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Abstract
In time-series unsupervised domain adaptation (UDA), the adaptation between temporal
and frequency domain features has been relatively underexplored. To address this gap,
we conduct a comprehensive series of experiments to revisit the roles of these domains in
UDA. Our findings reveal that the temporal domain contains more diverse features, offering
higher discriminability, while the frequency domain is more domain-invariant, providing
better transferability. Combining the strengths of both domains, we propose TF-DAN, a
UDA framework that synergistically integrates temporal and frequency domain features.
TF-DAN enhances feature extraction and captures subtle, class-specific features without
relying on traditional alignment strategies. By utilizing simple hyperparameter adjustments
and using frequency embeddings from the source domain as reference points for domain
adaptation, TF-DAN achieves nearly a 10% improvement across five benchmark datasets in
time-series UDA. This research highlights the unique strengths of both domains and marks
a paradigm shift in UDA methods, showcasing TF-DAN’s robust performance in real-world
applications. Codes can be found in the additional material folder.
Keywords: Time-Series; Unsupervised Domain Adaptation; TSUDA.

1. Introduction

Time series datasets showcase the prowess of neural networks (Ravuri et al., 2021; Lundberg
et al., 2018), but their vulnerability to domain shifts poses deployment challenges (Singhal
et al., 2023; Painblanc et al., 2023; Zhang et al., 2021). These shifts, stemming from nuanced
differences in test distributions, hinder model generalization (Koh et al., 2021; Luo et al.,
2018; Zhang et al., 2013). This challenge manifests across diverse real-world applications,
from machine fault detection and EEG classification to human activity recognition through
wearable devices, where variations in machines, environments, and individual characteristics
inevitably lead to significant domain shifts. Addressing this, domain adaptation (DA)
techniques, such as leveraging unlabeled data (Garg et al., 2021; Ganin et al., 2016), emerge
as essential to ensure robust model performance in real-world scenarios. In addition, DA
for time series is even more difficult (Wilson and Cook, 2020; Ozyurt et al., 2023; He et al.,
2023), as it has to deal with both the domain discrepancy and the temporal dynamics that
may cause feature shift and label shift.

Unsupervised Domain Adaptation (UDA) is pivotal for enhancing the generalization
of machine learning models, aiming to train a model on a labeled source domain that can

© 2025 C.-C. Tsao *, F.-Y. Su * & J.-H. Chiang.



Tsao * Su * Chiang

effectively perform on a related yet unlabeled target domain (Garg et al., 2021; Ganin et al.,
2016). While UDA methods have flourished in computer vision (Huo et al., 2022; Tang et al.,
2021; Pan et al., 2020; Tzeng et al., 2019), their application to time series, though feasible
with feature extractor adjustments, often falls short in fully harnessing time-series properties.
In the domain of time series, a limited number of works have explicitly addressed UDA,
they mostly focus on temporal information. Even when the frequency domain is considered,
it is typically combined with temporal features and treated as general information during
training.

To clarify the characteristics of the time and frequency domains, we conducted a series of
experiments leading to the following conclusions: the temporal domain provides broader
information with stronger classification discriminability, while the frequency
domain, though simpler, offers more domain-invariant features that serve as
reference points between the source and target domains (Section 3.1).

Our research integrates the strengths of both the temporal and frequency domains, moving
beyond the prior focus on “how to align two inconsistent distributions” to explore how to
identify features that represent classes across domains? The difference lies in that
the former approach pays little attention to the features extracted by the model, focusing
instead on alignment methods and classifier performance. This overemphasis on alignment
leads to overly sensitive and inflexible classifiers, particularly when dealing with data with
large domain gaps or longer time series. The latter approach avoids these pitfalls by enabling
the model to utilize class-representative features early in training, ensuring more robust
performance.

We propose TF-DAN (Temporal-Frequency Domain Adaptation Network), a simple
framework for UDA in time series that leverages both temporal and frequency domain
characteristics to achieve strong performance. Our model integrates information from both
domains to capture subtle, class-specific features, enhancing feature extraction. By focusing on
the domain-invariant properties of the frequency domain, we use a frequency embedding table
from the source domain as reference points, along with simple hyperparameter adjustments,
to enable the model to find the most suitable embeddings for target domain data during
adaptation, ultimately assigning the appropriate class labels.

Our Contributions:

1. We introduce TF-DAN (Temporal–Frequency Domain Adaptation Network),
a novel framework for time-series UDA that explicitly separates and leverages the com-
plementary roles of temporal (class-discriminative) and frequency (domain-invariant)
representations.

2. We empirically demonstrate that temporal features enhance discriminability,
while frequency features improve transferability, revealing their distinct contri-
butions to domain adaptation.

3. A lightweight frequency embedding module enables efficient adaptation to unlabeled
target domains, achieving up to 10% performance gain across five benchmark
datasets.
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2. Related Work

2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) leverages labeled source domain data to predict
labels in an unlabeled target domain by minimizing domain discrepancy and reducing target
error. UDA methods fall into three categories: (1) Metric-based methods, such as DDC
(Tzeng et al., 2019), Deep CORAL (Sun and Saenko, 2016), DeepJDOT (Damodaran et al.,
2018), HoMM (Chen et al., 2020), and MMDA (Rahman et al., 2020), which minimize domain
gaps using distance metrics. (2) Adversarial-based methods use domain discriminators to
learn domain-invariant features, like DANN (Ganin et al., 2016), CDAN (Long et al., 2018),
and DIRT-T (Shu et al., 2018). (3) Contrastive methods, such as CAN (Kang et al., 2019),
CLDA (Singh, 2021), and IDCo (Zhang et al., 2023), align source and target embeddings
via contrastive loss, using pseudo-labels for target samples. While UDA is well-studied in
computer vision, research on UDA for time-series data remains limited.

2.2. Time-Series Unsupervised Domain Adaptation

Despite successes in computer vision, there has been a notable gap in research focusing on
adaptation methods tailored for time-series data. Few methods have been specifically crafted
for time-series domain adaptation. (1) Adversarial training for time-series UDA involves
using adversarial methods to learn domain-invariant temporal relationships, such as VRADA
(Purushotham et al., 2017) and CoDATS (Wilson et al., 2020). (2) Statistical divergence
methods for time-series UDA focus on aligning the statistical properties of source and target
domains. Examples include SASA (Cai et al., 2021), AdvSKM (Liu and Xue, 2021a) and
(Ott et al., 2022). (3) Self-supervision methods for time-series UDA extract domain-invariant
and domain-specific features. DAF (Jin et al., 2022) uses a shared attention module with
a reconstruction task. Contrastive methods like (Ozyurt et al., 2023), CoTMix (Eldele
et al., 2023), and CALDA (Wilson et al., 2023) use augmentations to enhance prediction.
RAINCOAT (He et al., 2023) addresses feature and label shifts by aligning them across
domains. Despite their potential, they rely on access to source data, which may not always
be feasible due to privacy concerns.

2.3. Vector Quantised Variational AutoEncoder (VQ-VAE)

The VQ-VAE (Van Den Oord et al., 2017) functions as a communication system where an
encoder maps inputs to vectors that are quantized using a shared codebook, and a decoder
reconstructs the data from these discrete representations. This discretization process, coupled
with straight-through gradient estimation for training, proves particularly advantageous
in UDA scenarios by effectively capturing domain-specific features through self-supervised
learning while maintaining robustness against model degeneration in both temporal and
frequency domains.

3. Problem Formulations

We are given two distributions of time-series data: one from the source domain Ds and
the other from the target domain Dt. In this setup, define labeled i.i.d. samples from the
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Figure 1: We randomly selected 15 source 7→ target pairs from the HAR dataset and divided
them into three groups for analysis, focusing on the following metrics: (a) mean
accuracy in the source domain, (b) mean variance in classification performance
within the target domain, and (c) the performance degradation rate when testing
the source domain pre-trained model on the target domain. Additionally, we
evaluated the impact of hyperparameters on transferability in both the time and
frequency domains by assessing (d) the mean accuracy after fine-tuning with
different learning rates. Additional experimental results on other datasets can be
found in Supplementary A.

source domain as S = {(xs
i ,y

s
i )}

Ns

i=1 ∼ Ds, where xs
i represents a sample from the source

domain, ys
i ∈ {1, ...,H}, where H is the number of classes, and ys

i denotes the label for
the corresponding sample, and Ns denotes the total number of i.i.d. samples in the source
domain. Conversely, consider unlabeled i.i.d. samples from the target domain denoted by
T = {xt

i}
Nt

i=1 ∼ Dt. Here, xt
i denotes an individual sample from the target domain, and Nt

represents the total number of i.i.d. samples collected from the target domain. Furthermore,
each xi, whether originating from Ds or Dt, constitutes a sample of a multivariate time
series denoted by xi = {xi,t}Lt=1 ∈ RM×L, where L represents the number of time steps, and
xi,t ∈ RM signifies M observations for the respective time step.

Problem (UDA for Time Series). Given are a labeled source dataset Ds and an
unlabeled target dataset Dt, the time step is L. The goal is to extract the highly generalizable
representations from both Ds and Dt by utilizing unsupervised learning strategies and make
the model adapt well to the target samples.

3.1. Preliminary Study

We designed a series of experiments on both the temporal and frequency domains. To
minimize model influence, we follow prior research (Liu and Xue, 2021b; Cheng et al., 2024)
by constructing a 3-layer CNN as a temporal feature extractor and a frequency feature
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extractor that combines a fast Fourier transform with a 1-layer linear network. Both are
followed by a 1-layer linear classifier for simplicity.

The key question we explore is: What kind of feature information do the temporal
and frequency domains provide? We pre-train three models on the source domain
until they converge and observe their performance on the target domain. During the
temporal model experiments, we observed a noteworthy phenomenon: despite achieving
nearly 100% accuracy in the source domain (Fig. 1(a)) with different model parameters, the
performance on the target domain exhibits considerable fluctuation. As shown in Fig. 1(b),
the performance variance of the three temporal models is larger than that of the frequency
models.

Transferability. When we examine transferability, Fig. 1(c) shows that the temporal
models experience a more significant performance drop, with a statistically significant
difference from the frequency models (p-value = 0.0491). We hypothesize that this is because
the temporal domain contains a wider variety of information, enabling the model to classify
based on multiple dimensions. Nevertheless, this diverse information also includes more
features specific to the source domain or confounders, meaning that when domain shifting
occurs, the model’s focus may no longer be on the relevant class features of the target domain,
resulting in poorer transferability.

In contrast, the frequency domain, after undergoing Fourier transformation, filters out
much of the extraneous information, such as signal start and end points or noise, resulting in
fewer feature dimensions. However, this allows the frequency models to focus more on the
overall structure of the information, making them more domain-invariant. Fig. 1(c) supports
this, showing that although the frequency models do not perform as well as the temporal
models in source domain classification, their transferability is superior.

This raises another concern: Is the frequency domain truly more domain-invariant?
To investigate, we design another experiment where we only adjust the extent of feature
updates (here, we choose to adjust the learning rate) during the fine-tuning phase. Our
assumption is that if merely tweaking the learning rate significantly improves model perfor-
mance, it indicates that the frequency domain contains domain-agnostic features that are
specific to each class of data rather than just irrelevant features that do not contribute to
the model’s effectiveness.

As shown in Fig. 1(d), the frequency models require a very small learning rate to fine-
tune correctly. Larger learning rates prevent the frequency models from converging to the
optimal point. Interestingly, the temporal models are much less sensitive to hyperparameter
adjustments compared to the frequency models. In Fig. 1(d), despite averaging accuracy
across 15 source 7→ target experiments, the temporal models fine-tune to 100% accuracy
across learning rates ranging from 1 × 10−4 to 1 × 10−8. This could be explained by the
high feature diversity in the temporal domain, allowing different model parameters to reach
optimal solutions depending on the learning rate. Meanwhile, the frequency models retain
robust domain-invariant features between source and target domains, making them better
suited to fine-tuning with smaller steps.

Empirical insights. The analysis reveals two key insights regarding time-series domain
adaptation: (1) the time domain excels at classification, but its transferability is hindered
by an excess of confounding factors, and (2) the frequency domain, though containing more
uniform and less diverse information, offers better domain-invariant features, leading to
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Figure 2: The TF-DAN framework operates in three phases: (a) During training, input xs
i

is processed by the Dual-Stream Encoder G to produce a combined temporal-
frequency feature zse, with embeddings retrieved from HET using labels and
classified via the nearest embedding function ρ. (b) In adaptation, HET embeddings
are refined using frequency references and a decoder U for reconstruction to address
domain shifts. (c) At inference, a voting mechanism ranks embedding similarities
with zte to improve classification.

stronger transferability. Based on these observations, we design a simple model framework
that leverages the rich features of the time domain while using the frequency domain as a
reference point to bridge the source and target domains. Our experimental results demonstrate
that combining the strengths of both domains yields improved performance.

4. Our Approach

TF-DAN consists of three key modules: a dual-stream encoder G, a hierarchical embedding
table (HET), and a decoder U , along with a 1-layer linear classifier for training. The encoder
G extracts temporal and frequential features (Sec. 4.1). HET is initialized and operates
differently across phases (Sec. 4.2). A voting mechanism refines predictions after the nearest-
neighbor algorithm in inference (Sec. 4.3). Following VQ-VAE, selected embeddings serve as
inputs to U . The objective functions guiding training and adaptation are detailed in Sec.
4.4.

4.1. Dual-stream encoder G

G encodes both time and frequency representations, and the source temporal and frequential
features are denoted as zstemp,i and zsfreq,i, while the target features are denoted as zttemp,i and
ztfreq,i. We will employ the simplified terms ztemp and zfreq to collectively represent features
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from both Ds and Dt in the subsequent explanations. By including frequency information,
the encoder enhances its ability to adapt across domains by potentially identifying common
features. The encoder parameterizes a posterior distribution q(z|x) over the latent variables
ztemp and zfreq based on the input. This posterior captures relationships between the input
and latent representations, informed by both temporal and frequency patterns extracted
from the input, the following:

G(x) = Concat[ztemp(x), zfreq(x)], ∀x ∈ D, (1)

where D is either Ds or Dt, and Concat is the abbreviation of concatenation.

4.2. Hierarchical embedding table (HET)

Initialization. We introduce a 2-layer top-down embedding table and the initial layer is
organized based on task labels, consisting of H categories. The subsequent layer of the
hierarchical embedding table comprises independent latent embedding spaces for each eh,
denoted as eh ∈ RK×Ψ, where K represents the number of the discrete latent variables of
each category and Ψ is the dimensionality of each embedding vector. To sum up, there are
H ×K embeddings in the hierarchical embedding table and we initialize the embeddings
using uniform distribution.

Training phase. We perform a nearest neighbor search in the whole embedding space,
focusing on the category in the source domain that corresponds to the input x as outlined in
Eq. 2. The probabilities of the posterior categorical distribution q(G(x)|x) are defined as
one-hot encoded, following:

q(G(x) = k|x) =

{
1 for k = argminj ∥G(x)− eh,j∥2,
0 otherwise

, (2)

where h denoted to the same category as x and j is the candidates of the category h.
Adaptation phase. Due to the lack of labels in Dt, the model cannot search for the

most similar embeddings within the respective categories. Therefore, we take advantage of
the distinctive characteristics of the frequency domain and partially freeze the frequency
blocks of HET. This deliberate constraint, achieved through significantly different learning
rates, establishes a clear reference point for the encoded latent representations. Consequently,
both the time and frequency modules can efficiently navigate the gradient map, leading to
the identification of optimal solutions with appropriately adjusted update steps. Accordingly,
we can modify Eq. 2 to be agnostic to the category h:

q(G(x) = k|x) =

{
1 for k = argminj ∥G(x)− ej∥2,
0 otherwise

, (3)

where j is the embeddings of HET and there is no category h in this equation.

4.3. Voting mechanism

After the training and adaptation phases, the embeddings in HET have formed H distinctive
clusters. This implies that, while the embedding in HET is discrete, the majority possess
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representative features specific to their respective categories h. Subsequently, we employ a
nearest-neighbor algorithm to determine the top K categories (where K=5) represented by
the embeddings. Through a voting mechanism, we ascertain the category to which the input
data should belong. This enhances the robustness of TF-DAN. The algorithm of the voting
mechanism can be seen in Supplementary B.

4.4. Objective functions

In TF-DAN, we utilize three types of objective functions during the training phase: (1)
classification loss, (2) dissimilarity loss, and (3) feature-embedding consistency loss. While
there are two types of objective functions during the adaptation phase: (1) reconstruction
loss and (2) feature-embedding consistency loss.

Classification loss LCE. We utilize cross-entropy loss as the loss function for our
classification task during training.

Dissimilarity loss LD. This objective function is designed to prevent the model from
generating nearly identical embeddings among categories during the training phase. To
achieve this, we identify the closest embedding to zfreq from all embeddings in the frequency
block, which is more domain-agnostic than temporal features and does not belong to the
same category as ys

i . The repulsive effect is introduced by calculating the dissimilarity loss. It
is worth noting that, while TF-DAN searches for the closest representative in the embedding
table within the same category as xs

i , this approach may result in the model learning a
common feature across all categories, neglecting latent features that distinguish between
different categories. To address this, we utilize the following equation (Eq. 4) to guide the
model explicitly in generating a better latent representation.

LD = 1− ∥sg[efreq [h̸=y]]− zfreq∥22, (4)

where efreq [h̸=y] is the chosen embedding from the frequency block on the hierarchical embed-
ding table, and its category h cannot be the same label of the input data xs

i . Additionally,
sg(·) represents the stop-gradient operator, which functions as an identity during forward
computation and possesses zero partial derivatives.

Feature-embedding consistency loss LA. Taking inspiration from VQ-VAE, TF-DAN
incorporates vector quantization algorithms, guiding the embedding encoder outputs towards
proximity through L2 error, thus effectively learning the embedding space. The hierarchical
structure of the embedding table, divided into temporal and frequency blocks, assigns each
block to handle specific features. Consequently, they do not share the same optimizer but are
updated independently. Additionally, to address a concern highlighted by VQ-VAE about
the lack of dimensionality constraints on the embedding space, which could potentially lead
to uncontrolled growth, TF-DAN adjusts the weight of this constraint to α and β for both
temporal and frequency blocks. The objective function is expressed as:

LA = α

Frequency block︷ ︸︸ ︷
(∥sg[efreq]− zfreq∥22) + ∥efreq − sg[zfreq]∥22

+ β (∥sg[etemp]− ztemp∥22) + ∥etemp − sg[ztemp]∥22︸ ︷︷ ︸
Temporal block

.
(5)
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Reconstruction loss LMSE. During the adaptation phase, since the representative
chosen from the hierarchical embedding table does not provide the model with a real gradient,
we employ the straight-through estimator (Van Den Oord et al., 2017). This allows us to
pass the gradient generated by the decoder back to the encoder directly. We opt not to use
the subgradient through the quantization operation, as VQ-VAE has demonstrated that a
simple estimator can achieve effective training outcomes. As the output representation of the
encoder and the input to the decoder exist in the same D-dimensional space, the gradients
carry valuable information on how the encoder needs to adjust its output to minimize the
reconstruction loss.

Overview of TF-DAN. During training, we employ the classification loss for our
classification task. The total loss function is defined with three components in the objective
function, as outlined below:

Ltraining = LCE + LA + LD. (6)

During adaptation, we replace the classification task with a reconstruction task, which
leads us to modify our objective function as shown in Eq. 7. This design enables TF-DAN
to outperform other time-series UDA methods. Last but not least, an overview algorithm of
TF-DAN is in Supplementary B.

Ladaptation = LMSE + LA. (7)

5. Experiments

5.1. Experimental setup

Datasets. We employ a comprehensive evaluation strategy, consisting of two main aspects.
First, extensive experiments are conducted using five well-established benchmark datasets
in UDA tasks, from three distinct problem types: (1) Human Activity Recognition: HAR
(Anguita et al., 2013), HHAR (Stisen et al., 2015), WISDM (Kwapisz et al., 2011); (2) Sleep
Stage Classification: Sleep-EDF (Goldberger et al., 2000); (3) Machine Fault Diagnosis:
MFD (Lessmeier et al., 2016). In human activity recognition datasets, we treat sensor
measurements from each participant as distinct domains. To ensure robust assessment, we
randomly select 10 source-target domain pairs for evaluation, a methodology widely adopted
in previous works on UDA in time-series research (He et al., 2023; Ozyurt et al., 2023; Cai
et al., 2021; Wilson et al., 2020). For the sleep stage classification task, following the approach
of (Ragab et al., 2023), we utilize the Sleep-EDF dataset, comprising EEG readings from 20
healthy subjects, and we specifically choose EEG in alignment with previous studies (Eldele
et al., 2021). The machine fault diagnosis dataset has been collected under four different
operating conditions, and we treat them as separate domains. In contrast to datasets used
for human activity recognition being multi-variate, the data used in Sleep-EDF and MFD
consist of a single univariate channel following previous works. (He et al., 2023; Ragab et al.,
2023) Further details on datasets are given in Supplementary C.

Baselines. We evaluate nine domain adaptation methods, including general UDA
approaches: deep correlation alignment (Deep Coral) (Sun and Saenko, 2016), decision
boundary iterative refinement training with a teacher (DIRT-T) (Shu et al., 2018), HoMM
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Figure 3: Average performance of multiple DA methods across 5 real-world time-series
datasets. TF-DAN consistently outperforms all other methods in accuracy on test
sets drawn from the target domain dataset.

(Chen et al., 2020), and CDAN (Long et al., 2018). Additionally, we include four UDA
methods specifically designed for time series: CoDATS (Wilson et al., 2020), adversarial
frequency kernel matching for unsupervised time-series domain adaptation (AdvSKM) (Liu
and Xue, 2021a), contrastive learning for unsupervised domain adaptation of time series
(CLUDA) (Ozyurt et al., 2023), and RAINCOAT (He et al., 2023). As a baseline, we
also consider source-domain-only training (no transfer) using the time-frequency encoder as
RAINCOAT (He et al., 2023) and a 1-layer classifier.

Evaluation. We present accuracy and macro-F1 scores computed based on the target
test datasets. In the experiment, we assign the values of 1 to both parameters α and β,
treating the time domain and frequency blocks as equally important. More hyperparameter
settings can be seen in Supplementary E.

5.2. Results

5.2.1. Classification performance on DA benchmark datasets

In Fig. 3, the average accuracy of each method is presented across 10 sources 7→ target
domain pairs on the HAR, HHAR, WISDM, Sleep-EDF, and MFD datasets. On the HAR
dataset, our model surpasses the best baseline accuracy achieved by RAINCOAT by 1.93%
(0.844 vs. 0.828). For the HHAR dataset, our model outperforms the best baseline accuracy
of CLUDA by 5.5% (0.624 vs. 0.569). In the case of the WISDM dataset, our model excels
by surpassing the best baseline accuracy of RAINCOAT by 21.34% (0.688 vs. 0.567). Moving
on to the Sleep-EDF dataset, our model exceeds the best baseline accuracy of DIRT-T by
9.1% (0.779 vs. 0.714). Similarly, on the MFD dataset, our model beats the best baseline
accuracy of DIRT-T by 11.73% (0.819 vs. 0.733). Despite our model’s simplicity compared
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(a) MFD (b) Sleep-EDF

Figure 4: Accuracy for Frequency and Temporal Block Learning Rates in (a) and (b) datasets.

to state-of-the-art methods, it achieves the highest scores across five different datasets. The
Supplementary D contains a detailed compilation of UDA results for each source 7→ target
pair, accompanied by Macro-F1 scores, which further support our conclusions.

5.2.2. Different Frequency and Temporal Block Learning Rates

We further analyze the impact of different learning rates for the temporal and frequency
blocks of TF-DAN during the adaptation phase. We conduct experiments using the MFD
and Sleep-EDF datasets due to their large data volumes, which make performance differences
more pronounced, as shown in Fig. 4. We discover some valuable findings:

1. When the learning rate for the frequency block is smaller, TF-DAN’s adaptability
improves. This trend aligns with the observations of our insights in Section 3.1.

2. When the learning rate for the temporal block is larger, the model’s performance
deteriorates. We speculate that this is due to the interaction between the encoder and
the HET within TF-DAN architecture. Specifically, when the learning rates of the
temporal and frequency blocks differ by four orders of magnitude, it indirectly hinders
the adjustment range of one of the blocks through the encoder.

Therefore, we recommend setting the learning rates of the temporal and frequency blocks
to the same value during the adaptation phase for optimal performance.

5.2.3. Embeddings in HET After Training Phase

To further understand why TF-DAN excels in UDA tasks, we use principle component
analysis (PCA) to visualize the 2D embeddings of the temporal and frequency blocks. Fig. 16
in Supplementary F shows that, although both blocks are initialized uniformly, the temporal
block’s embeddings do not cluster as well as those of the frequency block. This is likely
due to the time domain’s higher feature diversity and complexity, including confounders,
while the frequency block contains more uniform information, allowing it to better capture
category-specific features, as seen in the PCA visualization (Fig. 16(b) in Supplementary F).
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Table 1: The ablation study of TF-DAN, where performance is measured in terms of accuracy.

Element of Our Model MFD Dataset
Frequency Block LD Voting 1 7→ 3 2 7→ 1 3 7→ 2 Avg

(a) ✓ 83.94 80.23 77.81 80.66
(b) ✓ 58.36 65.45 69.10 64.30
(c) ✓ ✓ 87.25 86.08 84.19 85.84
(d) ✓ ✓ 83.81 85.77 82.59 84.06
(e) ✓ ✓ ✓ 99.84 91.71 87.22 92.92

5.2.4. Ablation Study

To better understand the impact of different components in TF-DAN, we conducted ablation
experiments on three key elements: the frequency block, dissimilarity loss LD, and the voting
mechanism, employing five different configurations (Table 1). Given that TF-DAN relies on
the frequency block as a reference point, experiments without the frequency block (Table
1 row (B)) exclusively utilized the temporal block for adaptation. Notably, experimental
setups without the frequency block and with LD were not feasible, considering that LD is
computed based on the frequency embedding table.

During the inference phase, TF-DAN utilizes a voting technique. In the ablation experi-
ment settings, we adjust the ’without voting’ configuration to directly select the category of
the most similar embedding as the final prediction.

The results reveal that the absence of both the frequency block and LD (Table 1 row (B))
leads to the poorest performance. Conversely, having only the frequency block (Table 1 row
(A)) significantly improves classification accuracy. This underscores the argument presented in
our preliminary study that the frequency domain’s domain-invariant properties between source
and target domains enable TF-DAN to generate distinct feature distributions for each category
during training. The use of the well-learned frequency embedding table as a robust reference
guides the classification of target domain data into the correct categories. Furthermore,
incorporating LD or adopting the voting technique enhances performance. The most optimal
performance is achieved when all three components are used simultaneously, surpassing the
second-place configuration (Table 1 row (C)) by nearly 8% in average performance.

6. Conclusion

This research uncovers the complementary roles of temporal and frequency domains in
time-series UDA, demonstrating that temporal features provide broader discrimination
while frequency components yield domain-agnostic transferability. Our proposed TF-DAN
framework leverages these insights, achieving nearly 10% performance gains across five
benchmarks through effective frequency embedding integration and simple hyperparameter
tuning, without relying on traditional alignment methods. This paradigm shift towards
extracting domain-consistent features, rather than conventional alignment approaches, offers
a more robust and practical solution for real-world time-series UDA applications.
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