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ZipZap: Efficient Training of Language Models
for Ethereum Fraud Detection

Anonymous Author(s)

ABSTRACT

Language models (LMs) have demonstrated superior performance
in detecting fraudulent activities on Ethereum. Nonetheless, the
sheer volume of Ethereum data results in excessive memory and
computational costs when training LMs from scratch, limiting their
capabilities to scale to a large magnitude for practical applications.
In this paper, we present ZipZap, a framework tailored to achieve
both parameter and computational efficiency when training LMs
on Ethereum-centric data. First, with the frequency-aware compres-
sion, ZipZap is able to compress an LM down to a mere 6% of its
initial size with an imperceptible performance dip. This technique
correlates the embedding dimension of an address with its occur-
rence frequency in the dataset, motivated by the observation that
embeddings of low-frequency addresses are insufficiently trained
and thus negating the need for a uniformly large dimension for
knowledge representation. Second, ZipZap accelerates the speed
through the asymmetric training paradigm: It performs transaction
dropping and cross-layer parameter-sharing to expedite the pre-
training process, while revert to the standard training paradigm for
fine-tuning to strike a balance between efficiency and efficacy, moti-
vated by the observation that the optimization goals of pre-training
and fine-tuning are inconsistent. In addition, extensive evaluations
on real-world, large-scale datasets demonstrate that ZipZap deliv-
ers notable parameter and computational efficiency improvements
for LMs tailored for Ethereum data. Our implementation is available
at: https://github.com/Anonymous0925/ZipZap.

1 INTRODUCTION

Blockchain has given rise to a wide range of fraudulent activ-
ities [6, 14, 15, 36]. Take phishing scams [36], one of the most
prevalent frauds [30] on Ethereum for example: victims often re-
ceive deceptive messages through email or social media that entice
them to click on deceptive links, which authorize transactions to
transfer Ether or tokens to fraudster’s accounts. Another fraud
is money laundering using zkSNARK [11]-powered coin-mixing
services [24, 35] like Tornado Cash, which mitigates the traceability
of transactions made between two accounts owned by the same
fraudsters. The key to detecting such frauds lies in representing and
analyzing the behavioral patterns of fraudulent accounts, either
to differentiate them from legitimate ones or to identify similar
accounts that are both controlled by the same fraudsters.

Many previous studies [15, 21, 29, 36] have shown that repre-
senting accounts in a latent space based on their transaction rela-
tionships using representation learning techniques [18, 23, 32], and
detecting fraud in the latent space, is a promising and generalized
solution. Recently, language models, renowned for their superior
sequential modeling ability, have established a new state-of-the-
art [15] over previous graph-based methods [21, 29, 36]. Although
these approaches reach good performance on small datasets, they

Figure 1: Cumulative numbers of transactions and addresses

on Ethereum across years.

fall short in large-scale applications due the immense cost on mem-
ory and computation. As illustrated in Figure 1, there are approxi-
mately 2.1 billion transactions and 250 million addresses recorded
on Ethereum as of October 2023 [8], and the numbers keep increas-
ing over time. Assigning a 128-dimension embedding vector to each
Ethereum address to represent its information would lead to 32
billion parameters in total, which would be prohibitively expensive
for the majority of researchers, let alone the computational cost of
training models on vast amount of transaction data from scratch.

Scope and Contributions: In this paper, we propose a frame-
work, coined as ZipZap, designed to enhance parameter efficiency
in language models and computational efficiency during their train-
ing. In our scenario, a language model (LM) serves as a sequence en-
coder that extracts account representations from sequences, which
are constructed from accounts’ historical transactions. LMs are
initially pre-trained to capture co-occurrence relationship of trans-
actions like BERT [7], GPT [25] and ELECTRA [5], and subsequently
fine-tuned with a cascaded MLP classifier for downstream tasks.

To realize parameter-efficiency, we first identify that the bot-
tleneck of parameter lies in the address embedding lookup table,
whose parameter number scales linearly to the number of addresses,
constituting 99% of the entire LM when the number of addresses
approaches the million-level. Fortunately, a characteristic that can
be exploited for streamlining is that the frequency of addresses
follows a power-law distribution [20], indicating that the major-
ity of parameters in the address embedding table are trained at a
very low frequency, given that an address embedding can only be
trained when its associated address appears at the transactions. This
observation implies that it is unnecessary to allocate a uniformly
large dimension to every address embedding. Instead, we propose
the frequency-aware compression technique that positively corre-
lates the dimension of the address embeddings with the occurrence
frequency of their associated addresses through address space par-
titioning and dimension decay. This approach yields a remarkable
compression rate (6%) with a negligible performance downgrade
and accelerates training due to the reduction in backward gradient
calculations.

To further expedite the training, another characteristic that can
be harnessed is the inconsistencies between optimization goals
and computation costs of pre-training and fine-tuning. We design
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acceleration strategies specifically for pre-training to achieve com-
putational efficiency as it accounts the majority time of training,
while revert to the standard training paradigm during fine-tuning
to preserve the effectiveness in downstream tasks. For example, we
propose transaction dropping strategy for the pre-training stage,
motivated by the observation that dropping repetitive transactions
has no effect on transaction co-occurrence captured by the pre-
training task, yet offers considerable computational conservation
since the length of sequence exhibits a quadratic relationship to
the time complexity of Transformer computation. Conversely, fine-
tuning is conducted on recovered transaction sequences to fully
capture the temporal patterns inherent in transactions, prioritiz-
ing effectiveness over efficiency. This strategy, named asymmetric
training, allows ZipZap to enjoy efficiency during training without
compromising effectiveness in downstream tasks.

Comprehensive experiments demonstrate that ZipZap repre-
sents a remarkable advancement over the state-of-the-art in both
terms of parameter and computational efficiency: ZipZap stream-
line the original LM down to mere 6% with a marginal performance
loss, and delivers up to 3 times speed during pre-training on large-
scale real-world datasets. Moreover, a 1.44 absolute percentage gain
in the 𝐹1 metric is observed, which is on par with the original LM
in detecting phishing scams, one of the most pervasive frauds on
Ethereum [30].

In summary, this paper makes three original contributions:

• We present ZipZap, a framework that offers both parameter effi-
ciency and computational efficiency for training LMs to facilitate
practical Ethereum fraud detection.

• ZipZap enhances parameter efficiency in LMs by frequency-
aware compression, which significantly reduces 94% of parame-
ters of the original LM with an imperceptible performance dip.

• ZipZap strikes a well balance between efficiency of pre-training
and efficacy on the downstream tasks via the asymmetric training
paradigm. Along with reduced parameter, ZipZap offers up to 3

times speed up on large-scale datasets.

2 BACKGROUND AND RELATEDWORK

2.1 Efficient Transformer Pre-training

To realize computational efficiency, the most straightforward way
is to employ efficient Transformers, such as Performer [4], Lin-
former [34], Longformer [2], and Big Bird [39]. Another method is
Progressive Stacking [10, 37], which takes advantage of the high
similarity of cross-layer attention distribution to progressively stack
shallow BERT models to generate deeper ones. Token dropping
techniques [13, 26] can also improve computational efficiency by
discarding or bypassing unimportant tokens, however, determining
which tokens to drop without hurting performance can be challeng-
ing. Some learning-based methods[13, 17, 38] inevitably introduce
extra computation, making them less efficient for training, or only
suitable for inference.

To achieve parameter-efficiency, various techniques have been
proposed. For example, ALBERT [19] factorizes the embedding
layer and shares parameters across layers, resulting in a reduction
in memory consumption. GroupReduce [3] partitions the language
vocabulary into disjoint blocks and applies weighted SVD to achieve

a low-rank approximation. Additionally, several works [9, 16, 22,
41, 42] from the recommendation field utilize neural architecture
search (NAS) and reinforcement learning (RL) to learn variable
embedding sizes. Among these, Learnable Embedding [22] shows
the best performance with learnable soft-threshold pruning tech-
nique. Nevertheless, learning-based methods require the initiation
of a large model at the start of training and entail considerable
additional computation to determine the optimal configuration.

2.2 Terminology

Externally owned account (EOA): An EOA refers to an Ethereum
account that is controlled by a user who has access to the account’s
private key. An EOA represents an individual user, and only EOAs
can initiate transactions.
Contract account: A contract account represents a smart contract
program deployed on Ethereum, which can be triggered by trans-
actions issued by EOAs to achieve functionalities pre-defined in its
code. Both EOAs and contract accounts are identified by an address,
which is a 42-character hexadecimal string.
Transaction: Transactions are cryptographically signed data mes-
sages that contain a set of instructions, which can be interpreted to
sending Ether between accounts or triggering a smart contract. A
transaction consists of several elements:
• Sender : Address of the EOA that initiates the transaction.
• Recipient: Address of the account that receives the transaction.
• Amount: Amount of Ether being sent or received in the transac-

tion.
• Data: Data used to specify the function of a smart contract to be

called or the arguments to be passed.
• Timestamp: Timestamp of when the transaction was logged on

the blockchain.

3 TRAINING LANGUAGE MODELS

To provide some backgrounds, we introduce a standard paradigm of
pre-training a BERT-like LM [7, 15] on Ethereum data from scratch,
and fine-tuning it for downstream fraud detection tasks.

3.1 Sequence Construction

As illustrated in Figure 2, an EOA has its own transaction sequence,
which is constructed from the transactions the account has involved
either as the sender or the recipient, with transactions sorted by
timestamp. A dummy self-transaction is placed at the head of the
sequence, its address feature set to the EOA’s own address. This
serves the dual purposes of incorporating self-address information
into the model and facilitating the gathering of global information
during self-attention computation. Each transaction has several
features such as address, timestamp, position, amount, etc.

3.2 Model Architecture

3.2.1 Embedding Layer: Transaction features are encoded into
embedding vectors via embedding lookup tables. As illustrated in
Figure 3, we convert a 42-character hexadecimal address into an
index 𝑖 using a string-to-integer mapping, then retrieve the 𝑖-th
embedding from the address embedding lookup table, which is a
𝑑-dimension address embedding vector that represents the address.
Each type of features has its own embedding lookup table with𝑉 ·𝑑

2
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Figure 2: Model architecture and pre-training task of a BERT-

like LM.

parameters, where𝑉 is the total number of possible discrete values
for that specific feature. For the address feature, 𝑉 can be in the
hundreds of millions.

For a transaction, its features are encoded into embedding vectors
and summed together to generate a transaction embedding. The
embeddings of transactions within a sequence are stacked to form
a matrix 𝑯0 ∈ R𝑁×𝑑 , where 𝑁 is the length of the transaction
sequence.

3.2.2 Transformer: As shown in Figure 2, the Transformer [31]
architecture consists of 𝐿 transformer layers, which can be formal-
ized as:

𝑯
′

𝑙
= Attention

(
𝑯𝑙𝑾

𝑄

𝑙
,𝑯𝑙𝑾

𝐾
𝑙
,𝑯𝑙𝑾

𝑉
𝑙

)
(1)

Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾⊤
√
𝑑

)
𝑉 (2)

𝑯𝑙+1 = [FFN(𝒉1
𝑙
); · · · ; FFN(𝒉𝑡

𝑙
)] (3)

FFN(𝒙) = GELU(𝒙𝑾1
𝑙
+ 𝒃1

𝑙
)𝑾2

𝑙
+ 𝒃2

𝑙
(4)

where the projection matrices𝑾𝑄

𝑙
,𝑾𝐾

𝑙
,𝑾𝑉

𝑙
,𝑾1

𝑙
,𝑾2

𝑙
∈ R𝑑×𝑑 , and

bias vectors 𝒃1
𝑙
and 𝒃2

𝑙
∈ R𝑑×1 are trainable parameters for the

𝑙-th Transformer layer. Here we omit the multi-head mechanism to
facilitate description.

The time complexity for 𝐿-layer Transformer computations is
O(𝐿 · 𝑁 2 · ℎ · 𝑑), where 𝐿, 𝑁 , ℎ, and 𝑑 represent the number of
Transformer layers, the length of sequence, the number of heads in
self-attention, and the hidden dimension, correspondingly.

3.3 Pre-training

There are several well-known tasks to pre-train LMs in NLP, such
as next token prediction of GPT [25], masked token prediction of
BERT [19], replaced token detection of ELECTRA [5], etc. Here we
adopt a task named masked address prediction [15] to pre-train a
BERT-like LM.

As illustrated in Figure 2, given a transaction sequence, 𝑟% of
transactions are randomly selected. The address features of selected
transactions are replaced with a special token [MASK], and the
sequence is passed through the LM to generate transaction rep-
resentations. For a transaction whose address is masked, we use

Embedding 
lookup tables

Transaction
Addr:0x7C..a8
Time:20220405
Position: 5
Type:contract

...

...

Feature 
embeddings

Transaction
embedding

O(V*d)

Figure 3: Encode features into embedding vectors via embed-

ding lookup tables.

𝒉𝑚 ∈ R𝑑 to denote the representation produced by Transformer,
which includes its bidirectional context information and is utilized
to predict its masked address. Specifically, a contrastive loss is
adopted as the objective function:

𝐿= − 1
|M|

∑︁
𝑚∈M

log

(
exp(𝒉T𝑚 ·𝒂𝑝 )

exp(𝒉T𝑚 ·𝒂𝑝 )+
∑
𝑛∈Nexp(𝒉T𝑚 ·𝒂𝑛)

)
(5)

whereM is the masked address set in sequences, 𝒂𝑝 is its address
embedding (positive address), N is the negative address set and 𝒂𝑛
is the address embedding of a different address (negative address).
Optimizing Eq. 5 essentially entails encouraging 𝒉𝑚 to be close to
its address embedding 𝒂𝑝 , and distant from 𝒂𝑛 in the latent space.

3.4 Fine-tuning

For an account-level classification task, such as phishing account
detection or identity inference, we cascade the pre-trained LM
with a MLP classifier, which takes the representation of the self-
transaction 𝒉𝒔 as input. 𝒉𝒔 represents the entire sequence and the
EOA. The predicted probability 𝑦 of the EOA being a fraud account
is given by:

𝑦 = Sigmoid (MLP (𝒉𝑠 )) (6)

The objective loss is the negative log-likelihood function as:

𝐿 = − 1
|D|

∑︁
(�̂�,𝑦) ∈D

(𝑦 log𝑦 + (1 − 𝑦) log(1 − 𝑦)) (7)

where D is the training dataset, and 𝑦 ∈ {1, 0} is the ground-truth
label.

4 ZIPZAP

ZipZap is a framework that offers parameter and computational
efficiency through two strategies: frequency-aware compression and
asymmetric training.

4.1 Frequency-aware Compression

4.1.1 Motivation: Figure 4 illustrates the parameter proportion
of the address embedding lookup table in the entire model. Clearly,
the lookup table constitutes 99% of parameters when the number of
address approaches million-level. Consequently, compressing the
LM essentially entails compressing the address embedding lookup
table.

3
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Figure 4: The parameter proportion of the address embed-

ding lookup table in the entire LM reaches 99% when the

address number approaches million-level. The total parame-

ter number scales linearly to the address number.

Previous studies [15, 20, 40] have demonstrated that the distri-
bution of frequency of address occurred in transactions follows a
power-law distribution. As shown in Figure 5(a), a small number
of addresses occurs frequently, whereas the majority of addresses
occurs only a few times. As described in Section 3.2.1, the param-
eters of an address embedding can only be retrieved and trained
when the associated address appears at transactions. This indicates
that the embedding parameters for Ethereum addresses with low
occurrence frequencies, which constitute the majority of Ethereum
addresses, are trained only a few times in one epoch.

Limited training times result in the majority of address embed-
dings being located close to their initialization points in the hidden
space. In Figures 5(b) we plot the 𝑙1 norm of address embeddings
after pre-training. It is evident that the 𝑙1 norm decreases as the
frequency decreases as well, suggesting that the embeddings of low-
frequency addresses remain closer to their initial locations. This
observation further implies that low-frequency addresses, which
make up the majority of the address space, cannot fully exploit
the capability of high-dimensional embeddings to represent their
knowledge as high-frequency addresses do.

4.1.2 Frequency-aware Compression: We approach the com-
pression by taking frequency as a signal to assign address embed-
dings with various dimensions. The compression method consists
of two phases: space partitioning and dimension decay.

Space Partitioning: First, we sort the addresses based on fre-
quency in descending order and index them within the range [0,
max). Second, we divide the address space into 𝐾 partitions. The
principle for determining the upper and lower bounds of each par-
tition is to keep the sums of address frequencies across different
partitions equal, which guarantees that the training times for each
partition are equal:

𝐹𝑘 =
∑︁
𝑗∈𝑃𝑘

𝑓𝑗 =
1
𝐾

·
𝐾∑︁
1
𝐹𝑖 (8)

where 𝑃𝑘 is the k-th partition, 𝐹𝑘 is the total frequency of addresses
in 𝑃𝑘 , and 𝑓𝑗 is the frequency of address 𝑗 within 𝑃𝑘 . In this case,
given an address, the probability of it being selected from different
buckets is all the same. We plot an 4-partition division example in
Figure 6(c), where a partition with a larger index covers a much
larger range of addresses due to the characteristic of power-law
distribution, i.e., the partition range increases exponentially as the
partition index increases.

Address index (log)Address index

Fr
eq

ue
nc

y

L1
 n

or
m

(a) Power-law distribution (b) L1 norm decay

Figure 5: Addresses are indexed by frequency in descending

order. (a) Address frequency follows a power-law distribution.

(b) The l1 norm of pre-trained address embeddings decays.
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s 
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Address embedding lookup table

(a) Frequency-aware compression (b) Dimension decay functions

Figure 6: Frequency-aware compression.

Dimension Decay: As illustrated in Figure 6(a), our goal is to
allocate smaller dimensions to partitions as their indices increase.
To determine the optimal relationship between the embedding
dimension and the partition index, we propose three dimension
decay functions w.r.t. the partition index 𝑥 :
• Linear decay:

𝑑𝑥 = 𝛼 ∗ (𝑥 − 1) + 𝑑𝑢 , 𝛼 = (𝑑𝑙 − 𝑑𝑢 )/(𝐾 − 1) (9)

• Exponential decay:

𝑑𝑥 = 𝑑𝑢 ∗ 𝛼𝑥−1, 𝛼 = (𝑑𝑙/𝑑𝑢 )1/(𝐾−1) (10)

• Power decay:

𝑑𝑥 = 𝑑𝑢 ∗ 𝑥𝛼 , 𝛼 = 𝑙𝑜𝑔𝐾 (𝑑𝑙/𝑑𝑢 ) (11)

where 𝑑𝑥 is the dimension of the 𝑥-th partition 𝑃𝑥 , 𝑥 ∈ [1, 2, ..., 𝐾],
𝑑𝑢 (upper) is the original (largest) dimension, and the 𝑑𝑙 (lower)
is the smallest dimension. When 𝑑𝑢 = 𝑑𝑙 and 𝐵 = 1, it degrades
into a uniform embedding dimension. In Figure 6(b) we plot their
corresponding figures to demonstrate the varying degrees of decay
(𝑑𝑢=64, 𝑑𝑙=3). Given the same 𝑑𝑢 and 𝑑𝑙 , we observe that the power
decay strategy reaches the lowest compression rate.

For address embedding 𝒂 𝑗 retrieved from the 𝑖-the partition
𝑃𝑥 , we multiply it with a partition-wise matrix 𝑽𝑥 ∈ R𝑑𝑥×𝑑𝑢 to
transform its dimension to the original 𝑑𝑢 :

𝒂 𝑗 = 𝒂 𝑗 ∗ 𝑽𝑥 (12)

Table 1 presents the results of applying three dimension decay
strategies to compress the language model with 𝑑𝑢=64, 𝑑𝑙=3, 𝐾=8,
where the 𝐹1 score is evaluated on the downstream phishing ac-
count detection task. We note that very low compression rates
(less than 6%) are achieved by the linear and exponential decay
functions. Among three strategies, the exponential decay function

4
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Table 1: Performance of frequency-aware compression w.r.t.
three decay strategies. 𝐹1 is evaluated on the downstream

phishing account detection task. Time denotes the (pre-

training) time cost for every 500 batches.

Strategy F1 Param.# Comp. Rate Time Speedup

Original 0.6552 153M 100.0% 42.82 1.0
Linear 0.6541 14M 9.15% 31.65 1.353x
Exp. 0.6506 9M 5.88% 31.58 1.356x
Power 0.6476 8M 5.23% 30.94 1.384x

strikes a good balance between the compression rate and the 𝐹1
metric, making it the default setting for ZipZap.

Effect on training acceleration: Frequency-aware compres-
sion speeds up training, resulting in a 1.356x acceleration, because
the computation required for backward gradients is reduced due to
a significant decrease in the number of parameters.

4.2 Asymmetric Training

4.2.1 Motivation: The training of LMs comprises both pre-training
and fine-tuning stages. Pre-training is more time-consuming than
fine-tuning, as the different optimization goals of two stages: Pre-
training tasks [5, 7, 25] model the co-occurrence relationship among
transactions, leveraging the abundant self-supervised signals within
sequences. In comparison, fine-tuning tasks, such as phishing ac-
count detection, regard the transaction sequence as a whole, draw-
ing on supervised signals external to the sequences.

This inconsistency suggests that adopting training-accelerating
strategies for pre-training, while reverting to the standard training
paradigm for fine-tuning, might not significantly compromise the
overall effectiveness of the LM but yield considerable computational
savings.

4.2.2 Lightweight Pre-training: As shown in Figure 7, two tac-
tics are proposed and adopted only at pre-training for acceleration:
transaction dropping and cross-layer sharing.

Transaction Dropping: Dropping transactions to shorten in-
put sequences is intuitive based on the observation that sequence
length 𝑁 has a quadratic relationship to the time complexity of
transformer computation, i.e.,O(𝐿 ·𝑁 2 ·ℎ·𝑑). Nonetheless, randomly
dropping transactions leads to performance decrease because less
co-occurrence between transactions could be modeled. An guidance
to drop transactions is the repetitiveness level of transaction within
sequences, which can be measured by the Repetitiveness Score
(RS) defined as the proportion of transactions whose addresses are
repetitive within the sequence:

𝑅𝑆 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) = 1 − # of unique addresses
# of transactions

(13)

As shown in Table 2, for the original transaction sequences, we ob-
serve an average RS of 37.2%, which suggests that 37.2% transactions
share the same address within sequences in average, indicating the
presence of redundant information that could be filtered out to re-
duce computation. Specifically, for transactions that have the same
address within a sequence, we randomly pick one out of them to
keep, and drop out all the other repetitive transactions. This drop-
ping strategy squeezes the RS to 0, shortening the average length
from 33.78 to 10.78 and expediting the pre-training to 1.243x faster.
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Figure 7: ZipZap employs transaction dropping and cross-

layer sharing during pre-training to enhance computational

efficiency, while reverts to the standard training paradigm

during fine-tuning to ensure effectiveness.

Table 2: Transaction dropping w. asymmetric training.

Strategy RS Length F1 Time Speedup

Original 0.372 33.78 0.6506 31.58 1.0
Drop. 0.0 10.78 0.6692 25.51s 1.238
Drop.(Asy.) 0.0 10.78 0.6742 25.51s 1.238x

Table 3: Cross-layer sharing w. asymmetric training.

Strategy F1 Time Speedup

Original 0.6742 25.51s 1.0
Cross 0.6599 22.16s 1.151x
Cross(Asy.) 0.6696 22.16s 1.151x

Furthermore, we observe a 1.86 AP gain of 𝐹1 on the downstream
task, suggesting that reducing repetitiveness improves the effective-
ness of pre-training. This is because the masked address prediction
task that models transaction co-occurrence, is susceptible to label
leakage caused by high repetitiveness. An alternative solution is to
aggregate continuous repetitive transactions into one, which helps
reduce repetitiveness, yet cannot handle discontinuous repetitive
transactions.

Cross-layer Sharing: To further speed up pre-training, we force
all the Transformer layers to share parameters across layers dur-
ing pre-training as shown in Figure 7, i.e., trainable parameters in
Eq. 1 and Eq. 4 are shared across 𝐿 Transformer layers. Cross-layer
parameter sharing reduces parameters in Transformer, and thus
accelerates the back-propagation computation. As demonstrated in
Table 3, it brings 1.151x speedup while in the cost of 1.43 AP of 𝐹1
drop due to limited model capacity.

4.2.3 Recovered Fine-tuning: Accelerating fine-tuning has min-
imal impact on the computational cost of the entire training. We
recover dropped sequences and lift the cross-sharing constraint to
avoid performance decline in fine-tuning.
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Transaction Sequence Recovery: The optimization goal of
fine-tuning is not the same as the pre-training task, suggesting that
reducing repetitiveness can not bring improvement for fine-tuning,
yet downgrades its performance since those repetitive transactions
still carry valuable information for downstream tasks, such as the
temporal patterns of user behavior. As a result, we restore the
dropped sequences for fine-tuning, resulting in a 0.53 AP lift of 𝐹1
for the downstream task as presented in Table 2.

Unconstrained Transformer Layers: Adhering to the idea of
asymmetric training, we lift the constraint of cross-layer sharing by
fine-tuning 𝐿-Transformer layers independently. From Table 3 we
can observe that removing the constraint during fine-tuning brings
0.97 AP lift of 𝐹1, a considerable compensation for downgrade
caused by cross sharing.

5 EXPERIMENT

5.1 Experimental Setup

5.1.1 Dataset: We pre-train the LM on transaction datasets and
fine-tune it for detecting phishing scams (accounts), one of the
most pervasive frauds on Ethereum. We collected 2,746 phishing
accounts (EOAs) from Etherescan that were identified and labeled
by users and security companies, serving as positive samples. For
negative samples (benign EOAs), we generate three datasets named
DS, DL, and DXL by randomly collecting three sets of EOAs and
the transactions in which these EOAs were involved from Jan. 2017
to Jan. 2023. Among them, DS and DL is used for performance
comparison, while DXL is used for large-scale experiments.

The statistics are reported in Table 4, where the "# of EOA"
column represents the number of EOAs for which we generate
transaction sequences. The "# of transaction" column represents the
total number of transactions collected. The "# of address" represents
the total number of addresses involved in these transactions, which
is equal to the size of the address embedding lookup table. The
"Length" column represents the average number of transactions in
transaction sequences. The "Neg./Pos." column represents the ratio
of benign accounts to phishing accounts.

5.1.2 Baselines: To measure effectiveness, three types of com-
petitors are compared: 1) Graph learning methods, including Deep-
Walk [23], Trans2Vec [36], Diff2Vec [28], Role2Vec [1]; 2) GNN
methods, including GCN [18], GAT [32], GraphSAGE [12]; 3) Lan-
guage models, including BERT (BERT4ETH [15]) and ALBERT [19].

To measure computational efficiency, two types of baselines
are involved: 1) Efficient pre-training methods, including ALBERT,
Progress Stack [10] and Token Bypass [13]; 2) Efficient Transform-
ers including Longformer [2], Linformer [34] and Performer [4].

To measure parameter efficiency, we compare ZipZap against
Learnable Embedding [22] and embedding factorization used by
ALBERT. For fairness of comparison, we apply them on the address
embedding layer only, with ZipZap as the backbone model.

5.1.3 Implementation: For LM-basedmethods including ZipZap,
BERT, ALBERT, Progress Stack, Token Bypass, Longformer, Lin-
former and Performer, the number of Transformer layers is set to 8,
the number of heads for self-attention is set to 2 and the maximum
sequence length 𝑁 is set to three times the average length of input
sequences. Masked address prediction (Section 3.3) is adopted as

Table 4: Statistics of datasets

Dataset # of EOA # of trans. # of address Length Neg./pos.

DS 314,256 10,422,570, 2,128,180 33.78 114:1
DL 938,176 35,894,143 6,104,218 38.26 342:1
DXL 3,127,997 110,591,442 19,004,544 35.42 -

Table 5: Effectiveness comparison for fixed training.

Dataset DS DL

Method Pre. Rec. F1 Pre. Rec. F1

DeepWalk 0.2486 0.1778 0.2074 0.1499 0.1253 0.1365
Trans2Vec 0.1495 0.1391 0.1441 0.0839 0.0824 0.0831
Diff2Vec 0.2556 0.1713 0.2051 0.1566 0.1110 0.1299
Role2Vec 0.2770 0.2113 0.2398 0.1890 0.1323 0.1557
GCN 0.3152 0.2219 0.2605 0.2077 0.1424 0.1690
GSAGE 0.2817 0.2404 0.2594 0.1988 0.1554 0.1744
GAT 0.3215 0.2519 0.2825 0.2284 0.1663 0.1917
BERT 0.5447 0.3632 0.4358 0.3808 0.3140 0.3442
ALBERT 0.5322 0.3430 0.4171 0.3662 0.2851 0.3206
ZipZap 0.5694 0.3870 0.4608 0.4239 0.3303 0.3713

Table 6: Effectiveness comparison for fine-tuning.

Dataset DS DL

Method Pre. Rec. F1 Pre. Rec. F1

BERT 0.7191 0.6017 0.6552 0.6260 0.4867 0.5476
ALBERT 0.6823 0.5805 0.6273 0.5750 0.4613 0.5119
ZipZap 0.7374 0.6132 0.6696 0.6406 0.5011 0.5623

w/o pre-training

BERT 0.5559 0.4482 0.4919 0.3728 0.2940 0.3287

ALBERT 0.5310 0.4275 0.4737 0.3387 0.2831 0.3084
ZipZap 0.5355 0.4410 0.4837 0.3508 0.3043 0.3259
ZipZap𝐷 0.5177 0.4325 0.4713 0.3508 0.2872 0.3159

the pre-training task for all these methods. During pre-training,
the masking ratio is set to 80% to prevent label leakage. During
fine-tuning, a 2-layer MLP with a hidden dimension of 128 is cas-
caded as the classifier in Eq. 6. For frequency-aware compression
of ZipZap, the number of partition 𝐾 is set to 8, the maximum
dimension 𝑑𝑢 is set to 64 and minimum dimension 𝑑𝑙 is set to 3. A
batch size of 256, a dropout ratio of 20%, and a hidden dimension of
64 are used for all approaches. More details on implementation and
hyper-parameter settings can be found in Appendices B to enhance
the reproducibility.

Hardware: Experiments are conducted on a standard NVIDIA
RTX 3090 GPU with 24GB memory.

5.2 Effectiveness Comparison

All baselines are self-supervisedly pre-trained on DS and DL, and
evaluated for phishing account detection w.r.t. two strategies, fixed
training and fine-tuning. For fixed training, the pre-trained model is
utilized as a feature extractor to generate account representations,
followed by individually training a MLP classifier for classification.
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Table 7: Comparison with computation-efficient methods. Time is the average time cost (in seconds) for 500 batches.

Dataset DS DL

Method Precision Recall F1 Param.# Time Speedup Precision Recall F1 Param.# Time Speedup

BERT 0.7191 0.6017 0.6552 153M 42.82s 1.0 0.6260 0.4867 0.5476 409.6M 69.25s 1.0
ALBERT 0.6823 0.5805 0.6273 19.3M 27.40s 1.56x 0.5750 0.4613 0.5119 48.3M 33.45s 2.07x
ProgStack 0.7130 0.5969 0.6498 153M 33.88s 1.26x 0.6192 0.4768 0.5387 409.6M 56.76s 1.22x
TokenBypass 0.7145 0.5695 0.6338 153M 35.07s 1.22x 0.6003 0.4756 0.5307 409.6M 60.93s 1.17x
Longformer 0.6820 0.5883 0.6317 153M 42.78s 1.00x 0.5797 0.4769 0.5233 409.6M 69.74s 0.99x
Linformer 0.6780 0.5847 0.6279 153M 42.02s 1.02x 0.6085 0.4613 0.5247 409.6M 66.42s 1.04x
Performer 0.6602 0.5835 0.6205 153M 55.96s 0.77x 0.5711 0.4579 0.5083 409.6M 87.19s 0.79x

ZipZap 0.7374 0.6132 0.6696 9M 22.07s 1.94x 0.6406 0.5011 0.5623 22.8M 22.71s 3.05x

For fine-tuning, the model is trained with a cascaded MLP classifier
together. Each experiment is repeated five times and the best 𝐹1
score is reported. The threshold is set between 0.2 to 0.4.

Table 5 presents the results of the fixed training strategy. As
there is no fine-tuning involved, ZipZap takes dropped sequences
as input for fixed-training to maintain the consistency. From the
table, the first observation is that LMs outperform graph-based
approaches by a large margin, indicating the superior modeling
capabilities of the Transformer and the importance of capturing
sequential and transaction-level information. The second obser-
vation is that ZipZap slightly outperforms its original LM, BERT.
The improvement primarily comes from addressing the label leak-
age problem via transaction dropping as described in Section 4.2.2.
The performance difference between two datasets is caused by the
varying negative-to-positive sample ratios.

Table 6 presents the results after fine-tuning, where we omit the
graph-based methods since they underperform. The first three rows
show the results of fine-tuning with pre-training, which demon-
strate that pre-training can bring huge improvements over com-
petitors compared to results in Table 5. Additionally, ZipZap still
outperforms BERT model with 1.44 and 1.47 AP on both datasets,
yet the performance gap is decreased compared to fixed-training,
suggesting that fine-tuning narrows the performance gap caused
by pre-training.

To investigate the benefits of pre-training and fine-tuning sepa-
rately, we ablate the pre-training process and presents the results of
directly trained on the phishing detection task in the last five rows
of Table 5, where ZipZap𝐷 is trained on dropped sequences and
ZipZap is trained on recovered sequences. The results show that
the ZipZap performs worse than BERT due to the frequency-aware
embedding compression. Moreover, we observe that transaction
dropping decreases the performance by comparing ZipZap with
ZipZap𝐷 , suggesting that the same strategy poses an opposite effect
for the pre-training and fine-tuning stages, which further justifies
the idea of asymmetric training.

5.3 Efficiency Comparison

5.3.1 Computational EfficiencyComparison: ALBERT, ProgStack
and TokenBypass speed up training from three aspects: reducing
the number of parameters, progressively copying pre-trained pa-
rameters for initialization, and reducing computation for trivial
tokens. Another type of methods is adopting efficient Transformer

(a) Testing performance curve on Ds (b) Testing performance curve on DL

Figure 8: Testing 𝐹1 on the phishing detection task w.r.t. the
pre-training time (checkpoints).

as the backbone, which can accelerate the self-attention calculation.
In this experiment we only compare the speed of pre-training, as the
time cost of fine-tuning is negligible contrasted with pre-training.

Table 7 compares the efficiency and effectiveness, where Time
is the average (pre-training) time cost for 500 batches, 𝐹1 is the
result after fine-tuning. Our observations are as follows: (1) Ef-
ficient Transformers are less efficient and effective compared to
the methods (ALBERT, ProgStack, and TokenBypass) designed for
accelerating pre-training. This is because the average sequence
length in our scenario is not very long, making the acceleration
of self-attention insignificant, and additional operations involved
even lead to negative effects. (2) While ALBERT, ProgStack, and
TokenBypass improve efficiency, they also result in a decrease in
the 𝐹1 score. (3) ZipZap offers both efficiency and effectiveness, as it
provides a 𝐹1 gain and 1.94x and 3.05x speedup on the two datasets.
The improvement in computational efficiency comes from two
factors: (i) Reduction of backward gradient computation because
94% of parameters are reduced by frequency-aware compression.
(i) Reduction of Transformer computation because of transaction
dropping and cross-layer sharing.

Furthermore, Figure 8 plots the 𝐹1 scores of ZipZap, BERT, AL-
BERT, and ProgStack w.r.t. pre-training time. For each pre-training
checkpoint, we fine-tune it on the downstream task to evaluate its
𝐹1 performance. It can be observed that ZipZap reaches a higher
𝐹1 score in a shorter pre-training time, and its advantage over the
other competitors becomes more pronounced as the dataset size
increases. The reason is because the address embedding lookup
table for DL is 2.7x larger than DS, resulting a better benefit from
reducing the backward gradient computation.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 8: Comparison with parameter-efficient methods. (-) denotes out-of-memory (OOM).

Dataset DS DL

Method Precision Recall F1 Sparsity Param.# Comp. Rate Precision Recall F1 Sparsity Param.# Comp. Rate

BERT 0.7191 0.6017 0.6552 0% 153M 100.0% 0.6260 0.4867 0.5476 0% 409.6M 100.0%
ALBERT 0.6823 0.5805 0.6273 0% 19.3M 12.61% 0.5750 0.4613 0.5119 0% 48.3M 11.79%
Factorization 0.7052 0.5822 0.6378 0% 19.3M 12.61% 0.6044 0.4811 0.5357 0% 48.3M 11.79%
LearnEmbed 0.6662 0.5447 0.5993 63.40% 307.2M 200.8% - - - - ∼ 820M -
LearnEmbed∗ 0.6398 0.5043 0.5640 87.27% 307.2M 200.8% - - - - ∼ 820M -

ZipZap 0.7374 0.6132 0.6696 0% 9M 5.88% 0.6406 0.5011 0.5623 0% 22.8M 5.57%

Table 9: Statistics of large-scale datasets derived from DXL
with different filtering rules.

Dataset # of address Length RS

DXL 19,004,544 35.42 0.372
DXL1 13,626,560 78.01 0.565
DXL2 11,649,431 143.35 0.652

5.3.2 Parameter Efficiency Comparison: Factorization and
LearnEmbed are two representative approaches for embedding com-
pression. For fairness in comparison, we apply them to ZipZap by
replacing our frequency-aware compression with their compression
techniques, and all other conditions remain the same. LearnEmbed
and LearnEmbed∗ are initialized with different masking threshold
values (-5 and -4) that lead to varying levels of sparsity. Sparsity is
defined as the percentage of non-zero parameters in the address
embedding layer.

Table 8 presents the results of parameter efficiency compari-
son. It can be observed that ZipZap outperforms existing methods,
yielding a significant improvement with a 3.18 AP increase over
Factorization and a 6.73 AP lower compression rate onDS. This en-
hancement is solely attributed to the frequency-aware embedding
compression, highlighting the importance of considering address
occurrence frequency in embedding dimension. ALBERT also shows
good parameter efficiency through its adoption of the factorization
technique. On the other hand, the performance of LearnEmbed is
not satisfactory. Although 87% of its parameters are pruned to zero,
the unstructured pruning is unfriendly to hardware and cannot
truly reduce memory usage. Moreover, the learnable thresholding
introduces extra parameters and computation overhead, resulting
in slower pre-training and requiring twice the parameters of BERT.
For this reason, it causes an out-of-memory (OOM) error on the
experimental hardware for the experiments on DL.

5.4 Ablation Study

We investigate the impact of two strategies proposed for ZipZap, i.e.,
frequency-aware compression and asymmetric training in terms of
computational efficiency on larger-scale datasets. To this end, we
create another two datasets,DXL1, andDXL2, by filtering out EOAs
with fewer than 10, and 20 transactions from DXL, respectively.
The filtering rules lead to two datasets with different statistics
as presented in Table 9, where DXL has the highest number of
addresses, yet the shortest sequence length andDXL has the lowest
number of addresses, yet the longest sequence length. A desirable
characteristic of Ethereum transaction is that as the sequence length

DXL DXL1 DXL2
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Figure 9: Ablation study on large-scale datasets. Embedding

compression contributes more than asymmetric training

when the sequence is shorter and number of address is larger.

increases, the Repetitiveness Score becomes higher, making ZipZap
more advantageous from transaction dropping. We evaluate four
models, i.e., the base BERT, ZipZapw/ compression only, ZipZapw/
asymmetric training only and ZipZap. To prevent the base model
encountering the OOM error, the batch size and hidden dimension
are set to half of the original hyper-parameters.

In Figure 9, we report the time cost for 500 batches and speedup
for pre-training. By comparing ZipZapw/ compress. with BERT, we
observe that the improvement in computation-efficiency brought
by compression is the most significant for DXL, which owns the
largest address embedding layer. As the number of addresses de-
creases, the speedup also decreases. Additionally, we observe that
the contribution of asymmetric training increases as the sequence
length increases (DXL->DXL1->DXL2), and surpasses ZipZap w/
compress. on DXL2. Notably, under different settings, the time cost
of ZipZap remains relatively stable, which is a desired feature for
large-scale applications.

6 CONCLUSION

In this study, we present ZipZap, an innovative framework crafted
for efficient and effective training of LMs tailored for Ethereum
data. Equipping with the frequency-aware compression technique,
ZipZap enjoys a remarkable 94% reduction in parameters from the
original LM by leveraging frequency as the signal for dimension
allocation. With the asymmetric training approach, ZipZap opti-
mizes both the speed of pre-training and the efficacy of fine-tuning.
Coupled with two strategies, ZipZap expedites the entire training
process up to 3 times faster on large-scale real world datasets. Over-
all, our study sheds light on bridging state-of-the-art representation
learning techniques with large-scale fraud detection applications.
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A REPRODUCIBILITY

To improve reproducibility, we include the key hyperparameters
used in ZipZap in Table 10.

Table 10: Hyper-parameters of ZipZap

Phase Hyper-parameter Value

Basic

Transformer layer 8
Head number 2
Hidden size (𝒅𝑢 ) 64
𝒅𝑙 3
Bucket number 8
Decay strategy Exp.

Pre-training

Learning rate 1e-4
Masking ratio 80%
Dropout ratio 20%
Data duplicate times 10
Epoch 5
Batch size (seqs) 256

Fine-tuning

MLP hidden size 128
Learning rate 3e-4
Dropout ratio 20%
Data duplicate times 1
Epoch 1
Batch size (seqs) 256

B IMPLEMENTATION DETAIL

For graph-based methods, we adopt the self-supervised task pro-
posed in DeepWalk [23]. We set the number of walks per node to 10,
the walk length to 20, and the context window size to 5. The number
of GNN layers is set to 2, with a neighbor sample size of 50. For all
methods, the batch size is set to 256, the dropout rate to 20%, and the
hidden dimension to 64, based on empirical hyperparameter tuning.
DeepWalk-based methods are implemented using Genism [27], and
GNN-based methods are implemented using DGL [33].

The hyper-parameter settings for LM-based methods are kept
consistent with ZipZap as outlined in Table 10, and the maximum
sequence length is set to three times the average sequence length,
as sequence length follows a power-law distribution. Specifically,
for ALBERT, the factorization size for the embedding is set to 8. For
Linformer, the factorization size for the self-attention mechanism
is set to 16. For Performer, the number of multi-head self-attention
is set to 8 to achieve accurate attention estimation. The original
TokenBypass selects 50% of tokens except special tokens to bypass.
For TokenBypass we follow its original setting by only masking
15% of the tokens, and select the left 50% of tokens to bypass.

For parameter-efficient methods including LearnEmbed and em-
bedding factorization, we adopt ZipZap as the backbone. In the
case of Embedding Factorization, the factorization size is set to
8, which is consistent with ALBERT. For LearnEmbed, we set the
initial masking threshold to -5 and -4, referred to as LearnEmbed
and LearnEmbed∗ respectively.

All hyper-parameters are carefully tuned to ensure the best per-
formance.
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