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Abstract

We study to what extent may stochastic gradient descent (SGD) be understood
as a “conventional” learning rule that achieves generalization performance by
obtaining a good fit to training data. We consider the fundamental stochastic
convex optimization framework, where (one pass, without-replacement) SGD is
classically known to minimize the population risk at rate 𝑂 (1/

√
𝑛), and prove that,

surprisingly, there exist problem instances where the SGD solution exhibits both
empirical risk and generalization gap of Ω(1). Consequently, it turns out that SGD
is not algorithmically stable in any sense, and its generalization ability cannot be
explained by uniform convergence or any other currently known generalization
bound technique for that matter (other than that of its classical analysis). We then
continue to analyze the closely related with-replacement SGD, for which we show
that an analogous phenomenon does not occur and prove that its population risk
does in fact converge at the optimal rate. Finally, we interpret our main results in the
context of without-replacement SGD for finite-sum convex optimization problems,
and derive upper and lower bounds for the multi-epoch regime that significantly
improve upon previously known results.

1 Introduction
Conventional wisdom in statistical learning revolves around what is traditionally known as the
bias-variance dilemma; the classical theory stipulates the quality of fit to the training data be in
a trade-off with model complexity, aiming for a sweet spot where training error is small but yet
representative of performance on independent test data.
This perspective is reflected in the vast majority of generalization bound techniques offered by
contemporary learning theory. Uniform convergence approaches [36, 4] seek capacity control over
the model function class, and employ uniform laws of large numbers to argue convergence of sample
averages to their respective expectations. Algorithmic stability [9, 32] on the other hand, builds
on controlling sensitivity of the learning algorithm to small changes in its input, and provides
algorithm dependent bounds. Nevertheless, despite the conceptual and technical differences between
these two methods, both ultimately produce risk bounds by controlling the training error, and the
generalization gap. The same is true for many other techniques, including sample compression [17, 2],
PAC-Bayes [18, 12], and information theoretic generalization bounds [29, 37, 24], to name a few.
In recent years it has become clear there are other, substantially different, ways to manage the
fit vs. complexity trade-off, that are in a sense incompatible with traditional generalization bound
techniques. Evidently, heavily over-parameterized deep neural networks may be trained to perfectly
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fit training data and generalize well nonetheless [38, 25, 26], thus seemingly disobeying conventional
statistical wisdom. This phenomenon has garnered significant attention, with a flurry of research
works dedicated to developing new techniques that would be able to explain strong generalization
performance of algorithms in this so called interpolation regime (see 6, 8 and references therein).
Notably, while these algorithms do not strike a balance between model complexity and fit to the
data in the traditional sense, fundamentally, they still minimize the empirical risk as a proxy to test
performance.
To summarize, in the classical and modern regimes alike, learning methods are thought of as
minimizing some combination of the training error and generalization gap, with reasoning that relies
in one way or another on the following trivial, yet arguably most profound, bound:

test-error ≤ train-error + |generalization gap| . (1)

In this work, we focus on stochastic gradient descent (SGD)—the canonical algorithm for training
machine learning models nowadays—and ask whether its generalization performance can be understood
through a similar lens. We consider the fundamental stochastic convex optimization (SCO) framework,
in which it is well known that SGD minimizes the population risk at a rate of 𝑂 (1/

√
𝑛) [23].

Remarkably, the classical analysis targets the population risk directly, and in contrast with other
generalization arguments, at least seemingly does not rely on the above bound. This highlights an
intriguing question: Are these quantities, so fundamental to learning theory, relevant to the way that
SGD “works”? Put differently, is it possible to provide a more “conventional" analysis of SGD that
conforms with (1)?
Our main result shows that, perhaps surprisingly, there exist convex learning problems where the above
bound becomes vacuous for SGD: namely, SGD minimizes the population risk, but at the same time,
it does not minimize the empirical risk and thus exhibits constant generalization gap. This accords
neither with the traditional viewpoint nor with that of interpolation, as both recognize the empirical
risk as the principal minimization objective. We refer to this phenomenon as benign underfitting:
evidently, SGD underfits the training data, but its classical analysis affirms this underfitting to be
benign, in the sense that test performance is never compromised as a result. Our construction presents
a learning problem where the output of SGD with step size η over 𝑛 i.i.d. training examples isΩ(η

√
𝑛)

sub-optimal w.r.t. the best fit possible, and consequently has a generalization gap of the same order.
Notably, with the standard step size choice of 1/

√
𝑛 necessary to ensure the population risk converges

at the optimal rate this lower bound amounts to a constant.
Many previously plausible explanations for generalization properties of this algorithm are thereby
rendered inadequate, at least in the elementary convex setup we consider here. First, it is clear that
SGD cannot be framed as any reasonable regularized empirical risk minimization procedure for the
simple reason that it does not minimize the empirical risk, which challenges the implicit regularization
viewpoint to the generalization of SGD. Second, any attempt to explain generalization of SGD by
uniform convergence over any (possibly data-dependent) hypotheses set cannot hold, simply because
the sample average associated with the very same training set SGD was trained on is not necessarily
close to its respective expectation. Finally, as it turns out, SGD provides for a strikingly natural
example of an algorithm that generalizes well but is not stable in any sense, as the most general notion
of algorithmic stability is entirely equivalent to the generalization gap [32].
We then move on to study the generalization gap and empirical risk guarantees of SGD in a broader
context. We study the case of non-convex and strongly convex component functions, and present
natural extensions of our basic result. In addition, we analyse the variant of SGD where datapoints
are sampled with-replacement from the training set, in which case the train error is of course low but
perhaps surprisingly the population risk is well behaved. Finally, we make the natural connection
to the study of without-replacement SGD for empirical risk minimization, and derive upper and
lower bounds for the multi-epoch regime. These last two points are discussed in further detail in the
following.
With vs without-replacement SGD. We may view one-pass SGD as processing the data via
without-replacement sampling from the training set, as randomly reshuffling the examples does not
change their unconditional distribution. Thus, it is interesting to consider the generalization gap of
the closely related algorithm given by running SGD over examples sampled with-replacement from
the training set. Considering instability (see the supplementary for a detailed discussion) of SGD
for non-smooth losses and the fact that this variant targets the empirical objective, a priori it would
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seem this algorithm would overfit the training set and not provide strong population risk guarantees.
Surprisingly, our analysis presented in Section 4 reveals this is not the case, and that with a certain
iterate averaging scheme the population risk converges at the optimal rate. Consequently, it turns out
the generalization gap is well bounded, and therefore that this variant constitutes a natural learning
rule that is not stable in any sense but the most general one.
Without-replacement SGD for empirical risk minimization. The example featured in our main
construction implies a lower bound of Ω(𝑛−1/4) on the convergence rate of a single epoch of without-
replacement SGD for finite sum optimization problems. In this setting, we have a set of 𝑛 convex
losses and we wish to minimize their sum by running SGD over random shufflings of the losses.
While the smooth case has been studied extensively (e.g., [28, 27, 20, 31]), the non-smooth case has
hardly received much attention. In Section 5 we extend our basic construction to a lower bound for
the multi-epoch regime, and complement it with nearly matching upper bounds.
Our techniques. Fundamentally, we exploit the fact that dimension independent uniform convergence
does not hold in SCO [32]. This is a prerequisite to any attempt at separating train and test losses of
any hypothesis vector, let alone that produced by SGD. Another essential condition is the instability
of SGD for non-smooth losses, as any form of stability would immediately imply a generalization
gap upper bound regardless of uniform convergence. Our main lower bound draws inspiration from
constructions presented in the works of [7] and [1], both of which rely on instability, the latter
also exploiting failure of uniform convergence. However, neither of these contains the main ideas
necessary to provoke the optimization dynamics required in our example. A crucial ingredient in our
construction consists of encoding into the SGD iterate information about previous training examples.
This, combined with careful design of the loss function, gradient oracle and population distribution,
allows correlating sub-gradients of independent training examples, and in turn guiding the SGD
iterates to ascend the empirical risk.

1.1 Summary of main contributions
To summarize, the main contributions of the paper are as follows:

• One-pass SGD in SCO. In Section 3, we study the basic SCO setup where the component losses
are assumed to be individually convex, and present a construction where the expected empirical
risk and therefore the generalization gap are both Ω(η

√
𝑛). We also provide extensions of our main

construction demonstrating;
– SCO with non-convex component functions may exhibit cases of benign overfitting, where
𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤)

]
= Ω(η2𝑛).

– In SCO with λ-strongly convex losses the worst case generalization gap is Ω(1/λ
√
𝑛) for the

standard step size choice.
• With vs without replacement SGD in SCO. In Section 4, we prove the variant of SGD where the

training examples are processed via sampling with-replacement from the training set minimizes
the population risk at the optimal rate, and thus enjoys a generalization gap upper bound bound of
𝑂 (1/

√
𝑛).

• Multi-epoch without-replacement SGD. In Section 5, we study convergence rates of without-
replacement SGD for finite sum convex optimization problems. We prove a lower bound of
Ω(𝑛−1/4𝐾−3/4) on the optimization error after 𝐾 epochs over 𝑛 convex losses, and complement
with upper bounds of 𝑂 (𝑛−1/4𝐾−1/2) and 𝑂 (𝑛−1/4𝐾−1/4) for respectively the multi-shuffle and
single-shuffle SGD variants.

1.2 Additional related work
Gradient descent, algorithmic stability and generalization. Closely related to our work is the study
of stability properties of SGD. For smooth losses, [14] provide upper bounds on the generalization
gap by appealing to uniform stability, yielding an 𝑂 (1/

√
𝑛) rate for a single epoch of 𝑛 convex losses

and the standard step size choice. In a later work, [7] prove tight rates for uniform stability of SGD in
the setting of non-smooth losses, establishing these scale substantially worse; Θ(η

√
𝑛) for step size η

and 𝑛 training examples. Our work shows that in fact the worst case rate of the generalization gap
completely coincides with the uniform stability rate of SGD.
A number of works prior to ours studied the extent to which SGD can be explained by implicit
regularization in SCO. [16] study the setup where losses are smooth but only required to be convex
in expectation, and show SGD may successfully learn when regularized ERM does not. Prior to
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their work, [11] also rule out a wide range of implicit regularization based explanations of SGD in
the basic SCO setup with convex losses. On a more general level, our work is related to the study
of stability and generalization in modern learning theory, pioneered by [9, 32]. In particular, the
failure of (dimension independent) uniform convergence in SCO was established in [32]. The work of
[13] improves the dimension dependence in the construction of [32] from exponential to linear in
the number of training examples. Notably, the construction featured in our main result requires the
dimension to be exponential in the sample size, however the techniques of [13] do not readily extend
to our setting. Thus, the optimal dimension dependence for a generalization gap lower bound is left
for future work.
Without-replacement SGD for empirical risk minimization. A relatively long line of work studies
convergence properties of without-replacement SGD from a pure optimization perspective (e.g.,
[28, 20, 30, 27, 19, 31]). Nearly all the papers in this line of work adopt the smoothness assumption,
with near optimal bounds established by [20]. An exception is the paper of [33] where an 𝑂 (1/

√
𝑛𝐾)

upper bound is obtained for 𝑛 datapoints and 𝐾 epochs, albeit only for generalized linear models
over a bounded domain — notably, a setting where uniform convergence holds. Prior to this thread
of research, [22] prove a convergence rate of 𝑂 (𝑛/

√
𝐾) for non-smooth loss functions that applies

for any ordering of the losses. To the best of our knowledge, this is also the state-of-the-art result
for without-replacement SGD in the non-smooth setting without further assumptions on the loss
functions.
Benign overfitting vs. benign underfitting. While both benign underfitting and benign overfitting
challenge traditional generalization techniques, that postulate the training error to represent the test
error, as we discuss above these two phenomena point to very different regimes of learning. In
particular, [34] shows that benign overfitting requires distributional assumptions for the interpolating
algorithm to succeed. In contrast, we show that benign underfitting happens for SGD in a setting
where it provably learns (namely, SCO), without any distributional assumptions. We also point out
that Corollary 1 shows benign overfitting cannot happen in the setup we consider, hence the two
phenomena seem to rise in different setups.
Explaining generalization of interpolators. As already discussed, there is a large recent body of
work dedicated to understanding why over-parameterized models trained by SGD to zero training
error generalize well [6, 8, and references therein]. In particular, the work of [5] aims at explaining
the phenomenon for high dimensional linear models. Some recent papers investigate limitations
of certain techniques in explaining generalization of interpolating algorithms: [21] show uniform
convergence fails to explain generalization of SGD in a setup where the generalization gap is in fact
well bounded, thus in sharp contrast to our work; [3] rule out the possibility of a large class of excess
risk bounds to explain generalization of minimum norm interpolants. Unlike our work, they study
properties of possible risk bounds when benign overfitting occurs, and thus do not pertain to SGD
that never benignly overfits in SCO.

2 Preliminaries
We consider stochastic convex optimization (SCO) specified by a population distribution Z over a
datapoint set 𝑍 , and loss function 𝑓 : 𝑊 × 𝑍 → ℝ where𝑊 ⊂ ℝ𝑑 is convex and compact. We denote

𝐹 (𝑤) B 𝔼𝑧∼Z 𝑓 (𝑤; 𝑧), (population loss)

𝐹 (𝑤) B 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑤; 𝑧𝑖), (empirical loss)

where {𝑧1, . . . , 𝑧𝑛} ⊆ 𝑍 stands for the training set, which we regularly denote by 𝑆. We let
𝑤★ B min𝑤∈𝑊 𝐹 (𝑤) denote the population minimizer, and 𝑤★

𝑆
B min𝑤∈𝑊 𝐹 (𝑤) denote the

empirical risk minimizer (ERM). The diameter of𝑊 is defined by max𝑥,𝑦∈𝑊 {∥𝑥 − 𝑦∥} where ∥·∥
denotes the euclidean norm, and B𝑑

0 (1) B
{
𝑥 ∈ ℝ𝑑 | ∥𝑥∥ ≤ 1

}
denotes the 𝐿2 unit ball in ℝ𝑑 . Given

a training set 𝑆 = {𝑧1, . . . , 𝑧𝑛} ∼ Z𝑛 and a learning algorithm that outputs a hypothesis 𝑤𝑆 , we define
the generalization gap to be the absolute value of the expected difference between test and train losses;���𝔼𝑆∼Z𝑛

[
𝐹 (𝑤𝑆) − 𝐹 (𝑤𝑆)

] ��� . (generalization gap)
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Throughout most of the paper, we consider one-pass projected SGD over 𝑆;

initialize at 𝑤1 ∈ 𝑊 ;
for 𝑡 = 2, . . . , 𝑛 : 𝑤𝑡+1 ← Π𝑊 (𝑤𝑡 − η𝑔𝑡 ) , with 𝑔𝑡 ∈ 𝜕 𝑓 (𝑤𝑡 ; 𝑧𝑡 ),

where 𝜕 𝑓 (𝑤; 𝑧) denotes the set of sub-gradients of 𝑓 (·; 𝑧) → ℝ at the point𝑤 ∈ 𝑊 , andΠ𝑊 : ℝ𝑑 → 𝑊
the projection operation onto𝑊 .

3 A generalization gap lower bound for SGD
In this section, we establish our main result; that there exist convex learning problems where SGD
incurs a large optimization error and therefore also a large generalization gap. When losses are convex
these two quantities are closely related since in expectation, the empirical risk minimizer cannot
significantly outperform the population minimizer (a claim that will be made rigorous shortly after
our main theorem). Our construction builds on losses that are highly non-smooth, leading to SGD
taking gradient steps that actually ascend the empirical objective.
Theorem 1. Let 𝑛 ∈ ℕ, 𝑛 ≥ 4, 𝑑 ≥ 24𝑛 log 𝑛, and 𝑊 = B2𝑑

0 (1). Then there exists a distribution
over instance set 𝑍 and a 4-Lipschitz convex loss function 𝑓 : 𝑊 × 𝑍 → ℝ such that running SGD
initialized at 𝑤1 = 0, with step size η > 0 over 𝑆 ∼ Z𝑛 yields;

(i) a large optimization error; 𝔼
[
𝐹 (𝑤𝑆) − 𝐹 (𝑤★𝑆)

]
= Ω

(
min

{
η
√
𝑛, 1

η
√
𝑛

})
,

(ii) a large generalization gap; 𝔼
[
𝐹 (𝑤𝑆) − 𝐹 (𝑤𝑆)

]
= Ω

(
min

{
η
√
𝑛, 1

η
√
𝑛

})
,

where 𝑤𝑆 is any suffix average of the iterates. In particular, for η = Θ(1/
√
𝑛), the population risk is

𝔼 [𝐹 (𝑤𝑆) − 𝐹 (𝑤★)] = 𝑂 (1/
√
𝑛), while the generalization gap and training error are both Ω (1) .

A detailed proof of Theorem 1 is deferred to the supplementary; in the following we provide an
informal overview containing its principal ingredients.
Proof sketch. Let 𝑍 B {0, 1}𝑑 , and consider a population distribution Z such that 𝑧(𝑖) = 1 with
probability δ. We will use a loss function of the form

𝑓 (𝑤; 𝑧) B ∥𝑧 ⊙ 𝑤∥ + φ(𝑤; 𝑧),

where ⊙ denotes element-wise product. The high level idea is that the norm component penalizes 𝑤’s
that correlate with the given sample point 𝑧, and the φ function (the details of which are left for the
supplementary) is tailored so that it drives the SGD iterates precisely to those areas in the 𝐿2 ball
where it correlates with the training set {𝑧1, . . . , 𝑧𝑛}. In addition, the choice of parameters is such
that the population loss is approximately zero over the entire domain.
Taking 𝑑 sufficiently large compared to δ−1, we ensure that w.h.p., for every round 𝑡 ∈ [𝑛] there exist
many coordinates 𝑖 ∈ [𝑑] with a prefix of ones; 𝑧1 (𝑖) = · · · = 𝑧𝑡−1 (𝑖) = 1 . With δ chosen sufficiently
small compared to 𝑛, we ensure that as long as 𝑖 ∈ [𝑑] is any coordinate chosen independently of
{𝑧𝑡+1, . . . , 𝑧𝑛}, w.h.p. this coordinate will have a suffix of zeros; 𝑧𝑡+1 (𝑖) = · · · = 𝑧𝑛 (𝑖) = 0.
Our goal is to make SGD take steps 𝑤𝑡+1 ≈ 𝑤𝑡 − η𝑒𝑖𝑡 (where 𝑒𝑖 denotes the 𝑖’th standard basis vector)
where 𝑖𝑡 ∈ [𝑑] is a coordinate with the aforementioned property of having a prefix of ones followed
by a suffix of zeros. Note that since these steps are taken after the prefix of ones has ended, they will
inflict large empirical loss from the norm component, but will not be “corrected” by future steps owed
to the suffix of zeros. To achieve this, we design φ so that it encodes the relevant information into the
SGD iterates. Specifically, φ “flags” (using some extra dimensions) all coordinates 𝑖 ∈ [𝑑] where a
prefix of ones has been encountered. In addition, using another max component in φ we have that for
all such coordinates 𝑖, 𝑒𝑖 ∈ 𝜕 𝑓 (𝑤𝑡 ; 𝑧) for any example 𝑧 (as this component in the loss depends only
on the iterate 𝑤𝑡 ). In particular, we get that 𝑒𝑖 ∈ 𝜕 𝑓 (𝑤𝑡 ; 𝑧𝑡 ). Then, our gradient oracle just returns a
subgradient pointing towards one of these coordinates (for convenience, we use the minimal one)
which we denote by 𝑖𝑡 , and SGD makes the desired step.
Notably, the coordinate 𝑖𝑡 chosen by the subgradient oracle is independent of future examples, and
therefore will have a suffix of zeros w.h.p. Hence, as mentioned, this ensures no gradient signal after
round 𝑡 will be able to correct the empirical risk ascent on 𝑖𝑡 . Concluding, we have that for the final
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iterate 𝑤 B 𝑤𝑛+1, we get 𝑤(𝑖𝑡 ) = −η for all 𝑡 ∈ [𝑛], therefore

𝐹 (𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑤; 𝑧𝑖) ≈
1
𝑛

𝑛∑︁
𝑖=1
∥𝑧𝑖 ⊙ 𝑤∥ ≈ ∥𝑤∥ ≈

√︃
η2𝑛 = η

√
𝑛.

A similar argument requiring a few more technical steps shows the same is true for any suffix average
𝑤. Noting that 𝐹 (0) = 0, we get that the optimization error is Ω(η

√
𝑛). The implication for the

generalization gap follows immediately with the standard step size choice of η = 1/
√
𝑛, owed to

SGD’s population risk convergence guarantee. For an arbitrary step size, the result follows from a
simple computation, and the proof is concluded. □

The magnitude of the generalization gap featured in Theorem 1 stems from the large optimization error,
which results in the empirical risk over-estimating the population risk by a large margin. Evidently, for
convex losses the converse is always false; the empirical risk will never significantly under-estimate
the population risk (a fact that will turn out false when losses are only required to be convex in
expectation — see Section 3.1). Indeed, stability of the regularized ERM solution implies the ERM
does not perform significantly better on the training set compared to the population minimizer 𝑤★.
Lemma 1. Let 𝑊 ⊂ ℝ𝑑 with diameter 𝐷, Z any distribution over 𝑍 , and 𝑓 : 𝑊 × 𝑍 → ℝ convex
and 𝐺-Lipschitz in the first argument. Then 𝔼

[
𝐹 (𝑤★) − 𝐹 (𝑤★

𝑆
)
]
≤ 4𝐺𝐷√

𝑛
.

Proof. Denote the regularized ERM by 𝑤λ
𝑆
B arg min𝑤∈𝑊

{ 1
𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑤; 𝑧𝑖) + λ

2 ∥𝑤∥
2} . Observe,

𝐹 (𝑤★) ≤ 𝔼𝐹 (𝑤λ
𝑆) ≤ 𝔼𝐹 (𝑤λ

𝑆) +
4𝐺2

λ𝑛
≤ 𝔼𝐹 (𝑤★𝑆) +

λ

2
𝐷2 + 4𝐺2

λ𝑛
,

where the second inequality follows from stability of the regularized ERM (see Lemma 13). Choosing
λ B 2𝐺𝐷/

√
𝑛, we get that

𝔼
[
𝐹 (𝑤★) − 𝐹 (𝑤★𝑆)

]
= 𝐹 (𝑤★) − 𝔼𝐹 (𝑤★𝑆) ≤

4𝐺𝐷
√
𝑛
,

as claimed. □

Since the optimization error is always positive, we see that the upper bound given by Lemma 1 implies
an upper bound on the difference between the population and empirical risks.
Corollary 1. For any distribution Z over 𝑍 and Lipschitz loss function 𝑓 : 𝑊 × 𝑍 → ℝ convex in the
first argument, running SGD with step size η B 1/

√
𝑛 guarantees 𝔼

[
𝐹 (𝑤𝑆) − 𝐹 (𝑤𝑆)

]
≤ 𝑂 (1/

√
𝑛).

Proof. We have,

𝔼
[
𝐹 (𝑤𝑆) − 𝐹 (𝑤𝑆)

]
= 𝔼

[
𝐹 (𝑤𝑆) − 𝐹 (𝑤★)

]
+ 𝔼

[
𝐹 (𝑤★) − 𝐹 (𝑤𝑆)

]
The population error term on the RHS is 𝑂 (1/

√
𝑛) by the classical analysis of SGD. The second term

is bounded by Lemma 1;

𝔼
[
𝐹 (𝑤★) − 𝐹 (𝑤𝑆)

]
≤ 𝔼

[
𝐹 (𝑤★) − 𝐹 (𝑤★𝑆)

]
≤ 4𝐺𝐷/

√
𝑛,

and the result follows. □

In the subsections that follow we continue to study the generalization gap in the context of common
variants to the basic SCO setup.

3.1 SCO with non-convex components
When we relax the convexity assumption and only require the losses to be convex in expectation, we
can construct a learning problem where SGD exhibits a case of benign overfitting. In contrast to
Theorem 1, here we actually drive the SGD iterates towards an ERM solution, thus achieving a low
optimization error and an empirical risk that under-estimates the population risk.
Theorem 2. Let 𝑛 ∈ ℕ, 𝑛 ≥ 4, 𝑑 ≥ 24𝑛 log 𝑛, 𝑊 = B2𝑑

0 (1), and η ≤ 1/
√
𝑛. Then there exists a

distribution Z over 𝑍 and a 4-Lipschitz loss 𝑓 : 𝑊 × 𝑍 → ℝ where 𝔼𝑧∼Z 𝑓 (𝑤; 𝑧) is convex in 𝑤, such
that for any suffix average 𝑤 of SGD initialized at 𝑤1 = 0, with step size η;

𝔼
[
𝐹 (𝑤𝑆) − 𝐹 (𝑤𝑆)

]
= Ω(η2𝑛).

6



The construction and proof of Theorem 2 given in the supplementary follow a methodology similar to
that of Theorem 1. Here however, we exploit non convex losses to form an empirical loss landscape
where the ERM solution significantly outperforms the population minimizer 𝑤★ (notably, a feat
not possible when losses are individually convex, by Corollary 1). Our loss function is defined by
𝑓 (𝑤; 𝑧) B

∑𝑑
𝑖=1 𝑧(𝑖)𝑤(𝑖)2 + φ(𝑤; 𝑧), with each component playing a similar role as before. We work

with the distribution 𝑧 ∼ {0, 1}𝑑 where 𝑧(𝑖) = 1 w.p. δ, 𝑧(𝑖) = −1 w.p. δ, and 𝑧(𝑖) = 0 w.p. 1 − 2δ.
The intuition is that coordinates accumulating many −1’s offer regions in the 𝐿2 ball where the
empirical risk is “too good” compared to the population risk. We tailor the extra dimensions and φ
in coordination with the −1 values so that the sub-gradients guide the SGD iterates towards these
regions, in exactly the same manner the construction of Theorem 1 drives the iterates to high loss
regions. We note that while the statement of Theorem 2 is specialized to step size smaller than 1/

√
𝑛,

it may be extended to any step size using arguments similar to those given in the proof of Theorem 1.

3.2 SCO with strongly convex components
Our basic construction extends to the strongly convex case by making only technical modification to
Theorem 1. The theorem below concerns the standard step size choice for strongly convex objectives.
We provide its proof in the supplementary.
Theorem 3. Let 𝑛 ∈ ℕ, 𝑛 ≥ 10, 𝑑 ≥ 24𝑛 log 𝑛, 𝑊 = B2𝑑

0 (1), and λ ≥ 1/
√
𝑛. Then there exists a

distribution over instance set 𝑍 and a 4-Lipschitz, λ-strongly convex loss function 𝑓 : 𝑊 × 𝑍 → ℝ

(i) the optimization error is large; 𝔼𝑆∼Z𝑛

[
𝐹 (𝑤𝑆) − 𝐹 (𝑤★𝑆)

]
= Ω

(
1

λ
√
𝑛

)
,

(ii) the generalization gap is large; 𝔼𝑆∼Z𝑛

[
𝐹 (𝑤𝑆) − 𝐹 (𝑤𝑆)

]
= Ω

(
1

λ
√
𝑛

)
,

where 𝑤𝑆 is any suffix average of SGD initialized at 𝑤1 = 0, with step size schedule η𝑡 = 1/λ𝑡.
Furthermore, the problem instance where this occurs is precisely the λ regularized version of the
example featured in Theorem 1.

We note that an immediate implication of the above theorem is that if we seek a generalization gap
upper bound for a weakly convex problem by means of regularization (meaning, by running SGD
on a regularized problem), we would have to take λ ≥ 1 to guarantee a gap of 𝑂 (1/

√
𝑛). To see

this, note that the generalization gap (of any hypothesis) of the regularized problem is the same as
that of the original. On the other hand, taking λ ≥ 1 will of course be detrimental to the population
error guarantee. Hence, one cannot circumvent the generalization gap lower bound by regularization
without compromising the population error.
We conclude this section with a note regarding stability rates of SGD in non-smooth SCO. Implicit
in Theorem 1, is that average stability of SGD coincides with the tight uniform stability rate of
Θ(η
√
𝑛) established by [7]. This is because Theorem 1 provides the Ω(η

√
𝑛) lower bound on the most

general stability notion, which is precisely the generalization gap [32]. We refer the reader to the
supplementary for a more elaborate discussion.

4 SGD with vs without replacement
In this section, we consider a different algorithm in the context of the basic SCO setup; SGD
over examples drawn with-replacement from the training set. This is not to be confused with
one-pass SGD discussed in Section 3, which corresponds to without-replacement SGD on the training
set, or alternatively with-replacement SGD over the population distribution. Given a training set
𝑆 = {𝑧1, . . . , 𝑧𝑛} ∼ Z𝑛, we define with-replacement projected SGD initialized at 𝑤1 ∈ 𝑊 by

𝑤𝑡+1 ← Π𝑊 (𝑤𝑡 − η�̂�𝑡 ) , where �̂�𝑡 ∈ 𝜕 𝑓 (𝑤𝑡 ; �̂�𝑡 ) and �̂�𝑡 ∼ Unif (𝑆).
Perhaps surprisingly, this version of SGD does not overfit the training data; our theorem below
establishes that with proper iterate averaging, the population risk converges at the optimal rate.
Theorem 4. Let 𝑊 ⊂ ℝ𝑑 with diameter 𝐷, Z be any distribution over 𝑍 , and 𝑓 : 𝑊 × 𝑍 → ℝ be
convex and 𝐺-Lipschitz in the first argument. Let 𝑆 ∼ Z𝑛 be a training set of 𝑛 ∈ ℕ datapoints drawn
i.i.d. from Z, and consider running SGD over training examples sampled with-replacement, uniformly
and independently from 𝑆. Then, for step size η = 𝐷

𝐺
√
𝑛

and 𝑤 B 2
𝑛+1

∑𝑛
𝑡=1

𝑛−𝑡+1
𝑛
𝑤𝑡 , the following

upper bound holds;

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 10𝐺𝐷
√
𝑛

.
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Proof. Fix a time-step 𝑡 ∈ [𝑛], and observe that if we don’t condition on 𝑆, we may view the random
datapoint �̂�𝑡 as a mixture between a fresh i.i.d. sample from the population and a uniformly distributed
sample from the previously processed datapoints 𝑆𝑡−1 B {�̂�1, . . . , �̂�𝑡−1};

�̂�𝑡 | 𝑆𝑡−1 =

{
𝑧 ∼ Z w.p. 1 − 𝑡−1

𝑛
,

𝑧 ∼ Unif (𝑆𝑡−1) w.p. 𝑡−1
𝑛
.

With this in mind, denote �̂�𝑡 (𝑤) B 𝑓 (𝑤; �̂�𝑡 ), fix 𝑆𝑡−1 and observe:

𝔼�̂�𝑡

[
�̂�𝑡 (𝑤𝑡 ) − �̂�𝑡 (𝑤★) | 𝑆𝑡−1

]
=

(
1 − 𝑡 − 1

𝑛

)
𝔼𝑧∼Z

[
𝑓 (𝑤𝑡 ; 𝑧) − 𝑓 (𝑤★; 𝑧)

]
+ 𝑡 − 1

𝑛

1
𝑡 − 1

𝑡−1∑︁
𝑖=1

�̂�𝑖 (𝑤𝑡 ) − �̂�𝑖 (𝑤★).

Rearranging and taking expectation with respect to 𝑆𝑡−1 we obtain(
1 − 𝑡 − 1

𝑛

)
𝔼
[
𝑓 (𝑤𝑡 ; 𝑧) − 𝑓 (𝑤★; 𝑧)

]
= 𝔼

[
�̂�𝑡 (𝑤𝑡 ) − �̂�𝑡 (𝑤★)

]
+ 𝔼

[
1
𝑛

𝑡−1∑︁
𝑖=1

�̂�𝑖 (𝑤★) − �̂�𝑖 (𝑤𝑡 )
]

≤ 𝔼
[
�̂�𝑡 (𝑤𝑡 ) − �̂�𝑡 (𝑤★)

]
+ 4𝐺𝐷

√
𝑡

𝑛
, (2)

where the inequality follows from Lemma 1. Now, by a direct computation we have
∑𝑛
𝑡=1

(
1 − 𝑡−1

𝑛

)
=

𝑛+1
2 , which motivates setting 𝑤 B 2

𝑛+1
∑𝑛
𝑡=1

𝑛−𝑡+1
𝑛
𝑤𝑡 . By convexity of 𝐹, Eq. (2), and the standard

regret analysis of gradient descent [e.g., 15] we now have

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 2
𝑛 + 1

𝑛∑︁
𝑡=1

(
1 − 𝑡 − 1

𝑛

)
𝔼
[
𝐹 (𝑤𝑡 ) − 𝐹 (𝑤★)

]
≤ 2
𝑛 + 1

𝑛∑︁
𝑡=1

𝔼
[
�̂�𝑡 (𝑤𝑡 ) − �̂�𝑡 (𝑤★)

]
+ 2
𝑛 + 1

𝑛∑︁
𝑡=1

4𝐺𝐷
√
𝑡

𝑛

≤ 2
𝑛
𝔼

[
𝑛∑︁
𝑡=1

�̂�𝑡 (𝑤𝑡 ) − �̂�𝑡 (𝑤★)
]
+ 8𝐺𝐷
√
𝑛

≤ 2
𝑛

(
𝐷2

2η
+ η𝐺

2

2

)
+ 8𝐺𝐷
√
𝑛

=
10𝐺𝐷
√
𝑛
,

where the last inequality follows by our choice of η = 𝐷

𝐺
√
𝑛
. □

Evidently, the averaging scheme dictated by Theorem 4 does little to hurt the empirical risk convergence
guarantee, which follows from the standard analysis with little modifications (for completeness we
provide a formal statement and proof in the supplementary). Combined with Lemma 1, this
immediately implies a generalization gap upper bound for with-replacement SGD. Notably, this shows
with-replacement SGD provides for an example of a (natural) algorithm in the SCO learning setup
that is not even stable on-average, but nonetheless has a well bounded generalization gap. We refer
the reader to the discussion in the supplementary for more details.
Corollary 2. For any distribution Z and loss function 𝑓 : 𝑊 × 𝑍 → ℝ convex and Lipschitz in the
first argument, running SGD with step size and averaging as specified in Theorem 4 ensures��𝔼[𝐹 (𝑤) − 𝐹 (𝑤)] �� ≤ 𝑂 (1/√𝑛).
Proof. We have;��𝔼[𝐹 (𝑤) − 𝐹 (𝑤)] �� ≤ ��𝔼 [

𝐹 (𝑤) − 𝐹 (𝑤★)
] �� + ��𝔼[𝐹 (𝑤★) − 𝐹 (𝑤★𝑆)] �� + ��𝔼[𝐹 (𝑤★𝑆) − 𝐹 (𝑤)] ��.

The first term is upper bounded by convergence of the population risk provided by Theorem 4, the
second by Lemma 1, and the third by the standard analysis of SGD (see the supplementary). □
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5 Multi-epoch SGD for empirical risk minimization
In this section, we forgo the existence of a population distribution and discuss convergence properties
of without-replacement SGD (wor-SGD) for finite sum optimization problems. A relatively long
line of work discussed in the introduction studies this problem in the smooth case. The work of [20]
noted smoothness is a necessary assumption to obtain rates that are strictly better than the 𝑂 (1/

√
𝑛𝐾)

guaranteed by with-replacement SGD for 𝑛 losses and 𝐾 epochs, due to a lower bound that follows
from the deterministic case (e.g., [10]). Here we establish that smoothness is in fact necessary to
obtain rates that are not strictly worse than with-replacement SGD. We consider running multiple
passes of wor-SGD to solve the finite sum optimization problem given by the objective

𝐹 (𝑤) B 1
𝑛

𝑛∑︁
𝑡=1

𝑓 (𝑤; 𝑡) (3)

where { 𝑓 (𝑤; 𝑡)}𝑛𝑡=1 is a set of 𝑛 convex, 𝐺-Lipschitz losses defined over a convex and compact
domain 𝑊 ⊆ ℝ𝑑 . Throughout this section we let 𝑤★ B min𝑤∈𝑊 𝐹 (𝑤) denote the minimizer of
the objective Eq. (3). In every epoch 𝑘 ∈ [𝐾] we process the losses in the order specified by a
permutation π𝑘 : [𝑛] ↔ [𝑛] sampled uniformly at random, either once in the beginning of the
algorithm (single-shuffle), or at the onset of every epoch (multi-shuffle). Multi-epoch wor-SGD
initialized at 𝑤1

1 ∈ 𝑊 is specified by the following equations;

𝑤𝑘𝑡+1 ← Π𝑊 (𝑤𝑘𝑡 − η𝑔𝑘𝑡 ), where 𝑔𝑘𝑡 ∈ 𝜕 𝑓 𝑘𝑡 (𝑤𝑘𝑡 )
𝑤𝑘+11 B 𝑤𝑘𝑛+1,

where we denote 𝑓 𝑘𝑡 (𝑤) B 𝑓 (𝑤;π𝑘 (𝑡)). A near-immediate implication of Theorem 1 is that there
exists a set of convex losses on which a single epoch of wor-SGD cannot converge at a rate faster than
1/𝑛1/4. Theorem 5 presented below extends our basic construction from Theorem 1 to accommodate
multiple epochs. The main challenge here is in devising a mechanism that will allow fresh bad
gradient steps to take place on every new epoch.
Theorem 5. Let 𝑛, 𝐾 ∈ ℕ, 𝐾 ≥ 4, 𝑛 ≥ 4, 𝑐 B 4/(21/𝐾 − 1), 𝑑 ≥ 26𝑛 log(𝑐𝑛𝐾) , and 𝑊 = B𝑑′

0 (1)
where 𝑑 ′ = (𝑛𝐾 + 1)𝑑. Then there exists a set of 𝑛 convex, 4-Lipschitz losses such that after 𝐾 epochs
of either multi-shuffle or single-shuffle SGD initialized at 𝑤1

1 = 0 with step size η ≤ 1/
√

2𝑛𝐾 , it holds
that

𝔼 [𝐹 (𝑤) − 𝐹 (𝑤∗)] = Ω
(
min

{
1, η

√︂
𝑛

𝐽
+ 1
η𝑛𝐾

+ η
})
,

where 𝑤 is any suffix average of the last 𝐽 epochs. In particular, we obtain a bound of Ω
(
𝑛−1/4𝐾−3/4)

for any suffix average and any choice of η.

The proof of Theorem 5 is provided in the supplementary. The construction in the proof takes the
idea that the training set can be encoded in the SGD iterate to the extreme. The loss function and
gradient oracle are designed in such a way so as to record the training examples in their full form and
order into the iterate. We then exploit this encoded information with an “adversarial” gradient oracle
that returns the bad sub-gradients on each gradient step in every new epoch.
Next, we complement Theorem 5 with an upper bound that builds on stability arguments similar to
those of the smooth case [20]. Importantly though, lack of smoothness means worse stability rates
and necessitates extra care in the technical arguments. Below, we prove the multi-shuffle case, and
defer the full details for the single-shuffle case to the supplementary.
Theorem 6. Let 𝑆 = { 𝑓 (𝑤; 𝑡)}𝑛𝑡=1 be a set of 𝑛 convex, 𝐺-Lipschitz losses over a convex and compact
domain𝑊 ⊆ ℝ𝑑 of diameter 𝐷, and consider running 𝐾 ≥ 1 epochs of wor-SGD over 𝑆. Then, we
have the following guarantees:

(i) For multi-shuffle, with step-size η = 𝐷/(𝐺𝑛3/4𝐾1/2), we have

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 3𝐺𝐷
𝑛1/4𝐾1/2 .

(ii) For single-shuffle, with step-size η = 𝐷/(2𝐺𝑛3/4𝐾3/4) and assuming 𝐾 ≥ 𝑛, we have

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 10𝐺𝐷
𝑛1/4𝐾1/4 .
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In both of the above bounds, 𝑤 = 1
𝑛𝐾

∑
𝑘∈[𝐾 ],𝑡 ∈[𝑛] 𝑤

𝑘
𝑡 , and the expectation is over the random

permutations of losses.
Proof (multi-shuffle case). Observe;

𝐹 (𝑤) − 𝐹 (𝑤★) ≤ 1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝐹 (𝑤𝑘𝑡 ) − 𝐹 (𝑤★)

=
1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤★)

=
1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 ) +
1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝑓 𝑘𝑡 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤★)

≤ 1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 ) +
𝐷2

2η𝑛𝐾
+ η𝐺

2

2
,

with the last inequality following from the standard 𝑛𝐾 round regret bound for gradient descent
[see e.g., 15]. To bound the other term, using Lemma 10, we relate the difference between the
without-replacement loss distribution and the full batch objective to the uniform stability rate of SGD,
which may then be bounded by applying Lemma 11:

𝔼
[
𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 ))

]
= 𝔼π1 ,...,π𝑘−1𝔼π𝑘

[
𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 ) | 𝑤𝑘1

]
≤ 𝔼π1 ,...,π𝑘−1

[
𝐺ϵSGD

stab (𝑡 − 1)
]

= 𝐺ϵSGD
stab (𝑡 − 1)

≤ 2η𝐺2√𝑡.

Concluding, we have that

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝔼
[
𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 )

]
+ 𝐷2

2η𝑛𝐾
+ η𝐺

2

2

≤ 2
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

η𝐺2√𝑡 + 𝐷2

2η𝑛𝐾
+ η𝐺

2

2

≤ 2η𝐺2√𝑛 + 𝐷2

2η𝑛𝐾
+ η𝐺

2

2

≤ 3𝐺𝐷
𝑛1/4𝐾1/2 ,

where the last inequality follows from our choice of η = 𝐷/(𝐺𝑛3/4𝐾1/2).
□
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