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ABSTRACT

Hierarchical clustering is one of the most popular methods used to extract cluster
structures in a dataset. However, if the hierarchical clustering algorithm is sen-
sitive to a small perturbation to the dataset, then the credibility and replicability
of the output hierarchical clustering are compromised. To address this issue, we
consider the average sensitivity of hierarchical clustering algorithms, which mea-
sures the change in the output hierarchical clustering upon deletion of a random
data point from the dataset. Then, we propose a divisive hierarchical clustering
algorithm with which we can tune the average sensitivity. Experimental results
on benchmark and real-world datasets confirm that the proposed method is stable
against the deletion of a few data points, while existing algorithms are not.

1 INTRODUCTION

Hierarchical clustering is one of the most popular methods used to extract cluster structures in a
dataset consisting of data points (Murtagh and Contreras, 2012b). This method partitions the data
points into clusters by constructing a rooted tree whose leaves correspond to data points and internal
nodes represent clusters. By tracing the hierarchy from the root to leaves, we can extract inter-
pretable knowledge from the dataset. For example, suppose that we have genomic data of single
cells in a tissue. Then, the hierarchy can be used to figure out complex cellular states and tissue
compositions (Žurauskienė and Yau, 2016). Hierarchical clusterings are also used in several appli-
cations such as phylogenetics (Eisen et al., 1998), geophysics (Takahashi et al., 2019), and social
network analysis (Gilbert et al., 2011).

Because of the importance of hierarchical clustering, a plethora of hierarchical clustering algorithms
have been proposed (Heller and Ghahramani, 2005; Jain, 2010; Hastie et al., 2009; Murtagh and
Contreras, 2012b). These algorithms are mainly concerned with the quality of the output hierarchical
clustering. However, there is another essential aspect that must not be overlooked: stability of the
output hierarchical clustering. Since the output is often used to understand the data structure, an
algorithm needs to be stable to data perturbations as long as the data distribution remains intact. This
requirement can be naturally formalized as a question using the notion of average sensitivity (Varma
and Yoshida, 2021); given a random deletion of data points from the original dataset, how stable is
the output hierarchical clustering? In the example of genomic data, a stable and reliable algorithm
is expected to retain most of the tissue compositions found in the original, even if a few cells are
missing. However, in the example in Figure 1 and in the application to geophysics (Figure 3 in
Section 8), we show that the existing algorithms are unstable for data point removals.

In this work, we propose a novel algorithm for hierarchical clustering that is stable against dele-
tions of data points. We measure the stability of an algorithm using average sensitivity (Murai and
Yoshida, 2019; Varma and Yoshida, 2021). Because the average sensitivity was originally defined
for algorithms that output vectors or sets, we first formally define the average sensitivity of hierar-
chical clustering algorithms. Then, we propose a (randomized) algorithm that partitions the dataset
in a top-down manner. The proposed algorithm applies a randomized process called the exponential
mechanism (McSherry and Talwar, 2007) when partitioning the dataset, and we theoretically prove
that it has a small average sensitivity.

Figure 1 shows an illustrative example of sensitive/stable hierarchical clustering algorithms. In this
example, the standard agglomerative method induces different hierarchies before and after one data
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Figure 1: Examples of a dataset (top left) and its hierarchical clusterings output by an existing
agglomerative algorithm using complete linkage (top middle) and the proposed one (top right), and
a dataset obtained by removing the data point 4 (bottom left) and its hierarchical clusterings output
by the existing agglomerative algorithm (bottom middle) and the proposed one (bottom right). The
existing agglomerative clustering algorithm is sensitive to the removal of even a single data point.
The proposed algorithm produces a more stable clustering. The red nodes in the right trees denote
the change from the trees in the left before the data removal.

point (the data point 4) is removed, as shown in the middle of the figure. This result indicates that
the widely used agglomerative method is sensitive to the removal of data points. The objective of
this study is to design a hierarchical clustering algorithm that is stable against the removal of a few
data points, as shown in the bottom of the figure.

Randomized algorithms may output completely different hierarchical clusterings on the original
dataset and on that obtained by deleting a random data point even if the output distributions are
close. To alleviate this issue, we design a (randomized) hierarchical clustering algorithm with low
average sensitivity under shared randomness, which outputs similar hierarchical clusterings both
on the original dataset and on the dataset obtained by deleting a random data point with a high
probability over the choice of the random bits used.

We conduct comparisons between our proposed algorithm and existing algorithms with three bench-
mark datasets. In the experiments, we evaluated the trade-offs between the average sensitivity of the
clustering algorithms and their clustering qualities. We observed that most of the existing algo-
rithms exhibit high average sensitivity indicating that their output can change drastically even for
the removal of a single data point. By contrast, the proposed algorithm can produce stable clustering
results, while maintaining the quality of clustering. We also applied the clustering algorithms to a
real-world GPS dataset (Takahashi et al., 2019). The results on this dataset also confirms that the
existing algorithms are sensitive to data deletion, while the proposed algorithm is not.

2 RELATED WORK

Hierarchical Clustering Algorithms for hierarchical clustering can be classified into agglomera-
tive and divisive methods (Hastie et al., 2009). Given a dataset, an agglomerative method iteratively
finds a pair of data points or clusters using a certain linkage criterion and merges them into a new
cluster until all the data points are merged into a single cluster. As the linkage criterion, the sin-
gle linkage, average linkage, and complete linkage rules are frequently used (Hastie et al., 2009;
Murtagh and Contreras, 2012a). A divisive method constructs a hierarchy in a top-down manner.
It recursively partitions a dataset into two sub-clusters until all the data points are partitioned or it
reaches a prescribed tree depth (Jain, 2010).

Several extensions of the clustering algorithms are considered; Abboud et al. (2019); Moseley et al.
(2021) considered improving the computational scalability; Ackerman et al. (2012) introduced a

2



Under review as a conference paper at ICLR 2024

weighted version of the agglomerative methods; and Kimes et al. (2017) and Gao et al. (2022)
introduced statistical tests for clustering. Theoretical aspects of hierarchical clustering are also in-
vestigated; (Dasgupta, 2016) introduced a cost function for hierarchical clustering; Ackerman and
Ben-David (2016) showed that the agglomerative methods have some desirable properties; and Roy
and Pokutta (2016); Charikar and Chatziafratis (2017); Moseley and Wang (2017); Dhulipala et al.
(2022) proposed methods with better approximation guarantees.

We note that the focus of the studies above is on constructing hierarchies with better quality or
more efficiency. The current study is orthogonal to them; our focus is on developing a hierarchical
clustering algorithm that are stable against the deletion of a data point.

Robust Hierarchical Clustering There have been a few studies on hierarchical clustering algo-
rithms that exhibit robustness against outlier injections (Eriksson et al., 2011; Balcan et al., 2014;
Cheng et al., 2019), which is a distinct form of data perturbation compared to the current study.
These studies aim to achieve consistent clustering results regardless of the presence of outliers by
identifying the injected outliers. It is important to note that hierarchical clustering algorithms can be
unstable even in the absence of outliers. As demonstrated in Figure 1, although the underlying data
distribution does not change after deleting a data point, the clustering results can differ significantly.
For reliable knowledge discovery, it is imperative that the algorithm remains stable for such natural
perturbations in the data. However, this specific type of robustness has not yet been thoroughly
explored, making our study the first to venture in this direction.

Average Sensitivity The notion of average sensitivity was originally introduced in (Murai and
Yoshida, 2019) to compare network centralities in terms of their stability against graph perturba-
tions. Then the notion was extended to handle graph algorithms in (Varma and Yoshida, 2021).
Since then average sensitivity of algorithms for various problems have been studied, including the
maximum matching problem (Yoshida and Zhou, 2021), spectral clustering (Peng and Yoshida,
2020), Euclidean k-clustering (Yoshida and Ito, 2022), dynamic programming problems (Kumabe
and Yoshida, 2022a;b), and decision tree learning (Hara and Yoshida, 2023).

3 PRELIMINARIES

We use bold symbols to denote random variables. For two random variables X and Y on a finite
set E, let dTV(X,Y ) :=

∑
e∈E |Pr[X = e] − Pr[Y = e]|/2 denote the total variation distance

between their distributions. For sets S and T , let S△T = (S \ T )∪ (T \S) denote their symmetric
difference.

3.1 HIERARCHICAL CLUSTERING

Let X = {x1, . . . , xn} be a dataset. We always assume that the data points x1, . . . , xn are distinct
(otherwise we assign them unique IDs so that they are distinct). A hierarchical clustering over X is
a rooted tree T such that each leaf is corresponding to a subset of X and the subsets corresponding
to leaves form a partition of X . Note that hierarchical clustering considered in this work does not
always decompose X into data points. Let root(T ) denote the root node of T . In this work, we
mostly consider binary trees and let left(T ) and right(T ) denote the left and right, respectively,
subtrees of root(T ). If root(T ) is the only node in T , then we call T a singleton, and we define
left(T ) = right(T ) = ∅. Also we set left(T ) = right(T ) = ∅ when T is an empty tree. Let
leaves(T ) ⊆ 2X denote the leaves of T .

3.2 GRAPH-THEORETIC NOTIONS

For a finite set V , we denote by
(
V
2

)
the set of pairs of elements in V . For a set V and i ∈ V , we

sometimes write V − i to denote V \ {i}. Let G = (V,E) be a graph. For a vertex i ∈ V , let G− i
denote the graph obtained from G by deleting i and the edges incident to i. For a vertex set S ⊆ V ,
let G[S] denote the subgraph of G induced by S.

Let G = (V,E,w) be a weighted graph, where w : E → R+ is a weight function over edges. For
disjoint sets of vertices S, T ⊆ V , let cG(S, T ) denote the total weight of edges between S and T ,
that is,

∑
i∈S,j∈T w(i, j). We denote by ϕG(S) the sparsity of S, that is, cG(S, V \S)/(|S|·|V \S|).
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3.3 EXPONENTIAL MECHANISM

The exponential mechanism (McSherry and Talwar, 2007) is an algorithm that, given a vector x ∈
Rn and a real number λ > 0, returns an index i ∈ [n] with probability proportional to e−λxi . The
following fact is useful to design algorithms with low average sensitivity.

Lemma 3.1 (McSherry and Talwar (2007)). Let λ > 0 and let A be the algorithm that, given a
vector x ∈ Rn, applies the exponential mechanism to x and λ. Then for any t > 0, we have

Pr
i∼A(x)

[
xi ≥ OPT+

log n

λ
+

t

λ

]
≤ e−t,

where OPT = mini∈[n] xi. Moreover, for x′ ∈ Rn, we have

dTV(A(x), A(x′)) = O (λ · ∥x− x′∥1) .

4 AVERAGE SENSITIVITY OF HIERARCHICAL CLUSTERING

In this section, we formally define the average sensitivity of a hierarchical clustering algorithm.

4.1 DISTANCE BETWEEN HIERARCHICAL CLUSTERINGS

Algorithm 1: Distance between trees
1 Procedure dx(T, T

′)
2 if T = T ′ = ∅ then return 0;
3 if

leaves(left(T )) △ leaves(left(T ′)) ̸⊆
{x} or
leaves(right(T )) △ leaves(right(T ′)) ̸⊆
{x} then

4 c← 1.
5 else
6 c← 0.
7 return c+ dx(left(T ), left(T

′)) +
dx(right(T ), right(T

′)).

First, we define distance between hierarchical clus-
terings. Let X = {x1, . . . , xn} be a dataset,
x ∈ X be a data point, and T and T ′ be hierarchi-
cal clusterings over X and X \ {x}, respectively.
Then, the distance dx(T, T

′) between T and T ′ is
defined recursively as follows. If both T and T ′ are
empty trees, then dx(T, T

′) is defined to be zero.
Otherwise, we incur the cost of one if

leaves(left(T )) △ leaves(left(T ′)) ̸⊆ {x}, or

leaves(right(T )) △ leaves(right(T ′)) ̸⊆ {x}.

In words, we incur the cost of one if the left
subtrees or the right subtrees differ besides the
ignored element x ∈ X . Then, we recur-
sively compute the costs dx(left(T ), left(T

′)) and
dx(right(T ), right(T

′)) and add them up. The details are given in Algorithm 1. It is easy to verify
that dx satisfies the triangle inequality. Also, note that dx(T, T ′) ≤ |T | + |T ′|, where |T | is the
number of nodes in T (including the leaves).

4.2 AVERAGE SENSITIVITY

Now we define the average sensitivity of a deterministic algorithm as follows:

Definition 4.1 (Varma and Yoshida (2021)). Let A be a deterministic algorithm that, given a dataset
X = {x1, . . . , xn}, outputs a hierarchical clustering. Then, the average sensitivity of A on a dataset
X = {x1, . . . , xn} is

1

n

∑
x∈X

dx(A(X), A(X \ {x})). (1)

To extend the definition to randomized algorithms, we define EMx as the earth mover’s distance
between two distributions with the underlying distance dx. Specifically, for distributions over hi-
erarchical clusterings T and T ′, we define EMx(T , T ′) = minD E(T ,T ′)∼D dx(T ,T ′), where D
runs over distributions over pairs of hierarchical clusterings such that the marginal distributions on
the first and second coordinates are equal to T and T ′, respectively (sometimes called a coupling be-
tween T and T ′ in the literature). Then, we define the average sensitivity of a randomized algorithm
as follows:
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Definition 4.2 (Varma and Yoshida (2021)). Let A be a randomized algorithm that, given a dataset
X = {x1, . . . , xn}, outputs a hierarchical clustering. Then, the average sensitivity of A on a dataset
X = {x1, . . . , xn} is

1

n

∑
x∈X

EMx(A(X), A(X \ {x})).

Note that this definition coincides with the one for deterministic algorithms when the algorithm is
deterministic.

Sometimes we want to guarantee that a randomized algorithm A outputs similar hierarchical clus-
terings on X and X \ {x} when we use the same random coins. For a bit string π, let Aπ denote the
deterministic algorithm obtained from A by fixing the outcomes of its random coins to π. Then, we
define the following variant of average sensitivity.
Definition 4.3. Let A be a randomized algorithm that, given a dataset X = {x1, . . . , xn}, outputs
a hierarchical clustering. Then, the average sensitivity of A under shared randomness on a dataset
X = {x1, . . . , xn} is

E
π

[
1

n

∑
x∈X

dx(Aπ(X), Aπ(X \ {x}))

]
.

5 STABLE-ON-AVERAGE HIERARCHICAL CLUSTERING

5.1 ALGORITHM DESCRIPTION Algorithm 2: Stable hierarchical clustering
1 Procedure REC(G = (V,E,w), λ, d,D)
2 if d = D or |V | = 0 then
3 return an empty tree.
4 else if |V | = 1 then
5 return the only vertex in G as a

singleton tree.
6 else
7 S ← SSC(G,λ);
8 T1 ← REC(G[S], λ, d+ 1);
9 T2 ← REC(G[V \ S], λ, d+ 1);

10 Let T be the tree with a root node
having T1 and T2 as its subtrees;

11 return T .

12 Procedure
SHC(X = {x1, . . . , xn}, α, λ,D)

13 V ← {1, 2, . . . , n};
14 E ←

(
V
2

)
;

15 w(i, j)← exp(−α∥xi − xj∥2);
16 G← (V,E,w);
17 return REC(G,λ, 0, D).

Algorithm 3: Stable sparsest cut
1 Procedure SSC(G = (V,E,w), λ)
2 for {i, j} ∈

(
V
2

)
with i < j do

3 Sij ← {k ∈ V : w(i, k) > w(j, k)};
4 ϕG(i, j)← ϕG(Sij).
5 Sample a pair {i, j} from the distribution

that emits {i, j} ∈
(
V
2

)
with probability

∝ exp(−λϕG(i, j));
6 return Sij .

In this section, we describe our algorithm for
hierarchical clustering with low average sensi-
tivity, and then derive some theoretical prop-
erties. In Section 6, we consider another al-
gorithm with low average sensitivity under
shared randomness.

Our algorithm, SHC (Stable Hierarchical
Clustering), is given in Algorithm 2. Given
a dataset X = {x1, . . . , xn} and a param-
eter α > 0, we first transform X into a
weighted graph G = (V,E,w), where V =

{1, 2, . . . , n}, E =
(
V
2

)
, and w(i, j) =

exp(−α∥xi−xj∥2), and then pass G to a sub-
routine REC, which constructs a hierarchical
clustering using G. Note that closer data point
pairs get higher weights in w. If α is small,
then every data point pair gets almost identi-
cal weight, and if α is large, then distant data
point pairs get negligible weights and will be
ignored in hierarchical clustering.

The subroutine REC is recursive. Given a
weighted graph G = (V,E,w) and a depth
limit D ≥ 0, we split the vertex set into
two components using a subroutine SSC (Sta-
ble Sparse Cut, Algorithm 3), and then recur-
sively process them until the depth reaches D.

Now we explain the details of the subroutine
SSC. Ideally, we want to solve the sparsest
cut problem, for which the goal is to compute
S ⊆ V that minimizes ϕG(S). However, ap-
proximating ϕG(S) to within a constant fac-
tor is NP-Hard (Chawla et al., 2006), and al-
though some polynomial-time approximation algorithms (Arora et al., 2009; Leighton and Rao,
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1999) are known, they are slow in practice because they internally solve LPs or SDPs, and it is not
clear whether these are stable. Hence, we take a different approach.

Our idea is to select a pair of vertices, called centroids, and then assign every other vertex to the more
similar centroid to form a partition into two components. To achieve a small average sensitivity, we
select the pair of centroids as follows. For {i, j} ∈

(
V
2

)
with i < j, let Sij = {k ∈ V : w(i, k) >

w(j, k)} be the set of vertices that is more similar to i than j, and define ϕG(i, j) = ϕG(Sij). Then,
we sample a pair of centroids {i, j} using the exponential mechanism with the cost function ϕG(·, ·)
and the given parameter λ. When λ = 0, the exponential mechanism returns {i, j} uniformly
sampled from

(
V
2

)
, and when λ =∞, it returns {i, j} that minimizes ϕG(i, j).

5.2 THEORETICAL PROPERTIES

The time complexity of SHC is easy to analyze:
Theorem 5.1. The time complexity of SHC is O(Dn3).

Next, we discuss the approximation guarantee and (a variant of) the average sensitivity of SSC. For
a weighted graph G = (V,E,w), we define

ϕ∗
G = min

{i,j}∈(V2)
ϕG(Sij).

Note that ϕ∗
G is not the minimum sparsity of a set in G, i.e., minS⊆V ϕG(S). Let wG denote the

total edge weight, that is,
∑

{i,j}∈(V2)
w(i, j). The following holds:

Theorem 5.2. For a weighted graph G of n vertices and λ > 0, let S = SSC(G,λ). Then, we have

E[ϕG(S)] ≤ ϕ∗
G +O

(
log(λwG)

λ

)
.

We also have
1

n

∑
k∈V

dTV(SSC(G,λ), SSC(G− k, λ)) = O

(
1

n
(λϕ∗

G + log(nwG))

)
.

Because the weight function w is [0, 1]-valued, ϕ∗
G = O(1) and wG = O(n2). Then for ϵ > 0, we

obtain E[ϕG(S)] = (1+ ϵ)ϕG∗ by setting λ = Θ(log n/(ϵϕ∗
G)). For this particular choice of λ, the

average total variation distance is O(log n/(ϵn)), which is quite small.

Finally, we discuss the average sensitivity of SHC.
Theorem 5.3. The average sensitivity of SHC(X,α, λ,D) is O (D(λwG/n+ log(nwG))), where
G is the graph constructed by using X and α in SHC.

Recalling that wG = O(n2), the bound is roughly O(λDn), which can be made small by setting
λ≪ 1.

6 STABLE-ON-AVERAGE HIERARCHICAL CLUSTERING UNDER SHARED
RANDOMNESS

In this section, we propose an algorithm SHC-SR by modifying SHC (Algorithm 2) so that it has a
small average sensitivity under shared randomness.

First, we design a randomized algorithm called SAMPLING that, given a vector p ∈ Rn
+ with∑n

i=1 pi = 1, and a random bit string π, outputs i ∈ {1, . . . , n} with probability pi such that
perturbing the vector p does not change the output with high probability over π.

For a set S, let U(S, π) denote a procedure that outputs an element i ∈ S such that U(S,π) for
a random bit string π provides a uniform distribution over S. Such a procedure can be easily
implemented by taking the first few bits from π and then map them to an element in S. Then
in SAMPLING(p, π), we first compute a permutation σ so that pσ(1) ≤ · · · ≤ pσ(n) and compute
some carefully designed vector q ∈ [0, 1]n using p and σ. Then, we sample t ∈ [0, 1] and i ∈ [0, 1]
uniformly at random and if qi > t, then we return i, and otherwise, we repeat the process. The vector
q is designed so that this process outputs i with probability pi. The details are given in Algorithm 4.
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Algorithm 4: Sampling with a low average
sensitivity under shared randomness

1 Procedure SAMPLING(p, π)
2 Let σ be a permutation such that

pσ(1) ≤ pσ(2) ≤ . . . ≤ pσ(n);
3 Let q ∈ Rn

+ so that qσ(i) =
qσ(i−1) + (n− i+ 1)(pσ(i) − pσ(i−1)),
where p0 = qσ(0) = 0;

4 t← U([0, 1], π) and delete the used bits
from π;

5 while true do
6 i← U({1, 2, . . . , n}, π) and delete

the used bits from π;
7 if qi > t then
8 break.
9 return i.

Because the only randomized process in SHC
is the exponential mechanism used in SSC
(Algorithm 3), by replacing it with SAM-
PLING that simulates the exponential mecha-
nism, we obtain a hierarchical clustering algo-
rithm SHC-SR with low average sensitivity
under shared randomness:

Theorem 6.1. There exists an algorithm
SHC-SR that, given a dataset X =
(x1, . . . , xn), α ≥ 0, λ ≥ 0, an integer D,
and a bit string π, outputs a hierarchical clus-
tering over X such that

• the distribution of SHC-SR(X,α, λ,D,π)
over random bits π is equal to that of
SHC(X,α, λ,D).

• the average sensitivity of SHC-
SR(X,α, λ,D, π) under shared randomness is O (D(λwG/n+ log(nwG))), where G is
the graph constructed by using X and α as in SHC.

7 EXPERIMENTS

We demonstrate that the proposed SHC-SR (Section 6) can output stable hierarchical clustering
using some benchmark datasets. For all the experiments, we used a workstation with 48 cores of
AMD EPYC processors and 256GB of RAMS.

7.1 SETUPS
Table 1: Datasets

dataset data size # of features

breast cancer 569 30
diabetes 442 10
digits 1797 64

Datasets We took three datasets shown in Ta-
ble 1 from sklearn.datasets. For the experi-
ments, we subsampled a fraction of the data points
from a dataset so that we can assess the effect of
the data size n.

Hierarchical Clustering Algorithms In the experiment, we implemented SHC-SR given in The-
orem 6.1. We constructed weighted graphs by setting w(i, j) = exp(−α∥xi − xj∥2/m) with m
being the median of all the pairwise distance, and varied α to some different values. We also varied
the parameter λ used in SSC-SR. The case λ = ∞ corresponds to a greedy algorithm that selects
the pair (i, j) with the smallest ϕG(i, j) in SSC-SR (Algorithm 3 with the exponential mechanism
being implemented with SAMPLING), and the case λ = 0 corresponds to an algorithm that selects
the pair (i, j) uniformly at random in SSC-SR. We implemented SHC-SR in Python 3 using the
JIT compiler of Numba.

We adopted some standard hierarchical clustering algorithms as baseline methods for compari-
son.1 As typical agglomerative clustering algorithms, we adopted four algorithms implemented
in AgglomerativeClustering in scikit-learn with four different linkage criterion: ward,
average, complete, and single, with the other options set to default. We note that Balcan
et al. (2014) reported that ward tends to be robust against outlier injections and noise contamination.
As the representatives of divisive clustering, we adopted bisecting 2-means (Jain, 2010) and prin-
cipal direction divisive partitioning (Boley, 1998). These two methods recursively split data points
by using the standard 2-means clustering and the sign of the first principal component, respectively.
We implemented these methods, which we denote by 2-means and pcdd, by using KMeans in
scikit-learn with the number of clusters set to two and ten random initializations and PCA with the
number of components set to one, respectively, and default parameters for the other options.

1We did not adopt the outlier–robust methods (Eriksson et al., 2011; Balcan et al., 2014; Cheng et al., 2019)
because the core of these methods is on identifying outliers, which is irrelevant to the current problem.

7



Under review as a conference paper at ICLR 2024

SHC-SR (Proposed) 2-means pcddward average complete single

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

10
20
30
40
50

= 0 =

×105

1.1 1.2 1.3 1.4 1.5 1.6
0

20

40

60

80

= 0

=

×105

1.1 1.2 1.3 1.4 1.5 1.6
0

20
40
60
80

100
120

= 0
=

×105

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

10
20
30
40
50

= 0
=
×104

2.5 3.0 3.5 4.0 4.5
0

10
20
30
40
50
60

= 0

=

×104

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0

20
40
60
80

100
120

= 0=
×104

3 4 5 6 7 8
0

10
20
30
40
50

= 0
=
×103

1.0 1.5 2.0 2.5 3.0 3.5
0

10
20
30
40
50

= 0=

×103

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

20
40
60
80

100
120

= 0 =
×103

1 2 3 4 5
0

10
20
30
40
50

= 0
=
×102

0.25 0.50 0.75 1.00 1.25 1.50 1.75
0

10
20
30
40
50

= 0=

×102

0 1 2 3 4 5 6
0

20
40
60
80

100
120

= 0 =
×101

α = 1 α = 3 α = 10 α = 30
br

ea
st

ca
nc

er
di

ab
et

es
di

gi
ts

A
ve

ra
ge

Se
ns

iti
vi

ty
A

ve
ra

ge
Se

ns
iti

vi
ty

A
ve

ra
ge

Se
ns

iti
vi

ty

Dasgupta Score Dasgupta Score Dasgupta Score Dasgupta Score

Figure 2: Trade-offs between average sensitivity and Dasgupta score for the data size n = 100,
depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.

Evaluation criteria We measure the average sensitivity of hierarchical clustering algorithms as
well as their qualities. We evaluated the average sensitivity following (1). For SHC-SR, we treated
SHC-SR(·, α, λ,D, π) with a fixed π as the deterministic algorithm A.

As the quality measure, we adopted two popular criteria, Dasgupta score (Dasgupta, 2016), Den-
drogram purity (Heller and Ghahramani, 2005), and Cophenetic Correlation (Sokal and Rohlf,
1962) 2. Dasgupta score measures the quality of a hierarchical clustering T using costs of pairs
of data points. More specifically, we define the Dasgupta score of a hierarchical clustering T by
score(T ) =

∑n
i,j=1;i ̸=j w(i, j)n(i, j), where n(i, j) denotes the number of data points belonging to

the subtree rooted at the lowest common ancestor of nodes that xi and xj belong to. The Dasgupta
score is small when dissimilar points xi and xj (i.e., w(i, j) is small) are split into different clusters
in a shallow part of the tree, and similar points (i.e., w(i, j) is large) are split in a deeper part. Thus,
a clustering T with smaller score(T ) is considered ideal.

Procedure We generated 10 subsampled datasets of size n = 100, 300, and 500 from the original
dataset. 3 For each subsampled dataset, we constructed a hierarchical clustering using SHC-SR
over different values of λ and the baseline methods. As the result, we obtained 10 clusterings for
each method. We compute the average of the average sensitivity and the Dasgupta score of these 10
clusterings. We then report the trade-offs of the average of the average sensitivity and the average
of the clustering qualities.

7.2 RESULTS

Figures 2 shows the results of the experiments with n = 100. Each figure shows the trade-offs
between the average sensitivity and the average Dasgupta score, with the depth of T limited to 10,
and with the similarity coefficient α varied to 1, 3, 10, and 30. The results of the baselines and
SHC-SR for several different λ are shown in different symbols and red lines, respectively. We can
find that the red lines of SHC-SR tend to lie in the lower left area of the figures. That is, SHC-SR
with appropriately chosen λ can attain a good trade-off with small average sensitivity and better
Dasgupta scores, as expected. By contrast, all the baselines, except for single, tend to exhibit
small Dasgupta scores while incurring high average sensitivity. These methods are therefore good at
producing high quality clusterings, while being sensitive to a small perturbation of the dataset. The

2We show the results for Dendrogram purity and Cophenetic Correlation in Appendix.
3We show the results for n = 300 and n = 500 in Appendix because they are similar to n = 100.
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Ward #1 Ward #2 Ward #3 Ward #4 Ward #5Agglomerative (ward)
#1 #2 #3 #4 #5

Average #1 Average #2 Average #3 Average #4 Average #5Agglomerative (average)
#1 #2 #3 #4 #5

Complete #1 Complete #2 Complete #3 Complete #4 Complete #5Agglomerative (complete)
#1 #2 #3 #4 #5

Prop. ( = 10) #1 Prop. ( = 10) #2 Prop. ( = 10) #3 Prop. ( = 10) #4 Prop. ( = 10) #5Proposed (λ = 10)
#1 #2 #3 #4 #5

Prop. ( = 1000) #1 Prop. ( = 1000) #2 Prop. ( = 1000) #3 Prop. ( = 1000) #4 Prop. ( = 1000) #5Proposed (λ = 1000)
#1 #2 #3 #4 #5

Prop. ( = ) #1 Prop. ( = ) #2 Prop. ( = ) #3 Prop. ( = ) #4 Prop. ( = ) #5Proposed (λ = ∞)
#1 #2 #3 #4 #5

Figure 3: Clustering results on a GPS dataset over the five trials with 20 data points removed. The
figures show four clusters at the depth two of the obtained hierarchy. The colored dots in blue, red,
green, and cyan indicate data points within the same clusters. The black dots denote removed data
points. We used α = 0.1 for the proposed method.

result of single is exceptional, exhibiting large Dasgupta scores with small average sensitivity. We
observed that single tends to produce highly unbalanced clusterings because single split the
dataset into small and large clusters. Although such a split is less sensitive to the dataset perturbation
and has smaller average sensitivity, the quality of clustering is poor. SHC-SR provides a way to
balance the quality of the clustering and its average sensitivity by tuning λ upon the user demand.

8 APPLICATION TO GPS DATASET

We applied SHC-SR and agglomerative algorithms to a real-world problem involving a GPS
dataset (Takahashi et al., 2019).4 This dataset consists of 280 GPS markers in Taiwan, where each
data point represents its longitude, latitude, and velocity in the horizontal directions. By applying
clustering to the horizontal velocities, we can cluster regions with similar movements and find ac-
tive tectonic boundaries. The stability of clustering is crucial in this application because if the found
clusters change drastically upon removal of a few GPS markers, the clusters may be an artifact
induced by unstable clustering algorithms rather than the true tectonic boundaries.

Figure 3 shows the clustering results on the GPS dataset over the five trials when randomly chosen
20 out of 280 points are removed from the dataset. Here, we display the four clusters found at
the depth two of the obtained hierarchy. The figures show that the agglomerative algorithms (ward,
average, complete) tend to produce different clusters over different data removals. By contrast,
SHC-SR with λ = 10, 1000, and ∞ produce almost identical clusters, except the first result on
λ = 10. This result confirms that we can obtain stable clusters by using SHC-SR.

9 CONCLUSIONS

In this work, we considered the average sensitivity of hierarchical clustering. We proposed hierar-
chical clustering algorithms SHC and SHC-SR and theoretically proved that they have low average
sensitivity and average sensitivity under shared randomness, respectively. Then using real-world
datasets, we empirically confirmed that our algorithm SHC-SR achieves a good trade-off between
the quality of the output clustering and average sensitivity.

4We omitted single, 2-means, and pcdd because of their poor performances in the previous experi-
ments; single was poor at its clustering quality, 2-means was poor at its average sensitivity, and pcdd
tends to be parteo-dominated by other methods.
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A PROOF OF THEOREM 5.1

Proof of Theorem 5.1. Note that SSC on a graph of k nodes takes O(k3) time. Let nd,i be the size
of the graph in the i-th call of REC at depth d. Note that we have 2d calls at depth d, and hence
1 ≤ i ≤ 2d. Also note that

∑2d

i=1 nd,i = n. Then, the total running time is

O

 D∑
d=0

2d∑
i=1

n3
d,i

 = O

(
D∑

d=0

n3

)
= O

(
Dn3

)
.

B PROOF OF THEOREM 5.2

We analyze approximation guarantee and average total variation distance of SSC in Sections B.1
and B.2, respectively.

B.1 APPROXIMATION GUARANTEE

The following lemma shows the approximation guarantee part of Theorem 5.2.

Lemma B.1. Let G be a weighted graph, λ > 0, and S = SSC(G,λ). Then, we have

E[ϕG(S)] ≤ ϕ∗
G +O

(
log(λwG)

λ

)
.

Proof. Note that ϕG(i, j) ≤ wG/n. Then by Lemma 3.1, we have

E[ϕG(S)] = ϕ∗
G +

log
(
n
2

)
λ

+
t

λ
+ e−t · wG

n
.

By setting t = log(λwG/n), we have

E[ϕG(S)] = ϕ∗
G +

log
(
n
2

)
λ

+
log(λwG/n)

λ
+

1

λ

= ϕ∗
G +O

(
log(λwG)

λ

)
,

as desired.

B.2 AVERAGE TOTAL VARIATION DISTANCE

In this section, we analyze the average total variation distance of SSC. Throughout this section, we
fix the input weighted graph G = (V,E,w) and λ > 0.

Let Z =
∑

{i,j}∈(V2)
exp(−λϕG(i, j)) and Z(k) =

∑
{i,j}∈(V −k

2 ) exp(−λϕG−k(i, j)). We note

that, for graphs G and G−k, we sample a pair (i, j) with probability p(i, j) := exp(−λϕG(i, j))/Z
and p(k)(i, j) := exp(−λϕG(i, j))/Z

(k), respectively. The following techinical lemma is useful to
bound the total variation distance between the distributions for G and G−k. We postpone the proof
to Section B.3.

Lemma B.2. We have

1

Z

∑
k∈V

∑
{i,j}∈(V −k

2 )

|e−λϕG(i,j) − e−λϕG−k(i,j)|

= O (λϕ∗
G + log(nwG)) .

Note that this also implies
∑

k∈V |Z − Z(k)|/Z = O (λϕ∗
G + log(nwG)).

The following shows the average total variation distance part of Theorem 5.2.
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Lemma B.3. Let S = SSC(G,λ) and S(k) = SSC(G− k, λ). Then, we have∑
k∈V

dTV(S,S
(k)) = O (λϕ∗

G + log(nwG)) .

Proof. Note that S is deterministically constructed from the pair of centroids {i, j}. Hence, we
consider the change of the pair {i, j} in total variation distance between G and G − k. First, we
have ∑

k∈V

∑
{i,j}∈(V −k

2 )

|p(i, j)− p(k)(i, j)|

=
∑
k∈V

∑
{i,j}∈(V −k

2 )

∣∣∣∣e−λϕG(i,j)

Z
− e−λϕG−k(i,j)

Z(k)

∣∣∣∣
=
∑
k∈V

∑
{i,j}∈(V −k

2 )

∣∣∣e−λϕG(i,j)

Z
− e−λϕG−k(i,j)

Z
·
(
1 +

Z − Z(k)

Z(k)

)∣∣∣
≤ 1

Z

∑
k∈V

∑
{i,j}∈(V −k

2 )

|e−λϕG(i,j) − e−λϕG−k(i,j)|

+
∑
k∈V

|Z − Z(k)|
ZZ(k)

∑
{i,j}∈(V −k

2 )

e−λck(i,j)

=
1

Z

∑
k∈V

∑
{i,j}∈(V −k

2 )

|e−λϕG(i,j) − e−λϕG−k(i,j)|+
∑
k∈V

|Z − Z(k)|
Z

= O (λϕ∗
G + log(nwG)) . (by Lemma B.2)

Then, we have ∑
k∈V

dTV(S,S
(k))

≤
∑
k∈V

 ∑
{i,j}∈(V −k

2 )

|p(i, j)− p(k)(i, j)|+
∑

{i,j}∈(V2)\(
V −k

2 )

p(i, j)


= O (λϕ∗

G + log(nwG)) +
∑

{i,j}∈(V2)

p(i, j)

= O (λϕ∗
G + log(nwG)) .

Theorem 5.2 follows by combining Lemma B.1 and Lemma B.3.

B.3 PROOF OF LEMMA B.2

For k ∈ V \ {i, j}, we write S
(k)
ij to denote Sij computed for the instance G − k. We write S̄ij to

denote V \ Sij . We start with the following simple lemma.

Lemma B.4. For {i, j} ∈
(
V
2

)
with i < j and k ∈ V \ {i, j},

ϕG(i, j)− ϕG−k(i, j)

=


cG(Sij , {k}) · |S̄ij | − cG(Sij , S̄ij)

|Sij | · |S̄ij | · (|S̄ij | − 1)
if k ∈ S̄ij ,

cG({k}, S̄ij) · |Sij | − cG(Sij , S̄ij)

(|Sij | − 1) · |Sij | · |S̄ij |
if k ∈ Sij .
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Proof. For notational simplicity, we write S, S̄, and S(k) to denote Sij , S̄ij , and S
(k)
ij , respectively.

If k ∈ S̄, then S = S(k) and we have

ϕG(i, j)− ϕG−k(i, j)

=
cG(S, V \ S)
|S| · |V \ S|

− cG−k(S
(k), (V − k) \ S(k))

|S(k)| · |(V − k) \ S(k)|

=
cG(S, V \ S)
|S| · |V \ S|

− cG(S, V \ S)− cG(S, {k})
|S| · (|V \ S| − 1)

=
cG(S, S̄)(|S̄| − 1)− (cG(S, S̄)− cG(S, {k})) · |S̄|

|S| · |S̄| · (|S̄| − 1)

=
cG(S, {k}) · |S̄| − cG(S, S̄)

|S| · |S̄| · (|S̄| − 1)
.

Otherwise, that is, if k ∈ S, then S = S(k) ∪ {k} and we have

ϕG(S)− ϕG−k(S
(k))

=
cG(S, V \ S)
|S| · |V \ S|

− cG−k(S
(k), (V − k) \ S(k))

|S(k)| · |(V − k) \ S(k)|

=
cG(S, V \ S)
|S| · |V \ S|

− cG(S, V \ S)− cG({k}, V \ S)
(|S| − 1) · |V \ S|

=
cG(S, S̄) · (|S| − 1)− (cG(S, S̄)− cG({k}, S̄)) · |S|

(|S| − 1) · |S| · |S̄|

=
cG({k}, S̄) · |S| − cG(S, S̄)

(|S| − 1) · |S| · |S̄|
.

Next, we bound the total change of the sparsity of the set induced by a fixed pair of centroids over
deleted vertices.
Lemma B.5. For any {i, j} ∈

(
V
2

)
with i < j, we have∑

k∈V \{i,j}

|ϕG(i, j)− ϕG−k(i, j)| = O(ϕG(i, j)).

Proof. For notational simplicity, we write S, S̄, and S(k) to denote Sij , S̄ij , and S
(k)
ij , respectively.

Let A = {k ∈ V \ {i, j} : ϕG(S) ≤ ϕG−k(S
(k))}. Then, we have∑

k∈A

|ϕG(S)− ϕG−k(S
(k))| =

∑
k∈A

(ϕG−k(S
(k))− ϕG(S))

=
∑

k∈A∩S̄

cG(S, S̄)− cG(S, {k}) · |S̄|
|S| · |S̄| · (|S̄| − 1)

+
∑

k∈A∩S

cG(S, S̄)− cG({k}, S̄) · |S|
(|S| − 1) · |S| · |S̄|

(by Lemma B.4)

≤
∑

k∈A∩S̄

cG(S, S̄)

|S| · |S̄| · (|S̄| − 1)
+

∑
k∈A∩S

cG(S, S̄)

(|S| − 1) · |S| · |S̄|

= ϕG(S) ·

 ∑
k∈A∩S̄

1

|S̄| − 1
+

∑
k∈A∩S

1

|S| − 1

 = O(ϕG(S)).

Let Ā = (V \ {i, j}) \A. Then, we have∑
k∈Ā

|ϕG(S)− ϕG−k(Sk)| =
∑
k∈Ā

(ϕG(S)− ϕG−k(Sk))
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=
∑

k∈Ā∩S̄

cG(S, {k}) · |S̄| − cG(S, S̄)

|S| · |S̄| · (|S̄| − 1)

+
∑

k∈Ā∩S

cG({k}, S̄) · |S| − cG(S, S̄)

(|S| − 1) · |S| · |S̄|
(by Lemma B.4)

≤
∑

k∈Ā∩S̄

cG(S, {k})
|S| · (|S̄| − 1)

+
∑

k∈Ā∩S

cG({k}, S̄)
(|S| − 1) · |S̄|

= O

(
cG(S, Ā ∩ S̄)

|S| · |S̄|

)
+O

(
cG(Ā ∩ S, S̄)

|S| · |S̄|

)
= O(ϕG(S)).

Combining the above two, we have∑
k∈V \{i,j}

|ϕG(S)− ϕG−k(Sk)|

=
∑
k∈A

|ϕG(S)− ϕG−k(S
(k))|+

∑
k∈Ā

|ϕG(S)− ϕG−k(S
(k))|

= O(ϕG(S)).

Proof of Lemma B.2. Let Ak = {{i, j} ∈
(
V−k
2

)
| ϕG(i, j) ≤ ϕG−k(i, j)}. Then, we have∑

{i,j}∈(V −k
2 )

|e−λϕG(i,j) − e−λϕG−k(i,j)|

=
∑

{i,j}∈A

(
e−λϕG(i,j) − e−λϕG−k(i,j)

)
=

∑
{i,j}∈A

(
e−λϕG(i,j)(1− e−λ(ϕG−k(i,j)−ϕG(i,j)))

)
≤ λ

∑
{i,j}∈Ak

e−λϕG(i,j)(ϕG−k(i, j)− ϕG(i, j)). (1− e−x ≤ x)

Let Āk =
(
V
2

)
\Ak. Note that we have ϕG(i, j) > ϕG−k(i, j) for any {i, j} ∈ Āk. Then, we have∑

{i,j}∈(V −k
2 )

|e−λϕG(i,j) − e−λϕG−k(i,j)|

≤
∑

{i,j}∈Āk

(
e−λϕG−k(i,j) − e−λϕG(i,j)

)
≤

∑
{i,j}∈Āk

(
e−λϕG(i,j)(e−λ(ϕG−k(i,j)−ϕG(i,j)) − 1)

)
≤ (e− 1)λ

∑
{i,j}∈Āk

e−λϕG(i,j)(ϕG(i, j)− ϕG−k(i, j)). (ex − 1 ≤ (e− 1)x for x ∈ [0, 1])

Then, we have
1

Z

∑
k∈V

∑
{i,j}∈(V −k

2 )

|e−λϕG(i,j) − e−λϕG−k(i,j)|

≤ (e− 1)λ

Z
×∑

k∈V

∑
{i,j}∈(V −k

2 )

(
e−λϕG(i,j)|ϕG(i, j)− ϕG−k(i, j)|

)

=
(e− 1)λ

Z
×

15
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∑
{i,j}∈(V2)

(
e−λϕG(i,j)

∑
k∈V \{i,j}

|ϕG(i, j)− ϕG−k(i, j)|
)

≤ (e− 1)λ

Z

∑
{i,j}∈(V2)

e−λϕG(i,j)ϕG(i, j) (by Lemma B.5)

= O

(
λ

(
ϕ∗
G +

log(nwG)

λ

))
(by Lemma B.1)

= O (λϕ∗
G + log(nwG)) .

C PROOF OF THEOREM 5.3

Proof of Theorem 5.3. For notational simplicity, we drop the arguments λ and D from
REC(G,λ, d,D) because they are fixed in this proof. Also we drop d when it is clear from the
context.

For a subgraph H of G and k ∈ V := {1, 2, . . . , n}, let H(k) := H − k. For d ≥ 0, let
Hd,1, . . . ,Hd,2d be the random graphs on which REC is called at depth d (if the number of sub-
graphs on which REC is called at depth d is less than 2d, we append empty graphs). We can order
them so that REC(Hd,j , d) calls REC(Hd+1,2j−1, d+1) and REC(Hd+1,2j , d+1) (if REC(Hd,j , d)
does not make recursive calls, we set Hd+1,2j−1 and Hd+1,2j to be empty graphs).

We now show that

E
Hd,j

n∑
k=1

2d∑
j=1

EMk(REC(Hd,j), REC(H
(k)
d,j ))

= O ((D − d)(λwG + n log(nwG))) (2)
by (backward) induction on d. Then, the claim holds by setting d = 0 and noting that the average
sensitivity of REC(G,λ, 0, D) is equal to that of SHC(X,α, λ).

For the base case d = D, we have

E
Hd,j

n∑
k=1

2D∑
j=1

EMk(REC(Hd,j , d), REC(H
(k)
d,j , d)) = 0.

Let d < D and assume that Hypothesis (2) holds for higher depth. Let Sd,j and S
(k)
d,j be the (random)

sets S constructed in REC(Hd,j) and REC(H(k)
d,j ), respectively. For a set S, Let HS

d+1,2j−1 and
HS

d+1,2j be the two sets obtained by partitioning Hd,j according to S. Then, we have

n∑
k=1

2d∑
j=1

EMk(REC(Hd,j), REC(H
(k)
d,j ))

≤
n∑

k=1

2d∑
j=1

(
dTV(Sd,j ,S

(k)
d,j ) · |V (Hd,j)|+

E
Sd,j

EMk(REC(H
Sd,j

d+1,2j−1), REC(H
S

(k)
d,j

d+1,2j−1))+

E
Sd,j

EMk(REC(H
Sd,j

d+1,2j), REC(H
S

(k)
d,j

d+1,2j))
)

≤
2d∑
j=1

O(λϕ∗
Hd,j

+ log(nwG)) · |V (Hd,j)|+

n∑
k=1

2d+1∑
j=1

E
Sd,j

EMk(REC(H
Sd,j

d+1,j), REC(H
S

(k)
d,j

d+1,j)) (by Theorem 5.2)
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≤ O (λwG + n log(nwG))+

n∑
k=1

2d+1∑
j=1

E
Sd,j

EMk(REC(H
Sd,j

d+1,j), REC(H
S

(k)
d,j

d+1,j)). (by ϕ∗
Hd,j

≤ wHd,j
/|V (Hd,j)|)

This implies that

E
Hd,j

n∑
k=1

2d∑
j=1

EMk(REC(Hd,j), REC(H
(k)
d,j ))

≤ O (λwG + n log(nwG))+

n∑
k=1

2d+1∑
j=1

E
Hd+1,j

EMk(REC(Hd+1,j), REC(Hd+1,j))

= O ((D − d)(λwG + n log(nwG)))

as desired.

D PROOFS OF SECTION 6

D.1 THEORETICAL PROPERTIES OF SAMPLING

We first show that the distribution of SAMPLING(p,π) is equal to the one induced by p.

Lemma D.1. For any i ∈ {1, . . . , n}, we have Prπ[SAMPLING(p,π) = i] = pi.

Proof. We note that if t ∈ [qσ(j−1), qσ(j)] for j ≤ i, then we sample σ(i) with probability 1/(n −
j + 1). Then, the probability that we sample σ(i) is

i∑
j=1

qσ(j) − qσ(j−1)

n− j + 1
=

i∑
j=1

(
pσ(j) − pσ(j−1)

)
= pσ(i).

Next, we show that perturbing the vector p ∈ Rn
+ does not change the output of SAMPLING with

high probability over the random bits.

Lemma D.2. For any p, p′ ∈ Rn
+ with

∑n
i=1 pi =

∑n
i=1 p

′
i = 1, we have

Pr
π
[SAMPLING(p,π) ̸= SAMPLING(p′,π)] ≤

n∑
i=1

|pi − p′i|.

Note that the RHS is twice the total variation distance between distributions that output i ∈
{1, 2, . . . , n} with probability pi and p′i. The proof is easy but technical.

Proof of Lemma D.2. For simplicity, we rename elements so that p1 ≤ p2 ≤ · · · ≤ pn. It suffices
to consider the case p′i = pi + δ and p′j = pj − δ for some 1 ≤ i, j ≤ n and δ > 0 and the order
of pi’s are preserved, i.e., p′1 ≤ p′2 ≤ · · · ≤ p′n, because the general case can be decomposed into a
sequence of such cases.

We further assume that i < j because the analysis for the other case is similar. Let iπ =
SAMPLING(p, π) and i′π = SAMPLING(p′, π). We have iπ ̸= i′π when we sample t and i such that
min{qi, q′i} < t < max{qi, q′i}. The probability that such an event happens is 1

n

∑n
k=1 |q′k − qk|,

and our goal is to bound this sum.

We first note that q′k − qk = 0 for any k ≤ i− 1. Also for any k ∈ {1, 2, . . . , n}, we have

qk = qk−1 + (n− k + 1)(pk − pk−1),

q′k = q′k−1 + (n− k + 1)(p′k − p′k−1),

17
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and hence we have

q′k − qk = q′k−1 − qk−1 + (n− k + 1)((p′k − p′k−1)− (pk − pk−1)).

for any k ∈ {1, 2, . . . , n}. In particular, this implies that

q′i − qi = (n− i+ 1)((p′i − p′i−1)− (pi − pi−1)) = (n− i+ 1)δ.

To analyze the sum, we consider the following three cases.

Case j = i+ 1: In this case, we have

q′j − qj = q′i − qi + (n− j + 1)((p′j − p′i)− (pj − pi))

= (n− i+ 1)δ + (n− j + 1)(−2δ) = −(n− j)δ,

q′j+1 − qj+1

= q′j − qj + (n− (j + 1) + 1)((p′j+1 − p′j)− (pj+1 − pj))

= −(n− j)δ + (n− j)δ = 0

and hence q′k − qk = 0 for any k ≥ j + 1.

Case j = i+ 2: In this case, we have

q′i+1 − qi+1

= (q′i − qi) + (n− (i+ 1) + 1)((p′i+1 − p′i)− (pi+1 − pi))

= (n− i+ 1)δ + (n− (i+ 1) + 1)(−δ) = δ,

q′j − qj = q′i+1 − qi+1 + (n− j + 1)((p′j − p′j−1)− (pj − pj−1))

= δ + (n− j + 1)(−δ) = −(n− j)δ,

q′j+1 − qj+1

= q′j − qj + (n− (j + 1) + 1)((p′j+1 − p′j)− (pj+1 − pj))

= −(n− j)δ + (n− (j + 1) + 1)δ = 0

and hence q′k − qk = 0 for any k ≥ j + 1.

Case j > i+ 2: In this case, we have

q′i+1 − qi+1 = δ,

q′k − qk = q′k−1 − qk−1 + (n− k + 1)((p′k − p′k−1)− (pk − pk−1))

= δ (i+ 2 ≤ k ≤ j − 1),

q′j − qj = q′j−1 − qj + (n− j + 1)((p′j − p′j−1)− (pj − pj−1))

= δ + (n− j + 1)(−δ) = −(n− j)δ,

q′j+1 − qj+1

= q′j − qj + (n− (j + 1) + 1)((p′j+1 − p′j)− (pj+1 − pj))

= −(n− j)δ + (n− (j + 1) + 1)δ = 0

and hence q′k − qk = 0 for any k ≥ j + 1.

In all the three cases, we have

1

n

n∑
k=1

|q′k − qk| =
1

n

(
(n− i+ 1)δ + (n− j)δ + (j − i− 1)δ

)
=

(
2− 2i

n

)
δ =

(
1− i

n

) n∑
k=1

|p′k − pk|.

D.2 PROOF OF THEOREM 6.1

We consider a variant of SSC called SSC’ (Algorithm 5) obtained from SSC by replacing the
exponential mechanism with SAMPLING. The following holds:

18
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Algorithm 5: Sparsest cut with a low average sensitivity under shared randomness
1 Procedure SSC’(G = (V,E,w), λ, π)
2 for {i, j} ∈

(
V
2

)
with i < j do

3 Sij ← {k ∈ V : w(i, k) > w(j, k)};
4 ϕG(i, j)← ϕG(Sij).
5 Z ← 0;
6 for {i, j} ∈

(
V
2

)
with i < j do

7 Z ← Z + exp(−λϕG(i, j)).

8 for {i, j} ∈
(
V
2

)
with i < j do

9 pij ← exp(−λϕG(i, j))/Z.
10 (i, j)← SAMPLING(p, π);
11 return Sij .

Lemma D.3. Let G be a weighted graph with n vertices, λ > 0. Then, the distribution of
SSC’(G,λ,π) over random bits π is equal to that of SSC(G,λ). Moreover, we have

E
π

[
1

n

∑
k∈V

1[SSC’(G,λ,π) ̸= SSC’(G− k, λ,π)]

]

= O

(
1

n
(λϕ∗

G + log(nwG))

)
,

where 1[X] denotes the indicator of the event X .

Proof. The first claim follows by Lemma D.1, and the second claim follows by combining Lem-
mas B.3 and D.2.

Proof of Theorem 6.1. Consider the algorithm SHC’ obtained from SHC by replacing the calls of
SSC in REC with SSC’. Combining the proof of Theorem 5.3 and Lemma D.3, we obtain the
claim.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EVALUATION CRITERIA

In the experiments, we used Dendrogram Purity and Cohphenetic Correlation, in addition to Das-
gupta score we reported in the main body of the paper.

Dendrogram Purity Dendrogram Purity measures the quality of clustering using ground-truth
class labels, which are unavailable in practice. For two points xi and xj belonging to the same class
k, we define their purity pur(i, j; k) by pur(i, j; k) = |Lij ∩Ck|/|Lij |, where Lij is the set of data
points belonging to the subtree rooted at the lowest common ancestor of nodes that xi and xj belong
to, and Ck ⊆ X is the set of data points whose ground-truth labels are k. The Dendrogram Purity
of T is then defined as

purity(T ) =
2
∑K

k=1

∑
i,j∈Ck

pur(i, j; k)∑K
k=1 |Ck|(|Ck| − 1)

.

Dendrogram Purity takes a value close to one when the data points in the same class form a subtree
in T , i.e., when they form a single cluster at a certain depth of the tree. On the other hand, it takes a
value close to zero when data points in the same class are distributed to several distinct subtrees of
T . Thus, a hierarchical clustering T with larger impurity(T ) is considered ideal.

Cohphenetic Correlation Let m(i, j) be the depth of the root of the subtree rooted at the lowest
common ancestor of nodes that xi and xj belong to. We also denote the distance between xi and
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xj by d(i, j) = ∥xi − xj∥. Cohphenetic Correlation is then defined as the negative correlation of
m(i, j) and d(i, j),

corr(T ) = −
∑

i<j (m(i, j)− m̄)
(
d(i, j)− d̄

)√∑
i<j (m(i, j)− m̄)

2
√∑

i<j

(
d(i, j)− d̄

)2 ,
where m̄ = 1

(n−1)(n−2)

∑
i<j m(i, j) and d̄ = 1

(n−1)(n−2)

∑
i<j d(i, j) . Cohphenetic Correlation

takes a value close to one when distant data points are distributed to different subtrees so that their
common ancestor to be shallow nodes. Thus, a hierarchical clustering T with larger corr(T ) is
considered ideal.

E.2 RESULTS

Figures 2, 4, and 5 show the results of the experiments when the data size is n = 100 and the tree
depth is D = 10. Each figure shows the trade-offs between the average sensitivity and the aver-
age quality metric, Dasgupta Score, Dendrogram Purity, and Cohphenetic Correlation, respectively,
with the similarity coefficient α varied to 1, 3, 10, and 30. The results of the baselines and SHC’
for several different λ are shown in different symbols and red lines, respectively. Because smaller
Dasgupta Score is considered ideal, the lower left results are preferred as the clusterings with better
quality and stability. For Dendrogram Purity and Cohphenetic Correlation, larger scores are con-
sidered ideal. Thus, the lower right results are preferred as the clusterings with better quality and
stability.

We can find that the red lines of SHC’ tend to lie in the lower left (or lower right) area of the fig-
ures. That is, SHC’ with appropriately chosen λ can attain a good trade-off with small average
sensitivity and better quality metrics, as expected. By contrast, the agglomerative algorithms, except
for single, tend to exhibit better quality metrics while incurring high average sensitivity. These
methods are therefore good at producing high quality clusterings, while being sensitive to a small
perturbation of the dataset. The result of single is exceptional, exhibiting worse quality metrics
with small average sensitivity. We observed that single tends to produce highly unbalanced clus-
terings because single split the dataset into small and large clusters. Although such a split is less
sensitive to the perturbation of the dataset and has smaller average sensitivity, the quality of cluster-
ing is poor as shown in the figures. SHC’ provides a way to balance the quality of the clustering
and its average sensitivity by tuning λ upon the user demand.
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Figure 4: Trade-offs between average sensitivity and Dendrogram Purity for the data size n = 100,
depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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Figure 5: Trade-offs between average sensitivity and Cohphenetic Correlation for the data size n =
100, depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying
the results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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E.3 RESULTS WITH DIFFERENT DATA SIZE

Figures 6, 7, and 8 show the results of the experiments when the data size is n = 300 and the tree
depth is D = 10. Similarly, Figures 9, 10, and 11 show the results of the experiments when the data
size is n = 300 and the tree depth is D = 10.5 In these figures, similar to n = 100 (Figures 2, 4, 5),
the red lines of SHC’ tend to lie in the lower left (or lower right) area of the figures, indicating that
SHC’ with appropriately chosen λ can attain a good trade-off even for different data sizes.
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Figure 6: Trade-offs between average sensitivity and Dasgupta Score for the data size n = 300,
depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.

5The results on diabetes is omitted because its original data size is smaller than 500.
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Figure 7: Trade-offs between average sensitivity and Dendrogram Purity for the data size n = 300,
depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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Figure 8: Trade-offs between average sensitivity and Cohphenetic Correlation for the data size n =
300, depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying
the results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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Figure 9: Trade-offs between average sensitivity and Dasgupta Score for the data size n = 500,
depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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Figure 10: Trade-offs between average sensitivity and Dendrogram Purity for the data size n = 500,
depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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Figure 11: Trade-offs between average sensitivity and Cohphenetic Correlation for the data size
n = 500, depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines
displaying the results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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E.4 RESULTS WITH DIFFERENT TREE DEPTH

Figures 12, 13, and 14 show the results of the experiments when the data size is n = 100 and the
tree depth is D = 20. In these figures, similar to D = 10 (Figures 2, 4, and 5), the red lines of
SHC’ tend to lie in the lower left (or lower right) area of the figures, indicating that SHC’ with
appropriately chosen λ can attain a good trade-off even for different data sizes.
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Figure 12: Trade-offs between average sensitivity and Dasgupta Score for the data size n = 100,
depth D = 20, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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Figure 13: Trade-offs between average sensitivity and Dendrogram Purity for the data size n = 100,
depth D = 20, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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Figure 14: Trade-offs between average sensitivity and Cohphenetic Correlation for the data size
n = 100, depth D = 20, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines
displaying the results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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E.5 RESULTS WITH ERRORS

Figures 15, 16, and 17 show the results with errors when the data size is n = 100 and the tree depth
is D = 10. The ellipsoids denote standard deviations over 10 trials. For SHC-SR, the ellipsoids are
shown for λ = 0 and λ =∞ for the visibility purpose.
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Figure 15: Trade-offs between average sensitivity and Dasgupta Score for the data size n = 100,
depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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Figure 16: Trade-offs between average sensitivity and Dendrogram Purity for the data size n = 100,
depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines displaying the
results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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Figure 17: Trade-offs between average sensitivity and Cohphenetic Correlation for the data size
n = 100, depth D = 10, and α = 1, 3, 10, 30. The results of SHC-SR are shown in red lines
displaying the results for several different λ ∈ {0, 10−3, . . . , 106,∞}.
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