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Figure 1: We propose One-D-Piece, discrete image tokenizer that enables variable-length tokenization adjustable from 1 to
256 tokens. Even with a very small number of tokens (e.g., ntokens = 8), it achieves recognizable image reconstructions. As
the token count increases, the image quality progressively improves, reaching near-original fidelity at ntokens = 256.

Abstract

Current image tokenization methods require a
large number of tokens to capture the information
contained within images. Although the amount
of information varies across images, most image
tokenizers only support fixed-length tokenization,
leading to inefficiency in token allocation. In
this study, we introduce One-D-Piece, a discrete
image tokenizer designed for variable-length to-
kenization, achieving quality-controllable mech-
anism. To enable variable compression rate, we
introduce a simple but effective regularization
mechanism named “Tail Token Drop” into dis-
crete one-dimensional image tokenizers. This

1Turing Inc., Tokyo, Japan. Correspondence to: Keita Miwa
<miwakeita@turing-motors.com>.

Proceedings of the ICML 2025 Tokenization Workshop (TokShop),
Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the
author(s).

method encourages critical information to con-
centrate at the head of the token sequence, en-
abling support of variadic tokenization, while
preserving state-of-the-art reconstruction quality.
We evaluate our tokenizer across multiple recon-
struction quality metrics and find that it deliv-
ers significantly better perceptual quality than
existing quality-controllable compression meth-
ods, including JPEG and WebP, at smaller byte
sizes. Furthermore, we assess our tokenizer on
various downstream computer vision tasks, in-
cluding image classification, object detection, se-
mantic segmentation, and depth estimation, con-
firming its adaptability to numerous applications
compared to other variable-rate methods. Our
approach demonstrates the versatility of variable-
length discrete image tokenization, establishing
a new paradigm in both compression efficiency
and reconstruction performance. Finally, we val-
idate the effectiveness of tail token drop via de-
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tailed analysis of tokenizers. Our Project Page is
at https://turingmotors.github.io/
one-d-piece-tokenizer/.

1. Introduction
In recent years, with the rapid advancements in vision-
language models (VLMs) (Liu et al., 2024; Bai et al.,
2023; Laurençon et al., 2024) and image and video gen-
eration models (Yan et al., 2021; Villegas et al., 2022; Bruce
et al., 2024), the concept of discrete tokenization for vi-
sual data, similar to language tokenization, has garnered
increasing attention (van den Oord et al., 2017; Yu et al.,
2024a; Luo et al., 2024; Wang et al., 2024a). This approach
enables seamless integration with Transformer-based mod-
els (Vaswani et al., 2017), simplifying model architectures
and reducing computational complexity.

However, challenges remain in discrete tokenization for vi-
sual data, particularly in capturing spatial structures, which
often requires long, fixed-length token sequences. For in-
stance, typical image tokenizers require as much as 256 to-
kens to represent a single 256×256 pixel image, which limits
their flexibility in practical applications. To overcome this
limitation, one-dimensional (1D) tokenization methods have
emerged, aiming to achieve higher compression rates while
maintaining reconstruction quality. Notably, the SEED tok-
enizer (Ge et al., 2024a) can semantically represent images
by causal 1D sequences, while the TiTok tokenizer (Yu et al.,
2024b) achieves high-quality image reconstruction with just
32 tokens. These approaches efficiently encode the entire
image into a compact 1D sequence, significantly reducing
the number of tokens required. Nevertheless, there exists a
fundamental trade-off between compression rate and recon-
struction quality (Shannon, 1959; Blau & Michaeli, 2019);
higher compression results in greater degradation, especially
for complex images. As current image tokenizers are de-
signed to produce fixed number of tokens, it is impossible
to control the quality based on specific requirements.

In contrast, classical image compression methods such as
JPEG (Wallace, 1991) have long addressed this trade-off
by allowing users to adjust compression rates based on the
desired quality. These methods provide well-established
mechanisms for balancing file size and visual fidelity, mak-
ing them highly versatile across various applications. How-
ever, traditional compression algorithms are not designed for
direct use as input representations for neural networks, mak-
ing it challenging to integrate them into neural models like
VLMs. Furthermore, these algorithms differ fundamentally
from the adaptive, model-driven strategies used in modern
image tokenizers, complicating the transfer of established
compression techniques to the tokenization domain.

Given these differences, there is a pressing need for a novel

Figure 2: Comparison of Image Quality and Compres-
sion Efficiency. (A) One-D-Piece-L-256 achieves superior
visual quality with enhanced compression efficiency, reduc-
ing image size to 384 bytes, outperforming image formats.
(B) One-D-Piece-L-256 improves reconstruction quality as
token length increases, proving effective with fewer tokens
(e.g., 16, 32, 64, and 128). In contrast, TiTok-S-128, trained
with a fixed token length of 128, can reconstruct images
only when all 128 tokens are used.

approach that bridges the adaptability of tokenization meth-
ods with the efficiency of traditional compression formats.
To address this challenge, we propose One-D-Piece, a new
variable-length discrete image tokenizer that combines the
benefits of tokenization with the flexibility of classical com-
pression methods. Our approach introduces a simple yet
effective regularization technique, Tail Token Drop, which
concentrates critical information at the beginning of the to-
ken sequence, enabling efficient and adaptive token lengths
ranging from 1 to 256 tokens. This allows for maintaining
high reconstruction quality even with a low token count, pro-
viding flexible compression suited for diverse applications.
As illustrated in Figure 1 and Figure 2, our model supports
variable-length image tokenization and can effectively pro-
duce visually accurate tokenizations and reconstructions
even with as few as 8 or 16 tokens.

We further evaluate our method not only using standard im-
age quality metrics but also by assessing its performance on
a range of downstream tasks, demonstrating practical bene-
fits over classical image compression techniques. We show-
case the effectiveness of One-D-Piece through extensive ex-
periments on various computer vision tasks, including image
classification, object detection, and semantic segmentation.
Our results indicate that One-D-Piece outperforms existing
variable-length compression methods, including JPEG (Wal-
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lace, 1991), JPEG 2000 (iso, 2019), and WebP (Google,
2024), in terms of perceptual quality, especially at low to-
ken counts.

Unlike existing variable quality control methods, we focus
on ultra-low bitrate image tokenizers, enabling high com-
pression with superior perceptual quality. ElasticTok (Yan
et al., 2024) is the closest work to ours, but it targets a com-
pletely different bitrate regime. A detailed comparison with
prior works is provided in Section 2.1.

Our main contributions can be summarized as follows:

• We introduce One-D-Piece, a variable-length discrete
image tokenizer utilizing a novel Tail Token Drop reg-
ularization technique.

• Our method achieves competitive reconstruction qual-
ity while supporting flexible token lengths and is val-
idated through comprehensive evaluations, including
downstream tasks, demonstrating superiority over tra-
ditional image compression methods.

• We analyze our models’ behaviors in detail, revealing
that the Tail Token Drop method effectively concen-
trates important information at the head and further
provides insights into image generation and adaptive
token allocation.

2. Related Work
2.1. High-Compression Image Tokenization

Pixel-space image representations are inefficient for image
generation and vision-language tasks. To overcome this,
models like VAEs (Kingma & Welling, 2014) extract la-
tent features, while encoders such as CLIP (Radford et al.,
2021) capture compact semantic representations. More re-
cently, discrete image tokenization methods, such as VQ-
VAE (van den Oord et al., 2017), have gained traction for
compressing images into discrete tokens, facilitating both
image generation (Esser et al., 2021; Chang et al., 2022;
Weber et al., 2024; Yan et al., 2021; Villegas et al., 2022;
Bruce et al., 2024) and integration with text tokens (Team,
2024; Wang et al., 2024b; Ge et al., 2024b).

While “2D tokenizers,” which utilize CNNs as encoders and
decoders and maintain a two-dimensional structural repre-
sentation of the image, are typically studied (van den Oord
et al., 2017; Yu et al., 2024a; Luo et al., 2024; Wang et al.,
2024a; Esser et al., 2021; Weber et al., 2024; Chang et al.,
2022), they often achieve low compression efficiency due to
their limited ability to effectively capture global information.
Typical 2D tokenizers consume 256 tokens for 256×256
images. In contrast, recent advances have introduced “1D
tokenizers” that compress images by capturing both local
and global information simultaneously, using architectures

like Transformers to process the entire image context. For
instance, SEED-Tokenizer (Ge et al., 2024a) uses Vision
Transformer (ViT) (Dosovitskiy et al., 2021) and reduces
an image to a sequence of semantic tokens, demonstrating
efficient compression for use in VLMs (Ge et al., 2024b;
Wang et al., 2024b). Another high-compression 1D tok-
enizer, TiTok (Yu et al., 2024b), effectively compresses
images into just 32 sequential tokens while preserving high
visual fidelity, outperforming existing 2D tokenizers in both
compression efficiency and reconstruction quality.

2.2. Variable-Rate Image Representation

In the field of image codecs where the primary motivation is
pure compression rather than generation or vision-language
integration, it is well known that high compression is not a
free lunch (Shannon, 1959; Blau & Michaeli, 2019). There
exists a trade-off between rate and reconstruction quality,
which becomes more severe for complex images.

Rate-distortion trade-offs are mitigated by variable-rate com-
pression, which allows greater flexibility based on purpose.
Standard codecs like JPEG (Wallace, 1991), JPEG 2000 (iso,
2019), and WebP (Google, 2024) achieve this through trans-
form and entropy coding, such as the Discrete Cosine Trans-
form and Huffman coding used in JPEG.

Variable quality control has also been explored. Matryoshka
Representation Learning (MRL) (Kusupati et al., 2022) is
used for variable-rate representation learning. By applying
losses only to fixed k lengths, specifically at k ≈ ⌊log n⌋,
MRL has been experimentally shown to generalize across all
possible lengths. A simpler approach, “Tail Drop” (Koike-
Akino & Wang, 2020) concentrates critical information to-
wards the head of the embeddings. This method is applied in
AutoEncoder models by imposing a higher dropout rate on
the tail of the latent representation. By focusing essential in-
formation towards the beginning of the latent sequence, Tail
Drop enhances compression efficiency, enabling variable-
rate compression. While MRL requires O(log n) compu-
tational cost for loss calculation, Tail Drop requires only
O(1). There are also recent studies working on variable-
length discrete visual tokenization. ElasticTok (Yan et al.,
2024) performs masking-based regularization for video tok-
enization, which is similar to Tail Drop. While they achieved
high-quality rate-distortion trade-off, they lose perceptual
quality at ultra-low bitrate. ALIT (Duggal et al., 2025)
introduces a variable-length image tokenizer based on a re-
current allocation mechanism. While they achieved adaptive
token allocation, their approach requires significantly larger
inference-time cost.

In this work, we extend Tail Drop approach into ultra-low
bitrate image tokenizers, which enables high compression
with superior perceptional quality.
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3. Method
We introduce One-Dimensional Image Piece Tokenizer
(One-D-Piece), a novel discrete tokenizer designed for ef-
ficient image compression. In contrast to existing image
tokenizers that typically generate fixed-length sequences,
One-D-Piece produces variable-length tokens, similar to
text tokenizers like WordPiece (Wu et al., 2016) and Senten-
cePiece (Kudo & Richardson, 2018).

3.1. Tail Token Drop

A regularization technique “tail drop” was originally in-
troduced to improve compression efficiency by dynami-
cally controlling the dimensionality of the latent representa-
tion (Koike-Akino & Wang, 2020). Tail drop can be viewed
as a variant of Dropout, where the dropout rate progressively
increases towards the end (tail) of the latent vector. This
technique prioritizes learning the most essential features
in the earlier (head) neurons, while gradually discarding
less critical information in the tail. As a result, tail drop
enables flexible compression, where the dimensionality can
be adjusted at inference time with controlling the quality of
the reconstruction.

We adapt this simple yet effective method for image tok-
enization with modifications, introducing “Tail Token Drop,”
which involves randomly truncating the tail of the token se-
quence and can be applied to 1D tokenizers, which produces
structure-free image tokens.

Formally, let q = [q1, q2, . . . , qN ] be the token sequence
generated by our 1D tokenizer, where qi represents each
token in the sequence, and N is the total number of tokens.
During training, the number of tokens to be dropped, k, is
sampled from a uniform distribution: k ∼ U(0, N − 1).

Thus, the token sequence after applying Tail Token Drop,
denoted as q′, is given by: q′ = [q1, q2, . . . , qN−k].

By applying this regularization, the tokenizer is encouraged
to accumulate more critical information towards the begin-
ning of the sequence by randomly truncating tail tokens
and less significant information tends to accumulate at the
tail, which is more likely to be truncated. As a result, the
tokenizer trained with Tail Token Drop allows the token
sequence length to be flexibly adjusted based on the infor-
mation content of the image, by cutting the tails adaptively.

3.2. Architecture

The architecture of One-D-Piece focuses on two important
requirements. First, the tokens produced must form a 1D
sequence. They should not explicitly correspond to 2D
structure, like most 2D tokenizers. This restriction exists
because the tail cannot be defined for 2D tokens, hindering
application of Tail Token Drop. Second, the detokenizer

Figure 3: One-D-Piece applies random Tail Token Drop dur-
ing training to concentrate the most important information
at the head of the token sequence.

must handle variable-length of tokens; otherwise, the Tail
Token Drop technique cannot be applied.

To meet these requirements, we build upon the TiTok archi-
tecture for One-D-Piece (Figure 3). The TiTok model (Yu
et al., 2024b) consists of three main components: the en-
coder, quantizer, and decoder. The encoder first divides
the input image X ∈ RH×W×C patches. Each patch is
embedded into a vector, yielding a set of patch embeddings.
We also include N learnable latent tokens. The output of
the ViT encoder, z, corresponding to the latent tokens is
used as latent space. The output z is then discretized by
the quantizer, producing a discrete set of token representa-
tions q = Quantizer(z). This quantized sequence serves
as a discrete representation of the image. For One-D-Piece
training, we apply Tail Token Drop regularization to this
as q′ = TailTokenDrop(q). In the decoder, the quantized
tokens q or q′ are processed alongside mask tokens. The out-
put corresponding to the mask tokens is upscaled by a CNN
to generate the final reconstructed image X̂ ∈ RH×W×C .
An additional benefit of adopting the TiTok architecture is
its flexibility in controlling the length of latent tokens as a
training-time hyperparameter. Unlike simple ViT-based ar-
chitectures, which constrain the token length to the number
of input patches, the TiTok architecture imposes no such
restriction.

3.3. Training

We use the two-stage training strategy adopted by TiTok. In
the first stage, the model is trained to predict the logits of a
pretrained tokenizer using cross-entropy loss. The second
stage involves training the model to reconstruct the image
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Table 1: Reconstruction Quality across Tokenizers and Image Formats. Other than algorithm-based image formats,
One-D-Piece is the only model which support variable-length image tokenization. For these formats, byte per Image values
represent can vary based on image content and quality settings.

Method Mechanism Token Counts Bits per Pixel rFID↓ PSNR↑
VQGAN (Esser et al., 2021) 256 0.039 7.94 19.4

MaskGIT (Chang et al., 2022) CNN-based 256 0.039 2.28 —
LlamaGen (Sun et al., 2024) 2D Discrete Tokenizer 256 0.055 2.19 20.79

VQGAN+ (Weber et al., 2024) 256 0.047 1.61 —
Open-MAGVIT2 (Luo et al., 2024) 256 0.070 1.17 21.90

JPEG (Wallace, 1991) Algorithm-based — 0.252 113.3 20.99
JPEG 2000 (iso, 2019) Image Formats — 0.050 299.4 19.19
WebP (Google, 2024) — 0.240 31.98 26.18

ALIT-S (IN1K) (Duggal et al., 2025) Variable-Length 32 to 256 0.0077 to 0.047 2.21@256 —
ElasticTok-FSQ (Yan et al., 2024) 1D Discrete Tokenizer 256 to 4096 0.062 to 0.99 35.9@256 23.29@256

TiTok-S-128 ViT-based 128 0.023 1.70@128 17.80@128

TiTok-B-64 1D Discrete Tokenizer 64 0.012 1.71@64 17.13@64

TiTok-L-32 32 0.0059 2.21@32 15.96@32

One-D-Piece-S-256 ViT-based
1 to 256 0.00018 to 0.047

1.48@256 18.28@256

One-D-Piece-B-256 1D Discrete Tokenizer 1.11@256 18.77@256

One-D-Piece-L-256 with Tail Token Drop 1.08@256 19.04@256

itself after learning the logits in the first stage. Here, the
pretrained tokenizer is incorporated into the decoder, while
the encoder remains frozen. The model is then optimized
using reconstruction loss. The loss function includes L2
loss to reduce distortion, and perceptual loss and GAN loss
for improved visual quality: Lstage2 = LL2 + LPerceptual +
LGAN. To support variable-length tokenization, we apply
Tail Token Drop during training to dynamically adjust token
lengths. For each batch, an index from 1 to 256 (representing
minimum to maximum) is uniformly sampled, and tokens
beyond this index are truncated.

Training and evaluation are both conducted using the
ImageNet-1K dataset (Deng et al., 2009), which contains
1,000 object classes, 1,281,167 training images, 50,000 vali-
dation images, and 100,000 test images.

Figure 4: Comparison of rFID by bits per pixel (bpp).
One-D-Piece improves rFID as token length increases and
achieves better scores at lower token counts than standard
image formats.

4. Experiments
The primary goal of these experiments is to evaluate the
effectiveness of our One-D-Piece across different settings,
including reconstruction quality, as well as various down-
stream tasks. By comparing against compression algorithms
including JPEG, JPEG 2000, and WebP and image tokeniz-
ers, we demonstrate the advantages of our approach.

We train One-D-Piece models using a maximum of 256
tokens. To explore different model complexities, we trained
three variants, S-256, B-256, and L-256, which differ in the
parameter size of the Vision Transformer. The hyperparam-
eter settings strictly followed those used for TiTok.

Training was conducted in two phases: 100 epochs on
ImageNet-1K in Stage 1, followed by 200 epochs in Stage 2.
We utilize 8 NVIDIA H100 80 GB GPU. Training times vary
based on model complexity: S-256 takes approximately 5
days, B-256 requires about 6 days, and L-256 takes around 9
days. This difference reflects the increased parameter count
and computational demands of larger models.

4.1. Reconstruction

We evaluate the reconstruction quality of three variants of
the One-D-Piece models and compare them to other image
tokenizers and standard image formats.

Table 1 includes our main metrics, Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) for assessing perceptual
quality, and PSNR for measuring distortion. Our models
exhibit sufficiently better performance compared to other
image tokenizers, with the B-256 and L-256 variants achiev-
ing the lowest rFID scores of 1.11 and 1.08 at 256 tokens.

For image formats, we controlled the quality settings to align
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Table 2: Evaluation across multiple downstream tasks at different token lengths compared to compression formats.
The scores in the “Base“ for Image Classification and Semantic Segmentation represent comparisons between the dataset’s
ground truth and the model’s predictions. In contrast, for Object Detection, Depth Estimation, and CLIP Emb Reconstruction,
the model’s predictions are used as ground truth, as these tasks do not include them in the dataset. Blue background
indicates scores in which One-D-Piece-L-256 surpasses WebP.

Task Metrics One-D-Piece-L-256 Image Formats Base@16 @32 @64 @128 @256 JPEG WebP

Object Detection
mAP@0.5:0.95↑ 0.051 0.097 0.180 0.264 0.305 0.001 0.166 —

mAP@0.5↑ 0.093 0.163 0.277 0.377 0.422 0.001 0.217 —
mAP@0.75↑ 0.049 0.097 0.185 0.280 0.323 0.001 0.178 —

Depth Estimation L1 Loss↓ 2.436 1.949 1.480 1.120 0.965 3.742 1.553 —
L2 Loss↓ 12.282 8.593 5.326 3.160 2.362 24.097 5.050 —

CLIP Emb Reconstruction Cos Sim↑ 0.820 0.866 0.904 0.930 0.942 0.610 0.826 —

Image Classification Acc@1↑ 0.504 0.623 0.731 0.779 0.792 0.284 0.664 0.841
Acc@5↑ 0.718 0.831 0.908 0.937 0.946 0.479 0.870 0.969

Semantic Segmentation mIoU↑ 0.321 0.424 0.525 0.572 0.585 0.059 0.410 0.606
bIoU ↑ 0.146 0.210 0.281 0.315 0.325 0.027 0.211 0.343

the average bytes per image with our models. Specifically,
we converted the token count to bytes using a rate of 1.5
bytes per token (12 bits). For JPEG and WebP, we used the
minimum quality settings to minimize byte size. For JPEG
2000, we verified that a target compression rate of 0.002
yielded an average byte size of 406.3, comparable to our
models with 256 tokens. Notably, these traditional image
formats performed poorly on the rFID metric compared to
neural image tokenizers, including our models.

It is worth mentioning that the PSNR metric shows oppo-
site trends; our models exhibit relatively lower performance
compared to image formats. This is due to training objec-
tive of our models, which includes GAN loss and perceptual
loss, focusing on improving perceptual quality rather than
reducing pixel-level distortion. This result aligns with (Blau
& Michaeli, 2019), where rate-distortion-perception trade-
off is reported. Nevertheless, as we can confirm in Figure 2,
our tokenizers exhibit far better perceptual quality compared
to these image formats with supporting variable-length tok-
enization.

To evaluate reconstruction quality with respect to token
length, we present the rFID curve in Figure 4. The rFID
steadily improves as more tokens are used, and our mod-
els demonstrate significantly higher efficiency compared to
algorithm-based image compression formats. Notably, our
model consistently outperforms ALIT. ElasticTok exhibits
superior perceptual quality compared to existing image for-
mats in the low to middle bpp range; however, unlike our
model, its performance degrades in the ultra-low to low bpp
regime. We also compare the rFID of our models with TiTok
variants in Table 3. While our models achieve the lowest
rFID at 256 tokens, they do not match TiTok at smaller
token counts (32, 64, and 128) when using equivalent model

sizes. We attribute this to the introduction of the Tail Token
Drop, which may reduce reconstruction fidelity at small
token lengths. Improving perceptual quality in this regime
remains an open challenge for future work.

4.2. Downstream Tasks

We evaluate the reconstructed images on various computer
vision tasks, including image classification, object detec-
tion, semantic segmentation, depth estimation, and CLIP
embedding reconstruction, to demonstrate the effectiveness
of the tokenizer in real-world applications. This evaluation
allows us to assess how well the reconstructed images retain
critical information, highlighting the balances between com-
pression efficiency and task performance. Table 2 shows
the downstream task performance of One-D-Piece-L-256,
JPEG and WebP.

4.2.1. TASK SETTINGS

Image Classification. We use the ImageNet validation split
and measure Acc@1 and Acc@5 by comparing classifica-
tion results on reconstructed images. ConvNeXT (Liu et al.,
2022) outputs are used as the ground truth.

Object Detection. We use the COCO val2017 (Lin
et al., 2014) and employ YOLO11x (Jocher & Qiu, 2024)
as the detection model. Performance is evaluated with
mAP@0.5:0.95, mAP@0.5, and mAP@0.75.

Semantic Segmentation. We evaluate mean Intersec-
tion over Union (mIoU) and boundary IoU (bIoU) on the
ImageNet-S (Gao et al., 2021) dataset, which provides high-
quality semantic segmentation annotations based on the
ImageNet-1K. SERE (Gao et al., 2021) is used for the seg-
mentation model.
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Depth Estimation. We use the ImageNet validation split
with Depth Anything (Yang et al., 2024) serving as the
ground truth. We evaluate the L1 and L2 error of depth esti-
mations between the reconstructed images and the ground
truth.

CLIP Embedding Reconstruction. We assess the quality
of semantic reconstruction using CLIP embeddings, with the
ImageNet validation split and CLIP (Radford et al., 2021) as
the ground truth. Cosine similarity is computed between the
embeddings of the reconstructed and the original images.

4.2.2. RESULTS

As shown in Table 2, One-D-Piece outperforms JPEG across
all tasks with only 16 tokens. For tasks where semantic infor-
mation is crucial, such as CLIP Embedding Reconstruction
and Semantic Segmentation, One-D-Piece with 32 or 64
tokens surpasses WebP, achieving a CLIP score of 0.866
versus 0.826 for WebP and an mIoU of 0.424 versus 0.410.
In tasks focused on object representation, such as Object
Detection and Image Classification, One-D-Piece outper-
forms WebP with 64 tokens, reaching an mAP@0.5:0.95
of 0.180 versus 0.166 for WebP, and Acc@1 and Acc@5
scores of 0.731 and 0.908, compared to 0.664 and 0.870
for WebP. For Depth Estimation, which requires pixel-level
detail, One-D-Piece achieves better L1 and L2 Loss scores
at 128 tokens, with values of 1.120 and 3.160, compared to
1.553 and 5.050 for WebP.

Our results show that One-D-Piece uses only 128 tokens,
approximately 10% of WebP’s byte size per image, yet
outperforms WebP across all tasks. Its high compression
and preserved quality make it ideal for applications like
visual question answering and image or video generation.

4.3. Analysis

One-D-Piece demonstrates strong performance in recon-
struction quality and adaptability for downstream tasks. We
further explore the potential of this novel approach and un-
cover the contribution of Tail Token Drop and the behavior
of and our models.

Head Tokens Have More Contribution.

Our Tail Token Drop technique aims to encourage impor-
tant information to be concentrated at the head of the im-
age token sequence. To verify this hypothesis, we analyze
the contribution of each token in the tokenized sequence
q = [q1, q2, . . . , qn] towards the reconstructed image X̂.
Specifically, we perform random replacement for each token
qi in the sequence. Let q′ = [q1, . . . , qi−1, q

′
i, qi+1, . . . , qn]

be the modified sequence where qi is replaced by a randomly
sampled token q′i. We then reconstruct the image X̂′ from
the modified sequence q′. To measure the contribution of
each token qi, we compute the L1 error between the origi-

nal reconstruction X̂ and the modified reconstruction X̂′ as
∥X̂′ − X̂∥1. A larger L1 error indicates a greater contribu-
tion of the token qi towards the reconstruction. Furthermore,
by retaining the pixel-wise L1 error for each token replace-
ment, we can visualize the spatial regions of the image that
are influenced by specific token positions i. This allows us
to better understand the relationship between token posi-
tions in q and the corresponding pixel areas in X̂. We use
ImageNet validation split to examine average behaviors.

The results are shown in Figure 5 (A). As expected, One-D-
Piece tokenizers exhibit a strong peak (yellow) at the head
of the token sequence, while TiTok models show mostly
random peaks. This confirms that our Tail Token Drop
approach effectively encourages the model to concentrate
important information at the start of the token sequence,
resulting in large contributions.

Interestingly, we observe that some middle and later tokens
still correspond to specific spatial regions of the image,
despite the tokenizer being trained as a purely 1D tokenizer,
as shown in Figure 5 (B). This suggests that tokens at certain
indices retain a strong connection to the 2D structure of the
input image, even under the Tail Token Drop constraint.

Additionally, the tokens at the very end of the sequence
show almost no contribution, suggesting they carry little
meaningful information and that the latent space is not fully
utilized. This indicates the potential for creating a more effi-
cient tokenizer by packing more information into currently
less important tokens. This is a future research direction.

First Token Encodes Global Information. While our
analysis of token contribution confirm that more important
information is concentrated in the head tokens, the actual
content of these information remains unclear. To qualita-
tively investigate this, we perform clustering by the first
token and present the result.

Figure 6 (A) illustrates ImageNet validation split, clustered
by the first token. It can be observed that the first tokens
capture the overall similarity between images, indicating
that they include global information about the images. Fur-
thermore, we find that replacing the first token leads to
corresponding changes in the reconstructed image as shown
in Figure 6 (B) . Although this effect diminishes with longer
token sequences, significant influence can be seen in the
reconstructions with shorter sequences.

One-D-Piece Tokens are More Semantic. Our analysis re-
veals that the Tail Token Drop effectively aggregates global
information toward the head of the token sequence, with the
leading tokens capturing the overall similarity of the images.
To further examine the semantic behavior of One-D-Piece
tokens, we conduct linear probing experiment, following
the MAE protocol (He et al., 2022), adopted in the TiTok
report (Yu et al., 2024b). Specifically, we append a linear
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Figure 5: The Visualization of Our Token Contribution Analysis. (A) The
head tokens capture global information, as indicated by the strong yellow color,
while the later tokens show more localized and weaker peaks. (B) Heatmaps
of token contributions from the One-D-Piece-L-256 model, displayed in a grid
layout for all 256 tokens. Each map highlights the spatial regions to which each
token most strongly corresponds. The early tokens capture global features of the
entire image, while the mid-to-late tokens respond more strongly to localized,
specific regions.

Figure 6: The Result of First-Token-
based Analysis. (A) The first tokens corre-
spond to global, especially the background
information of the image. (B) By replac-
ing the first token to another tokens, we
can observe the background changes ac-
cordingly, especially when fewer token re-
construction.

classifier for the output of One-D-Piece encoder and train
it on the ImageNet-1K classification task. This evaluation
measures the linear separability of the encoded representa-
tions, indicating how well the latent features capture seman-
tic information.

As shown in Table 3, our model achieves superior linear
probing accuracy (LPA) compared to pretrained TiTok mod-
els. While our S-sized model exhibits slightly lower LPA
than the TiTok model of the same size, our models in the
other two sizes significantly outperform the TiTok model.
We attribute this high LPA accuracy with fewer tokens to
our Tail Token Drop technique, which effectively emulates
the benefits of a compact latent space by discarding less
informative tail tokens. This result further highlights the
effectiveness of the Tail Token Drop approach promoting
global information aggregation.

Table 3: Comparison of rFID and Linear Probing Accu-
racy (LPA) between TiTok and One-D-Piece models. For
fair comparison, LPA for One-D-Piece is based on the same
number of prefix tokens as the equivalent TiTok models.

Model rFID↓ LPA↑
@32 @64 @128

TiTok-S-128 — — 1.70 0.349
TiTok-B-64 — 1.71 — 0.276
TiTok-L-32 2.21 — — 0.281

One-D-Piece-S-256 7.36 3.89 1.96 0.341@128

One-D-Piece-B-256 4.36 2.39 1.48 0.351@64

One-D-Piece-L-256 3.23 2.10 1.42 0.355@32

Insights for Autoregressive Image Generation Models.
Building on the analyses above, we trained an autoregressive
image generator based on the LlamaGen architecture (Sun
et al., 2024). Our experiments reveal several practical in-
sights for improving autoregressive generation.

First, although LlamaGen assumes a raster-ordered 2D tok-
enizer and employs a 2D variant of Rotary Position Embed-
dings (RoPE) (Su et al., 2024), this design cannot be directly
transferred to 1D tokenizers. We thus compare the standard
1D RoPE with learnable absolute positional embeddings.

Second, because One-D-Piece orders tokens by perceptual
importance, errors in the earliest tokens propagate and de-
grade the whole image. Motivated by this prior, we applied a
linearly decaying weight to the cross-entropy loss, assigning
greater importance to early tokens.

Figure 7 shows generation quality across Classifier-Free
Guidance (CFG) scales. We observe a clear trade-off: RoPE
yields lower gFID, while learnable embeddings improve
Inception Scores (IS). Increasing the loss weight on head
tokens improves both IS and gFID across all CFG scales.
While our model does not reach the competitive gFID range
of 2–3, leveraging prior knowledge of token importance
remains a promising direction for improving autoregressive
generation.

We also observe that One-D-Piece integrates well with dis-
crete diffusion-based models, achieving competitive results.
Additional experiments using a MaskGIT-based generator
are provided in Appendix C.3.
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Figure 7: Generation quality vs. CFG Scale (gFID↓ /
IS↑). Eight settings combine positional embedding (RoPE
or learnable, LP) with head-loss weights 1–8. RoPE lowers
gFID, LP raises Inception Score, and heavier head-loss
weights consistently improve both metrics, most notably
near CFG 2–2.5.

Adaptive Token Allocation is Feasible Since One-D-Piece
supports variable-length tokenization, computational effi-
ciency in practice can be improved by assigning an optimal
token count to each image. While One-D-Piece supports
variable-quality tokenization, determining the optimal to-
ken count is challenging. Finding the optimal token count
through iterative reconstruction and evaluation involves sig-
nificant computational costs. To address this, we introduce a
model-based Adaptive Token Allocation (ATA) method that
efficiently predicts optimal token counts using lightweight
neural networks.

In the ATA framework, we predict a 256-dimensional vector
for each image using a ResNet-50D model (He et al., 2018)
trained to estimate quality metrics (MSE and LPIPS) at each
token length. By searching this vector, we efficiently deter-
mine the optimal token count for arbitrary quality thresholds.
We compare ATA against Fixed-Length Token Allocation
(FLTA), Optimal Token Allocation (OTA), and Approxi-
mate Optimal Token Allocation (AOTA). FLTA assigns a
fixed number of tokens without considering image-specific
quality. OTA, in contrast, reconstructs the image at all pos-
sible token lengths and selects the minimal length meeting
the quality threshold, achieving optimal allocation but at
a prohibitively high computational cost. AOTA approxi-
mates OTA by evaluating token lengths at 16-token inter-
vals instead of searching over the full range, reducing the
computational cost to 1/16 while maintaining near-optimal
performance.

To evaluate ATA performance, we adopt two primary met-
rics: (A) Average Error: Measured as the average absolute
error between the estimated and optimal token counts. (B)
Standard Deviation of Quality Metrics: Variability in qual-

Figure 8: Comparison of allocation methods for One-D-
Piece-S-256. (A) illustrates the relationship between quality
and average error. (B) illustrates the relationship between
average quality and standard deviation. ATA achieves com-
petitive performance compared to AOTA.

ity metrics (MSE and LPIPS), where lower values indicate
more stable quality control.

Figure 8 shows evaluation results. ATA achieves signifi-
cantly lower average error and more stable quality control
than FLTA. Notably, even compared to AOTA, ATA demon-
strates competitive performance across both criteria. Unlike
AOTA and OTA, which require high computational cost
for token allocation, ATA efficiently estimates the required
token count without reconstruction, making it much more
computationally efficient. These results indicate that even a
simple method like ATA can effectively and dynamically en-
hance the performance of One-D-Piece. Additional results
are presented in Appendix D.

5. Conclusion
We introduced One-D-Piece, a discrete image tokenizer en-
abling quality-controllable tokenization to address the trade-
off between compression rate and reconstruction quality in
fixed-token methods. Our approach supports dynamic token
counts (1–256) using Tail Token Drop, which concentrates
critical information at the start of the sequence, allowing
high reconstruction quality with fewer tokens and improving
perceptual quality at comparable byte sizes. Experiments
on ImageNet-1K show that One-D-Piece achieves an rFID
of 1.08 with 256 tokens, surpassing prior methods, while
excelling in downstream tasks. Our analysis verifies the
feasibility of Adaptive Token Allocation and the effective-
ness of Tail Token Drop in concentrating key information at
the sequence head. These results establish One-D-Piece as
an efficient, adaptive tokenizer that sets a new benchmark
in compression efficiency and quality, with promising ap-
plications in vision-language models and image and video
generation.
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Limitations. Although the architecture supports a higher
number of tokens, our evaluation was limited to a maxi-
mum of 256. The impact of increasing the token count on
reconstruction quality and pixel-level performance remains
unexplored. Additionally, we observed that character recon-
struction performance is relatively poor. Future work will
focus on extending the maximum token count to improve
accuracy and quality, as well as developing more advanced
training protocols to better preserve important details.
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A. Other Related Work
Neural Image Codec. Neural Image Codecs and Image
Tokenizers share a common motivation for compression, and
numerous studies have explored variable-rate compression.
However, the representations produced by Neural Image
Codecs are often unsuitable for generation, downstream
task adaptation, or vision-language integration. Many meth-
ods achieve variable-rate compression via rate-conditional
autoencoders (Choi et al., 2019; Song et al., 2021; Cui et al.,
2021; Duan et al., 2023; Iwai et al., 2024; Jia et al., 2024).
While these methods are effective as variable-bitrate com-
pression algorithms, they are impractical as variable-length
image tokenizers due to the lack of representational com-
patibility across different compression rates. In contrast,
the One-D-Piece Encoder is rate-agnostic, ensuring token
compatibility across different rates, which is an important
requirement of image tokenizers.

B. Training Details
For our experiments, we strictly adhered to the TiTok set-
tings (Yu et al., 2024b) as detailed in Table 7 for both model
architecture and training configurations. As the base imple-
mentation of TiTok, we utilized the repository bytedance/1d-
tokenizer, referencing commit ID 6cf0d6, following its
Apache 2.0 License.

C. Evaluation Details
C.1. Reconstruction

Additional Samples. We further provide sample recon-
structed images, where L-256, B-256, and S-256 are shown
in Figure 11, Figure 12, and Figure 13, respectively.

rFID Values. We provide the detailed rFID values corre-
sponding to Figure 4 in Table 4. JPEG, JPEG 2000, and
WebP format files were generated using OpenCV version
4.10.0.84 as the converter.

C.2. Downstream Tasks

In addition to the reported result of One-D-Piece-L-256, we
further provide results for other variants. The evaluation
results for downstream tasks using One-D-Piece-S-256 and
B-256 are presented in Table 6. Consistent with our report
in the main paper, tasks that rely primarily on semantic
information, such as semantic segmentation and CLIP em-
bedding reconstruction, achieve scores that surpass WebP
with a smaller number of tokens. Similarly, object detection
and image classification tend to show better results with a
moderate number of tokens. For the depth estimation task,
both models require 128 tokens to outperform WebP.

Table 4: Comparison of image quality against compression
quality for JPEG, JPEG 2000, and WebP.

Method Quality Bits per Pixel Tokens rFID↓

JPEG

1 0.252 1376 113.30
2 0.252 1376 113.24
4 0.290 1583 79.23
8 0.400 2167 32.92

16 0.580 3167 15.76
24 0.732 3997 12.12

JPEG 2000

2 0.050 271 299.40
4 0.097 531 139.99
8 0.192 1049 79.90

16 0.382 2088 43.23
24 0.573 3130 26.40
30 0.716 3913 19.09

WebP

0 0.240 1310 31.98
2 0.270 1472 28.81
4 0.314 1717 25.05
8 0.383 2729 16.26

16 0.492 2729 16.26
32 0.711 3884 11.47

C.3. Generation

Our primary evaluations of One-D-Piece focus on recon-
struction quality, but generation quality is also an essential
metric, particularly for applications like image and video
generation models. Since TiTok (Yu et al., 2024b), the base
architecture of One-D-Piece, is reported to contribute to
high generation quality, our objective is to confirm that the
introduction of the Tail Token Drop mechanism does not
adversely affect generation quality.

For the evaluation, we train MaskGIT (Esser et al., 2021) for
class-conditioned image generation, utilizing One-D-Piece
as the image tokenizer, following the protocols utilized in
TiTok. We assess the generation FID (gFID) using precom-
puted statistics from the Ablated Diffusion Model (Dhariwal
& Nichol, 2024). As shown in Table 5, our models demon-
strate competitive performance compared to TiTok variants.
This result confirms that the introduction of Tail Token Drop
does not damage the generation quality and highlight the po-
tential of One-D-Piece for image and video generation tasks.
Our detailed setting for the generation model is shown in
Table 8. Sample generated images are shown in Figure 15.

1Shanghua Gao, Pan Zhou, Ming-Ming Cheng and Shuicheng
Yan. Masked Diffusion Transformer is a Strong Image Synthesizer.
in 2023 IEEE/CVF International Conference on Computer Vision
(ICCV), Paris, France, 2023, pp. 23107-23116.

1

https://github.com/bytedance/1d-tokenizer/tree/6cf0d6e63a339eede815cec2d2af6cb622f2e3fe
https://github.com/bytedance/1d-tokenizer/tree/6cf0d6e63a339eede815cec2d2af6cb622f2e3fe
https://github.com/bytedance/1d-tokenizer/blob/6cf0d6e63a339eede815cec2d2af6cb622f2e3fe/LICENSE
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Table 5: Generation quality comparison between TiTok and
One-D-Piece models, evaluated using gFID (lower is better)
and Inception Score (IS, higher is better). The Inception
Score for TiTok-S-128 is not reported, as the pretrained
MaskGIT with Vision Transformer backbone model for this
configuration has not been released.

Model TiTok One-D-Piece

S-128 B-64 L-32 S-256 B-256 L-256
gFID↓ 2.50 2.48 2.77 2.67 2.70 2.35

IS↑ — 216.61 201.85 265.82 259.27 224.38

Figure 9: Comparison of allocation methods for One-D-
Piece-S-256 for LPIPS target. (A) illustrates the relation-
ship between quality and average error. (B) illustrates the
relationship between average quality and standard deviation.

C.4. Inference Speed

While Tail Token Drop reduces the actual token count, it
does not decrease the time complexity of the tokenizer. Dur-
ing tokenization, the inference process generates the maxi-
mum number of tokens, ensuring that the method introduces
no difference on computational cost to the TiTok architec-
ture. However, during detokenization, as fewer tokens are
processed, some speed improvements can be observed.

D. Analysis Details
Adaptive Token Allocation. Our approach employs a
pretrained ResNet-50D model from timm 2 as the Quality
Estimator. Its final linear layer is modified to output 256
values, each corresponding to a potential token count from
1 to 256. An input image is first processed through the
One-D-Piece encoder to generate a sequence of 256 tokens.
Then, a token count k is uniformly sampled from the range
1 to 256, and the image is reconstructed using only the first
k tokens.The reconstruction quality is then evaluated using
a chosen metric—whether it be MSE, LPIPS, or CLIP Em-

2https://huggingface.co/docs/timm/models/resnet-d

Figure 10: Comparison of allocation methods for One-D-
Piece-S-256 for CLIP embedding similarity target. (A)
illustrates the relationship between quality and average error.
(B) illustrates the relationship between average quality and
standard deviation.

bedding similarity—and the resulting value quantifies how
well the image has been reconstructed with k tokens. This
computed quality score is used as the target value for the
k-th element of the Quality Estimator’s output vector. In
other words, if the reconstruction using k tokens achieves a
particular quality level according to the chosen metric, the
Quality Estimator is trained to predict that exact value at its
k-th position. L1 loss is calculated between the predicted
value and the measured quality score, and the entire system
is optimized using AdamW optimizer to minimize this loss.
Detailed hyper-parameter settings is shown in Table 10. We
validate the effectiveness of this method not only with MSE
but also with LPIPS and CLIP embedding similarity, demon-
strating its versatility in efficiently determining the optimal
token count across various quality criteria. The results for
LPIPS and CLIP embedding similarity are presented in Fig-
ure 9 and Figure 10, respectively.

Token Contribution Grids. We provide token contribu-
tion grids for all three One-D-Piece variants and three TiTok
variants in Figure 16. Note that these visualizations are
log-scaled and normalized using the global maximum and
minimum values within each grid. As a result, the colors
are not directly comparable across different models.

E. Licenses
The licenses of datasets and models used for training, evalu-
ation, and downstream tasks are described as follows.

ImageNet-1K ImageNet-1K comprises 1,281,167 train-
ing images, 50,000 validation images, and 100,000 test
images, covering a total of 1,000 object classes. We use it
under the terms of its access agreement, which permits us-

2

https://image-net.org/accessagreement
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Table 6: Evaluation of downstream tasks at different token lengths for One-D-Piece-S-256 and One-D-Piece-B-256.
Green background indicate where One-D-Piece-S-256 surpasses WebP, while yellow background show where One-D-

Piece-B-256 surpasses WebP.

Task Metrics One-D-Piece-S-256 Image Formats Base@16 @32 @64 @128 @256 JPEG WebP

Object Detection
mAP@0.5:0.95↑ 0.030 0.063 0.125 0.204 0.244 0.001 0.166 —

mAP@0.5↑ 0.062 0.112 0.197 0.300 0.349 0.001 0.217 —
mAP@0.75↑ 0.025 0.061 0.129 0.214 0.260 0.001 0.178 —

Depth Estimation L1 Loss↓ 2.919 2.364 1.861 1.482 1.340 3.742 1.553 —
L2 Loss↓ 16.006 11.478 7.590 5.024 4.171 24.097 5.050 —

CLIP Emb Reconstruction Cos Sim↑ 0.779 0.832 0.879 0.914 0.926 0.610 0.826 —

Image Classification Acc@1↑ 0.378 0.535 0.659 0.738 0.759 0.284 0.664 0.841
Acc@5↑ 0.613 0.769 0.864 0.915 0.928 0.479 0.870 0.969

Semantic Segmentation mIoU↑ 0.2016 0.329 0.438 0.518 0.540 0.059 0.410 0.606
bIoU ↑ 0.084 0.154 0.223 0.278 0.295 0.027 0.211 0.343

Task Metrics One-D-Piece-B-256 Image Formats Base@16 @32 @64 @128 @256 JPEG WebP

Object Detection
mAP@0.5:0.95↑ 0.038 0.080 0.148 0.228 0.277 0.001 0.166 —

mAP@0.5↑ 0.076 0.140 0.234 0.337 0.391 0.001 0.217 —
mAP@0.75↑ 0.034 0.079 0.152 0.235 0.292 0.001 0.178 —

Depth Estimation L1 Loss↓ 2.709 2.182 1.723 1.377 1.214 3.742 1.553 —
L2 Loss↓ 14.404 10.095 6.682 4.411 3.491 24.097 5.050 —

CLIP Emb Reconstruction Cos Sim↑ 0.798 0.849 0.891 0.920 0.934 0.610 0.826 —

Image Classification Acc@1↑ 0.441 0.586 0.697 0.756 0.776 0.284 0.664 0.841
Acc@5↑ 0.672 0.806 0.890 0.926 0.938 0.479 0.870 0.969

Semantic Segmentation mIoU↑ 0.250 0.372 0.480 0.536 0.562 0.059 0.410 0.606
bIoU ↑ 0.108 0.180 0.250 0.291 0.309 0.027 0.211 0.343

age for non-commercial research and educational purposes.

ImageNet-S ImageNet-S provides high-quality semantic
segmentation annotations for robust evaluation, based on
12,419 validation images and 26,423 test images sourced
from ImageNet. The dataset focuses on 919 categories,
excluding unsegmentable ones such as “bookshop.” Usage
of this dataset adheres to the ImageNet licensing terms.

COCO COCO val2017 consists of 5,000 images spanning
80 categories, including a wide range of annotated objects
such as people, animals, vehicles, and furniture. We follow
the terms of use of COCO and the Flickr Terms of Use for
images in the COCO dataset.

Ultralytics YOLO11 We use Ultralytics YOLO11x for
object detection. Ultralytics YOLO11 is released under
the GNU Affero General Public License v3.0 (AGPL-3.0),
which permits the use of the model for research purposes.
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https://image-net.org/accessagreement
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https://www.flickr.com/help/terms
https://github.com/ultralytics/ultralytics/blob/main/LICENSE
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Table 7: Hyperparameters for One-D-Piece models.
These hyperparameters are fully following TiTok settings.

Item Value
Model
Codebook Size 4,096
Token Size 12
Model Size ViT small / base / large
Patch Size 16
Latent Tokens 256
Training
Stage1 Epochs 100
Stage2 Epochs 200
Stage1 Batch Size 1024
Stage2 Batch Size 512
Dataset ImageNet-1K
Augmentation Random Crop / Flip
Losses
Stage1
Pretrained Tokenizer MaskGIT tokenizer [Link]
Target Codebook Size 1024
Reconstruction Weight 1.0
Quantizer Weight 1.0
Stage2
Discriminator Weight 0.01
Perceptual Loss Model ConvNeXT-Small [Link]
Perceptual Loss Weight 0.1
Reconstruction Weight 1.0
Commitment Loss Weight 0.25
Codebook Loss Weight 1.0
Optimizer
Optimizer AdamW
Learning Rate 1e-4
Beta1 0.9
Beta2 0.99
Weight Decay 1e-4
Epsilon 1e-8
Scheduler
Scheduler Type Cosine
Warmup Steps 10,000
End Learning Rate 1e-5

Table 8: Hyperparameters for MaskGIT models. These
hyperparameters are fully following TiTok settings.

Item Value

S-256 B-256 L-256
Model
Architecture MaskGIT
Hidden Dim 768
Hidden Layers 24
Attention Heads 16
Dropout Rate 0.1
Class Label Drop 0.1
Class Count 1000
Latent Tokens 256
Training
Epochs 900
Batch Size 2048
Dataset ImageNet-1K
Augmentation Random Flip
Losses
Loss Function CrossEntropy
Label Smoothing 0.1
Unmasked Token Loss 0.1
Optimizer
Optimizer AdamW
Learning Rate 2e-4
Beta1 0.9
Beta2 0.96
Weight Decay 0.03
Scheduler
Scheduler Type Cosine
Warmup Steps 10,000
End Learning Rate 1e-5
Decoding
Steps 16 16 16
Temperature 3.0 2.5 3.0
Guidance Decay Power Cosine 1

Guidance Scale 12.5 8.5 5.5

4

https://github.com/google-research/maskgit
https://pytorch.org/vision/main/models/generated/torchvision.models.convnext_small.html#torchvision.models.ConvNeXt_Small_Weights
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Table 9: Hyperparameters for LlamaGen models.

Item Value
Model
Architecture LlamaGen-L
Hidden Dim 1024
Hidden Layers 24
Attention Heads 16
Dropout Rate 0.0
Class Label Drop 0.1
Class Count 1000
Latent Tokens 256
Training
Epochs 150
Batch Size 2048
Dataset ImageNet-1K
Augmentation Random Flip
Losses
Loss Function CrossEntropy
Label Smoothing 0.1
Optimizer
Optimizer AdamW
Learning Rate 1e-4
Beta1 0.9
Beta2 0.95
Weight Decay 0.05
Scheduler
Scheduler Type Cosine
Warmup Steps 10,000
End Learning Rate 1e-5
Decoding
Temperature 1.0
Guidance Scale 1.5-3.5
Top-P N/A
Top-K N/A

Table 10: Hyperparameters for Quality Estimator Train-
ing.

Item Value
Training
Epochs 10
Batch Size 64
Dataset ImageNet-1K
Augmentation None
Optimizer
Optimizer AdamW
Learning Rate 1e-4
Beta1 0.9
Beta2 0.99
Weight Decay 0.01
Epsilon 1e-8
Scheduler
Scheduler Type Cosine
Warmup Steps 0
End Learning Rate 0

5
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Figure 11: Visual comparison of reconstructed images with One-D-Piece-L-256.
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Figure 12: Visual comparison of reconstructed images with One-D-Piece-B-256.
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Figure 13: Visual comparison of reconstructed images with One-D-Piece-S-256.
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Figure 14: Results of depth estimation and semantic segmentation on reconstructed images with One-D-Piece-L-256.
With an increase in token count, these results approach those of the original images.
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Figure 15: Images generated by MaskGIT with One-D-Piece-L-256 with random classes.

Figure 16: Token Contribution Grid for all variants of One-D-Piece and TiTok. Our One-D-Piece models demonstrate a
clear concentration of global information at the head of the token sequence, whereas the TiTok models distribute such tokens
more randomly.
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