7*||x%) = Eyymme log ——————= =E,nx log = + E; yor log =
(7177) = Ean o8 2500 a0 1) 108 79 gy T Bawnr log 0, 05

™ (yla)

KL (73[179) + Epn: Eyn (1) log

Wg(y\x) =KL (W;HWZ) +EZEN7T;KL (77*(|1')||7T9(|:C)) . (6)

Marginal Conditional

It is clear that objective (6) splits into two independent components: the marginal and the condi-
tional matching terms. Our focus will be on the conditional component 7 (-|2), as it is the necessary
part for the domain translation. Note that the marginal part 7% is not actually needed. The condi-
tional part of (6 can further be divided into the following two terms:

Eorm:Eyre 2y [log 7 (yl2) — log 7 (y]2)] = —Egrme H (7*(-[2)) = Eq yr log 7 (yl). (7)

The first term is independent on 6, so we obtain the following minimization objective

[’(9) déf _Ex,yNﬂ'* IOg We(yl‘r)' (8)

It is important to note that minimizing (8] is equivalent to maximizing the conditional likelihood,
a strategy utilized in conditional normalizing flows (Papamakarios et al., {2021, CNF). However, a
major limitation of this approach is its reliance solely on paired data from 7*, which can be difficult
to obtain in real-world scenarios. In the following section, we modify this strategy to incorporate
available unpaired data within a semi-supervised learning setup (see §2.1)).

Part II. Solving the limitations via smart parameterization. To address the above-mentioned
issue and leverage unpaired data, we first use Gibbs-Boltzmann distribution density parametrization:

def €XP (*Ea(ylx))

7 (ylz) = T 20 )

where E?(-|z) : Y — R is the Energy function, and Z°(z) £ Jy exp (—E°(y|x)) dy is the normal-
ization constant (LeCun et al.| 2006)). Substituting (9) into (§), we get

~Ey g log 70 (y[2) = By yoors B2 (y]) + Egeors log Z%(2). (10)

This objective already provides an opportunity to exploit the unpaired samples from the marginal
distribution 7* to learn the conditional distributions 7% (-|z) ~ 7*(-|z). Namely, it helps to estimate
the part of the objective related to the normalization constant Z%. To incorporate separate samples
from the second marginal distribution 7y, it is essential to choose a parametrization that allows to

detach from the energy function E(y|z) the term depending solely on 3. Thus, we propose:

0 _ 0
Ee(ymgﬂw_ (11
€
The parameterization in indeed permits the separation of the function f9(y). By setting f%(y) =
0 and & = 1, the parameterization of the energy function E?(y|z) remains consistent, as it can be

exclusively derived from c?(z,y). Finally, by substituting (TT)) into (T0), we arrive at our final
objective, which integrates both paired and unpaired data:

E(@)zeilEmvywﬂ*[ce(SE,y)] — sflEyN,T;fg(y) + Eger: logZe(x) %mein. (12)

Joint, requires pairs (z,y) ~ 7" Marginal, requires  ~ ‘n'; Marginal, requires © ~ ),

At this point, a reader may come up with 2 reasonable questions regarding (I2)):

1. How to perform the optimization of the proposed objective? This question is not straightforward
due to the existence of the (typically intractable) normalizing constant Zy in the objective.

2. To which extent do the separate terms in (I2) (paired, unpaired data) contribute to the objective,
and which type of data is the most important for learning the correct solution?

We answer these questions in §3.3]and §5] Before doing that, in the next section, we demonstrate a
surprising finding that our proposed objective exactly solves the inverse entropic OT problem (3).
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3.2 RELATION TO INVERSE ENTROPIC OPTIMAL TRANSPORT

In this section, we show that (5)) is equivalent to (T2). Indeed, directly substituting the dual form of
entropic OT (2)) into the inverse entropic OT problem (5) with the omitted entropy term yields:

min {Eww* e(z,y)] — max [E%ﬁ; felz) + Eyw;f(y)} } = (13)
min (B 0@, )] = B F(@) — By S (9) } (1

Now, let’s assume that both ¢ and f are parameterized as ¢/ and f? with respect to a parameter 6.
Based on the definition provided in (@) and utilizing our energy function parameterization from (TT),

we can express (fe)c" (z) as follows:
(fe)ce (x) = —glog/ exp (fe(y)—ce(x,y)> dy = —elog Z°(x). (15)
y 9

This clarification shows that the expression in (T3] aligns with our proposed likelihood-based loss
in (I2), scaled by e. This finding indicates that inverse entropic optimal transport (OT) can be inter-
preted as a likelihood maximization problem, which opens up significant avenues to leverage estab-
lished likelihood maximization techniques for optimizing inverse entropic OT, such as the evidence
lower bound methods (Barber, 2012} |Alemi et al., [2018)) and expectation-maximization strategies
(MacKay, [2003; Bishop & Bishopl 2023)), etc.

Moreover, this insight allows us to reframe inverse entropic OT as addressing the semi-supervised
domain translation problem, as it facilitates the use of both paired data from 7* and unpaired data
from 77 and 7. Notably, to our knowledge, the inverse OT problem has primarily been explored in
discrete learning scenarios that assume access only to paired data (refer to §4).

3.3 PRACTICAL LIGHT PARAMETERIZATION AND OPTIMIZATION PROCEDURE

The most computationally intensive aspect of optimizing the loss function in (I2)) lies in calculating
the integral for the normalization constant Z?. To tackle this challenge, we propose a lightweight pa-
rameterization that yields closed-form expressions for each term in the loss function. Our proposed
cost function parameterization s grounded in the LOG-SUM-EXP function (Murphy,|2012), which
is widely recognized in the deep learning community for its practical advantages:

c¢’(x,y) = —¢lo v, (x) exp | —/——— |,
) g 2 p -
where {v/,(x) : RP= — R, b9 (z) : RP= — RPv}M_ are arbitrary parametric functions, e.g.,
neural networks, with learnable parameters denoted by 6.. Inspired by the work (Korotin et al.,
2024), we employ Gaussian mixture parametrization in the dual potential f¢:

N
Fly) =elog > wiN(y|af,A%), (17)

n=1

where 6¢ o {w?,a%, AY}NV_| are learnable parameters of the potential, with w? > 0, af € RPv,
and A% € RPv*Pv being a symmetric positive definite matrix. Thereby, our framework comprises
a total of 0 £ U6, learnable parameters. For clarity and to avoid notation overload, we will omit
the superscript ? associated learnable parameters and functions in the subsequent formulas.
Proposition 3.1 (Tractable form of the normalization constant). Our parametrization of the cost
function (16)) and dual potential delivers 7% (z) & Zr]\le Zle Zmn (), where

X T(r . Wb (1
(@) & WV (2) €xp (bm( )Anbm(2i+2 Ty ( )>'

(18)

The proposition offers a closed-form expression for Z%(x), which is essential for optimizing (T2).
Furthermore, the following proposition provides a method for sampling y given a new sample Zpey -
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Proposition 3.2 (Tractable form of the conditional distributions). From our parametrization of the
cost function (16)) and dual potential (I7) it follows that the 7°(-|z) are Gaussian mixtures:

m(ylz) = Ny | smn(x),e4n), (19)

m=1n=1
def . ..
where Synn () = apn, + Apbm () and zp,y, (z) defined in Proposmon

TRAINING. As stated in §2.1] since we only have access to the samples from the distributions, we
will optimize the empirical counterpart of (T12) via stochastic gradient descent in the parameters 6:

Q
- ef _ 1 .
L) ~ L) E e 1P E Ay, yp) R E 2y é E log Z%(x,) — min. (20)
=1

p=1

INFERENCE. According to our Proposition the conditional distributions 7?(-|) are Gaussian
mixtures (19). As a result, sampling y given x is fast and straightforward.

3.4 UNIVERSAL APPROXIMATION OF THE LIGHT PARAMETERIZATION

One may naturally wonder how expressive is our proposed parameterization of 7y in §3.3] Below
we show that this parameterization allows approximating any distribution 7* that satisfies mild com-
pactness, boundness and regularity assumptions. We detail the assumptions in the proofs section.

Theorem 3.1 (Light parameterization guarantees universal conditional distributions). With mild as-
sumptions on the joint distribution 7*, for all § > 0 there exists (a) an integer N > 0 and a
Gaussian mixture f o @ with N components, (b) an integer M > 0 and (b.1) fully-connected neu-
ral networks be RPv with ReLU activations and (b.2) fully-connected neural networks
U : RP= — R+ with ReLU activations at hidden layers and with the exponential activation at the
last layer such that 7 defined by (@) and (T) satisfies KL (7*||7?) < 6.

We refer the reader to Theorem|[C.1]in Appendix [C.2]for a precise formulation of Theorem 3.1}

4 RELATED WORKS

We review below the most related semi-supervised models and OT-based approaches to our work.

Semi-supervised models. As mentioned in §I] many existing semi-supervised domain translation
methods combine paired and unpaired data by incorporating multiple loss terms into complex opti-
mization objectives (Jin et al., 2019} §3.3), (Tripathy et al.,|2019, §3.5), (Mustafa & Mantiuk, 2020,
83.2), (Paavilainen et al.|[2021] §2), (Panda et al.,|2023| Eq. 8), (Tang et al., 2024, Eq. 8). However,
these approaches often require careful tuning of hyperparameters to balance the various loss terms.

We also note that there exist works addressing the question of incorpotating unpaired data to the
log-likelihood training (8) by adding an extra likelihood terms, see CNFs-related works (Atanov
et al.| [2019; Izmailov et all |2020). However, they rely on z being a discrete object (e.g., a class
label) and does not easily generalize to the continuous case, see Appendix [B.2.2]for details.

The recent work by (Gu et al.| 2023) utilizes both paired and unpaired data to build a transport plan
based on key-point guided OT, initially introduced in (Gu et al., 2022). This transport plan is used
as a heuristic to train a conditional score-based model on unpaired or semi-paired data. Overall, we
note that the idea of applying OT in a semi-supervised manner traces back to the seminal work by
(Courty et al.,|2016)), although their focus was on classification, not domain translation.

Another recent work by (Asadulaev et al.| 2024)) introduces a neural network-based OT framework
for semi-supervised scenarios, utilizing general cost functionals for OT. However, their method re-
quires manually constructing cost functions which can incorporate class labels or predefined pairs.
In contrast, our approach adjusts the cost dynamically during training.

(Inverse) OT solvers. Our approach builds upon the light OT methods proposed by (Korotin et al.,
2024} Gushchin et al.,2024)), which introduce a forward solver for the entropic OT problem with the
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quadratic cost function ¢*(z, y) = 1||z—y||3 using the Gaussian Mixture parametrization. However,
we consider a more general cost function and incorporate cost function learning directly into
the objective (20), in fact, producing an inverse OT (3)) solver.

As highlighted in the task of inverse optimal transport (IOT) implies learning the cost function
from samples drawn from an optimal coupling 7*. Existing IOT solvers (Dupuy & Galichon, 2014;
Dupuy et al.| 2016; |L1 et al.,|2019; |Stuart & Wolfram), 2020; Ma et al., 2020; (Chiu et al.| 2022; |Gali-
chon & Salanié} 2022) focus on reconstructing cost functions from discrete marginal distributions, in
particular, using the log-likelihood maximization techniques (Dupuy et al., 2016)), see the introduc-
tion of (Andrade et al.,|2023)) for a review. In contrast, we develop a log-likelihood based approach
aimed at learning a conditional distribution 7%(-|z) ~ 7*(-|=) that incorporates both paired and
unpaired data but not the cost function itself.

Recent work by (Howard et al.,[2024) proposes a framework for learning cost functions to improve
the mapping between the domains. However, it is limited by the use of deterministic mappings, i.e.,
does not have the ability to model non-degenerate conditional distributions.

5 EXPERIMENTAL ILLUSTRATIONS

We tested our solver on both synthetic data (§5.1) and real-world data distributions (§5.2). The code
is written using the PyTorch framework and will be made publicly available. It is provided in the
supplemental materials. Experimental details are given in AppendixE}

5.1 Swiss ROLL

Setup. For illustration purposes, we adapt the setup described in (Mokrov et al.,[2024} Korotin et al.,
2024) for our needs and consider a synthetic task where we transform samples from a Gaussian
distribution 77 into a Swiss Roll 7 distribution (Figure [2a). The plan 7* is generated by sampling
from the mini-batch OT plan using the POT library (Flamary et al.,[2021). We specifically chose a
transportation cost for the minibatch OT to construct an optimal plan 7* with bi-modal conditional
distributions 7*(-|x) to assess how well our method performs in such a scenario. See Appendix
[B.2.1] for more details. During training, we use P = 128 paired (Figure 2b) and Q = R = 1024
unpaired samples. For an ablation study on how varying amounts of paired and unpaired data affect
our method’s performance, see Appendix

Baselines. We compare our method against several well-known generative modeling techniques,
including: Conditional Normalizing Flow (Winkler et al.l 2019, CNF), Conditional Generative Ad-
versarial Network (Mirza & Osindero, 2014, CGAN), Unconditional GAN (Goodfellow et al., 2014)
with £2 loss supplement (UGAN+¢?), and just multilayer perceptron (MLP) regression with £2 loss.
Additionally, we show the results of the adaptation of semi-supervised log-likelihood-based losses
by (Atanov et al.}|2019;|[zmailov et al.,2020), and denote the models by CNF (SS) and CGMM (SS),
respectively, based on the paramterization used. For a detailed explanation of baselines employed
in our experiments, please see Appendix Some of the baseline methods can fully utilize both
paired and unpaired data during training, while others can use paired data only, see Table

Method Paired i Unpairgd Unpairgd
(z,y) ~7 T~y y ~m,

Regression v X X
Conditional GAN v v X
Unconditional GAN + £° v v v
Conditional NF v X X
Conditional NF (SS) v v v
Conditional GMM (SS) v v v
Our method v v v

Table 1: The ability to use of paired/unpaired data by various models.

Discussion. The results of the aforementioned methods are depicted in Figure[2} Clearly, the Regres-
sion model simply predicts the conditional mean E, (.|, ¥, failing to capture the full distribution.
The CNF model suffers from overfitting, likely due to the limited availability of paired data X Yysireq-
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(h) CNF (SS).

Figure 2: Comparison of the learned mapping on the Gaussian — Swiss Roll task. We use P = 128
paired data, () = 1024 and R = 1024 unpaired source and target data, respectively.

The CGAN is unable to accurately learn the target distribution 7, while the UGAN-+/? fails to cap-
ture the underlying conditional distribution, resulting in suboptimal performance. The CNF (SS)
does not provide improvement compared to CNF in this experiment, and CGMM (SS) model learns
a degenerate solution, which is presumably due to the overfitting. As a sanity check, we evaluate all
baselines using a large amount of paired data. Details are given in Appendix

5.2 WEATHER PREDICTION

Here we aim to evaluate our proposed approach on real-world data. We consider the weather predic-

tion dataset (Malinin et al., 2021} [Rubachev et al.,2024)). The data is collected from weather stations

and weather forecast physical models. It consists of 94 meteorological features, e.g., pressure, wind,
humidity, etc., which are measured over a period of one year at different spatial locations.

Setup. Initially, the problem was formulated as the prediction and uncertainty estimation of the
air temperature at a specific time and location. We expand this task to the probabilistic prediction
of all meteorological features, thereby reducing reliance on measurement equipment in remote and
difficult-to-access locations, such as the Polar regions.

In more detail, we select two distinct months from the dataset and translate the meteorological fea-
tures from the source month (January) to the target month (June). To operate at the monthly scale,
we represent a source data point z € R'®® as the mean and standard deviation of the features col-
lected at a specific location over the source month. The targets y € R%* correspond to individual
measurements in the target month. Pairs are constructed by aligning a source data point with the
target measurements at the same location. Consequently, multiple target data points y may corre-
spond to a single source point x and represent samples from conditional distributions 7*(y|z). The
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Baseline Ours
Ypaired #unpaired ‘ 0 ‘ 10 50 100 250 500
10 04+.2 | 1794+.3 185+.4 184+.2 188+.2 192+ .3
25 354.09 | 1834.06 187+.2 188+.07 195+.1 19.8+.1
50 64+.05 | 187+.2 189+.04 192+.2 19.8+.03 20.3+.4
90 65+.1 | 19+4.01 194+.05 194+.2 20.3+.05 20.5+.09

Table 2: The values of the test log-likelihood 1 on the weather prediction dataset obtained for a
different number of paired and unpaired training samples.

Ours CGAN UGAN+(2 CNF Regression CGMM (SS) CNF (SS)

log-likelihood?  20.5 £+ .09 N/A N/A 1.29 4 .03 N/A 0.32£.03 0.52+£.02
Conditional FD| 7.21+.04 15.794+1.11 15444189 1872+£.09 8.29+.04 7.17+.07 285+.5

Table 3: The values of the test log-likelihood? and Conditional Freshet distance] on the weather
prediction dataset of our approach and baselines (trained on 500 unpaired and 90 paired samples).

measurements from non-aligned locations are treated as unpaired. We obtain 500 unpaired and 192
paired data samples. For testing, 100 pairs are randomly selected.

Metrics and baselines. We evaluate the performance of our approach by calculating the log-
likelihood on the test target features. A natural baseline for this task is a probabilistic model that
maximizes the likelihood of the target data. Thus, we implement an MLP that learns to predict the
parameters of a mixture of Gaussians and is trained on the paired data only via the log-likelihood op-
timization (8). We also include all the baseline models from §5.1|trained on the available paired and
unpaired data. Note that GAN models do not provide the density estimation and log-likelihood can
not be computed for them. Therefore, we include the conditional Freshet distance metric. Namely,
for each test x we evaluate the Freshet distance (Heusel et al.l 2017, Equation 6) between the pre-
dicted and the true features y. Then we average all these values obtained for all test inputs z.

Results. The results are presented in Tables 2] and [3] Result of Table [2] demonstrate that increas-
ing the number of paired and unpaired data samples leads to improved test log-likelihood, which
highlights the impact of the objective that employs both paired and unpaired data. Moreover, the
proposed approach outperforms the baseline solution, which shows that even in problems where the
paired data plays a key role for accurate predictions, incorporating the unpaired data can give an
advantage. Additionally, the results in Table[3|confirm that our approach produces samples closer to
the true distributions compared to the other baselines (with 500 unpaired and 90 paired samples).

6 DISCUSSION

Limitations. A limitation of our approach is that it uses the Gaussian Mixture parameterization
for conditional distributions. This may limit its scalability. As a promising avenue for future work
is incorporation of the more general parameterizations, such as neural networks, which are already
well-studied in the context of forward entropic OT, see (Mokrov et al. [2024). In Appendix E for
completeness of the exposition, we showcase one possible way to use the neural parameterization
for both cost and potential in our method via the energy-based modeling (LeCun et al.[[2006, EBM).

Potential impact. Our framework has a simple and non-minimax optimization objective that seam-
lessly incorporates both unpaired and paired samples into the training. We expect that these ad-
vantages will encourage the use of our framework to develop other max-likelihood-based semi-
supervised approaches based on more advanced (than Gaussian mixtures) techniques, e.g., energy-
based models (LeCun et al., [2006; |Du & Mordatch, 2019), diffusion models (Ho et al., [2020), etc.

Broader impact. This paper presents work whose goal is to advance the field of Machine Learn-
ing. There are many potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

Reproducibility Statement For all the presented experiments, a full set of hyperparameters is intro-
duced either in §5]or in Appendix [B] In addition, the code is submitted as supplementary material,
with guidelines on how to run every experiment included.
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A NEURAL PARAMETERIZATION

Throughout the main text, we parameterized the cost ¢? and potential f? using log-sum-exp func-
tions and Gaussian mixtures (see §3.3). At this point, a reader may naturally wonder whether more
general parameterizations for ¢’ and f? can be used in our method, such as directly parameterizing
both with neural networks. In this section, we affirmatively address this question by providing a
procedure to optimize our main objective £(#) in (T2) with general parameterizations for ¢’ and f?.

We note that a key advantage of our chosen parameterization (see §3.3) is that the normalizing
constant Zy appearing in £(6) is available in the closed form. Unfortunately, this is not the case
with general parameterizations of ¢ and f?, necessitating the use of more advanced optimization
techniques. While the objective £(6) itself may be intractable, we can derive its gradient, which
is essential for optimization. The following proposition is derived in a manner similar to (Mokrov|
2024), who proposed methods for solving forward entropic OT problems with neural nets.

Proposition A.1 (Gradient of our main loss (12)). It holds that

0 0 0
%5(9) = 6_1 {E(lj7yr\/7r* |:a€ce (-’17, y>:| _Eyr\/ﬂ'; |:89f9 (y>:|
0

+Ez~7r;Ey~7r9(y\z) |:89 (fg(y) - C9($7y)):| } (21)

The formula for the gradient no longer includes the intractable normalizing constant Zy. However,
estimating the gradient requires sampling from the current model, i.e., obtaining y ~ 7%(y|z).
Unlike our Gaussian mixture-based parameterization (see §3.3), sampling from the model is more
complex since we only have access to the unnormalized density of 7°(y|x) through c? and f?, and it
is not necessarily a Gaussian mixture in this case. Nevertheless, this sampling can be accomplished
using techniques for sampling from unnormalized densities, such as Markov Chain Monte Carlo
(MCMC) methods (Andrieu et al.|2003)). Thus, the gradient of the loss can be practically estimated,
leading us to the following gradient-based training Algorithm [T}

Algorithm 1: Semi-supervised Learning via Energy-Based Modeling

Input : Paired samples X Y4ireq ~ 7*; unpaired samples Xnpaired ~ > Yunpaired ~ T
potential network f¢ : RPv — R, cost network ¢? (z,y) : RP» x RPv — R;
number of Langevin steps K > 0, Langevin discretization step size n > 0;
basic noise std og > 0; batcll size N > 0. i i
Output: trained potential network ¢  and cost network ¢/~ recovering 7% (y|z) from ().
fori=1,2,... do
Derive batches {z,,})_ = X ~ @}, {yntnoy =Y ~ 7 {dn, Gn}0) = XY ~ 7%,
Sample basic noise YO ~ N(0, ) of size N;
fork=1,2,..., K do
Sample Z(®) = {z{}N_ where 2{F) ~ N(0,1);
Obtain Y(F) = {yflk)}ﬁ[:l with Langevin step:

TPt R €. stOp,grad(a% [f(y) — P (zn,y)] ‘y:ygﬁn) + \/ﬁzgk)

*.
y’

Eek| B Sem|- £ am)]+d] £ r0)]

Ty, Yn €EXY Yn €Y yT(lK)eY(K)

| Perform a gradient step over ¢ by using %;

In the Algorithm [T} we employ the standard MCMC method called the Unadjusted Langevin Algo-
rithm (ULA) (Roberts & Tweediel [1996). For a detailed discussion on methods for training EBMs,
refer to recent surveys (Song & Kingmal, 2021}, [Carbonel, 2024).

Overall, our proposed inverse OT algorithm turns to be closely related to the forward OT algorithm
presented in (Mokrov et all}, [2024] Algorithm 1). The key differences beside the obvious fact that
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algorithms solve different problems are (1) we learn the cost function ¢? during the training process;
(2) our learning exploits both paired and unpaired samples. Algorithms of this kind are usually called
the Energy-based models (LeCun et al.| 2006, EBM) because they parameterize the distributions
of interest through their energy functions, i.e., minus logarithms of unnormalized densitites. Specif-
(f"(y);ce(w,y))

ically, in the case of Algorithm we learn unnormalized densities 7% (y|z) o exp
defined through their energy functions e ! (c? (z,y) — £%(y)).

Below, we present an illustrative example on 2D data to demonstrate the ability of our Algorithm|[T]to
learn conditional plans using a fully neural network parametrization. We performed experiments on
the Swiss roll matching problem (see §5.1)) using two different datasets: one with 128 paired samples
(as described in and another with 16K paired samples (as detailed in Appendix [B.2.3).

We employ MLPs with hidden layer configurations of [128,128] and [256,256,256], using
LeakyReLU (0.2) for the parametrization of the potential f¢ and the cost ¢’, respectively. The
learning rates are set to I7pgired = 5 X 10~* and ITunpaired = 2 X 10~%. The sampling parameters

follow those specified in (Mokrov et al.| [2024).

It is worth noting that the model’s ability to
fit the target distribution is influenced by the
amount of labeled data used during training.
When working with partially labeled samples
(as shown in Figure [3a), the model’s fit to the
target distribution is less accurate compared to
using a larger dataset. However, even with lim-

ited labeled data, the model still maintains good {00 Constinl ey -1 21§08 cmrs ey 10
accuracy in terms of the paired samples. On the v co e
other hand, when provided with fully labeled (a) P = 128; (b) P = 16K;
data (see Figure 3D)), the model generates more Q=R =1024 Q =R=16K

consistent results and achieves a better approx-

imation of the target distribution. A compari- Figure 3: Performance of our Algorithm [1]in the
son of the results obtained using Algorithm [[] Swiss Roll mapping task (§5.1). We use MLPs to
with neural network parametrization and those ~parametrize both the potential function f? and the
achieved using Gaussian parametrization (Fig- cost function ¢?.

ure[2]) reveals that Algorithm|T]exhibits greater

instability. This observation aligns with the findings of (Mokrov et al.,[ 2024} Section 2.2), which em-
phasize the instability and mode collapse issues commonly encountered when working with EBMs.

In conclusion, it is important to recognize that the field of Energy-Based Models (EBMs) has un-
dergone significant advancements in recent years, with the development of numerous scalable ap-
proaches. For examples of such progress, we refer readers to recent works by
letal} 2021} |Gao et al., 2021) and other the references therein. Additionally, we recommend the com-
prehensive tutorial by (Song & Kingmal,202T)) for an overview of training methods for EBMs. Given
these advancements, it is reasonable to expect that by incorporating more sophisticated techniques
into our basic Algorithm[I] it may be possible to scale the method to handle high-dimensional setups,
such as image data. However, exploring these scaling techniques is beyond the scope of the current
paper, which primarily focuses on the general methodology for semi-supervised domain translation.
The investigation of methods to further scale our approach as a promising future research avenue.

B DETAILS OF THE EXPERIMENTS

B.1 GENERAL IMPLEMENTATION DETAILS

To minimize (20), we parameterize f¢ (T7) by representing w,, using log wy,, a,, directly as a vector,
and the matrix A,, in diagonal form with log(A,,) ;. on its diagonal. For ¢ (16), we parameterize
vm () as a multilayer perceptron (MLP) @ with ReLU activations :Agarapl, and
a LogSoftMax output layer, while b,,(x) is also modeled as an MLP with ReLU activations. The
depth and number of hidden layers vary depending on the experiment.
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To further simplify optimization, we use diagonal matrices A,, in the parameterization of f?, which
not only significantly reduces the number of learnable parameters in ¢, but also enables efficient
computation of A, with a time complexity of O(D,).

We utilize two separate Adam optimizers (Kingma, [2014) with different step sizes for paired and
unpaired data to improve convergence.

As mentioned in §2.2] the solver is independent of ¢, so we set € = 1 for all experiments.

Initialization. We initialize log w,, as log %, set a,, using random samples from 7T;;, and initialize
log(A,,), ; with log(0.1). For the neural networks, we apply the default PyTorch (Ansel et al.,[2024)
initialization.

B.2 GAUSSIAN To SwISS ROLL MAPPING

In all experiments conducted in this section, we set the parameters as follows: N = 50, M = 25,
with learning rates [7pgireq = 3 X 10~* and Irynpaired = 0.001. We utilize a two-layer MLP network
for the function b,, (x) and a single-layer MLP for v,,, (x). The experiments are executed in parallel
on a 2080 Ti GPU for a total of 25,000 iterations, taking approximately 20 minutes to complete.

B.2.1 TRANSPORTATION COST MATRIX

To create the ground truth plan 7*, we utilize the following procedure: We start by sampling a mini-
batch of size 64 and then determine the optimal mapping using the entropic Sinkhorn algorithm, as
outlined in (Cuturi, [2013) and implemented in (Flamary et al.l [2021)). This process is repeated P
times to generate the required number of pairs.

We define the cost matrix for mini-batch OT as C' = min(C¥, C~¥), where C*% represents matri-
ces of pairwise /5 distances between x and —y*=%, with —y=% denoting the vector —y rotated by an
angle of ¢ = +90°. In other words, x ~ 7} maps to y located on the opposite side of the Swiss
Roll, rotated by either ¢ or —, as shown in Figure 2c]

B.2.2 DISCUSSION OF THE BASELINES

This section details the loss functions employed by the baseline models, providing context and ex-
planation for the data usage summarized in Table[I] Furthermore, it explains a straightforward adap-
tation of the log-likelihood loss function presented in (8) to accommodate unpaired data, offering a
natural comparative approach to the method proposed in our work.

* Regression Model (MLP) uses the following simple £2 loss
y — Go(a)lI%,

where Gy : X — ) is a generator MLP with trainable parameters #. Clearly, such a model
can use only paired data. Furthermore, it is known that the optimal regressor G* coincides with
Eyww*(.‘z)y, i.e., predicts the conditional expectation. Therefore, such a model will never learn
the true data distribution unless all 77* (-|«) are degenerate.

min B (g, g)~ -

* Conditional GAN uses the following min max loss:

ngn mgx B yrre 108 (Dg (y|7)) + Epmr:Eoop 2y log (1 — Dy (Go(z]x)|z) |,

Joint, requires pairs (z,y) ~ 7" Marginal, requires = ~ 7,

where Gy : Z x X — ) is the conditional generator with parameters 6, p, is a distribution on
latent space Z,and D : J) x X — (0, 1) is the conditional discriminator with parameters ¢. From
the loss it is clear that the model can use not only paired data during the training, but also samples
from 7. The minimum of this loss is achieved when G(-|x) generates 7*(+|x) from p,.

+ Unconditional GAN + ¢? loss optimizes the following min max objective:

main m;LX A E(zyy)Nﬂ*Ezwﬂz lly — Go(x, Z)||2 +Ey~7r§j log (Dg (y)H ExNW;EZNPZ log (1 — D¢(G0 (z,2)) |,

Joint, requires pairs (z, y) ~ 7" Marginal, requires y ~ ﬂ—; Marginal, requires = ~ 7,
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where A > 0 is a hyperparameter. In turn, G : X x Z — ) is the stochastic generator. Compared
to the unconditional case, the main idea here is to use the unconditional disctiminator Dy : ) —
(0,1). This allows using unpaired samples from m,. However, using only GAN loss would not
allow to use the paired information in any form, this is why the supervised ¢2 loss is added (A = 1).

We note that this model has a trade-off between the target mathing loss (GAN loss) and regression
loss (which suffers from averaging). Hence, the model is unlikely to learn the true paired data
distribution and can be considered a heuristical loss to use both paired and unpaired data. Overall,
we consider this baseline as most existing GAN-based solutions (Tripathy et al, 2019} §3.5),
§3.3), (Yang & Chenl 2020, §C), (Vasluianu et al., 2021, &3) for paired and unpaired

data use objectives that are ideologically similar to this one.
Conditional Normalizing Flow (Winkler et al.| 2019) learns an explicit density model

oG, (y|x

() = p-(Gy o)) | 22 1)

Y
via optimizing log-likelihood (8) of the paired data. Here Gy : Z x X — Y is the conditional
generator function. It is assumed that Z = ) and Gy(-|x) is invertible and differentiable. In the
implementation, we use the well-celebrated ReaINVP neural architecture 2017). The
optimal values are attached when the generator Gy(-|z) indeed generates 7° (-|z) = 7*(-|z).
The conditional flow is expected to accurately capture the true conditional distributions, provided
that the neural architecture is sufficiently expressive and there is an adequate amount of paired data
available. However, as mentioned in §3.1} a significant challenge arises in integrating unpaired
data into the learning process. For instance, approaches such as those proposed by
2019} [Izmailov et al, 2020) aim to extend normalizing flows to a semi-supervised context. How-
ever, these methods primarily assume that the input conditions x are discrete, making it difficult
to directly apply their frameworks to our continuous case. For completeness, below we discuss a
variant of the log-likelihood loss (Atanov et al., 2019 Eq. 1) when both z, y are continuous.

Semi-supervised Conditional Normalizing Flows (Atanov et al.| 2019} [zmailov et al.| 2020).

As noted by the the authors, a natural strategy for log-likelihood semi-supervised training that
leverages both paired and unpaired data is to optimize the following loss:

max E(z,y)~r= log 70 (y|lz) + Ey~r-log w(y) |. (22)

Joint, requires pairs (z,y) ~ T Marginal, requires y ~ 71—*

This straightforward approach involves adding the unpaired data component, Eyw,,* log 7% (y) to
the loss function alongside the standard palred data component (8). While loss (IT_ZI) Tooks natural,
its optimization is highly non-trivial since the marginal log-likelihood log 7% () is not directly
available. In fact, (Atanov et al.l 2019; Izmailov et al 2020) use this loss exclusively in the case
when x is a discrete object, e.g., the class label x € {1,2,..., K} . In this case log 7’(y) can be
analytically computed as the following finite sum

log 7% (y) = logEmN,,wr (y|z) long (ylz = k)n)(xz = k),

and 7*(z = k) are known class probabilities. Unfortunately, in the continuous case 7 (z) is
typically not available explicitly, and one has to exploit approximations such as

log 7 (y) = log]ExN,rw (y|z) ~ 1og—Zlog7r ylzg),

where z, are train (unpaired) samples. However, such Monte-Carlo estimates are generally biased
(because of the logarithm) and do not lead to good results, especially in high dimensions. Nev-
ertheless, for completeness, we also test how this approach performs. In our 2D example (Figure
[2h), we found there is no significant difference between this loss and the fully supervised loss (8):
both models incorrectly map to the target and fail to learn conditional distributions.

Semi-supervised Conditional Gaussian Mixture Model. Using above-discussed natural loss
[22) for semi- superv1sed learning, one may also consider a (conditional) Gaussian mixture pa-
rameterization for 7% (y|z) instead of the conditional normalizing flow. For completeness of the
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exposition, we also include such a baseline for comparison. For better transparancy and fair com-
parison, we use the same Gaussian mixture paramteterization (I9) as in our method. We found

that such a loss quickly overfits to data and leads to degenerate solutions, see Figure [21]

B.2.3 BASELINES FOR SWISS ROLL WITH THE LARGE AMOUNT OF DATA (16K)

O Fitted distribution g )
B Source samples x ~ 1}
9 Q¢ conditional samples y ~%(-|x)

—14

O Fitted distribution 19

[BCIE Source samples x ~ 1T,

1 9O ¢ conditional samples y ~n°(-x)

-2 -1 0 1 2

(a) CNFE.

O Fitted distribution mg
I Source samples x ~ 1ty

21 9O ¢ Conditional samples y ~ %(-|x)

O Fitted distribution r§
B Source samples x ~ 1,

il 90 Conditional samples y ~®(-|x)

-2 -1 0 1 2

(d) Regression.

-2 -1 0 1 2

(e) CNF (SS), loss (22).

—14

Biocorcliewserey)
O Fitted distribution g

[IE Source samples x ~ 1T,

1 90 ¢ Conditional samples y ~n%(-|x)

O Fitted distribution rf

BIE Source samples x ~ 1T,

il 9@ Conditional samples y ~®(-|x)

-2 -1 0 1 2

(f) CGMM (SS), loss (22).

Figure 4: Comparison of the mapping learned by baselines on Gaussian — Swiss Roll task (85.1)).
We use P = 16K paired data, Q = R = 16K unpaired data for training.

In this section, we show the results of training of the baselines on the large amount of both paired
(16K) and unpaired (16K) data (Figure d). Recall that the ground truth 7* is depicted in Figure 2d|

We see that given a sufficient amount of training data, Conditional GAN (Figure[db) nearly succeeds
in learning the true conditional distributions 7*(-|«). The same applies to the conditional normaliz-
ing flow (Figure{fa), but its results are slightly worse, presumably due to the limited expressiveness
of invertible flow architecture. Regression, as expected fails to learn anything meaningful because
of the averaging effect (Figure 4d). In turn, the unconditional GAN+¢? (Figure [4c) nearly succeeds
in generating the target data 7, but the learned plan is incorrect because of the averaging effect.

Experiments using the natural semi-supervised loss function in (22)) (Figure ffe) show that the loss
function in (22) can reasonable well recover the conditional mapping with both CNF and CGMM
parameterization, but it necessitates more training data than our proposed loss function (I2). This
conclusion is supported by the observation that CGMM model trained using (22) overfit, see (1),
whereas our method using objective (I2) demonstrates good results, see Figure 2]

B.2.4 ABLATION STUDY

In this section, we conduct an ablation study to address the question posed in regarding how
the number of source and target samples influences the quality of the learned mapping. The results,
shown in Figure[5] indicate that the quantity of target points R has a greater impact than the number
of source points () (compare Figure[5c with Figure [5b). Additionally, it is evident that the inclusion
of unpaired data helps mitigate overfitting, as demonstrated in Figure [5a]
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L5 n A
90 conditional samples y ~n(-}x) ) 90 conditional samples y ~n°(-}x) ) 99 Conditional samples y ~n°(-}x) ) 99 Conditional samples y ~n°(-}x)

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

@Q=0R=0 b)Q=1024,R=0 (¢)@Q=0,R=1024 (d) @ =1024,
R=1024
Figure 5: Ablation study analyzing the impact of varying source and target data point quantities on
the learned mapping for the Gaussian — Swiss Roll task (using P = 128 paired samples).

B.3 WEATHER PREDICTION
B.3.1 IMPLEMENTATION DETAILS

In general, we consider the same setting as in [B} Specifically, we set N = 10, M = 1 and the
number of optimization steps to 30, 000. The baseline uses an MLP network with the same number
of parameters, predicting the parameters of a mixture of 10 Gaussians.

C PROOFS

C.1 FORMULAS FOR THE GAUSSIAN PARAMETRIZATION

Proof of Proposition[3.1} Thanks to our parametrization of the cost ¢/ (I6) and the dual potential
f? (T7), we obtain:

3

O(y) — P (z N M x
exp (f ) ( ,y)) = exp <log Z W N (y | an, eAp) + log Z vm () exp (<bm( ),y}))

n=1 m=1

Now we need to transform the expression above into the form of a Gaussian Mixture Model. To
achieve this, we rewrite the formula inside the exponent using the fact that A,, is a symmetric:

(y—an) A (v — an) — 2(0bm(2),y) =y A 'y — 20, Ay +a) A an — 2(bn(2),y) =
yTAgly -2 (an + Anbm(x))T A,_Lly + @ZA;lan =

Lol (@)

mn

(y - smn(x))TA:zl(y - Smn(x)) + aIA:Llan - Sln(m)Aglsmn(z)-
Afterwards, we rewrite the last two terms:

at A an — s} () AT s (2) = a) A an — (an + Anbm (2)) T AL (a0 + Apby (2)) =

aIA;lan - aZA;lan - aIA;lAnbm(:c) - b:;(x)AnA;lan - b:,;(x)AnA;lAnbm(x) =
b, (2) Apbm () — 2a,) by ().
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Finally, we get

exp (P LE0Y - 57 3 ) (Pl Al 4 200 0l2))

oo (A ) i)

\/det(2mALY)

and thanks to fy N (y| $mn(z),eA4,)dy = 1, the normalization constant simplifies to the sum of

Zimn (2):
Z%(x) = /yexp (W) dy

= B 3) IEHENCIPMEETRLTED ) pEE)

m=1n=1 m=1n=1

:N(y | Smn(m)vsAn)

O

Proof of Proposition[3.2] Combining equations (9), (IT) and derivation above, we seamlessly obtain
the expression (19) needed for Proposition [3.2] O

C.2 UNIVERSAL APPROXIMATION

Our objective is to set up and use the very general universal approximation result in (Acciaio et al.|
Theorem 3.8). In what follows, we use the following notation. For any d € N, we denote
the Lebesgue measure on R? by )4, suppressing the subscript d whenever clear from its context, we
use L}F(Rd) to denote the set of Lebesgue integrable (equivalence class of) functions f : R — R
for which [ f(z)A(dz) = 1 and f > 0 A-a.e; i.e. Lebesgue-densities of probability measures.
We use P, (R9) to denote the space of all Borel probability measures on R¢ which are absolutely
continuous with respect to A\, metrized by the total variation distance dpy .

Lemma 1 (The Space (P;"(R?), dry ) is Quantizability by Gaussian Mixtures). For every ¢ € N,

let D, o 2((d* + 3d + 2)) and define the map
Qq : RP1 = R7 x R x REUIFD) _, pH(RY)

(wa (U(i))g:p (E(i))le) — Z Pa, (w); y(u(i)’ (p(z(i)))

Pay : R? — A, is the £% orthogonal projection of R? onto the g-simplex A, s {u € [0,1]9 :

S0 u; =1} and v(p®, o(SD)) is the Gaussian measure on R? with mean p1;, and non-singular
covariance matrix given by (X)) where for any ¥ € RU4+1)/2 we define

Y1 IS o Ya
def. I Y3 - Yod—1
p(X) Fexp | . : (23)
g Yog1 oo Vad+1)/2

where exp is the matrix exponential on the space of d x d matrices. Then, the family (Q,)72, is a
quantization of (P} (R%), drv) in the sense of (Acciaio et al}|2024, Definition 3.2).

Proof. As implied by (Arabpour et al, 2024, Equation (3.10) in Proposition 7) every Gaussian
measure N'(m,Y) := p on R? with mean m € R? and symmetric positive-definite covariance
matrix X can be represented as

p=N(m, $(X)) (24)
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for some (unique) vector X € R¥(4+1)/2 Therefore, by definition of a quantization, see (Acciaio|

m m 2024, Definition 3.2), it suffices to show that the family of Gaussian mixtures is dense in
ydry).

Now, let v € P;F(R?) be arbitrary. By definition of P;"(RY) the measure v admits a Radon-

Nikodym derivative f = S Z‘; , with respect to the d-dimensional Lebesgue measure A\. Moreover,

by the Radon-Nikodym theorem, f € L} (Rd) and by since p is a probability measure then v €

L} (R).
Since compactly-supported smooth functions are dense in L:L (R?) then, for every £ > 0, there exists
some f € C°(R%) with f > 0 such that

1f = Fllor ey < g 25)

Since C2°(R%) is dense in L' (R?) then we may without loss of generality re-normalize f to ensure
that it integrates to 1. Since f is compactly supported and approximates f, then (if f is non-zero,
which it cannot be as it integrates to 1) then it cannot be analytic, and thus it is non-polynomial.
For every § > 0, let 5 denote the density of the d-dimensional Gaussian probability measure with
mean 0 and isotropic covariance ¢ 15 (where I is the d x d identity matrix). Therefore, the proof
of (Pinkus| Proposition 3.7) (or any standard mollification argument) shows that we can pick

] (g NG ) > 0 small enough so that the convolution f * 5 satisfies
o 5
1F = % sl 1 gay < 3 (26)

Note that f * s is the density of probability measure on R%; namely, the law of a random variable
which is the sum of a Gaussian random variance with law N (0, ) and a random variable with

law 2). That is, f % psA € L1 (R?). Together (23)and (26) imply that

~ 2e
Hf_f*<p(5HL1(Rd) < 3 (27)
Recall the definition of the convolution: for each z € R? we have
Freos® [ Faesta - uMdu). (28)
u€ER

Since f, s € O (RY) then Lebesgue integral of their product coincides with the Riemann integral
of their product; whence, there is an NV o N (e) € N “large enough” so that

N
H / w)ps(z — wA(du) = fun)ps(@ — un)M(du) = (29)
ueRrd — Liray 3
for some wuq,...,uy € Nj. Note that Zn of f(un)s(x — uy) is the law of a Gaussian mixture.
Therefore, combmmg (7) and (30) implies that
Hf Z Fun)ps(x — up)A(du) <e. (30)
L (R4)

Finally, recalling that the total variation distance between two measures with integrable Lebesgue
density equals the L'(R?) norm of the difference of their densities; yields the conclusion; i.e.

<e

N
rv(.9) =7 = 32 Funeste — (@)
L1 (R4)

where 4 e Zﬁ;o F(un)ps (2 — up ) M(du). O

Lemma 2 (The space (Pfr (RY), dpy) is Approximate Simplicial). Let y = Unen, AN X
[Pi(RH)]N and define the mapn : Y — P; (RY) by

N
def.
77(1117 (Un)nNzl) = Z Wnp, oy -

n=1
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Then, 1) is a mixing function, in the sense of (Acciaio et al),[2024, Definition 3.1). Consequentially,
(P{ (R9),n) is approximately simplicial.

Proof. Let M*(R?) denote the Banach space of all finite signed measures on R with finite total

variation norm || - ||7y. Since || - — - |7y = drv when restricted to Py (R?) x P;F(R?) and since
I - ll7v is a norm, then the conclusion follows from (Acciaio et al.l 2024, Example 5.1) and since
P;(R?) is a convex subset of M T (R?). O

Together, Lemmatal|and[2/imply that (P} (R?), d7v-,7, Q), where Q = (Q,)qen, » is a QAS space
in the sense of (Acciaio et all,[2024] Definition 3.4). Consequentially, the following is a geometric
attention mechanism in the sense of(Acciaio et al.,[2024], Definition 3.5)

il : Unen, Ay x RV*Pa — PH(RY)

N q
(w’ (w(n)’ (u(n:z));}:D (E(n:z))g:1)g:1) — Z Wy, Z PAN (w(n))z I/(,UJ(WZ),@(E(”:Z))).
1=1

n=1

We are now ready to prove the first part of our approximation theorem.

Proposition C.1 (Deep Gaussian Mixtures are Universal Conditional Distributions in the TV Dis-
tance). Let 7 : (R, || - ||2) — (P;" (R?), drv) be Holder. Then, for every compact subset K C R9,

every approximation error ¢ > 0 there exists N,q € N and a ReLU MLPf : R? s RVXNDq
such that the (non-degenerate) Gaussian-mixture valued map

~ def. ~
#(|lz) = o f(x)
satisfies the uniform estimate

max dry (([o) (o)) < e

Proof. Since Lemmata andimply that (P;F (RY), drv,n, Q), is a QAS space in the sense of (Ac-

2024] Definition 3.4), then the conclusion follows directly from (Acciaio et al.| 2024]
Theorem 3.8). O

Since many of our results are formulated in the Kullback-Leibler divergence, then our desired guar-
antee is obtained only under some additional mild regularity requirements of the target conditional
distribution 7 being approximated.

Assumption 1 (Regularity of Conditional Distribution). Let 7 : (R, || - [|2) — (P (R9), drv) be
Hélder, for each x € R?, 7 (-|z) is absolutely continuous with respect to the Lebesgue measure \
on R?, and suppose that there exist some 0 < § < A such that its conditional Lebesgue density
satisfies

dr(-|x)

d\
Theorem C.1 (Deep Gaussian Mixtures are Universal Conditional Distributions). Suppose that 7
satisfies Assumption Then, for every compact subset K C R¢, every approximation error ¢ > 0
there exists N,q € N, such that: foreachn = 1,...,N andt = 1,...,q there exist ReLU
MLPs w,v™ ;9 (9 respectively mapping R to RN, R?, and R%(4+1)/2 guch that the (non-
degenerate) Gaussian-mixture valued map

5 < <A for all z € R?. (31)

N q
#(12) D Pay (@) > Pay @™ (@))iv(p" D), o509 ()
n=1 i=1
satisfies the uniform estimate
max dry (w(-|2), #([z)) <e. (32)

If, moreover, 7 also satisfies (31) (with 7 in place of ) then additionally
max KL (7(-|z), 7 (-|z)) € O(e), (33)
e

where O hides a constant independendent of € and of the dimension d.
Moreover, the result holds even if each ;") and ¥.("*) are be assumed to be constant.
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The proof of Theorem [C.T|makes use of thesymmetrized Kullback-Leibler divergence KLy, is de-

fined for any two 11, v € P(R®) by KLym (1, ) = KL (u/|v))+KL(v| ) note, if KLy, (1, ) = 0

then KL, (14]|) = 0. We now prove our main approximation guarantee.

Proof of Theorem|[C_1] The first claim now directly follows from Proposition [C.I] upon taking the
MLPs 1" and X" to be constant for all i = 1,...,qand n = 1,..., N. It, therefore, only
remains to establish the second estimate (33).

Under Assumption [I} 7(-|z) and #(-|z) are equivalent to the d-dimensional Lebesgue measure .
Consequentially,

m(|r) < 7 (-[x)

for all z € R Therefore, the Radon-Nikodym derivative :Hz) is a well-defined element of
L' (R?), for each 2 € R?; furthermore, we have

n(-|lz)  w(|x) dX

N

) dh w(fa) %)
Again, leaning on Assumption [3T]and the Holder inequality, we deduce that
. . d\
e 3] = s PR @
< s [Pl 2 [ra
: 1
< s [Tl
<= 35)

where the final inequality held under the assumption that # also satisfies Assumption 31} Impor-
tantly, we emphasize that the right-hand side of (33)) held independently of x € R? (“which we are
conditioning on”). A nearly identical estimate holds for the corresponding lower-bound. Therefore,
we may apply Theorem 1) to deduce that: there exists a constant C' > 0 (independant
of z € R and depending only on the quantities % and %; thus only on &, A) such that: for each
r € R?

KL (7 (-|z),7(-|z)) < Cdpy (n(-|x), 7(-|x)). (36)

The conclusion now follows, since the right-hand side of @ was controllable by the first statement;
i.e. since (32) held we have

KL (n(-[x), #(:|z)) < Cdpy (n(-|z),#(|x)) < Ce. 37)
A nearly identical derivation shows that
KL (7(:|z), 7(-|z)) < Ce. (38)
Combining (37) and (38) yields the following bound
max KLgym (7(-|2), 7 (-|z)) € O(e). (39)

Since KL(u|lv) < KLgym(p,v) for every pair of Borel probability measures p and v on R?
then (39) implies (33). O

C.3 GRADIENT OF OUR LOSS FOR ENERGY-BASED MODELING

Proof of Proposition[A.1] Direct differentiation of (I2)) gives:

ﬁ _ -1 Q 0 _ 1 2 0 ﬁ o
6‘9£<9)_E g [890 (ac7y)} € Eyny [aef W) | + Egnrx 50 log Z%(z)| . (40)
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Referring to equation (T3] for the normalization constant, the last term can be expressed as follows:

1 9 (0 _Ca% 0 760177
Z@(x)/yag(f ) — v)) exp(f ) = < y))dyl

E'JfNTr;

e Egron: /y %(fe(y) —(z,y)) {Zgl(x) exp (fg(y)ce(xy)> } dy

€
w0 (y|z)
From equation above we obtain:
9 _ 1 9 o 9 o
0
B By (y10) {%(f"(w ce(w,y))} } (42)
which concludes the proof. O
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