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Abstract

Balanced training sets are often promoted to mitigate racial performance disparities of
Deep Learning (DL) models in medical imaging. However, our preliminary findings on
two medical imaging datasets show that while racial training set representation
affects model performance, there is more at play, as large racial disparities
remain regardless of training set composition. Moreover, predictive uncertainty is
shown to be entirely insensitive to these performance disparities, raising a series of open
challenges for safe and fair image-guided diagnostics.
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1. Introduction

Reliability of machine learning tools is an active area of research (Puyol-Antón et al., 2021;
Hussain et al., 2022; Ricci Lara et al., 2022; Jiménez-Sánchez et al., 2023; Ferrante and
Echeveste; Lekadir et al., 2025). However, inherent bias in training data is often over-
looked, and classification outcomes tend to reinforce biases, replicating current and previous
socioeconomic inequalities and produce errors that correlate with demographic variables or
even potentially hidden attributes not explicitly available in collected data (Ferrara, 2023;
Larrazabal et al., 2020). These systems could produce inadequate outcomes if they are
deployed in real-world settings. Mitigation strategies have been proposed for unfair clas-
sifiers (Zong et al., 2022). However, a lack of understanding of the deeper causes of bias
will limit performance and could perpetuate or even introduce new unwanted bias (Petersen
et al., 2023). While Metha et. al (Mehta et al., 2024) evaluate fairness and uncertainty
for subgroup performance, they vary dataset composition, a key aspect of our approach,
for uncovering additional biases. Thus, this paper investigates how racial composition in
training data impacts performance and uncertainty utilising two medical imaging datasets,
assessing whether uncertainty and accuracy can reveal any disparities.

2. Methods and Experimental Design

We monitor racial performance disparities using a standard ResNet backbone across two
different datasets:
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• RETINAL Dataset: Consists of 2D retinal nerve fiber layer (RNFL) thickness
images (200 × 200 pixels) curated with equal representations of Asian, White, and
Black subjects across training (2,100), validation (300), and test (900) groups (Luo
et al., 2024). The predictive task was a binary Glaucoma diagnosis classification.

• PASSION Skin Imaging Dataset: An unbalanced dermatological dataset curated
to represent racial groups with darker skin tones (Gottfrois et al., 2024), containing
4,901 images (224 × 224 pixels) from 1,653 patients across five Fitzpatrick skin type
(FST) phototypes. The predictive task was a multiclass classification to diagnose
eczema, fungal infections, scabies, or other skin diseases.

Training Data Composition: Training subsets with varied racial or skin tone propor-
tions (Larrazabal et al., 2020) were created using the smallest subgroup size (700 RETINAL,
1081 PASSION). Models were retrained independently with fixed settings; 10 seeds were
used for RETINAL, and 5 for PASSION to isolate group-specific training effects.

A series of experiments to examined performance for different racial compositions in the
training data, using similar hyperparameters as the original papers: Models were trained
for 50 and 80 epochs with learning rates of 5 × 10−5 and 1 × 10−4 and batch sizes of
8 and 64 for the RETINAL and PASSION datasets, respectively. The representation of
Asian, White, and Black subjects varied for RETINAL, while for PASSION, due to limited
samples, we only varied the training representation of the lightest skin tone (FST 3). The
configurations of the training sets were 20%, 40%, 60%, 80%, and 100% for each group,
whilst the remaining samples were distributed equally across the race groups or skin tones.

Performance Disparities: To assess bias due to racial representation during training,
we measure groupwise performance using the Area Under the Receiver Operating Char-
acteristic Curve (AUC; RETINAL) and balanced accuracy (BACC; PASSION). Next, we
check whether predictive (model) uncertainty can flag potential bias. To capture the uncer-
tainty, we employed the popular Monte Carlo (MC) dropout (p=0.3) and the gold standard
Ensemble methods (5 models) (Gal and Ghahramani, 2016; Rahaman et al., 2021). As mea-
sures of model uncertainties, these should flag performance loss due to samples being out
of distribution, as one might expect for groups that are underrepresented during training.

3. Discussion and conclusion

Our first main finding, shown in Figures 1, is that while dataset composition does affect
performance, this effect is relatively small, especially on the RETINAL dataset. This does
not, however, mean that the models are fair; we see large performance disparities between
races and skin color that persist regardless of training set composition. In both datasets,
the black or dark skinned population is at a disadvantage. Our second main finding is that
model uncertainty does not flag these performance disparities and is, therefore, not useful
for flagging performance drops on racial subgroups. These findings support our main con-
clusion: Uncertainty methods do not always reduce or explain racial performance
disparities. Therefore, we hypothesize that there are further underlying causes
for the differences (Drukker et al., 2023). A deeper understanding of these underlying
causes is, therefore, an important open problem.
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Figure 1: TOP: Retinal AUC trends vs. predictive uncertainty (log entropy) across
columns; Asian (top), Black (middle), and White (bottom) demographics for
models in each row; Base (left), MC Dropout (middle), and Ensemble (right)
models trained on RETINAL datasets. BOTTOM: Comparison on PASSION
dataset for Baseline (left) and MC Dropout (right) when trained on Fitzpatrick
3 but using BACC, with Ensemble and alternate methods left for future experi-
ments.
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Maŕıa Agustina Ricci Lara, Rodrigo Echeveste, and Enzo Ferrante. Addressing fairness in
artificial intelligence for medical imaging. nature communications, 13(1):4581, 2022.

Yongshuo Zong, Yongxin Yang, and Timothy Hospedales. Medfair: benchmarking fairness
for medical imaging. arXiv preprint arXiv:2210.01725, 2022.

5



Appendix A. Additional Analysis
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Figure 2: Reported Expected Calibration Error (ECE) for each subgroup (row) and each
model (column) across the RETINAL dataset.
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Figure 3: Reported ECE when training on the FST3 skin tone for the PASSION dataset.
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