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Abstract

Inspired by the problem of improving classification accuracy on rare or hard subsets1

of a population, there has been recent interest in alternative models of learning2

where the goal is to generalize to a collection of distributions, each representing3

a “group”. We consider a variant of this problem from the perspective of active4

learning, where the learner is endowed with the power to decide which examples5

are labeled from each distribution in the collection, and the goal is to minimize the6

number of label queries while maintaining PAC-learning guarantees. We demon-7

strate an active learning algorithm for an agnostic formulation of this problem,8

which given a collection of distributions of size G and hypothesis classH with VC-9

dimension d, outputs an ε-suboptimal hypothesis using Õ
(
Gd log2(1/ε) +G/ε2

)
10

label queries when disagreement coefficients are bounded independently of ε.11

When G < o(log2(1/ε)/ε2), this guarantee is of strictly lower order than sample12

complexity lower bounds for a learner that may decide how many samples it wants13

from each distribution in the collection during training. We also consider the14

special case of the problem where each distribution in the collection is individually15

realizable with respect to H, and demonstrate Õ (Gd log(1/ε)) label queries are16

sufficient for learning in this case. We further give an approximation result for the17

full agnostic case inspired by the group realizable strategy.18

1 Introduction19

There has been growing interest in learning problems where the goal is to choose a classifier that20

performs well when faced with multiple subpopulations or “groups”, each with their own distribution21

[1, 2, 3, 4, 5, 6, 7]. In many cases, the motivation comes from a perspective of fairness, where a22

typical requirement is that we classify with similar accuracy across groups [7, 6]. In other cases,23

the motivation may simply be to train more reliable classifiers. For example, it has been observed24

that cancer detection models with good overall accuracy often suffer from poor ability to detect rare25

subtypes of cancer that are not well-represented or identified in training [8].26

In this work, we consider the following formulation of the “multi-group” problem. The learner is27

given a collection of distributions {Dg}Gg=1, each corresponding to a group, a hypothesis classH, and28

wants to pick a classifier that approximately minimizes the maximum classification error over group29

distributions. We consider this problem from an active learning perspective, where the learner has the30

power to choose which examples from each group it wants to label during training. In a standard31

extension of the active learning literature, we set out to design schemes for choosing which examples32

from each group should be labeled, where the goal is to minimize the number of label queries while33

retaining PAC-learning guarantees.34

A major challenge in designing active learning strategies for the multi-group problem is that disagree-35

ment based active learning (DBAL) - the most successful algorithmic paradigm for agnostic active36

learning - fails to admit naive application in the multi-group setting. In DBAL, a standard idea is37
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that at any time during training, an active learner may safely abstain from requesting labels outside38

a region of space called the “disagreement region”, a subset of instance space where empirically39

well-performing hypotheses disagree about how new examples should be labeled. When the learner40

need only consider a single distribution, error differences between classifiers are specified entirely41

through their performance on the part of space on which they disagree, i.e. the disagreement region.42

However, when multiple group distributions must be considered, the absolute errors of classifiers on43

each group must be estimated to compare performance of two classifiers, and this property no longer44

holds. We resolve this via the observation that while we cannot spend all our labeling budget in the45

disagreement region, we can exploit the agreement in its complement to cheaply estimate absolute46

errors of classifiers on each group. This leads to our performance gains in the full agnostic setting.47

In this setting, we demonstrate a consistent active learning algorithm which relies on our modification48

of standard ideas in DBAL referenced above. We analyze the number of label queries made by49

this scheme in terms of a standard complexity measure in the active learning literature called the50

“disagreement coefficient” [9, 10], and show that Õ
(
G log(|H|) log2(1/ε) +G/ε2

)
labels queries51

sufficient for our specification of multi-group learning, when disagreement coefficients of each of52

the group distributions Dg are bounded independently of ε. We note that when G < o(log(1/ε/ε2)),53

our scheme uses fewer labels than required by lower bounds for a variant of the problem where the54

learner may only specify how many examples from each group to draw during training. We also55

show that all dependence on 1/ε2 in the label complexity can be replaced with log(1/ε) when each56

distribution is individually realizable, and give approximation results for the general agnostic case of57

multi-group learning with log(1/ε) dependence on ε.58

2 Related Work59

2.1 Multi-Group Learning60

The majority of the empirical work on multi-group learning has been through the lens of “Group-
Distributionally Robust Optimization” (G-DRO) [11, 12, 13]. In the former case, the goal is to
choose a classifier that minimizes the maximal risk against an unknown mixture over a collection of
distributions {Dg}Gg=1 representing groups. One assumes a completely passive sampling setting – all
data is given to the learner at the beginning of training, and the learner has no ability to draw extra,
fine-grained samples. The strategy is usually empirical risk minimization (ERM) or some regularized
ERM variant over the max loss - for a set of classifiers parameterized by φ ∈ Φ, and letting Sg denote
the set of examples in the training set coming from Dg , one performs

min
φ∈Φ

max
g∈[G]

1

|Sg|
∑

(xi,yi)∈Sg

l(fφ(xi), yi)

It is important to note that the learner knows the group identity of each sample in the training set, but61

is not provided with group information, precluding the possibility of training a separate classifiers for62

each group.63

“Multi-group PAC learning” consider the multi-group problem under the passive sampling assumption
from a more classical learning-theoretic perspective [7, 6]. Here, one assumes there is a single
distribution D from which one is given samples, but also a collection of subsets of instance space
G over which one wants to learn conditional distributions. Given a hypothesis classH, the learner
tries to improperly learn a classifier f that competes with the optimal hypothesis on each conditional
distribution specified by a group g in the collection - formally, one requires that for a given error
tolerance ε, f has the property

∀g ∈ G, P(x,y)∼D(f(x) 6= y|x ∈ g) ≤ inf
h∈H

P(x,y)∼D(h(x) 6= y|x ∈ g) + ε

with high probability. An interesting wrinkle in this literature is that the group identity of sam-64

ples is available at both training and test times. It has been shown that a sample complexity of65

Õ
(
log(|G||H|)/γε2

)
is sufficient for learning in this model, where γ is the minimal mass of a group66

g under D [6].67

“Collaborative learning” studies the multi-group problem under an alternative sampling model [1, 2, 3].
Here we are given a collection of distributions {Dg}Gg=1, each corresponding to a group. Given some
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hypothesis classH, the goal is to learn a classifier f , possibly improperly, that is evaluated against its
worst-case loss over D1, . . . , DG; formally, we would like f to satisfy

max
g∈[G]

P(x,y)∼Dg
(f(x) 6= y) ≤ inf

h∈H
max
g∈[G]

P(x,y)∼Dg
(h(x) 6= y) + ε.

In contrast with multi-group PAC learning, the learner may decide how many samples from each Dg68

it wants to collect during training, and group identity is hidden on test examples. This models the69

case where a learner may want to collect more data from a particularly difficult group of instances,70

such as a rare or hard-to-diagnose type of cancer. Recently, it was shown for finite hypothesis classes71

that Θ̃(log(|H|)/ε2 +G/ε2) total samples over all groups are necessary and sufficient to learn in this72

model [3].73

Our work builds further on collaborative learning, and endows the learner with the ability decide74

which samples from each group distribution Dg should be labeled. This is the standard framework of75

active learning, applied to the multi-group setting.76

2.2 Active Learning77

Active learning concerns itself with the development of learning algorithms for training classifiers78

that have power over which training examples should be labeled [14, 15]. Much work in the field79

has focused on uncovering settings in which algorithmic approaches lower the amounts of labels80

required for PAC-style learning guarantees beyond lower bounds that apply when data is collected81

i.i.d. from the target distribution [16, 17]. In the agnostic, 0-1 loss setting, “lower” ideally generally82

means reducing the dependence on ε in label complexities from a multiplicative factor of 1/ε2 to one83

of polylog(1/ε).84

The vast majority of the work on active learning has been done in the 0-1 loss setting, where accuracy85

over a single, fixed test distribution is the measure of performance. This setting is fairly well-86

understood, at least in the sense that a significant body of work has arisen demonstrating the power87

of active learning to reduce so-called “label complexities” - the number of label queries made by88

the active learner [18, 9, 10, 19, 20, 21]. It has been significantly harder to push the design of active89

learning algorithms past the regime of accuracy on a fixed target. While some work has attempted to90

generalize classical ideas of active learning to different losses [22], these are heavily outnumbered in91

the literature, and are accompanied by some negative results describing the inability of active learning92

to improve over passive learning in certain settings outside the 0-1 loss setting [23].93

The efficacy of active learning is known to depend on certain “niceness” conditions of the data94

generating distribution. In particular, in the agnostic case, the reduction of the dependence on the95

label complexity from 1/ε2 to polylog(1/ε) requires the accuracy of the optimal hypothesis in the96

hypothesis class to be high, and a parameter called the “disagreement coefficient” - describing the97

easiness of eliminating significantly suboptimal hypotheses from contention - to be bounded [15].98

In the worst case, the power to selectively label examples from the target provides no gain in label99

complexity over i.i.d. sampling from the target [24, 22].100

3 Preliminaries101

3.1 Learning Problem102

We study a binary classification setting where examples fall in some instance space X , and labels
lie in Y := {−1, 1}. We suppose we are given some pre-specified, finite collection of distributions
G = {Dg}Gg=1 over X × Y corresponding to groups; for a given group index g, let µg denote
the marginal measure over instance space of Dg. Given a hypothesis class H of classifiers with
VC-dimension d, the goal of the leaner is to pick some h ∈ H from finite data that performs well
across all the distributions in D in the worst case. Let

LD(h | g) := P(x,y)∼Dg
(h(x) 6= y)

be the error of a hypothesis h on group g. Formally speaking, the learner would like to choose a
classifier approximately obtaining

inf
h∈H

max
g∈[G]

LG(h | g)
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using finite data. We often use Lmax
D (h) as shorthand for maxg∈[G] LG(h | g). We use ν :=103

infh∈H L
max
D (h) to denote the “noise rate” ofH on the multi-distribution objective. We assume for104

simplicity that there is some h∗ ∈ H attaining ν. The use of the term “agnostic” throughout reflects105

the fact that we make no assumption that ν = 0 in our algorithm design or analysis.106

Because we consider this problem from an active learning perspective, it is important that we search107

for learning strategies that are “consistent” in the sense that as the number of number of labels108

requested approaches infinity, the learner outputs the true optimal hypothesis. Consistency is an109

important property that can easy fail for agnostic active learning strategies [15].110

3.2 Active Learning Model111

We consider a standard active learning model specified as follows. Let supp(Dg) denote the support112

of µg. The active learner has access to two sampling oracles for each distribution specified by Dg.113

The first is Ug(·), which given a set S ⊆ X measurable with respect to µg, returns an unlabeled114

sample from µg conditioned on S; if S ∩ supp(Dg) = ∅, Ug(S) returns “None”. The second is115

Og(·), which given a point in supp(Dg), returns a sample from the conditional distribution over116

labels specified by x and g. More formally, querying Ug(S) for S ∩ supp(Dg) 6= ∅ is equivalent to117

drawing i.i.d. samples according to µg (independent of previous randomness), and returning the first118

example that falls in S ∩ supp(Dg); querying the oracle Og(x) for x ∈ supp(Dg) is equivalent to119

receiving a sample from a Bernoulli random variable with parameter P(x,y)∼Dg
(Y = 1|X = x).120

As is standard in active learning, the active learner is assumed to have functionally unlimited access to121

queries from Ug(·). On the other hand, queries to oracles Og(·) are precious: the “label complexity”122

of a strategy executed by the active learner is the sum of queries to oracles Og(·) over all g, and is to123

be minimized given a desired generalization error guarantee.124

3.3 Measurability125

To avoid unnecessarily complicated discussion of measure and σ-field, we assume throughout that
for eachH′ ⊆ H, we have that ∆(H′) ∩ supp(Dg) is measurable under µg for each g, where

∆(H′) := {x ∈ X : ∃h, h′ ∈ H′ s.t. h(x) 6= h′(x)}
is the “disagreement region” ofH′. When a single probability space generates the data, measurability126

of this region follows from measurability of the functions inH [9].127

4 Active Learning: From a Single Distribution to Multi-Group Learning128

We base our full agnostic algorithm on DBAL ideas. In this section, we give some background on129

classical DBAL on a single distribution, and discuss in more detail the challenges facing DBAL in130

the case of multi-group learning.131

4.1 Background on Disagreement-Based Active Learning132

Arguably the most successful idea in agnostic active learning for accuracy over a single distribution
has been so-called “disagreement-based active learning” [18, 10, 16]. The essential idea in this school
of algorithms is that one can learn the relative accuracy of two classifiers h and h′ by only requesting
labels for examples in the part of instance space on which they disagree about how examples should
be labeled. More generally, given a set of classifiers H′ ⊆ H, one can consider the “disagreement
region” ofH′

∆(H′) := {x ∈ X : ∃h, h′ ∈ H′ s.t. h(x) 6= h′(x)} .
As alluded to above, the difference in accuracy of classifiers h, h′ ∈ H′ is specified entirely through133

this inherently label-independent notion. Fix a single distribution D, we have134

P(x,y)∼D (h(x) 6= y | x ∈ ∆(H′))− P(x,y)∼D (h′(x) 6= y | x ∈ ∆(H′))

=
P(x,y)∼D (h(x) 6= y)− P(x,y)∼D (h′(x) 6= y)

P(x,y)∼D (x ∈ ∆(H′))
,

as by virtue of their agreement, h, h′ have the same conditional loss on ∆(H′)c. Inspired by this135

observation, the fundamental idea is to label examples in ∆(H′), and ignore those outside of it, thus136

4



saving on labeling examples that are not informative of the relative classification ability members of137

H′. Ideally, certain classifiers quickly reveal themselves to be so much worse than the current ERM138

hypothesis, that by standard concentration bounds, they can be inferred to be more than ε-suboptimal139

with high probability. Elimination of these classifiers shrinks the disagreement region, and allowing140

the labeling to safely become further fine-grained.141

4.2 Breakdown of Standard Disagreement Methods142

In the multi-target setting, the utility of examining the disagreement of two classifiers is weakened.143

The problem is as follows: although the classifiers inH′ still agree in the complement of ∆(H′), this144

is no longer enough infer differences in the worst case error over groups Lmax
D . To make claims about145

the differences in worst case error, one can no longer naively check performance in ∆(H′), because146

differences on ∆(H′) are not generally representative of absolute errors over target distributions. The147

following simple example makes this concrete.148

Example 1. Consider the task of determining which of two classifiers h and h′ has lower error in
the worst case over distributions D1 and D2 with marginal supports S1 ⊆ X and S2 ⊆ X . Let their
disagreement region be denoted by ∆ = {x ∈ X : h(x) 6= h′(x)}, and let risk(f, i, S) denote the
conditional risk of classifier f on Si ∩ S under Di. Suppose we only know their conditional risks on
∆ ∩ S1 and ∆ ∩ S2 under D1 and D2, respectively. We see for h that

risk(h, i, S) =


1/4 i = 1, S = ∆ ∩ S1

1/3 i = 2, S = ∆ ∩ S2

? i = 1, S = ∆c ∩ S1

? i = 2, S = ∆c ∩ S2

and for h′ that

risk(h′, i, S) =


34/100 i = 1, S = ∆ ∩ S1

0 i = 2, S = ∆ ∩ S2

? i = 1, S = ∆c ∩ S1

? i = 2, S = ∆c ∩ S2

.

Consider ignoring risks in ∆c, and using as a surrogate for the multi-group objective

max
i∈{1,2}

risk(h, i, Si ∩∆).

In this case, we would chose h has the better of the two hypotheses. However, suppose further that149

∆∩S1 and ∆∩S2 have mass 1/2 under bothD1 andD2, respectively, and that risk(h, 1,∆∩S1) =150

risk(h′, 1,∆∩ S1) = 1/1000, and that risk(h, 2,∆∩ S2) = risk(h′, 2,∆∩ S2) = 1/2. Then one151

can compute that h′ has a lower worst case error over groups D1 and D2.152

5 General Agnostic Multi-Group Learning153

5.1 An Agnostic Algorithm154

The basic idea in Algorithm 1 is similar to classical active learning approaches for a single distri-155

bution. We start with the full hypothesis classH, and look to iteratively eliminate hypotheses from156

contention as we learn about how to classify on each groups through targeted labeling. To do this, we157

construct empirical estimates for the worst case losses over groups, and then iteratively eliminate158

hypotheses with empirical losses so large that standard concentration arguments imply they cannot159

be ε-suboptimal with high probability.160

In order to achieve labeling savings, our algorithm spends a significant amount of its labeling budget in
the disagreement region. However, as noted above, we cannot fully ignore labeling in the complement
of the disagreement region in the multi-group setting. It is a key observation of ours that we can still
exploit the agreement of the remaining classifiers to estimate the absolute error of all hypotheses in
contention on a given group with just O(log(1/δ)/ε2) more labels than would otherwise be necessary.
To do this, we construct a two-part estimate for the loss of a hypothesis on a given group. Denote
the set of hypotheses still in contention at iteration i isHi. Let Ri = ∆(Hi) and SRi,g be a labeled
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sample from U(supp(Dg) ∩Ri) and SRc
i ,g

be a labeled sample from U(supp(Dg) ∩Rci ). We can
how estimate the loss for some h ∈ Hi on group g via

LS;Ri
(h | g) := µg(Ri) · LSRi,g

(h) + µk(Rci ) · LSRc
i
,g

(hHi
),

where LS(h) := 1
S
∑

(x,y)∈S 1[h(x) 6= y] is a standard empirical loss estimate, and hHi
is an161

arbitrarily chosen hypothesis fromHi that is used in the loss estimate of every h ∈ Hi. This leads to162

an unbiased estimator given that every h ∈ Hi labels the sample from this part of space in exactly the163

same way. Add in that when
empty set, we set em-
pirical estimate to an
arbitrary constant

Add in that when
empty set, we set em-
pirical estimate to an
arbitrary constant

164

The utility of this estimator is that by choosing an arbitrary representative hHi , we can estimate the165

loss of all hypothesis still in contention to precision O(ε) on Rci ∩ supp(Dg) with O(log(1/δ)/ε2)166

samples, removing the usual dependence of the VC-dimension. On the other hand, as the disagreement167

region shrinks, µg(Ri) shrinks as well, so while we will still need to invoke uniform convergence to168

get reliable loss estimates in Ri ∩ supp(Dg), the precision to which we need to estimate losses in169

this part of space decreases with every iteration, and eventually the overall dependence on the VC-170

dimension is diminished. This later observation is the standard source of gains in DBAL [18, 9, 26].171

At each iteration, we use this two-part estimator on each group to construct unbiased loss estimates
for the worst case over groups via

Lmax
S;Ri

(h) := max
g∈G

LS;Ri
(h | g).

We draw enough samples at each iteration i such that we essentially learn the multi-group problem to172

precision 2dlog(1/ε)e−iε.173

We note that Algorithm 1 assumes access to the underlying group marginals measures µg. This is174

common in the active learning literature [18, 20]. Probabilities of events in instance space can be175

estimated to arbitrary accuracy using only unlabeled data, so this assumption is not dangerous to our176

goal of lowering label complexities. We also note that while Algorithm 1 is not “executable” as stated177

for infinite hypothesis classes, ε-covers of near-optimal size can be constructed with high probability178

using a polynomial number of purely unlabeled examples [9]. eventually, i would
just say that when you
make an oracle call to
Ug and the measure is
0, you get back empty
set, and go back to
non-cases algorithm
definition, but this is
nice and explict for
now. if you do that,
be sure to remind the
reader of what is go-
ing on so the two-part
estimator collapse is
clear in the body

eventually, i would
just say that when you
make an oracle call to
Ug and the measure is
0, you get back empty
set, and go back to
non-cases algorithm
definition, but this is
nice and explict for
now. if you do that,
be sure to remind the
reader of what is go-
ing on so the two-part
estimator collapse is
clear in the body

make clear the inde-
pendence between ev-
erything (like you did
on the last paper)

make clear the inde-
pendence between ev-
erything (like you did
on the last paper)

179

5.2 Guarantees180

The scheme given in Algorithm 1 is consistent. Given that we essentially learn to precision181

2dlog(1/ε)e−iε at iteration i, after dlog(1/ε)e iterations, the ERM hypothesis on Lmax
S;Ri

(·) is then182

ε-suboptimal with high probability.

Kamalika says eps-
suboptimal -> eps-
optimal

Kamalika says eps-
suboptimal -> eps-
optimal

183

We can bound the label complexity of the algorithm using standard techniques from disagreement-
based active learning. A ubiquitous quantity in the analysis of disagreement-based schemes is that of
the “disagreement coefficient” [9, 25]. The general idea is that the disagreement coefficient bounds
the rate of decrease in r of the measure of the the disagreement region of a ball of radius r around
h∗ in the pseudo-metric ρg(h, h′) := P(x,y)∼Dg

(h(x) 6= h′(x)). Precisely, we use the following
definition of the disagreement coefficient in our analysis [10, 26]. Given a groupDg , the disagreement
coefficient on g is

θg := sup
h∈H

sup
r′≥r

µg (∆(Bg(h, r
′)))

r′
,

where Bg(h, r′) := {h′ ∈ H : ρg(h, h
′) ≤ r′} is a ball of radius r′ about h in pseudo-metric ρg.184

We further notate the maximum disagreement coefficient over the groups G as θG := maxg θg.The script G instead of
script D is nicer I
think and fits “groups”
idea better

script G instead of
script D is nicer I
think and fits “groups”
idea better

185

disagreement coefficient θg is trivially bounded by 1/(2νg + ε), but can be bounded independently186

of ε in many cases [10, 25]. For example, the disagreement coefficient whenH is linear separators in187

d dimensions is Θ(
√
d) when the underlying distribution is the uniform distribution over the l2 ball.188

We state the following guarantee for Algorithm 1 in terms of the disagreement coefficient. Check this. what’s the
orginal citation? Also
add in other examples,
like Tsybakov noise
etc

Check this. what’s the
orginal citation? Also
add in other examples,
like Tsybakov noise
etc

189

Theorem 1. For all ε > 0, δ ∈ (0, 1), collections of groups G, and hypothesis classesH with d <∞,
with probability ≥ 1− δ, the output ĥ of Algorithm 1 satisfies

Lmax
D (ĥ) ≤ Lmax

G (h∗) + ε,

and its label complexity is bounded by

Õ

(
G θ2
G

(
ν2

ε2
+ 1

)(
d log(1/ε) + log(1/δ)

)
log(1/ε) +

G log(1/ε) log(1/δ)

ε2

)
.
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Algorithm 1 General Agnostic Algorithm
1: procedure multi_group_agnostic(H, ε, δ, {Ug(·)}Gg=1, {Og(·)}Gg=1)
2: H1 ← H, I ← dlog2(1/ε)e
3: for i ∈ [I] do
4: Ri ← ∆(Hi)
5: mi ← maxg′∈[G] µg′(∆(Hi))
6: for g ∈ [G] do
7: S ′Ri,g

← 2048
(
mi

ε2I−i

)2 (
2d log( 128

ε ) + ln( 8Gdlog(1/ε)e
δ )

)
i.i.d. samples

8: from Ug(Ri ∩ supp(Dg))

9: S ′Rc
i ,g
← 128 ln(4/δ)

(ε2I−i)2
i.i.d. samples from Ug(R

c
i ∩ supp(Dg))

10: if “None” ∈ S ′Ri,g
then . Ri ∩ supp(Dg) = ∅ in this case

11: SRi,g ← ∅
12: else
13: SRi,g ← {(x,Og(x)) : x ∈ S ′Ri,g

}
14: end if

15: if “None” ∈ S ′Rc
i ,g

then
16: SRc

i ,g
← ∅

17: else
18: SRc

i ,g
← {(x,Og(x)) : x ∈ S ′Rc

i ,g
}

19: end if

20: end for
21: ĥi = arg minh∈Hi

Lmax
S;Ri

(h)

22: Hi+1 ←
{
h ∈ Hi : Lmax

S;Ri
(h) ≤ Lmax

S;Ri
(ĥi) + 2I−iε/4

}
23: end for
24: return ĥ = arg minh∈HI+1

Lmax
S;RI+1

(h)
25: end procedure

The Õ notation hides factors of log(log(1/ε)) and log(G); we leave all proofs for the Appendix.190

The implication of Theorem 1 is that when θG can be bounded independently of ε, the gain of191

Algorithm 1 is that the dependence on the standard interaction of the VC-dimension d and 1/ε2 is192

removed, and replaced with Gd log2(1/ε).193

5.3 Comparison to Collaborative Learning Lower Bounds194

The active learning literature has traditionally focused on discovering settings in which active195

algorithms have lower label complexities than “passive” lower bounds on sample complexity. We196

compare our label complexity guarantees to the lower bounds for collaborative learning, a strictly197

stronger comparison than comparing to passive learning.198

In collaborative learning [1, 2, 3], the objective is the same as ours - we wish to output a classifier that
has low error in the worst case over groups. The only difference is the learner may only specify how
many samples from each group it wants during training, and so, does not have the power to selective
label examples within a group. [3] show that for finite hypothesis classesH,

Ω

(
log(|H|)

ε2
+
G · log(min(|H|, G)/δ)

ε2

)
total samples over all groups are necessary with this group-conditional sampling power to learn to199

error ε with probability ≥ 1− δ. Thus, Algorithm 1 uses asymptotically less label queries whenever200

G < o(log2(1/ε)/ε2) and θD is bounded independently of ε.201

Removing the multiplicative factor G in the first term of our label complexity bounds may be possible202

with similar ideas, but will require a more refined algorithmic approach - it is not due to slack in our203
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Algorithm 2 Group-Realizable Algorithm
procedure group_realizable(H, ε, δ, active learner A, {Ug(·)}Gg=1, {Og(·)}Gg=1))

for g ∈ [G] do
ĥg ← A(H, ε/6, δ/2G,Ug(X ), Og)
S′g ← 144/ε2 (2d ln(24/ε) + ln(48G/δ)) samples from oracle Ug(X )

Ŝg ←
{(
x, ĥg(x)

)
: x ∈ S′g

}
end for
return ĥ = arg minh∈Hmaxg∈[G]

1
|Ŝg|

∑
(x,ŷ)∈Ŝg

1 [h(x) 6= ŷ]

end procedure

analysis. This would essentially mean creating an algorithm that beats collaborative learning lower204

bounds for arbitrarily large collections of groups, which is an interesting topic for future study.205

6 Group-Realizable Learning206

A special case of the learning problem where more extreme active learning can be readily seen,
comes when the hypothesis class H achieves zero noise rate on each group Dg. This setting has
been considered in the passive “multi-group learning” literature [6]. Formally speaking, in the group
realizable setting, the following condition holds:

∀g ∈ [G],∃h∗g ∈ H s.t. LG(h∗g | g) = 0,

i.e. for all groups in the collection G, there is some hypothesis achieving 0 error on that group. Note207

that this differs from the fully realizable setting where there is some h∗ ∈ H with Lmax
G (h∗) = 0.208

While fully realizable implies group realizable, the converse is not true. Thus, group-realizability209

represents an intermediate regime between the realizable setting and the full agnostic settings.210

6.1 Algorithm211

In the group-realizable case, it is possible to show a reduction of the problem of active learning over212

hypothesis classes with respect to a single distribution.213

The algorithm examines each group in sequence. For eachDg , it calls as a subroutine an active learner214

that is guaranteed to find an order ε-optimal hypothesis ĥg ∈ H with high probability over it’s queries215

to Ug(·) and Og(·). It then gathers new unlabeled samples from each Dg, and instead of requesting216

labels from Og(·), labels each unlabeled point stemming from Ug(·) with the learned classifier ĥg.217

The final step is to do an empirical risk minimization on these artificially labeled samples with respect218

to the multi-group objective. See Algorithm 2 for a formal specification of the strategy.219

6.2 Guarantees220

The strategy given in Algorithm 2 leads to a consistent active learning scheme, provided the active221

learners called as subroutines have standard guarantees that can be inherited.222

Theorem gives a finite sample guarantee for Algorithm 2 . The proof follows from an argument223

similar to one used in [?] - the subroutine calls return hypotheses with near 0 error on each group, and224

so the artificially labeled training set used in the ERM step looks nearly identical to a counterfactual225

training set for the ERM step constructed by querying labels Og(x) for each unlabeled x. We present226

Theorem assuming access to a classical, realizable active learner due to [27], noting that tighter label227

complexity bounds are possible in certain scenarios using more advanced single-distribution active228

learning schemes.229

Theorem 2. Fix an arbitraryH with d <∞, a collection G that is distribution-wise realizable with
respect to H, and suppose A is that of [27]. Then for all settings of ε, δ, with probability ≥ 1− δ,
the output ĥ of Algorithm 2 satisfies

Lmax
G (ĥ) ≤ inf

h∈H
Lmax
G (h) + ε,

8



and its label complexity is
Õ (Gd θG log(1/ε)) .

The best realizable active learners are often much more “aggressive” in their querying strategy than230

their agnostic counterparts, and thus have much lower label complexities. Exploiting this fact and231

the reduction of Algorithm 2, we emphasize that the label complexity guarantee of Theorem 3 is232

much stronger than what one would achieve from agnostically learning overH using Algorithm ??.233

When disagreement coefficients across the collection of targets are bounded independently of ε, the234

dependence on 1/ε2 is replaced by log(1/ε). We note that the disagreement coefficient θG is trivially235

bounded above by 1/ε, so in the worst case, this label complexity guarantee is bounded above by236

Õ (Kd/ε), removing the standard dependence of 1/ε2 from passive learning.237

7 The Gap Between Group Realizable and Full Agnostic238

7.1 Inconsistency of the Reduction in the Full Agnostic Regime239

The reduction provided by Algorithm 2 admits clean analysis, and nicely harnesses the power of240

realizable active learners for a single distribution One might wonder if a similar strategy, this time har-241

nessing agnostic learners, might provide a consistent strategy in full agnostic regime. Unfortunately,242

this is false. It fails even with small amounts of noise localized to the decision boundary, and each243

h∗g is the Bayes optimal classifier on Dk. The reason for this lack of consistency comes down to the244

fact that labeling with the Bayes optimal under-estimates the distorts the noise rates on each target,245

which in turn biases the output of the ERM step. We present example to this endin the Appendix. We246

note that any estimate of the noise rates on each group will require G/ε2 label queries, reintroducing247

dependence on 1/ε2.248

7.2 A 3ν-Approximation Algorithm249

Although the strategy of creating an artificially labeled training set with near-optimal hypotheses on250

each target fails outside of the target-realizable case, it possesses a nice approximation property.251

We give a guarantee to this end in Theorem 3. It states that if we call an active learner with agnostic252

guarantees on each groupDg , and then use the outputs ĥ∗g to artificially label a new batch of unlabeled253

data from each group, using ERM on this artificially labeled data gives at worst a 2ν + ε suboptimal254

hypothesis with high probability. Recall that ν is the noise rate on the multi-group objective. The255

proof is very similar to that of Theorem 2, but notes in addition that ĥ∗g mislabels on a roughly256

νg := infh∈H LG(h | g) fraction of the unlabeled samples from each group G when constructing the257

artificially labeled set.258

Theorem 3. . Fix an arbitraryH with d <∞, and an agnostic active learner A with the property
that for every D and for all settings of ε′ and δ′, with probability ≥ 1− δ′ over its queries, its output
h′ satisfies

LD(h′) ≤ inf
h∈H

LD(h) + ε′,

using label queries ≤ l(ε′, δ′,H,D). Then for all settings of ε, δ, and for all collections of targets G,
with probability ≥ 1− δ, the output ĥ of Algorithm 2 run with A satisfies

Lmax
G (ĥ) ≤ inf

h∈H
Lmax
G (h) + 2 max

k∈[D]
νk + ε ≤ 3 inf

h∈H
Lmax
G (h) + ε.

and, the label complexity bounded above by

O

(∑
G∈G

l(ε, δ,H,DG)

)
.

8 Conclusion259

In conclusion, we hope that we make people think this is an interesting problem and get some insights260

into it.261
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• theory questions: is the power of active learning in this setting mostly held in being able to262

sample from groups themselves? is the factor of ε2 necessary even in lower noise settings?263

are there futher itermediate regimes between full agnostic and group realizable where264

exponential speedup possible?265

• is agnostic learning harder or easier than proper learning266

• practice questions: can we dsign executable algoithms.267
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9 Appendix327

9.1 Guarantees for General Agnostic Algorithm328

We first extend the notation of measure in a slight abuse of notation.329

Definition 1. Given group distribution Dg and a set S ⊆ X for which S ∩ supp(Dg) is measurable
under µg , define

µg(S) := µg(S ∩ supp(Dg)).

Definition 2. Given a collection of group distributions G, and a set S ⊆ X , we say S is “measurable330

with respect to G” if S ∩ supp(Dg) is measurable under µg for each g ∈ [G].331

Definition 3. Given a hypothesis h ∈ H, and a set of pairs S = {(xi, yi) : xi ∈ X , yi ∈ Y}Ni=1, let

LS(h) :=
1

N

(
N∑
i=1

1[h(xi) 6= yi]

)
the standard empirical loss of h on S. Let L∅(h) := 1.332

Definition 4. Given a set of classifiersH′ ⊆ H, we say “H′ agrees on a subset S ⊆ X” if for each333

x ∈ S and for each pair (h, h′) ∈ H′ ×H′, it holds that h(x) = h′(x).334

Definition 5. Fix a group distribution Dg, some H′ ⊆ H, a hypothesis h ∈ H′, and some R ⊆ X335

which is measurable with respect to G and for whichH′ agrees on Rc. Given sets of pairs SR,g and336

SRc,g , let337

LS;R(h | g) := µg(R) · LSR,g
(h) + µg(R

c) · LSRc,g
(hH′).

Definition 6. Given a confidence parameter δ ∈ (0, 1), a group distribution Dg ∈ G, some R ⊆ X
that is measurable with respect to G, and sample sizes m,m′ > 0, define the function

Γg(δ,R,m,m
′) :=



µg(R)

(
1

m
+

√
ln(8/δ) + d ln(4em/δ)

m

)
+

√
ln(4/δ)

2m′
if µg(R) > 0, µg(R

c) > 0

1

m
+

√
ln(8/δ) + d ln(4em/δ)

m
if µg(R) > 0, µg(R

c) = 0√
ln(4/δ)

2m′
if µg(R) = 0, µg(R

c) > 0.

Lemma 1. Fix δ ∈ (0, 1), and a group distribution Dg ∈ G arbitrarily. Further, fix a subset R ⊆ X
measurable with respect to G, and a set of classifiersH′ ⊆ H with the property thatH′ agree on Rc.
Suppose we query m > 0 unlabeled samples from Ug(R ∩ supp(Dg)), and m′ > 0 samples from
Ug(R

c ∩ supp(Dg)). Suppose further that we label the output via calls to Og(·), forming the labeled
samples SR,g and SRc,g , respectively; if either R ∩ supp(Dg) = ∅ or Rc ∩ supp(Dg) = ∅, then we
set the corresponding sample to be ∅. Then with probability ≥ 1− δ, it holds for all h ∈ H′ that

|LG(h | g)− LS;R(h | g)| ≤ Γg(δ,R,m,m
′).

Further, for all γ ∈ (0, 1), if m ≥ 32µg(R)2

γ2 (2d ln(16/γ) + ln(8/δ)) and m′ ≥ 2 ln(4/δ)
γ2 , then338

Γg(δ,R,m,m
′) < γ.339

Proof. We begin with the case where both µg(R∩ supp(Dg)) 6= 0 and µg(Rc ∩ supp(Dg)) 6= 0. In340

this case, we are able to draw unlabeled samples from both regions, and neither SR,g nor SR,g is ∅.341

By a lemma of Vapnik [28], we have that with probability ≥ 1− δ/2 over the draw of m samples
from Ug(R ∩ supp(Dg)) and their labeling via Og(·) that we have simultaneously for each h ∈ H′
that∣∣LSR,k

(h)− P(x,y)∼Dg
(h(x) 6= y|x ∈ R ∩ supp(Dg))

∣∣ ≤ 1

m
+

√
ln(8/δ) + d ln(4em/δ)

m
.

In Rc ∩ supp(Dg), all h ∈ H′ agree, and so estimating the conditional loss for each h ∈ H′ in this
region is as statistically hard as estimating a single Bernoulli parameter, which we do by arbitrarily
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choosing a classifier to use for the loss estimate in this part of space. Thus, by Hoeffding’s inequality
[29], we have with probability ≥ 1− δ/2 for all h ∈ H′ simultaneously∣∣LSRc,g

(hH′)− P(x,y)∼Dg
(h(x) 6= y|x ∈ Rc ∩ supp(Dg))

∣∣ ≤√ ln(4/δ)

2m′
.

By a union bound, with probability ≥ 1− δ, both of these events take place, and so for all h ∈ H′342

simultaneously,343

LD(h | g) = P(x,y)∼Dg
(h(x) 6= y | x ∈ R ∩ supp(Dg))µg(R)

+ P(x,y)∼Dg
(h(x) 6= y | x ∈ Rc ∩ supp(Dg))µg(R

c)

≤
(
LSR,g

(h) +
√

(ln(8/δ) + d ln(4em/δ)) /m
)
µg(R)

+
(
LSRc,g

(hH′) +
√

ln(4/δ)/2m′
)
µg(R

c)

≤ LS;R(h | g) + Γg(δ,R,m,m
′).

The lower bound leading to the absolute value is analogous. Vapnik [28] also tells us that
for any γ′ > 0, a sample of size m ≥ 8

γ′2 (2d ln(8/γ′) + ln(8/δ)) is sufficient to yield√
(ln(8/δ) + d ln(4em/δ)) /m < γ′. Let γ′ = γ/2µg(R). Then substituting for γ′,

m ≥ µg(R)2 32

γ2
(2d ln(16/γ) + ln(8/δ)) > µg(R)2 32

γ2
(2d ln(16µg(R)/γ) + ln(8/δ))

implies that
1

m
+

√
ln(8/δ) + d ln(4em/δ)

m
<

γ

2µg(R)
.

As a corollary to Hoeffding, if m′ ≥ 2 ln(4/δ)/γ2, then
√

log(4/δ)/m′ < γ/2. Thus we may write344

Γg(δ,R,m,m
′) = µg(R)

(
1

m
+

√
ln(8/δ) + d ln(4em/δ)

m

)
+

√
ln(4/δ)

2m′
< γ/2 + γ/2 = γ.

Now suppose that µg(Rc) = 0. In this case, we have SRc,g = ∅. Again, we have by Vapnik that with
probability ≥ 1− δ/2,∣∣LSR,k

(h)− P(x,y)∼Dg
(h(x) 6= y|x ∈ R ∩ supp(Dg))

∣∣ ≤ 1

m
+

√
ln(8/δ) + d ln(4em/δ)

m
.

When µg(Rc) = 0, it holds that µg(R) = 1, and so345

LD(h | g) = P(x,y)∼Dg
(h(x) 6= y | x ∈ R ∩ supp(Dg))µg(R)

+ P(x,y)∼Dg
(h(x) 6= y | x ∈ Rc ∩ supp(Dg))µg(R

c)

= P(x,y)∼Dg
(h(x) 6= y | x ∈ R ∩ supp(Dg))

≤ LSR,g
(h) +

√
(ln(8/δ) + d ln(4em/δ)) /m

= LS;R(h | g) + Γg(δ,R,m,m
′),

where the final equality comes from fact that µg(Rc) = 0, µg(R) = 1, and the definitions of
LS;R(h | g) and Γg(δ,R,m,m

′). Similarly to the above, if we let γ′ = γ/2µg(R) = γ/2, then

m ≥ µg(R)2 32

γ2
(2d ln(32/γ) + ln(8/δ)) =

32

γ2
(2d ln(32/γ) + ln(8/δ))

implies that
1

m
+

√
ln(8/δ) + d ln(4em/δ)

m
<
γ

2
,

which by the definition of Γg(δ,R,m,m
′) when µg(Rc) = 0 gives us Γg(δ,R,m,m

′) < γ/2 < γ.346

The case where µg(R) = 0 follows the previous argument for when µg(Rc) = 0.347

348
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Definition 7. Given a collection of group distributions G, someH′ ⊆ H, a hypothesis h ∈ H′, some
subset R ⊆ X measurable with respect to G, and labeled samples SR,k and SRc,k, we define the
empirical estimate of the multi-group loss of h parameterized by R via

Lmax
S;R (h) := max

g∈[G]
LS;R(h | g).

Lemma 2. Fix δ ∈ (0, 1), a subset R ⊆ X measurable with respect to G, and a set of classifiers
H′ ⊆ H that agree on Rc. Suppose for each g ∈ [G], we query mg > 0 unlabeled samples from
Ug(R ∩ supp(Dg)), and m′g > 0 samples from Ug(R

c ∩ supp(Dg)). Suppose further that we label
the outputs via calls to Og(·), forming the labeled samples SR,g and SRc,g, respectively, for each
g ∈ [G]; if R ∩ supp(Dg) = ∅ or Rc ∩ supp(Dg) = ∅, then we set the corresponding sample to be
∅. Then with probability ≥ 1− δ, it holds for all h ∈ H′ that∣∣Lmax

G (h)− Lmax
S;R (h)

∣∣ ≤ max
g′∈[G]

Γg′(δ/|G|,mg′ ,m
′
g′).

Proof. By Lemma 1 and a union bound, it holds with probability ≥ 1 − δ that on all Dg, for all
h ∈ H′ simultaneously, that

|LD(h | g)− LS;R(h | g)| ≤ Γg(δ/G,mg,m
′
g).

Thus we may write349 ∣∣∣∣Lmax
D (h)− Lmax

S;R (h)

∣∣∣∣ =

∣∣∣∣max
g′∈[G]

LD(h | g′)− max
g′∈[G]

LS;R(h | g)

∣∣∣∣
≤ max
g′∈[G]

∣∣LD(h | g′)− LS;R(h | g′)
∣∣

≤ max
g′∈[G]

Γg′(δ/G,mg′ ,m
′
g′).

350

Definition 8. Give a set of hypothesesH′ ⊆ H, the “disagreement region ofH′” is the set

∆(H′) := {x ∈ X : ∃h, h′ ∈ H′ s.t. h(x) 6= h′(x)} .
Lemma 3. Fix δ ∈ (0, 1), a collection of group distributions G, and a hypothesis class H with351

d < ∞ arbitrarily. With probability ≥ 1 − δ, it holds after each iteration i of Algorithm 1 that352

h∗ ∈ Hi+1.353

Proof. By Lemmas 1 and 2, and a union bound over iterations, the number of samples labeled at
each iteration is sufficient for us to conclude that with probability ≥ 1− δ, for for every iteration i
and for each h ∈ Hi, it holds that1 2

|Lmax
S;Ri

(h)− Lmax
D (h)| ≤ 2I−iε/8.

We give an inductive argument conditioned on this high probability event. When i = 1, we have
h∗ ∈ H1 becauseH1 = H, and h∗ ∈ H by definition. If h∗ ∈ Hi for i ≥ 1, then h∗ ∈ Hi+1 if and
only if

Lmax
S;Ri

(h∗) ≤ Lmax
S;Ri

(ĥi) + 2I−iε/4.

When for each h ∈ Hi, it holds that |Lmax
S;Ri

(h)− Lmax
D (h)| ≤ 2I−iε/8, we may write354

Lmax
S;Ri

(h∗)− Lmax
S;Ri

(ĥi) ≤ Lmax
S;Ri

(h∗)− Lmax
D (h∗) + Lmax

D (ĥi)− Lmax
S;Ri

(ĥi)

≤
∣∣Lmax
S;Ri

(h∗)− Lmax
D (h∗)

∣∣+
∣∣∣Lmax
D (ĥi)− Lmax

S;Ri
(ĥi)

∣∣∣
≤ 2I−iε/8 + 2I−iε/8

= 2I−iε/4,

where the first inequality comes from the optimality of h∗.355

1We do not directly apply Lemma 1 with γ = ε2I−i/8 here. We use this quantity in the outer dependence on
γ of Lemma 1, but for the natural log dependence on γ, we sub in ε/8 to simplify the analysis. Thus we take
sligthtly more samples than Lemma 1 directly suggests.

2Because we take the largest measure of the disagreement region over groups as mi, mg ≥ to the sample
size suggested by Lemma 1 for each g.
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Lemma 4. Fix δ ∈ (0, 1), a collection of group distributions G, and a hypothesis class H with
d <∞ arbitrarily. Then with probability ≥ 1− δ, after every iteration i of Algorithm 1, it holds for
all h ∈ Hi+1 that

|Lmax
D (h)− Lmax

D (h∗)| ≤ 2I−iε.

Proof. If h ∈ Hi+1, then by the specification of the algorithm it holds that∣∣∣Lmax
S;Ri

(h)− Lmax
S;Ri

(ĥi)
∣∣∣ ≤ 2I−iε/4.

By Lemma 2 and the number of samples labeled at each iteration, with probability ≥ 1− δ, it holds
for all iterations and for all h ∈ Hi that∣∣Lmax

S;Ri
(h)− Lmax

D (h)
∣∣ ≤ 2I−iε/8.

Conditioned on this event, if h ∈ Hi+1, we have356 ∣∣∣Lmax
D (h)− Lmax

D (ĥi)
∣∣∣ =

∣∣∣Lmax
G (h)− Lmax

S;Ri
(h) + Lmax

S;Ri
(h)− Lmax

S;Ri
(ĥi) + Lmax

S;Ri
(ĥi)− Lmax

D (ĥi)
∣∣∣

≤
∣∣Lmax
D (h)− Lmax

S;Ri
(h)
∣∣+
∣∣∣Lmax
S;Ri

(h)− Lmax
S;Ri

(ĥi)
∣∣∣+
∣∣∣Lmax
S;Ri

(ĥi)− Lmax
D (ĥi)

∣∣∣
≤ 2I−iε/8 + 2I−iε/4 + 2I−iε/8

= 2I−iε/2.

By Lemma 3, h∗ ∈ Hi+1 whenever
∣∣Lmax
S;Ri

(h)− Lmax
G (h)

∣∣ ≤ 2I−iε/8 for all h ∈ Hi at all iterations,
and so this bound on the true error difference with the ERM ĥi applies to h∗, and we may write for
arbitrary h ∈ Hi that∣∣Lmax

G (h)− Lmax
G (h∗)

∣∣ ≤ ∣∣∣Lmax
G (h)− Lmax

G (ĥi)
∣∣∣+
∣∣∣Lmax
G (ĥi)− Lmax

G (h∗)
∣∣∣ ≤ 2I−iε,

which is the desired result.357

Definition 9. Given a group distribution Dg ∈ G, a hypothesis h ∈ H, and a radius r ≥ 0, let the
“Dg - disagreement ball inH of radius r about h” be

Bg(h, r) := {h′ ∈ H : ρg(h, h
′) ≤ r} ,

where ρg(h, h′) := µg (h(x) 6= h′(x)).358

Definition 10. Given a group distribution Dg ∈ G and a hypothesis classH, let the “disagreement
coefficient” of Dg be defined as

θg := sup
h∈H

sup
r′≥r

µg (DIS(Bg(h, r
′)))

r′
.

We further define the disagreement coefficient over a collection of group distributions G as

θG := max
g′∈[G]

θg′ .

Theorem 4. For all ε > 0, δ ∈ (0, 1), collections of groups G, and hypothesis classesH with d <∞,
with probability ≥ 1− δ, the output ĥ of Algorithm 1 satisfies

Lmax
D (ĥ) ≤ Lmax

G (h∗) + ε,

and its label complexity is bounded by

Õ

(
G θ2
G

(
ν2

ε2
+ 1

)(
d log(1/ε) + log(1/δ)

)
log(1/ε) +

G log(1/ε) log(1/δ)

ε2

)
.

Proof. Lemma 4 says that the number of samples drawn at each iteration is sufficiently large that with359

probability≥ 1− δ, for all i ∈ [I], it holds that for all h ∈ Hi+1, that we have
∣∣LGD(h)− LGD(h∗)

∣∣ ≤360

2I−iε. Thus, after I = dlog2(1/ε)e iterations, the output ĥ satisfies the consistency condition361

automatically.362
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To see the label complexity, we note at iteration i, we label no more than

2048
( mi

ε2I−i

)2
(

2d log

(
128

ε

)
+ ln

(
8Gdlog(1/ε)e

δ

))
+

2 ln(4/δ)

ε2

samples for each group distribution Dg, where mi = maxg′ µg′(∆(Hi)). The only term here that363

depends on i is mi

ε2I−i . Note that when |Lmax
D (h)− Lmax

D (h∗)| ≤ 2I−i+1ε - which is true for each364

h ∈ Hi at all iterations i with probability ≥ 1− δ by Lemma 4 - it holds for each g ∈ [G] that365

ρg(h, h
∗) = µg(h(x) 6= h∗(x))

= P(x,y)∼Dg
(h(x) 6= h∗(x))

= P(x,y)∼Dg
(h(x) 6= y, h∗(x) = y) + P(x,y)∼Dg

(h(x) = y, h∗(x) 6= y)

≤ P(x,y)∼Dg
(h(x) 6= y) + P(x,y)∼Dg

(h∗(x) 6= y)

= LG(h | g) + LG(h∗ | g)

≤ Lmax
G (h) + Lmax

G (h∗)

= Lmax
G (h)− Lmax

G (h∗) + Lmax
G (h∗) + Lmax

D (h∗)

≤ 2I−i+1ε+ 2ν,

where we recall ν is the noise rate on the multi-group objective. In other words, h ∈ Bg(h∗, 2ν +
2I−i+1ε). Thus, with probability ≥ 1− δ, for each g ∈ [G], it holds that

Hi ⊆ Bg(h∗, 2I−i+1ε+ 2ν).

Given this observation, we may then write, for all g, that

µg(∆(Hi) ∩ supp(Dg)) ≤ µg(∆(Bk(h∗, 2ν + 2I−i+1ε)) ∩ supp(Dg)),

as if there are h, h′ ∈ Hi that disagree on some x, we have h, h′ ∈ Bg(h∗, 2ν + 2I−i+1ε), and so366

h, h′ also realize disagreement on x for the larger set of classifiers. This allows us to bound the sum367

of terms depending on i for each distribution Dg as368

I∑
i=1

( mi

ε2I−i

)2

≤
I∑
i=1

(
maxg′ µg′

(
∆(Bg′(h

∗, 2ν + 2I−i+1ε))
)

2I−iε

)2

≤
I∑
i=1

(
max
g′

µg′
(
∆(Bg′(h

∗, 2ν + 2I−i+1ε))
)

2ν + 2I−i+1ε
· 2ν + 2I−i+1ε

2I−iε

)2

≤ 4

(
ν + ε

ε

)2 I∑
i=1

(
max
g′

µg′
(
∆(Bg′(h

∗, 2ν + 2I−i+1ε))
)

2ν + 2I−i+1ε

)2

≤ 4

(
ν + ε

ε

)2 I∑
i=1

(
max
g′

sup
h∈H

sup
r≥2ν+ε

µg′ (∆(Bk′(h, r)))

r

)2

= 4dlog(1/ε)e
(
ν + ε

ε

)2(
max
g′

θg′

)2

= 4dlog(1/ε)e
(
ν + ε

ε

)2

θ2
G .

The label complexity bound then follows by noting the algorithm runs for O(log(1/ε)) iterations,369

and labels the same amount of samples for all G groups each iteration.370

9.2 Group-Realizable Guarantees371

Theorem 5. Suppose Algorithm 2 is run with the active learner ACAL of [27]. Then for all ε > 0,
δ ∈ (0, 1), hypothesis classesH with d <∞, and collections of groups D, with probability ≥ 1− δ,
the output ĥ satisfies

Lmax
G (ĥ) ≤ Lmax

G (h∗) + ε,
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and the number of labels requested is

Õ

(
dGθG log(1/ε)

)
.

Proof. The label complexity follows directly from the guarantees of [15]. By a union bound , we look up the original
source for this bound
look up the original
source for this bound

have that for all g ∈ [G], ACAL returns ĥg with the property that

LG(ĥg | g) ≤ ε/4.

Fix some g ∈ [G] arbitrarily. Consider a counterfactual training set Sg, unseen by the learner,
constructed by labeling each example x ∈ S′g via the oracle call Og(x). Then Vapnik tells us that
mg := |S′g| is sufficiently large that with probability ≥ 1− δ/2, for each h ∈ H simultaneously, we
have ∣∣LG(h | g)− LSg

(h)
∣∣ < ε/6.

By the union bound, this uniform convergence and the guarantee on the runs of A both hold. Thus,372

we can first note that for some arbitrary h ∈ H,373 ∣∣∣LSg
(h)− LŜg

(h)
∣∣∣ =

∣∣∣∣∣ 1

mg

mg∑
i=1

1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]

∣∣∣∣∣
≤ 1

mg

mg∑
i=1

∣∣∣1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]
∣∣∣

≤ 1

mg

mg∑
i=1

1[yi 6= ĥg(xi)]

= LSg
(ĥg)

≤ LG(ĥg) + ε/6

≤ ε/6 + ε/6

= ε/3,

where the final equality comes from the success of the runs ofACAL. Then for arbitrary h, combining374

Vapnik’s guarantee and the inequality we just showed, we may write:375 ∣∣∣LG(h | g)− LŜg
(h)
∣∣∣ =

∣∣∣LG(h | g)− LSg
(h) + LSg

(h)− LŜg
(h)
∣∣∣

≤
∣∣LG(h | g)− LSg

(h)
∣∣+
∣∣∣LSg

(h)− LŜg
(h)
∣∣∣

< ε/6 + ε/3

= ε/2.

Given this guarantee on the representativeness of the artificially labeled samples on each group g, we376

have a guarantee for the representativeness over the worst case. For arbitrarily h ∈ H, we may write377 ∣∣∣∣Lmax
G (h)− max

g∈[G]
LŜg

(h)

∣∣∣∣ =

∣∣∣∣max
g∈[G]

LG(h | g)− max
g∈[G]

LŜg
(h)

∣∣∣∣
≤ max
g∈[G]

∣∣∣LG(h | g)− LŜg
(h)
∣∣∣

≤ ε/2.

Thus, by the fact that ĥ is the ERM, we have

Lmax
G (ĥ) ≤ max

g∈[G]
LŜg

(ĥ) + ε/2 ≤ max
g∈[G]

LŜg
(h∗) + ε/2 ≤ Lmax

G (h∗) + ε.

378
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9.3 Approximation Guarantees379

Theorem 6. Suppose Algorithm 3 is run with the active learner ADHM of [15]. Then for all ε > 0,
δ ∈ (0, 1), hypothesis classesH with d <∞, and collections of groups D, with probability ≥ 1− δ,
the output ĥ satisfies

Lmax
G (ĥ) ≤ Lmax

G (h∗) + 2 · max
g∈[G]

νg + ε ≤ 3 · Lmax
G (h∗) + ε,

and the number of labels requested is

Õ

(
dGθG

(
log2(1/ε) +

ν2

ε2

))
.

Proof. The proof is almost identical to that of Theorem 2. The label complexity bound follows
directly from [10]. As before, we have that for all g ∈ [G], ADHM returns ĥg with the property that maybe need an extra

factor of 1/2 on delta
to make union bound
work

maybe need an extra
factor of 1/2 on delta
to make union bound
workLG(ĥg | g) ≤ νg + ε/4.

Fix some g ∈ [G] arbitrarily. On a counterfactual training set Sg , unseen by the learner, constructed
by labeling each example x ∈ S′g via the oracle call Og(x), it holds that mg := |S′g| is sufficiently
large that with probability ≥ 1− δ/2, for each h ∈ H simultaneously, we have∣∣LG(h | g)− LSg

(h)
∣∣ < ε/6.

By the union bound, this uniform convergence and the guarantee on the runs of ADHM both hold.380

Thus, we can first note that for some arbitrary h ∈ H,381 ∣∣∣LSg
(h)− LŜg

(h)
∣∣∣ =

∣∣∣∣∣ 1

mg

mg∑
i=1

1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]

∣∣∣∣∣
≤ 1

mg

mg∑
i=1

∣∣∣1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]
∣∣∣

≤ 1

mg

mg∑
i=1

1[yi 6= ĥg(xi)]

= LSg
(ĥg)

≤ LG(ĥg | g) + ε/6

≤ LG(h∗g | g) + ε/3

= νg + ε/3.

where the second to last inequality comes from uniform convergence over SG, and the final equality382

comes from the correctness guarantee ofADHM . Then for arbitrary h, combining Vapnik’s guarantee make sure you check
these guarantees with
DHM and make sure
you’re using them cor-
rectly. I think so but
im sick so need to
come back

make sure you check
these guarantees with
DHM and make sure
you’re using them cor-
rectly. I think so but
im sick so need to
come back

383

and the inequality we just showed, we may write:384 ∣∣∣LG(h | g)− LŜg
(h)
∣∣∣ =

∣∣∣LG(h | g)− LSg
(h) + LSg

(h)− LŜg
(h)
∣∣∣

≤
∣∣LG(h | g)− LSg

(h)
∣∣+
∣∣∣LSg

(h)− LŜg
(h)
∣∣∣

< ε/6 + ε/3 + νg
= νg + ε/2.

Then, as above, we have, for arbitrarily h ∈ H,385 ∣∣∣∣Lmax
G (h)− max

g∈[G]
LŜg

(h)

∣∣∣∣ ≤ max
g∈[G]

∣∣∣LG(h | g)− LŜg
(h)
∣∣∣ ≤ max

g∈[G]
νg + ε/2 ≤ ν + ε/2,

where the the final inequality comes from the fact that if any hypothesis has less than νg error on all
groups, it would be optimal on a single group.Thus, by the fact that ĥ is the ERM, we have

Lmax
G (ĥ) ≤ max

g∈[G]
LŜg

(ĥ)+ν+ε/2 ≤ max
g∈[G]

LŜg
(h∗)+ε/2 ≤ Lmax

G (h∗)+2ν+ε ≤ 3 ·Lmax
G (h∗)+ε

386
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