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Abstract

Test-time adaptation aims to adapt a well-trained
model using test data only, without accessing
training data. It is a crucial topic in machine
learning, enabling a wide range of applications
in the real world, especially when it comes to
data privacy. While existing works on test-time
adaptation primarily focus on Euclidean data,
research on non-Euclidean graph data remains
scarce. Prevalent graph neural network meth-
ods could encounter serious performance degra-
dation in the face of test-time domain shifts. In
this work, we propose a novel method named
Adaptive Subgraph-based SElection and Regular-
ized Prototype SuperviSion (ASSESS) for reli-
able test-time adaptation on graphs. Specifically,
to achieve flexible selection of reliable test graphs,
ASSESS adopts an adaptive selection strategy
based on fine-grained individual-level subgraph
mutual information. Moreover, to utilize the in-
formation from both training and test graphs, AS-
SESS constructs semantic prototypes from the
well-trained model as prior knowledge from the
unknown training graphs and optimizes the pos-
terior given the unlabeled test graphs. We also
provide a theoretical analysis of the proposed al-
gorithm. Extensive experiments verify the effec-
tiveness of ASSESS against various baselines.
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1. Introduction
Learning from non-Euclidean graph-structured data has re-
cently received increasing attention, with a wide range of
applications in knowledge graph representation learning
(Chen et al., 2020; Xu et al., 2020), social network analysis
(Fan et al., 2020; Singh et al., 2024), molecular property
prediction (Godwin et al., 2021; Cai et al., 2022; Stärk et al.,
2022), novel drug discovery (Jiang et al., 2021; Bongini
et al., 2021), and traffic flow forecasting (Zhao et al., 2023;
Ju et al., 2024b). Graph neural networks (GNNs) (Kipf
& Welling, 2017; Hamilton et al., 2017; Veličković et al.,
2018) have achieved promising performance on learning rep-
resentations on graph-structured data via message passing.
Subsequently, graph-level features are obtained by pooling
operations, enabling a plethora of downstream tasks.

Despite their superior performance, GNNs mostly assume
that test graphs come from the same distribution as training
graphs, which is often violated in real-world scenarios (Gui
et al., 2022). Distribution shifts during test time are often
inevitable, and some prior works (Wu et al., 2020; Zhang
et al., 2021b; Yin et al., 2022; Liu et al., 2024) investigate
the problem of unsupervised graph domain adaptation that
attempt to transfer the knowledge from the labeled training
graphs to unlabeled test graphs via domain discrepancy min-
imization. However, these methods typically require labeled
source graphs to perform domain alignment, which is of-
ten impractical when facing data privacy issues (Tan et al.,
2023). It is a common practice for institutions to disclose
their pretrained models for downstream tasks, while keeping
the training dataset private. Towards this end, this paper
investigates a more realistic yet under-explored problem
of test-time adaptation on graphs, which aims to adapt the
off-the-shelf well-trained model using test-time data only,
without accessing training data.

Previously, several solutions have been proposed to tackle
the problem of test-time adaptation (Sun et al., 2020b; Liang
et al., 2020; Nado et al., 2020; Gao et al., 2023; Litrico et al.,
2023; Karmanov et al., 2024). These methods often adopt
self-training with pseudo-labels or use data-centric meth-
ods on the test data. However, these works focus mainly
on Euclidean data, while research on non-Euclidean graph-
structured data remains scarce. Specifically, test-time adap-
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tation on graphs faces two important challenges: (1) How
to overcome the label scarcity of test graphs more reliably
in the face of structural shifts? As the adaptation of the
model is performed during test time, the labels of graphs are
unknown. Existing methods (Liang et al., 2020; Wang et al.,
2020a) often utilize pseudo labels or entropy minimization
for supervision. However, the shift on both node attributes
and graph structures would deteriorate the performance of
GNNs (Bao et al., 2025), making the model’s prediction
unreliable and pseudo labels noisy. (2) How to utilize the
knowledge from unknown training graphs and the informa-
tion from unlabeled test graphs more effectively? Adapting
the model during test time faces a dilemma: when the model
flexibly adapts to self-training signals, it may easily overfit
and lose the knowledge learned from the unknown training
graphs. On the other hand, when the model is not flexible
enough, it may not fully utilize the information from the
unlabeled test graphs.

To tackle these two challenges, this paper proposes a novel
method named Adaptive Subgraph-based SElection and
Regularized Prototype SuperviSion (ASSESS) for test-time
adaptation on graphs. The idea behind ASSESS is to first
select reliable test graphs and then use them for effective
self-supervised learning balancing prior knowledge from
unknown training graphs and posterior information from
unlabeled test graphs. More specifically, to achieve reliable
test graph selection, we adopt a fine-grained, individual-
level and graph-specific selection strategy named Adaptive
Subgraph-based Selection (ASBS) that considers both the
model’s confidence and individual-level subgraph structure
information. Prior works (Xu et al., 2021; Zhang et al.,
2021a; Guo & Li, 2022) typically select confident test data
using a single threshold or class-wise thresholds. In con-
trast, we propose a more fine-grained selection strategy that
utilizes the mutual information between subgraphs and orig-
inal graphs to construct individual-level and structure-aware
thresholds. This allows us to flexibly differentiate hard test-
ing samples whose inherent graph structures are difficult
for the model to classify. Thus, reliable test graphs can be
selected and used for self-supervised learning.

Moreover, to achieve effective self-training that preserves
the prior knowledge from the unknown training graphs and
adapts to the unlabeled test graphs, we propose a novel
method called Regularized Prototype Supervision (RPS).
Concretely, we construct semantic prototypes of each class
according to the well-trained model and use them as prior
knowledge from the unknown training graphs. Then, we
optimize the posterior of the prototypes given the unlabeled
test graphs. The maximum a posteriori objective is then
approximated by a self-supervised objective with regular-
ization of the prototypes. This leads to a trade-off between
fully utilizing the information of unlabeled testing graphs
and retaining the knowledge of unknown training graphs.

While the idea of prototype adjustment has been used in pre-
vious literature (Iwasawa & Matsuo, 2021), we formulate
this from the theoretical foundation of Bayesian theory.

The contribution of this paper is summarized as follows. (1)
We explore a practical yet under-explored problem of test-
time adaptation on graphs, which aims to adapt the model
with unlabeled test graphs without accessing training data.
(2) We propose ASSESS that introduces adaptive subgraph-
based selection (ASBS) for choosing reliable test graphs,
and regularized prototype supervision (RPS) for balancing
the prior knowledge from unknown training graphs and the
information of unlabeled test graphs. (3) We provide theo-
retical analysis of the proposed ASSESS. (4) We perform
extensive experiments to show that ASSESS outperforms
state-of-the-art baselines, confirming its effectiveness.

2. Related Works
Graph Neural Networks. Graph neural networks (GNNs)
(Kipf & Welling, 2017; Hamilton et al., 2017; Chen et al.,
2018) is a powerful tool for learning representations of
graph structured data, with a wide range of applications in
recommendation (Wang et al., 2020b; Chang et al., 2021),
social network analysis (Yoo et al., 2022), molecule property
prediction (Lu et al., 2019; Kim et al., 2023), and traffic flow
forecasting (Zhao et al., 2023; 2024). The mainstream of
GNNs is message passing neural networks that aggregate the
neighborhood information to form representations of each
node (Ju et al., 2024a). Subsequently, the feature vectors
of nodes are aggregated using various pooling techniques
(Zhang et al., 2019; Bianchi et al., 2020) to form graph-
level representations. Despite their superior performance,
they usually assume that the same distribution is shared
across the training graphs and test graphs (Li et al., 2019;
Zhao et al., 2025b), which fails to hold in various real-
world scenarios (Shi et al., 2023; Dai et al., 2022). When
distribution shifts become inevitable among test graphs,
test-time adaptation emerges as a viable tool for adapting
the model to the test graphs. Therefore, in this work, we
investigate the problem of test-time adaptation on graphs
and propose a novel method named ASSESS to solve this
important problem.

Test-time Adaptation. Test-time adaptation (Chen et al.,
2022; Zhang et al., 2022; Karmanov et al., 2024; Zhang
et al., 2024; Zhao et al., 2025a), sometimes referred to as
source-free domain adaptation (Kundu et al., 2020; Liu et al.,
2021; Yang et al., 2021), has received increasing attention
due to its ability to adapt to test data distributions without
accessing the training data. This is a more realistic set-
ting since training data is not always available, considering
data privacy issues (Wang et al., 2020a; Tan et al., 2023).
Most existing methods of test-time adaptation roughly fall
into one of the two categories, i.e. self-training and data-
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Figure 1. The overall framework of the proposed method. We first select reliable test graphs in the unlabeled test graph dataset using
adaptive subgraph-based selection (ASBS), where we utilize mutual information to generate structure-aware, individual-level thresholds.
Subsequently, we utilize these graphs for self-training with regularized prototype supervision (RPS), where the prototypes are regularized
by prior knowledge and used for supervising the learned embedding of test graphs.

centric approaches. Self-training approaches (Sun et al.,
2020b; Liang et al., 2020; Chen et al., 2022) aim to con-
struct self-supervising signals via contrastive learning or
pseudo-labeling. These methods often involve selecting
reliable data for efficient self-training. By comparison, data-
centric methods (Mocerino et al., 2021; Zhang et al., 2022;
Tomar et al., 2023) aim to construct virtual samples related
to the test distribution as data augmentation. In spite of
their effectiveness in Euclidean data, test-time adaptation is
still under-explored in non-Euclidean graph-structured data.
Therefore, in this paper, we focus on test-time adaptation on
graphs and propose ASSESS that adaptively selects reliable
test graphs based on subgraph mutual information and uses
them for effective self-training.

3. Methodology
Problem Formulation. We denote a graph as G =
(V,A,X), where V is the set of nodes, A ∈ R|V |×|V | is the
adjacency matrix, and X ∈ R|V |×df

is the node attribute
matrix with df as the number of attributes. We denote
labeled training graph dataset as Dtr = {(Gtr

i , ytri )}Ntr
i=1

where Gtr
i is the i-th training graph, ytri is its label and Ntr

is the number of training graphs. The unlabeled test graph
dataset is Dte = {Gte

j }
Nte
j=1 where Gte

j denotes the jth test

graph, and Nte is the number of test graphs. The label set is
{1, 2, ..., C}. In test-time adaptation, the model is initially
trained with labeled training (source) data Dtr, and then
adapted to the test (target) data Dte under distribution shifts,
without access to Dtr. We denote the GNN backbone and
the following MLP as fθ, and the graph features are gener-
ated as zG = fθ(G). Then, class probabilities are generated
as pG = softmax(W TzG). The entire model is denoted
asM, i.e. pG =M(G).

Overview. During test-time adaptation, the model first
selects reliable test graphs based on the model’s ability
to handle the inherent structure of test data. To achieve
this, we propose adaptive subgraph-based selection that
utilizes mutual information of subgraph structures and
the entire graph to measure this ability. Then the confi-
dence threshold for each graph is adjusted accordingly for
fine-grained, individual-level, and structure-aware selection.
Subsequently, we adopt self-training supervised by regular-
ized prototypes balancing prior knowledge from unknown
training graphs and the posterior information from unlabeled
test graphs. The selection-supervision process is performed
iteratively. The overall framework is illustrated in Figure
1. The upper part displays the adaptive subgraph-based se-
lection (ASBS), while the lower part shows the regularized
prototype supervision (RPS).
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3.1. Adaptive Subgraph-based Selection

Adapting the model during test time often involves self-
training on unlabeled test data, in which the output predic-
tion of the model is often used to construct self-supervising
signals. However, as the model inevitably yields inaccu-
rate predictions, it is crucial to carefully select reliable data,
which can promise the success of these self-training ap-
proaches, especially for graph data that involves complex
structures. Existing methods (Xu et al., 2021; Zhang et al.,
2021a; Guo & Li, 2022) often adopt a shared threshold or
class-wise thresholds to select data , i.e.

sGconf = max
i∈{1,··· ,C}

pGi , Dconf = {G ∈ Dte|sGconf > τ},

(1)
where sGconf is the confidence score of graph G, pGi is the
predicted probability of graph G belonging to class i, and τ
is the threshold, which can be a shared threshold τ = τ0 or
class-wise threshold τ = τ c.

However, this simple strategy can be problematic, as the
model can be inaccurate in exploring the unlabeled test data,
especially when it comes to graphs with complex inherent
structures. Therefore, it is reasonable to use different se-
lection thresholds for graph structures with different levels
of complexity. Graphs with complex structures are hard
to learn for the model, and the model tends to be inaccu-
rate. Thus, a higher threshold should be used, and vice
versa. Towards this end, we propose an adaptive selection
strategy that considers both the model’s confidence and
the model’s ability to handle the inherent structures of the
graph. Specifically, instead of a shared threshold, we adopt
a graph-specific, individual-level threshold, i.e.

τG = τ0 + δ(G, fθ), (2)

where τG is the confidence threshold for graph G, τ0 is
the base threshold, and δ(G, fθ) is the correction function
taking into account the model’s ability to yield an accurate
prediction from G.

In order to measure this ability, we propose to use mutual
information (MI) between graph G and its subgraph G̃ =
(Vidx,Aidx,idx,Xidx,:). The idx is the randomly selected
subgraph indices, which is a simple yet effective strategy. A
high MI between a graph and its subgraphs indicates that
the graph representation encodes information shared across
its subgraphs. In other words, the encoder is able to handle
the inherent structure of this graph. Once the subgraph
G̃ is obtained, we approximate the MI between G and its
subgraph G̃ as follows, using Jensen-Shannon MI estimator
(Sun et al., 2020a),

Iθ,ϕ(G; G̃) = −EG∼Dte [sp(−gϕ(fθ(G), fθ(G̃))]

−EG∼Dte,G′∼Dte [sp(gϕ(fθ(G
′), fθ(G̃)],

(3)

where gϕ is the discriminator instantiated with a multi-layer
perceptron, and sp(x) = log(1+ex) is the softplus function.
The estimated mutual information Îθ,ϕ(G; G̃) is then used
for calculating the threshold correction function as follows,

δ(G, fθ) = −ωÎθ,ϕ(G; G̃), (4)

where ω is a hyperparameter balancing the relative impor-
tance of mutual information in the threshold.

Moreover, as accurate and stable estimation of mutual infor-
mation requires sampling a number of graphs from the test
graphs Dte, which can be computationally expensive, we
adopt the temporal ensembling technique (Hao et al., 2015;
Laine & Aila, 2016) that gradually updates the threshold
correction function as follows,

δ(t)(G, fθ) = ω

t−1∑
i=0

β(1− β)iÎ
(t−i)
θ,ϕ (G; G̃), (5)

where δ(t)(G, fθ) is the threshold correction at epoch t,
Î
(t)
θ,ϕ(G; G̃) is the estimated mutual information at epoch
t, and β is the parameter controlling the speed of updates,
which is set to 0.2. The above formula can be computed re-
cursively, similar to the exponential moving average, which
leads to a stable estimation of mutual information. With
this, reliable test graphs can be selected as follows:

D(t)
ASBS = {G ∈ Dte|sGconf > τG = τ0 + δ(t)(G, fθ)}.

(6)

3.2. Regularized Prototype Supervision

Once reliable test graphs are selected, self-training can be
subsequently performed. While previous methods directly
fine-tune the model’s parameters on the test data using self-
supervising signals (e.g. pseudo labels, entropy minimiza-
tion), it can drastically change the model and overfit the
self-training objectives. Self-training faces a trade-off be-
tween preserving prior knowledge of the unknown train-
ing graphs and the posterior information of unlabeled test
graphs. Liang et al. (Liang et al., 2020) freeze the classifier
head of the model so as to avoid forgetting prior knowledge.
In this subsection, we propose a more flexible alternative
that combines prior knowledge and posterior information.

Specifically, we first construct semantic prototypes of each
class as ri and initialize them with the weight matrix of the
last layer of the model, i.e. ri = wi. We denote the stacked
prototypes as R = [r1, r2, · · · , rC ] ∈ Rd×C , where d is
the dimension of prototypes. The goal is to optimize the
prototypes given the information about the test graphs. This
objective can be written as:

R∗ = argmax
R

log p(R|G), G ∈ D(t)
ASBS . (7)
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Using the Bayes rule, this objective can be further decom-
posed into prior and likelihood, which is

log p(R|G) = log p(R) + log p(G|R) + C0, (8)

where C0 is a constant. For the first term, we assume that
the prototypes R follow isotropic Gaussian distribution, i.e.
R ∼ N (R;W , σ2

pI), where the mean is set to the initial
values of the prototypes, and σ2

p is the shared variance of
the prototypes. Under this assumption, the prior knowledge
constraint of the prototypes can be written as:

log p(R) = log
( 1√

(2πσ2
p)

d
exp

(
− 1

2σ2
p

||R−W ||22
))

= C1||R−W ||22 + C2,
(9)

where C1 and C2 are constants.

For the second term, we transform it into a self-supervised
objective. Inspired by the mixture models (McLachlan &
Basford, 1988; Reynolds et al., 2009), we have:

log p(G|R) = log p(G|{ri}Ci=1) = log

C∑
i=1

q(G, i)p(G|ri)

≥
C∑
i=1

q(G, i) log p(G|ri)

(10)
where q(G, i) denotes the assignment of graph G belonging
to prototype ri, and the inequality comes from Jensen’s
inequality. Thus, we have a lower bound for the likeli-
hood. For the estimation of q(G, i), a common approach
is to compute the similarity between the representation
of the graph zG and the prototypes ri. Denoting qG =
[q(G, 1), q(G, 2), · · · q(G,C)]T , this simple objective can
be written as

argmin
qG

⟨qG,RTzG⟩, s.t.⟨qG,1C⟩ = 1, (11)

where ⟨·, ·⟩ denotes inner product measuring the similarity,
and 1C ∈ RC is an all-one vector. However, this simple ob-
jective can result in unbalanced estimation, where the num-
ber of assignments to some classes is substantially larger
than others. To solve this problem, another constraint is
needed. Concretely, given a set of graphs G1, G2, · · · , GN ,
where N is the number of graphs, we hope to achieve a
balanced assignment, which can be written as

argmin
Q

tr(QTRTZ), s.t.Q1N =
N

C
1C , Q

T1C = 1N ,

(12)
where Q = [qG1 , qG2 , · · · , qGN ] ∈ RC×N is the stacked
assignments, and Z = [zG1 , zG2 , · · · , zGN ] ∈ Rd×N is
the stacked graph representations. Solving this problem,

however, requires solving a large linear program (Genevay
et al., 2019), and a common workaround is to add entropy
regularization that encourages the diversity of assignment.
A Lagrangian objective can be written as follows

E = tr(QTRTZ) + ϵH(Q) + ⟨a,Q1N −
N

C
1C⟩

+⟨b,QT1C − 1N ⟩,
(13)

where E is the objective to be minimized, ϵ is the tem-
perature parameters controlling the degree of regular-
ization, a and b are Lagrangian multipliers, H(Q) =
−
∑

i,j Qi,j(logQi,j−1) is the entropy regularization. We
take the derivative with respect to Qi,j , which gives the
following result:

∂E
∂Qi,j

= [RTZ]i,j − ϵ logQi,j + ai + bj . (14)

Therefore, the closed-form solution can be written as:

Q∗ = diag
(
exp

(a
ϵ

))
exp

(
RTZ

ϵ

)
diag

(
exp

(
b

ϵ

))
.

(15)
In practice, we utilize the iterative Sinkhorn-Knopp algo-
rithm (Asano et al., 2019; Caron et al., 2020; Zheng et al.,
2021) to solve this problem (more details in Appendix B).
Specifically, repeated row normalization and column nor-
malization are conducted on exp

(
RTZ

ϵ

)
, and the algorithm

converges quickly. Previous studies (Genevay et al., 2019;
Luo et al., 2023) indicate satisfactory performance within 3
iterations, and the soft assignment of the entropy is benefi-
cial.

Then, we provide an estimation of p(G|ri). Although this
probability takes the form of generative modeling, actually
training a generative model can be costly, and when fac-
ing insufficient data, it can be inaccurate. Therefore, we
estimate this term in the latent space using the feature ex-
tractor fθ with isotropic Gaussian distribution, which is
p(G|ri) ∝ exp

(
− 1

2σ2
z
||fθ(G)− ri||22

)
, where σ2

z is the
shared variance of the latent features. Combining the two
terms, the loss function can be written as

LRPS =

C∑
i=1

q(G, i)||fθ(G)−ri||22+α1||R−W ||22, (16)

where q(G, i) is obtained via the Sinkhorn-Knopp iterations
within a batch of graphs, and α1 is the hyperparameter bal-
ancing the two terms. The first term serves as a self-training
objective utilizing the posterior information from the unla-
beled data, whereas the second term serves as regularization
from the prior knowledge of the unknown training graphs.
As the prototypes ri (with their matrix form R) are used to
provide supervision signals in the self-training and regular-
ized by the prior knowledge, we call this method regularized
prototype supervision.
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Algorithm 1 Optimization Algorithm of ASSESS
Input: The well-trained GNN-based model on the training
graphsM(0)(·), test graphs Dte,
Output: GNN-based model after T epochsM(T )(·)

1: Initialize the prototypes R←W ;
2: Initialize the reliable test graph set D(0)

ASBS = Dconf

using Eq. 1;
3: for i = 1, 2, · · · , T do
4: for each batch do
5: Sample a mini-batch of target graphs;
6: Calculate LRPS using Eq. 16 over D(i)

ASBS ;
7: Calculate LMI using Eq. 3 over Dte;
8: Calculate the loss objective using Eq. 17;
9: Update parameters of M(i) through back-

propagation;
10: end for
11: Update the threshold correction function using Eq. 5;
12: Obtain reliable graphs D(i+1)

ASBS using Eq. 6;
13: end for

3.3. Summarization

The algorithm is performed iteratively. In each iteration,
we first adopt adaptive subgraph-based selection to obtain
reliable test graph set D(t)

ASBS . Subsequently, regularized
prototype supervision training is performed on the reliable
graphs. The two steps are performed iteratively. As accu-
rate estimations of mutual information require optimized
parameters θ, ϕ, we also put the mutual information as part
of the objective, and the final loss is:

L = LRPS + α2LMI , (17)

where α2 is the hyperparameter balancing the two terms
and LMI = −Iθ,ϕ(G; G̃) is the objective of optimizing
the mutual information. The first term LRPS is calculated
with the reliable graphs D(t)

ASBS , while the second term is
calculated with the entire test graph set Dte to encourage
participation from graphs that are initially regarded as un-
reliable. Moreover, we also adopt a curriculum learning
strategy that gradually increase τ0, since we want more
participation during the initial stages of adaptation to fully
utilize unlabeled test graphs and more reliability when the
adaptation proceeds to avoid noisy signals. The learning
algorithm is summarized in Algorithm 1. To demonstrate
the efficiency of the proposed algorithm, we provide a com-
prehensive time complexity analysis (which shows that the
proposed algorithm has the same time complexity as most
GNNs) and running time information in Appendix C.

3.4. Theoretical Analysis

In this subsection, we aim to provide a detailed theoretical
analysis of our proposed ASSESS method. For simplicity,

we extract the pivotal elements of the ASSESS algorithm
and make them more math-friendly. We start by defining
ξ as the data pair, namely, ξ ≜ (G, y) where the symbol G
is an input graph and y represents the corresponding label
of G. The training graph set Dtr is supposed to follow an
underlying distribution P . The objective of our ASSESS
algorithm is to reduce the expected loss function L(w) as
much as possible, that is to say, we hope to solve the follow-
ing stochastic optimization:

min
w
L(w) := Eξ∼P [l(w; ξ)], (18)

where ξ ∼ P denotes the graph-label tuple ξ ≜ (G, y)
comes from the distribution P , w represents the model pa-
rameters and l(w; ξ) is the loss objective associated with the
data pair ξ. For the test pair from the unlabeled graphs Dte,
we assume it originates from a mixture of two distributions
P (with a probability of q) and Q (with 1 − q). Formally,
for any test pair ξ = (G, y), ξ ∼ qP + (1− q)Q. The class
y in test pair ξ can be considered as a pseudo label gener-
ated by the pretrained model. To distinguish the former two
distributions, we adopt the Tsybakov noisy condition:

Assumption 1 (Tsybakov Condition (Tsybakov, 2004)).
For any model parameter w, if the expected loss L(w) is
less than a threshold “a”, the following inequality holds:

Eξ∼Q[I{ξ:l(w;ξ)≤bL(w)}(ξ)] ≤ Lm(w), (19)

where the symbol IS(ξ) stands for the standard indicator
function that equals 1 if ξ ∈ S and 0 otherwise, b is a
positive scaling constant and m ≥ 1 is a fixed constant.

Next, we make some frequently used assumptions about the
smoothness and boundedness of (stochastic) gradient, i.e.,

Assumption 2 (Boundedness). The stochastic gradient
∇l(w; ξ) is bounded, i.e., ∥∇l(w; ξ)∥ ≤ G where the sym-
bol ∥ · ∥ denotes the Euclidean distance.

Assumption 3 (Smoothness). L(w) is smooth with an L-
Lipchitz continuous gradient, i.e., L(w) is differentiable and
there exists a positive constant L such that

|∇L(w)−∇L(u)| ≤ L∥w− u∥. (20)

Assumption 4 (Polyak-Łojasiewicz condition (Polyak,
1963)). There exists a constant µ > 0 such that

2µ
(
L(w)− L(w∗)

)
≤ ∥∇L(w)∥2,

where w∗ is a optimal solution of problem minw L(w).

The Polyak-Łojasiewicz(PL) condition has garnered atten-
tion in deep learning research. Particularly, (Allen-Zhu et al.,
2019) offers theoretical proof of its ability to guarantee lin-
ear convergence of gradient-based methods in non-convex
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Table 1. The classification accuracy (in %, training → test) on FRANKENSTEIN (F0, F1, F2) and Mutangenicity (M0, M1, M2).

Methods FRANKENSTEIN Mutangenicity

F0→F1 F0→F2 F1→F0 F1→F2 F2→F0 F2→F1 AVG M0→M1 M0→M2 M1→M0 M1→M2 M2→M0 M2→M1 AVG

GCN 58.5±0.6 52.2±0.8 56.2±0.7 55.6±2.0 54.2±2.3 55.8±1.8 55.4±1.4 72.7±1.3 59.2±1.2 74.3±0.2 70.7±1.8 66.3±2.4 72.4±1.3 69.3±1.4

GraphSAGE 61.3±1.8 56.5±0.6 58.0±1.9 56.7±2.9 55.2±1.8 58.8±1.5 57.7±1.7 74.6±1.6 58.0±1.6 75.4±1.6 66.4±0.8 63.8±4.0 72.8±5.9 68.5±2.6

GIN 61.7±1.4 54.1±1.5 57.7±1.3 58.1±1.2 56.2±1.4 60.1±4.6 58.0±1.9 75.1±3.2 59.7±0.8 74.9±1.1 67.6±1.1 65.3±2.8 70.8±1.4 68.9±1.7
GAT 58.1±2.1 51.3±1.5 58.0±2.2 57.0±1.6 53.2±1.4 58.1±2.5 56.0±1.9 73.1±0.3 59.2±1.7 73.6±2.0 67.1±2.3 59.3±1.8 70.6±2.0 67.1±1.7
MeanTeacher 61.2±1.0 58.1±1.7 58.7±0.6 59.6±2.9 55.7±1.4 54.0±1.9 57.9±1.6 67.9±4.0 61.0±4.1 71.5±4.3 68.1±2.4 70.7±1.6 74.8±1.2 69.0±2.9
GraphCL 60.6±1.7 56.5±1.3 54.7±3.0 57.0±1.8 53.7±2.5 60.9±2.2 57.2±2.1 70.9±4.3 64.0±1.3 66.7±5.7 71.5±1.1 65.4±2.9 73.4±4.0 68.6±3.2
SHOT 60.4±1.7 59.7±2.3 55.6±0.9 57.2±1.8 55.7±1.9 59.1±2.5 58.0±1.8 74.4±1.5 60.7±2.8 72.0±2.4 63.0±4.0 69.2±2.3 72.0±4.1 68.6±2.8
TAST 62.6±1.3 55.4±0.7 52.9±5.9 52.9±3.7 57.0±1.8 59.4±3.0 56.7±2.8 74.2±3.2 59.7±0.4 73.4±0.5 68.5±2.0 70.6±0.8 77.2±0.5 70.6±1.2
RNA 62.4±0.9 55.5±1.3 59.1±1.6 59.1±8.1 57.8±0.3 60.4±2.4 59.0±2.4 71.9±1.7 58.8±4.9 72.3±2.0 67.5±1.7 61.6±4.4 73.2±0.3 67.6±1.8

Ours 64.1±1.4 56.1±1.9 59.2±1.0 61.4±2.1 59.3±1.3 61.8±3.9 60.3±1.9 78.9±1.6 63.1±1.6 77.0±1.6 72.5±2.0 68.7±1.3 80.9±0.9 73.5±1.5

optimization. Moreover, (Yuan et al., 2019) have also fur-
nished empirical evidence of the PL condition’s presence
during the training of deep neural networks.

The above assumptions are common in machine learning
(Akhavan et al., 2024; Yuan et al., 2019; Allen-Zhu et al.,
2019). With these standard assumptions of the loss function,
we now show the convergence for ASSESS. Prior to that, let
us present a more detailed characterization of the algorithm:
i) At each epoch t ∈ {1, 2, . . . , T}, we suppose the total
size of the sampled target graphs is nt = n1γ

t−1 and we
also use Dte

t to denote the set of considered test graphs at t;
ii) The loss function L incorporates the mutual information
for subgraph selection, as detailed in Section 3.3. Thus, we
can, approximate the graph selection strategy as follows:

D(t)
ASBS ≈ {G ∈ D

te|l(w; ξ(G)) ≤ ρt, ξ(G) = (G, y)},
(21)

where ρt is the dynamic threshold and y is the pseudo label
of the test graph G; iii) At each iteration t ∈ {1, 2, . . . , T},
we assume the model wt is updated via the stochastic gradi-
ent descent (SGD), i.e., wt+1 = wt−ηgt where η > 0 is the
step size and gt is the average gradient over all reliable and
considered graphs. With these detailed characterizations
and assumptions, we have the following theorem:

Theorem 3.1 (Proofs are deferred to Appendix A). Under
Assumption 1-4, if we suppose L(w∗) = 0 and l(w; ξ) ∈
[0, 1] for any parameter w and data pair ξ, when L(w1) ≤
a, ρt ∈ [cL(wt), bL(wt)], nt = n1γ

t−1 and ηL ≤ 1 where

γ > 1 and n1 =
⌈
max

(
log(2/δ)

2q2 , log(2/δ)
2(1−q)2 ,

log(2/δ)
q(1−c−1)2

)⌉
for any δ ∈ (0, 1), c ∈ (0, b), we can show that the final
model parameter wT+1 produced by our ASSESS algorithm
satisfies that, with a probability 1− (4T + 1)δ, δ ∈ (0, 1),

L(wT+1) = O
(
γ−T

)
. (22)

Remark 3.2. Theorem 3.1 provides a theoretical valida-
tion that when the pretrained model w1 satisfies a certain
generalization property, such as L(w1) ≤ a, if we can con-
tinuously adjust the batch size (e.g. nt = n1γ

t−1) and
efficiently select the high-quality test graphs (e.g. the dy-
namic threshold ρt is within the range [cL(wt), bL(wt)]),

our ASSESS algorithm can progressively reduce the loss to
adapt to the test-time distribution shifts. More specifically,
after O(

log( 1
ϵ )

log(γ) ) iterations, our ASSESS algorithm is capable
of attaining an ϵ optimization error.
Remark 3.3. It is important to emphasize that the proof of
Theorem 3.1 primarily draws from Theorem 1 presented in
(Xu et al., 2021). However, in sharp contrast with Theorem
1 of (Xu et al., 2021), our Theorem 3.1 incorporates a more
precise Tsybakov condition and a threshold range assump-
tion of ρt ∈ [cL(wt), bL(wt)], which enables it to cover a
broader range of application scenarios. Furthermore, the re-
fined Tsybakov condition and the specified range of ρt allow
us to better adapt to probabilistic inequalities in different
directions, e.g., Eq.(25) and Eq.(28) in Appendix A.

4. Experiment
4.1. Experimental Settings

Datasets. We perform experiments on a number of real-
world datasets with the test-time adaptation setting. Con-
cretely, we choose five representative datasets, including
FRANKENSTEIN (Orsini et al., 2015), Mutangenicity
(Kazius et al., 2005), PROTEINS (Borgwardt et al., 2005),
NCI1 (Wale et al., 2008), and IMDB-BINARY (Yanardag
& Vishwanathan, 2015). The datasets are split into three
subsets according to graph density, leading to distribution
shifts across splits. The datasets cover a wide range of
fields, including chemistry, biology, and social networks.
We evaluate our methods under the offline test-time adap-
tation setting (Wang et al., 2022), where all test inputs are
available for adaptation. More details about the datasets are
shown in Appendix D.

Compared Baselines. We compare our method with a
wide range of baselines listed as follows: (a) Graph neural
networks, including GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), GIN (Xu et al., 2019), and
GAT (Veličković et al., 2018). (b) Unsupervised / Semi-
supervised training methods, including Mean-Teacher (Tar-
vainen & Valpola, 2017) and GraphCL (You et al., 2020). (c)
Test-time adaptation methods, including SHOT (Liang et al.,
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Table 2. The classification accuracy (in %, training → test) on PROTEINS (P0, P1, P2) and NCI1 (N0, N1, N2).

Methods PROTEINS NCI1

P0→P1 P0→P2 P1→P0 P1→P2 P2→P0 P2→P1 AVG N0→N1 N0→N2 N1→N0 N1→N2 N2→N0 N2→N1 AVG

GCN 57.0±4.8 41.9±0.7 64.8±2.0 54.7±3.3 62.5±1.3 61.7±3.5 57.1±2.6 70.1±3.1 54.8±1.3 52.6±2.0 56.3±1.9 50.1±3.3 63.0±1.5 57.8±2.2
GraphSAGE 53.9±5.3 41.5±0.5 70.3±3.2 57.3±1.9 69.0±0.9 62.1±2.1 59.0±2.3 69.2±1.0 55.8±0.8 51.2±1.2 59.5±2.7 48.8±0.8 61.6±3.7 57.7±1.7
GIN 58.9±1.1 41.7±0.6 64.2±1.9 53.1±2.2 59.2±0.7 68.2±2.4 57.6±1.5 73.0±2.5 56.9±1.5 55.6±4.7 59.1±2.2 50.3±0.9 64.5±1.9 59.9±2.3
GAT 63.2±4.3 41.5±0.5 77.1±2.9 63.8±4.1 64.4±2.9 61.0±1.8 61.8±2.8 70.5±6.9 55.6±0.4 51.9±1.4 57.4±1.9 50.7±1.2 63.9±2.9 58.3±2.5
MeanTeacher 72.0±7.2 65.3±5.2 70.5±2.8 66.5±7.3 73.3±5.1 67.2±2.6 69.1±5.0 71.5±8.6 61.9±3.7 64.7±10.5 75.4±2.5 59.4±12.3 66.1±1.5 66.5±6.5
GraphCL 79.2±6.0 73.7±6.4 75.2±5.2 73.9±4.1 73.5±5.1 77.0±7.4 75.4±5.7 76.2±3.3 67.6±1.3 69.0±1.1 77.3±1.5 66.2±3.2 73.1±3.2 71.6±2.3
SHOT 68.2±5.4 62.9±4.2 71.6±4.2 65.9±7.0 67.8±6.0 68.8±7.0 67.5±5.6 64.4±4.4 56.6±2.6 73.9±1.1 65.5±3.4 69.6±2.7 64.0±2.8 65.7±2.8
TAST 68.9±7.5 41.9±1.0 75.1±2.2 62.1±2.6 63.8±2.5 61.9±1.6 62.3±2.9 72.2±5.1 56.5±0.8 55.2±2.0 57.7±2.3 48.9±0.7 66.0±3.7 59.4±2.4
RNA 61.8±9.1 65.8±4.1 79.1±2.3 71.1±9.1 74.2±3.1 69.3±1.9 70.2±4.9 72.0±1.8 61.3±4.7 76.4±3.7 72.4±1.1 65.7±4.4 74.9±0.5 70.5±2.7

Ours 81.9±3.7 74.7±4.1 86.7±1.7 77.3±2.8 82.4±4.0 70.4±6.6 78.9±3.8 79.6±2.1 69.1±2.5 81.9±2.0 78.5±1.1 73.4±2.0 70.3±1.1 75.5±1.8

Table 3. The classification results (in %, training → test) on IMDB-
BINARY (I0, I1, I2).

Methods I0→I1 I0→I2 I1→I0 I1→I2 I2→I0 I2→I1 AVG

GCN 78.5±2.0 66.0±2.9 60.6±1.8 62.4±1.7 55.2±1.3 57.0±3.3 63.3±2.2

GraphSAGE 78.2±1.8 60.6±4.1 58.5±3.2 63.9±1.5 56.7±0.9 56.7±2.7 62.4±2.4

GIN 75.8±1.7 66.6±2.2 58.8±5.6 64.5±1.7 54.3±0.7 56.7±2.1 62.8±2.4

GAT 77.3±1.1 64.5±1.7 63.6±0.7 62.1±2.0 54.9±2.2 58.8±0.7 63.5±1.4

MeanTeacher 70.1±6.8 65.2±2.5 63.2±4.3 70.1±2.4 59.7±2.4 61.2±4.2 64.9±3.8

GraphCL 66.2±3.1 70.6±3.1 61.7±1.9 70.1±2.4 61.7±4.9 46.3±4.4 62.8±3.3

SHOT 68.9±5.1 66.6±4.5 65.7±3.4 67.8±6.8 61.5±7.3 60.6±9.4 65.2±6.1
TAST 80.3±2.2 65.1±3.8 58.2±2.1 64.2±1.9 57.6±0.7 58.2±2.5 63.9±2.2
RNA 64.2±3.2 67.2±4.9 59.7±3.2 69.2±2.5 61.7±3.5 68.7±3.2 65.1±3.4

Ours 82.1±3.7 66.7±3.7 63.7±1.9 63.7±1.9 69.7±3.1 61.2±3.2 67.8±2.9

2020), TAST (Jang et al., 2023) and RNA (Luo et al., 2024).
More details about the baseline methods are in Appendix E.

Implementation Details. By default, we utilize two GIN
(Xu et al., 2019) layers to learn graph representation, and
then mean pooling is applied followed by a two-layer MLP
to obtain the graph level features (i.e. zG). For the dis-
criminator gϕ, the two inputs are concatenated and pro-
cessed by a two-layer MLP to obtain a scalar-valued out-
put. τ0 is selected such that 80% of the samples are re-
garded as reliable in the first epoch and linearly decrease
so that 60% of the samples are deemed reliable. As for
hyperparameters, we set the following values by default.
ω is set to 0.1, α1 is set to 0.1, and α2 is set to 10−2.
The learning rate is set to 10−4. For optimization, we
adopt Adam optimizer (Kingma & Ba, 2014), with learn-
ing rate of 10−4. The experiments can be performed on
an NVIDIA A40 GPU. The code is publicly available at
https://github.com/YushengZhao/ASSESS.

4.2. Performance Comparison

The prediction accuracy on the test graphs is shown in Table
1, 2, and 3, from which we have the following observations:
Firstly, ASSESS achieves a consistent improvement com-
pared to all the baseline methods on average across all five
datasets, which demonstrates the overall effectiveness of
the proposed method. Secondly, the unsupervised / semi-
supervised learning methods (Tarvainen & Valpola, 2017;
You et al., 2020) are not the optimal solution. Although
they experience improvement on some datasets like PRO-
TEINS and NCI1, the performance gain on other datasets

Table 4. Ablation studies on three datasets, i.e. FRANKENSTEIN
(FRAN), Mutangenicity (MUTA), and NCI1. Average accuracy
over six settings (in %) is reported.

Experiments FRAN MUTA NCI1 AVG

w/o ASBS 59.8±2.0 72.4±1.3 73.9±1.4 68.7

w/o RPS-a 59.4±1.5 71.3±1.1 74.0±1.7 68.2

w/o RPS-b 59.4±1.2 70.6±1.5 74.1±1.8 68.0

Full Model 60.3±1.9 73.5±1.5 75.5±1.8 69.8

remains limited, which can be attributed to their lack of
consideration of test-time distribution shifts. Thirdly, test-
time adaptation methods designed for Euclidean data (Liang
et al., 2020; Jang et al., 2023) are also not very satisfactory
on graphs. Although they experience modest improvements
on some datasets, their performance is still weaker than AS-
SESS, which can be attributed to their lack of consideration
of complex structures of graph data.

4.3. Ablation Study

We now investigate the impact of the proposed adaptive
subgraph-based selection (ASBS) and regularized proto-
type supervision (RPS). For RPS, we denote “RPS-a” as
the first term of the loss function (Eq. 16), and “RPS-b”
as its second term. The results are shown in Table 4, from
which we have the following observations: (1) All of the pro-
posed components contribute to the model’s performance,
since the improvement decreases without each of the ablated
modules. (2) The performance drops by 1.1% on average
without ASBS, showing the necessity of selecting reliable
graphs adaptively during test time adaptation, as unreliable
graphs might introduce noisy signals during self-training.
(3) The model is suboptimal without supervision signals
of the prototypes (removing the first term in Eq. 16, i.e.
“w/o RPS-a”). Without proper supervision, the accuracy
decreases by 1.6% on average, showing the importance of
exploiting test graphs. (4) Removing the regularization on
the prototypes (the second term in Eq. 16, “w/o RPS (2)”)
causes a considerable performance drop, demonstrating the
importance of preserving prior knowledge of the model,
which prevents catastrophic forgetting.
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Figure 2. The model’s sensitivity to hyperparameters (i.e. α1

and α2). The experiments are performed on FRANKENSTEIN
(FRAN), Mutangenicity (MUTA), and NCI1. Average accuracy
(in %) are reported over six settings.

4.4. Parameter Sensitivity

We then investigate the model’s sensitivity to hyperparam-
eters. Specifically, we focus on two of them: α1, which
balances the relative importance of prior prototype regular-
ization in Eq. 16, and α2, which is the weight of informa-
tion maximization loss in Eq. 17. The results are shown
in Figure 2, and we can see that the model is generally not
sensitive to hyperparameters, as slight perturbations around
optimal values yield similar accuracy. Specifically, setting
α1 to 0.1 yields the best performance. When α1 is small, the
weight of the prior prototype regularization is small, lacking
regularization to the prototypes. Conversely, when α1 is too
large, strong constraint from the prior prevents adaptation to
test graphs under distributional shifts. As for α2, it balances
the relative importance of LRPS and LMI . This hyperpa-
rameter achieves its best at 10−3 or 10−2. Generally, when
α2 is too small, it falls short in proper supervision of the MI
training, leading to sub-optimal performance. Conversely,
larger weights decrease the relative importance of the self-
training loss, resulting in sub-optimal adaptation.

4.5. Visualization of Learned Representations

We also use t-SNE (Rauber et al., 2016) to visualize the
learned representations of the test graphs. The results are
shown in Figure 3, where we adapt the model initially
trained on the P1 subset of the PROTEINS dataset to the
P0 subset. The learned representations of the test graphs
before and after adaptation are compared. As can be seen
from the figure, the proposed method yields more clustered
and condensed representations. This can be attributed to
adaptive subgraph-based selection that filters out unreliable
test graphs, and regularized prototype supervision that better
utilizes unlabeled test graphs with self-training while pre-
serving the knowledge learned from the inaccessible training
graphs. More visualization about the learned representations
can be found in Appendix F.

4.6. Analysis of Selection Results

In this subsection, we compare the selection results of adap-
tive subgraph-based selection (ASBS) with uniform thresh-

Before Adaptation

(b2) After Adaptation(b1) Before Adaptation

After Adaptation

Figure 3. Visualization of learned representations on the PRO-
TEINS dataset, before and after adaptation in the P1→P0 setting.
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Figure 4. The selection accuracy using uniform threshold, class-
wise threshold, and the proposed ASBS on the PROTEINS dataset.

old selection and class-wise threshold selection, and we
show the selection accuracy (i.e. the accuracy of pseudo-
labels of selected graphs) under varying epochs in Figure
4. As can be seen from the results, the selection accuracy
of ASBS is significantly higher than those of others. The
selection accuracy of the uniform threshold is much lower
than ASBS, and it drops considerably after the 15th epoch.
Using class-wise thresholds helps with the selection accu-
racy slightly, reaching 0.7. By comparison, ASBS reaches a
high accuracy of nearly 0.8 and stabilizes as the adaptation
proceeds, demonstrating that ASBS is better at identifying
reliable test graphs during adaptation.

5. Conclusion
This paper investigates test-time adaptation on graphs, and
proposes a novel method named Adaptive Subgraph-based
SElection and Regularized Prototype SuperviSion (AS-
SESS). To select reliable test graphs for self-training, AS-
SESS utilizes subgraph mutual information and selects test
graphs adaptively. To fully utilize the information of un-
labeled test graphs while preserving the knowledge from
unknown training graphs, ASSESS adopts regularized pro-
totype supervision that constructs semantic prototypes and
performs self-training with regularization from the prior.
Extensive experiments across various datasets validate the
effectiveness of ASSESS.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Proofs of Theorem 3.1
Proof. Before going into the details, we firstly introduce some auxiliary constants, that is,

α =

√
log(2/δ)

qn1(1− c−1)2
;

β = max

(√
log(2/δ)

2q2n1
,

√
log(2/δ)

2(1− q)2n1

)
;

a0 = (1− c−1)(1− β)(1− α)q;

τ = max

(
L(w1),

4G2

µ

(
1

δa0m
+

b0
a0

))
;

b0 = 2 ((1− q)(1 + β)τm + log(1/δ)) .

Note that when n1 =
⌈
max

(
log(2/δ)

2q2 , log(2/δ)
2(1−q)2 ,

log(2/δ)
q(1−c−1)2

)⌉
for any δ ∈ (0, 1) and 0 < c < b, α ≤ 1 and β ≤ 1.

Next, we prove the Theorem 3.1 by showing that L(wt) ≤ τγ−(t−1). At first, when t = 1, we have

L(w1) ≤ τ = max

(
L(w1),

4G2

µ

(
1

δa0m
+

b0
a0

))
.

This establishes the initial bound for the induction. For the inductive step, we suppose that at some iteration t < T , with a
probability 1− (4t+ 1)δ, the following inequality holds, namely, L(wt) ≤ τγ−(t−1). We will show that this implies the
bound on L(wt+1).

From the assumption of Theorem 3.1, we know that, at each time step t, the total number of test graphs under consideration
is given by nt := n1γ

t−1. For the purpose of our analysis, we categorize all test graphs into two distinct classes based on
their derivation. The first class, denoted as At, comprises samples originating from the distribution consists of samples
drawn from the distribution P , while the second class, Bt, consists of test graphs from the distribution Q. Subsequently,
we further refine both At and Bt by identifying those samples whose associated loss values fall below the predetermined
threshold ρt. Mathematically, these subsets can be expressed as:

Aρt

t = {ξ ∈ At : l(wt; ξ) ≤ ρt} ,
Bρt

t = {ξ ∈ Bt : l(wt; ξ) ≤ ρt} .

By leveraging the standard concentration inequalities in probability theory and recognizing the true that all sampling graphs
used to compute the gradient gt are derived from the elements of Aρt

t and Bρt

t , we can show the following results:
With a probability 1− 2δ,

|At| ≥ qnt

(
1−

√
log(2/δ)

2q2nt

)
, (23)

|Bt| ≤ (1− q)nt

(
1 +

√
log(2/δ)

2(1− q)2nt

)
. (24)

Next, based on the well-known inequality Pr(X ≥ a) ≤ E(X)
a for any nonnegative random variable X , we also can show

that

Prξ∼P(l(wt; ξ) ≥ ρt) ≤
Eξ∼P [l(wt; ξ)]

ρt
=
L(wt)

ρt
≤ 1

c
, (25)

where the final inequality follows from L(wt)
ρt
≤ 1

c . From the Eq.(25), we also can show that Prξ∼P(l(wt; ξ) ≤ ρt) ≥ 1− 1
c .
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As a result, we have that, with a probability 1− 2δ,

|Aρt

t | ≥Prξ∼P(l(wt; ξ) ≤ ρt)|At|

(
1−

√
log(2/δ)

2 (Prξ∼P(l(wt; ξ))
2 |At|

)

≥
(
1− 1

c

)
|At|

(
1−

√
log(2/δ)

2
(
1− 1

c

)2 |At|

)
.

(26)

Merging Eq.(23) into Eq.(26), we then can show that

|Aρt

t | ≥
(
1− 1

c

)(
1−

√
log(2/δ)

2q2nt

)
·

(
1−

√
log(2/δ)

qn1(1− c−1)2

)
qnt ≥ a0n1γ

t−1. (27)

Then, according to the Tsybakov Condition, we can derive that

Prξ∼Q (l(wt; ξ) ≤ ρt) =Prξ∼Q

(
l(wt; ξ) ≤

ρt
L(wt)

L(wt)

)
≤Prξ∼Q(l(wt; ξ) ≤ bL(wt))

=Eξ∼Q [I (l(wt; ξ) ≤ bL(wt))]

≤Lm(wt)

≤
(
τγ−(t−1)

)m
,

(28)

where the first inequality uses the assumption that ρt ≤ bL(wt) and L(wt) ∈ [0, 1], the second inequality utilizes the
Tsybakov condition and the final inequality from the assumption of induction.

It is worth noting that, compared with Eq.(45) in (Xu et al., 2021), our former Eq.(28) utilizes a more precise Tsybakov
condition and a threshold range assumption of ρt ∈ [cL(wt), bL(wt)] to effectively bound the probability of random event
{l(wt; ξ) ≤ ρt}.

Like the Eq.(26), with Eq.(28), we also can show that

Eξ∼Q[|Bρt

t |]

=

|Bt|∑
i=1

Eξi∼Q [I (l(wt; ξi) ≤ ρt)]

=

|Bt|∑
i=1

Prξi∼Q(l(wt; ξi) ≤ ρt)

≤|Bt|
(
τγ−(t−1)

)m
.

(29)

With this inequality Eq.(29), according to the concentration inequality, we also can show that, with a probability 1− 2δ,

|Bρt

t | ≤Eξ∼Q[|Bρt

t |] +
1

3
log(1/δ) +

√
1

9
log2(1/δ) + 2 log(1/δ)Eξ∼Q[|Bρt

t |]

≤|Bt|
(
τγ−(t−1)

)m
+

1

3
log(1/δ) +

√
1

9
log2(1/δ) + 2 log(1/δ)|Bt|

(
τγ−(t−1)

)m
≤2|Bt|

(
τγ−(t−1)

)m
+ 2 log(1/δ)

≤(1− q)n1γ
t−1

(
1 +

√
log(2/δ)

2(1− q)2nt

)
·
(
τγ−(t−1)

)m
+ 2 log(1/δ)

≤2 ((1− q) (1 + β) τm + log(1/δ))n1

=b0n1.

(30)
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Therefore, according to the results of both Eq.(27) and Eq.(30), with a probability 1− 4δ, we can show that

|Aρt

t | ≥ a0n1γ
(t−1), |Bρt

t | ≤ b0n1. (31)

Our analysis of Eq.(31) reveals a striking pattern in the dynamics of the sample subsets. As iterations proceed, the size
of the subset |Aρt

t | exhibits exponential growth, while the subset |Bρt

t | remains tightly constrained within a fixed upper
bound. This observation underscores the efficacy of our dynamic thresholding mechanism in progressively identifying and
incorporating highly relevant unlabeled examples that align closely with the labeled data distribution.

Moreover, the selection process demonstrates remarkable stability, with the number of potential misclassifications maintained
at a constant level throughout iterations. This balance between expansion and control enables our optimization framework to
leverage an increasing volume of informative unlabeled data without compromising the integrity of the learning process.
In the subsequent analysis, we will demonstrate that these properties translate to significant improvements in model
performance. Specifically, we will show that with high probability, the expected loss of the model parameters at each
iteration satisfies the bound L(wt+1) ≤ τγ−t.

Before that, we also introduce some new auxiliary notations:

ga
t =

1

|Aρt

t |
∑

ξ∈A
ρt
t

∇l(wt; ξ);

gb
t =

1

|Bρt

t |
∑

ξ∈B
ρt
t

∇l(wt; ξ);

bt =
|Bρt

t |
|Aρt

t |+ |B
ρt

t |
≤ |B

ρt

t |
|Aρt

t |
≤ b0

a0
γ−(t−1).

With these new symbols, we can rewrite gt as gt = (1− bt)g
a
t + btg

b
t .

Following L-smoothness of Assumption 3, we can have that

L(w)− L(u) ≤ ⟨∇L(u),w− u⟩+ L

2
∥w− u∥2. (32)

According to Eq.(32), we also can have that

L(wt+1)− L(wt)

≤⟨∇L(wt),wt+1 −wt⟩+
L

2
∥wt+1 −wt∥2

=
η

2
∥∇L(wt)− gt∥2 −

η

2

(
∥∇L(wt)∥2 + (1− ηL) ∥gt∥2

)
≤η

2

(
(1− bt)∥∇L(wt)− ga

t ∥2 + bt∥∇L(wt)− gb
t∥2
)

−η

2

(
∥∇L(wt)∥2 + (1− ηL) ∥gt∥2

)
≤η

2

(
(1− bt)∥∇L(wt)− ga

t ∥2 + 4btG
2
)
− ηµL(wt),

where the first equality follows the update of wt+1 = wt−ηgt; the final inequality follows from Assumption 2, Assumption 4
and ηL ≤ 1. Then, we derive a bound for the expectation of ∥∇L(wt)− ga

t ∥, namely,

Eξ∼P

[
∥ga

t −∇L(wt)∥2
]

=Eξ∼P


∥∥∥∥∥∥ 1

|Aρt

t |
∑

ξ∈A
ρt
t

∇l(wt; ξ)−∇L(wt)

∥∥∥∥∥∥
2


=
1

|Aρ
t |2

∑
ξ∈Aρ

t

Eξ∼P

[
∥∇l(wt; ξ)−∇L(wt)∥2

]
≤ 4G2

|Aρt

t |
.
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Algorithm 2 Sinkhorn-Knopp Algorithm for Regularized Prototype Supervision
Input: scores S, temperature ϵ, number of iterations n,
Output: Q as an approximation of Q∗

1: Initialize the assignment Q← exp (S/ϵ);
2: for i = 1, 2, · · · , n do
3: Normalize each row of Q to sum to N/C;
4: Normalize each column of Q to sum to 1;
5: end for
6: return Q

Then, according to concentration inequality, we have with a probability 1− 5δ,

∥ga
t −∇L(wt)∥2 ≤

4G2

δ|Aρt

t |
≤ 4G2

δa0n1γt−1
.

As a result,

L(wt+1)− L(wt)

≤η

2

(
(1− bt)

4G2

δa0n1γt−1
+ 4btG

2

)
− ηµL(wt) (33)

≤η

2

(
4G2

δa0n1γt−1
+ 4G2 b0

a0
γ−(t−1)

)
− ηµL(wt)

=2ηG2

(
1

δa0n1
+

b0
a0

)
γ−(t−1) − ηµL(wt), (34)

where the second inequality follows from the bt ≤ b0
a0
γ−(t−1).

Finally, we have that

L(wt+1) ≤ (1− ηµ)L(wt) + 2ηG2

(
1

δa0n1
+ b1

)
γ−(t−1). (35)

Then, if we set γ = 1
1−ηµ/2 , we know that

L(wt+1) ≤γ(1− ηµ)τγ−t + 2ηγG2

(
1

δa0n1
+

b0
a0

)
γ−t

=

(
1− ηµ/2

1− ηµ/2

)
τγ−t +

ηµ/2

1− ηµ/2

4G2

µ

(
1

δa0n1
+

b0
a0

)
γ−t

≤τγ−t,

where the first inequality follows from the induction assumption and the final inequality follows from τ ≥ 4G2

µ

(
1

δa0n1
+ b0

a0

)
.

B. Details of the Sinkhorn-Knopp Algorithm
In this section, we provide an introduction of the Sinkhorn-Knopp algorithm. Specifically, we compute the matching score
of the prototypes and the graph-level representations as S = RTZ, and initialize the assignment as Q = exp(S/ϵ), where
ϵ is the temperature. Then, we iteratively perform row normalization and column normalization of the assignment matrix
such that it follows the constraints in Eq. 12. After n iterations, we obtain an approximation of the optimal assignment Q∗

as Q. The algorithm is summarized in Algorithm 2. Prior studies (Caron et al., 2020; Asano et al., 2019; Zheng et al., 2021)
suggest that this algorithm converges quickly, and in practice setting n to 3 yields decent approximations.
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Table 5. Adaptation time (s/epoch) and the number of epochs to converge of the proposed ASSESS.

Dataset FRAN MUTA PROT NCI1 IMDB

Time (s/epoch) 0.21 0.11 0.06 0.14 0.04

# Epochs ∼10 10∼20 10∼20 10∼20 ∼30

C. Time Complexity and Efficiency Analysis
For the GNN backbone, the time complexity is O(NteE), where Nte is the number of test graphs and E is the average
number of edges. For ASBS, Eq. 10 has a time complexity of O(BNte), where B is the batch size. Then the model updates
the threshold correction function recursively (Eq. 12), and selects reliable graphs (Eq. 13), which leads to O(Nte). In RPS,
Sinkhorn-Knopp algorithm has a time complexity of O(BC) for each batch, where C is the number of classes. Eq. 23 also
has a time complexity of O(BC) for each batch. For each epoch, the time complexity is O(CNte). The whole algorithm
has a time complexity of O(NteE), assuming constant batch size B and number of classes C, which is equivalent to most
GNNs. In practice, the adaptation converges in a few seconds, as shown in Table 5.

D. Details of the Datasets and Dataset Splits
In this paper, we perform extensive experiments on five representative datasets, i.e. FRANKENSTEIN (Orsini et al.,
2015), Mutangenicity (Kazius et al., 2005), PROTEINS (Borgwardt et al., 2005), NCI1 (Wale et al., 2008), and IMDB-
BINARY (Yanardag & Vishwanathan, 2015). We split each dataset into three subsets, i.e. FRANKENSTEIN (F0, F1, F2),
Mutangenicity (M0, M1, M2), PROTEINS (P0, P1, P2), NCI1 (N0, N1, N2), and IMDB-BINARY (I0, I1, I2). The datasets
are partitioned according to the density of the graphs, which is defined as

D =
2|E|

|V |(|V | − 1)
, (36)

where D denotes density, |E| denotes the number of edges, and |V | denotes the number of nodes. The graphs are then
sorted in ascending order according to the density and then partitioned into three dataset splits. Among the dataset partitions,
F0, M0, P0, N0, and I0 have the smallest density values, while F2, M2, P2, N2, and I2 have the largest density values. We
provide a detailed description of the datasets as follows:

• FRANKENSTEIN (Orsini et al., 2015) is a dataset created by combining the BURSI and MNIST datasets. FRANKEN-
STEIN modifies the BURSI dataset by removing bond type information and replacing the most common atom symbols
with MNIST digit images. The original atom symbols are now encoded in the MNIST images’ pixel intensity vectors,
making it a challenging dataset.

• Mutagenicity (Kazius et al., 2005) is proposed by Kazius et al. and involves a wide range of molecular structures,
each intricately associated with its respective Ames test data, totaling 4,337 molecular structures.

• PROTEINS (Borgwardt et al., 2005) is proposed by Borgwardt et al., and comprises protein data represented as graphs,
with each graph’s label identifying if a protein is a non-enzyme. In this dataset, amino acids are depicted as nodes, and
edges are drawn between nodes when the distance between two amino acids is less than 6 angstroms.

• NCI1 (Wale et al., 2008) is derived from the National Cancer Institute (NCI) database, which includes a large collection
of compounds. Each graph in the NCI1 dataset has a label indicating whether a compound is active or inactive.

• IMDB-BINARY (Yanardag & Vishwanathan, 2015) consists of graphs derived from IMDB, the Internet Movie
Database, where each graph represents the ego-network of a movie. In these graphs, nodes represent actors/actresses,
and edges indicate that two actors appeared in the same movie. The primary objective with this dataset is to classify
each graph into one of two categories based on the genre of the movie.
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Before Adaptation

After Adaptation

P0 → P1 P0 → P2 P2 → P0 P2 → P1

Figure 5. Additional visualization of learned representations of test graphs under distribution shifts on the PROTEINS dataset. The learned
embeddings before and after adaptation is displayed.

E. Details of the Baseline Methods
The proposed method is compared to a wide range of baseline methods, including graph neural networks (GCN (Kipf &
Welling, 2017), GraphSAGE (Hamilton et al., 2017), GIN (Xu et al., 2019), and GAT (Veličković et al., 2018)), unsupervised
/ semi-supervised training methods (Mean-Teacher (Tarvainen & Valpola, 2017) and GraphCL (You et al., 2020)), test-time
adaptation methods (SHOT (Liang et al., 2020) and TAST (Jang et al., 2023)). We introduce these methods in more detail as
follows:

• GCN (Kipf & Welling, 2017) is a foundational model that generalizes convolutional neural networks (CNNs) to graphs,
efficiently aggregating neighborhood information to generate node representations,

• GraphSAGE (Hamilton et al., 2017) extends GCN by sampling and aggregating vectorized representations from the
node’s neighborhood, enabling it to handle large graphs dynamically.

• GIN (Xu et al., 2019) is proposed by Xu et al. and addresses the limitation of existing graph neural network models in
distinguishing graph structures by learning to represent graphs in a way that preserves the graph isomorphism property,
which effectively captures the topology of the graph data.

• GAT (Veličković et al., 2018) adopts the attention mechanism to the aggregation step in graph neural networks,
enabling nodes to generate weights for the importance of their neighbors dynamically to achieve more effective feature
integration.

• MeanTeacher (Tarvainen & Valpola, 2017) is a robust semi-supervised or unsupervised learning algorithm that utilizes
a student model for making predictions and a teacher model to create training targets.

• GraphCL (You et al., 2020) introduces a graph contrastive learning framework aimed at advancing semi-supervised or
unsupervised representation learning on graphs. It utilizes augmentations to embed various priors into the learning
process.

• SHOT (Liang et al., 2020) (Source HypOthesis Transfer) fixes the classifier module (hypothesis) of the prediction
model while learning a feature extraction module specific to the target domain. This process leverages information
maximization and pseudo-labeling techniques for implicit alignment of the representations in target domains with the
source hypothesis.

• TAST (Jang et al., 2023) (Test-time Adaptation via Self-Training with nearest neighbor information) gathers valuable
information for classifying test data under domain shifts by leveraging information from nearest neighbors and
employing various randomly initialized adaptation modules.
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• RNA (Luo et al., 2024) (Rank and Align) ranks graph similarities to achieve robust semantic learning, and then aligns
inharmonic graphs with harmonic graphs for subgraph extraction.

F. Additional Visualization of Learned Representations
In this section, we provide more visualization results of learned representations on the test graphs. More specifically, we use
t-SNE (Rauber et al., 2016) in alignment with Section 4.5, and the results are shown in Figure 5. As can be seen from the
results, the representations after adaptation are more clustered, which leads to better classification accuracy. Moreover, as
we can see from the results, vanilla graph neural networks fall short in dealing with distribution shifts. The representations
they learn from test graphs that experience distribution shifts are not satisfactory, in that the embeddings of two classes
are mixed and hard to differentiate. By comparison, the proposed method adapt the model to the test graphs, without any
ground truth labels from the test graphs, and improve the learned representations significantly.
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