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ABSTRACT

While the deployment of deep learning models on edge devices is increasing, these
models often lack robustness when faced with dynamic changes in sensed data.
This can be attributed to sensor drift, or variations in the data compared to what
was used during offline training due to factors such as specific sensor placement
or naturally changing sensing conditions. Hence, achieving the desired robustness
necessitates the utilization of either an invariant architecture or specialized training
approaches, like data augmentation techniques. Alternatively, input transformations
can be treated as a domain shift problem, and solved by post-deployment model
adaptation. In this paper, we train a parameterized subspace of configurable
networks, where an optimal network for a particular parameter setting is part of this
subspace. The obtained subspace is low-dimensional and has a surprisingly simple
structure even for complex, non-invertible transformations of the input, leading to
an exceptionally high efficiency of subspace-configurable networks (SCNs) when
limited storage and computing resources are at stake. Our source code is online.1

1 INTRODUCTION

In real-world applications of deep learning, it is common for systems to encounter environments
that differ from those considered during model training. There are many reasons for this difference
between training and post-deployment such as sensor drift and sensor variations, or domain shift
in the data compared to what was used during offline training due to factors such as specific sensor
placements or naturally changing sensing conditions.

To address the above challenge, there are two primary approaches: designing robust, invariant models
and employing domain adaptation techniques. Both strategies aim to mitigate the performance
degradation resulting from the discrepancies between the source and the target domains.

Invariant architectures focus on making the model robust, insensitive, or invariant to specific trans-
formations of the input data. This can be achieved by various means, including training with data
augmentation (Botev et al., 2022; Geiping et al., 2022), canonicalization of the input data (Jaderberg
et al., 2015; Kaba et al., 2022), adversarial training (Engstrom et al., 2017), and designing network
architectures that inherently incorporate the desired invariances (Marcus, 2018; Kauderer-Abrams,
2018). Domain adaptation, on the other hand, seeks to transfer the knowledge acquired from a source
domain to a target domain, where the data distributions may differ. This approach leverages the
learned representations or features from the source domain and fine-tunes or adapts them to better
align with the target domain (Russo et al., 2017; Xu et al., 2018).

Unlike traditional invariant architectures, configurable networks explicitly define invariances by
parameterizing desired input data transformations. We introduce subspace-configurable networks
(SCNs), which are trained with weights residing in a subspace formed by a few base models. By
receiving a parameter vector for an input transformation, SCNs select appropriate high-accuracy
model weights from this subspace, effectively isolating the targeted invariances. We evaluate our SCN
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1https://github.com/osaukh/subspace-configurable-networks

1

https://github.com/osaukh/subspace-configurable-networks


Published as a conference paper at ICLR 2024

Configuration network learns β-
space of parameters β = (β1, ..., βD)

Parameters 
α = (α1, ..., αS) of 

a continuous
transformation T

Inference network G with
parameters θ

Transformed input
T(α, x)

Output
Y

Configuration block computes
inference network weights θ = Σβiθi,
 where θ1 ..., θD are weights of the

base models

Figure 1: Training subspace-configurable networks (SCNs), where an optimal network for a fixed
transformation parameter vector is part of the subspace retained by few configuration parameters.
Left: Given input transformation parameters α, e.g., a rotation angle for a 2D rotation, we train a
configuration network which yields a D-dimensional configuration subspace (β-space) to construct
an efficient inference network with weights θ =

∑
βi ·θi, where θi are the weights of the base models,

and β is a configuration vector. Middle: Optimal model parameters in the configuration subspace as
functions of the rotation angle α given by (cos(ϕ), sin(ϕ)) for 2D rotation transformations applied
to FMNIST (Xiao et al., 2017). Here SCN has three base models with parameters θi and three
configuration vectors βi to compose the weights of the 1-layer MLP inference model. Right: Test
accuracy of SCNs with D = 1..64 dimensions compared to a single network trained with data
augmentation (One4All), classifiers trained on canonicalized data achieved by applying inverse
rotation transformation with the corresponding parameters (Inverse), and networks trained and tested
on datasets where all images are rotated by a fixed degree (One4One).2 Each violin shows the
performance of a model on all degrees with a discretization step of 1◦, expect for One4One where
the models are independently trained and evaluated on 0, π/6, π/4, π/3, π/2 rotated input.

models by studying 2D translation, scaling and translation. In the appendix, we also evaluate a wide
range of real-world transformations, including complex irreversible transformations, covering both
computer vision and audio signal processing domains, along with dedicated network architectures. To
uncover configuration subspaces for a set of input transformations, SCNs leverage a hypernet-inspired
architecture (Ha et al., 2016) to learn optimal inference models for each specific transformation
in the set (Figure 1 left). To offer additional insights, we visualize the relation between the input
transformation parameters and the configuration vector in the configuration subspace for a number
of transformations (an example for 2D rotation is shown in Figure 1 middle). Interestingly, the
configuration parameter vectors form structured geometric objects, revealing the optimal parameter
subspaces’ structure. If the inference network capacity is limited by edge devices’ resource constraints,
SCNs can quickly beat training with data augmentation (One4All) and match or outperform solutions
trained for input transformation parameters optimized for each input transformation separately
(One4One), see Figure 1 right. The contributions of this paper are summarized as follows:

• We design subspace-configurable networks (SCNs) to learn the configuration subspace and
generate optimal networks for specific transformations. The approach presents a highly
resource-efficient alternative to model adaptation through retraining and specifically targets
embedded devices. SCNs are evaluated on ten common real-world transformations, using
five backbones and five standard benchmark datasets (Section 2-3 and Appendix B- C).

• SCNs take transformation parameters as input, yet these parameters can be estimated from
the input data. We provide an algorithm which allows building a transformation-invariant
architecture on top of SCNs (Section 2 and Appendix D).

• In practical IoT scenarios the parameter supply can be replaced with a correlated sensor
modality. We implemented SCNs on two resource-constrained devices and show their
outstanding performance and remarkable efficiency (further details are provided in our arXiv
preprint (Saukh et al., 2023)).

2One4One = one model for one parameter setting, i.e., a fixed rotation degree. One4All = one model for all
parameter settings, i.e., a model trained with data augmentation for the considered range of parameter values.
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2 SUBSPACE-CONFIGURABLE NETWORKS

2.1 TRANSFORMATIONS AND THEIR PARAMETERIZATION

Let X × Y = {(x, y)} be a dataset comprising labelled examples x ∈ X ⊂ RN with class labels
y ∈ Y ⊂ RM . We apply a transformation T : RS × RN → RN parameterized by the vector
α = (α1, · · · , αS) ∈ A ⊆ RS to each input example x. A transformed dataset is denoted as
T (α,X)× Y := {(T (α, x), y)}. For instance, let X be a collection of P × P images, then we have
x ∈ RP 2

where each dimension corresponds to the pixel intensity of a single pixel. Transformation
T (α,X) : A× RP 2 → RP 2

is modulated by pose parameters α, such as rotation, scaling, translation
or cropping. We assume that data transformations T (α,X) preserve the label class of the input and
represent a continuous function of α ∈ A, i.e., for any two transformation parameters α1 and α2 there
exists a continuous curve in A that connects two transformation parameters. Note that by changing α
we transform all relevant data distributions the same way, e.g., the data used for training and test. The
set {T (α, x) |α ∈ A} of all possible transformations of input x is called an orbit of x. We consider
an infinite orbit defined by a continuously changing α.

We consider an inference network to represent a function g : X × RL → Y that maps data x ∈ X
from the input space X to predictions g(x, θ) ∈ Y in the output space Y, where the mapping depends
on the weights θ ∈ RL of the network. E(θ, α) denotes the expected loss of the inference network
and its function g over the considered training dataset T (α,X). Since the expected loss may differ for
each dataset transformation parameterized by α, we write E(θ, α) to make this dependency explicit.
Optimal parameters θ∗α are those that minimize the loss E(θ, α) for a given transformation vector α.

2.2 LEARNING CONFIGURABLE NETWORKS

The architecture of SCNs is sketched in Figure 1 left. Excited by the hypernet (Ha et al., 2016) design,
we train a configuration network with function h(·) and an inference network with function g(·)
connected by a linear transformation of network parameters θ = f(β) computed in the configuration
block:

θ = f(β) =

D∑
i=1

βi · θi, (1)

where θi ∈ T ⊆ RL for i ∈ [1, D] denote the static weights (network parameters) of the base
models that are the result of the training process. The configuration network with the function
h : RS → RD yields a low-dimensional configuration space of vectors β ∈ RD, given transformation
parameters α ∈ A. Along with learning the mapping h, we train the D base models with weights
θi ∈ RL to construct the weights of inference networks θ = f(β), i.e., θi are the base vectors of the
corresponding linear subspace and β the coordinates of θ. The SCN training minimizes the expected
loss E(θ, α) = E(f(h(α)), α) to determine the configuration network with function h and the base
model parameters θi. We use the standard categorical cross-entropy loss in all experiments. For
a continuous transformation T (α), we provide in our arXiv paper (Saukh et al., 2023) theoretical
results that help to understand the structure of the β-space using continuity arguments of the optimal
solution space.

SCNs take transformation parameter α as input. However, one can also use a search algorithm to
estimate α from the input data, aiming for low-entropy, confident classification results. This approach,
inspired by previous techniques (Wortsman et al., 2020; Hendrycks & Gimpel, 2016), utilizes the
basin hopping method Iwamatsu & Okabe (2004)targeting hard nonlinear optimization problems
with a mix of global and local search phases. To enhance performance, SCN training includes a
regularizer to optimize output entropy based on the correct α. Despite the computational demands of
the α-search algorithm, it achieves high accuracy, allowing SCNs to serve as transformation-invariant
networks. In practice, however, search in the α-space can often be avoided. If the transformation of
interest is discrete and limited to a few cases, α-search can be reduced to running inference over a
few candidate models. Most importantly, however, the parameter α can be inferred from a correlated
sensor modality. We demonstrate this in two edge applications discussed in our arXiv paper (Saukh
et al., 2023).

Several peculiarities of SCNs’ design make them well-suited for resource-constrained devices. (1)
SCNs effectively utilize memory hierarchies. Fast memory, such as SRAM, offers short access
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Figure 2: SCN test accuracy for 2D rotation and scaling transformations. Left and middle:
2D rotation parameterized by a rotation degree ϕ = 0..2π input to the configuration network as
α = (cos(ϕ), sin(ϕ). For each α, SCN determines a configuration vector β used to build a dedicated
model for every angle shown on the right. The right polar plot shows the performance of a single
model (ϕ = 0◦) on all angles. The model works best for the input transformed with T (ϕ = 0◦).
Inference network architecture is a 1-layer MLP with 32 hidden units trained on FMNIST. The models
constructed by SCN outperform One4All approaching Inverse and One4One accuracy already for
small D. Right top: Scaling transformation parameterized by the scaling factor α = 0.2..2.0. Right
bottom: SCN performance of a single model (α = 1.0) on all inputs. As D increases, the model
becomes more specialized for the specified input parameters. Inference network is a 5-layer MLP
with 32 hidden units in each layer trained on FMNIST. Also see Appendix B and videos showing
SCN inference models for each parameter setting.3

times, but it usually has limited capacities. In contrast, larger-capacity Flash or EEPROM, despite
slower access times, is ideal for storing less time-sensitive SCN reconfiguration data, such as the D
base models holding θi and the parameters of the configuration network. For rapid inference, the
inference network weights θ should better fully fit into RAM. (2) SCNs yield the most benefit if
memory and thus the network capacity are limited, contributing to the body of work on optimizing
deep models for resource constraints, e.g., Corti et al. (2024). Given unlimited resources, One4All
can match the performance of SCNs. Exceptions include corner cases where the transformation
parameter α is used to break symmetries. (3) SCNs draw inspiration from the recent linear mode
connectivity literature Entezari et al. (2021); Ainsworth et al. (2022), and empirically show that a
linear reconfiguration function f(β) yields great performance of models for different transformation
parameters. This allows efficient SCN reconfiguration memory strategies, like memory page reuse.
Furthermore, the computation of equation 1 is efficiently achieved through hardware-friendly linear
vector operations, utilizing MLA and FMA instructions, vectorization and pipelining. Beside,
integrating SCNs with parameter-efficient fine-tuning methods promises further optimization, a focus
for our future research.

3 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of SCNs on 3 transformations (2D rotation, translation and
scaling) and 3 dataset-architecture pairs from computer vision and audio signal processing domains
(MLPs on FMNIST (Xiao et al., 2017), ShallowCNNs (Neyshabur, 2020) on SVHN (Netzer et al.,
2011) and ResNet18 (He et al., 2015) on CIFAR10 (Krizhevsky et al., 2009). These transformations
are continuous, and their parameterization is straightforward: For example, a rotation angle for a 2D
rotation. The main paper assesses SCNs across various complex transformations to demonstrate their
effectiveness, with additional results and details on other transformations, training hyper-parameters,
architectural choices and dataset information available in Appendix A.

3https://tinyurl.com/2nb8k644
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Figure 3: SCNs achieve high test accuracy already for low D, outperforming One4All and
approaching (and in some cases outperforming) both Inverse and One4One baselines. 2 plots on the
left: 2D rotation on ShallowCNN–SVHN and ResNet18–CIFAR10. 2 plots on the right: Scaling
on MLP–FMNIST and ShallowCNN–SVHN. For translation, the violin for One4One comprises
prediction accuracy of independently trained models for (0,0) and (±8,±8) shift parameters.

We compare SCNs to the following baselines. One4All represents a network trained with data
augmentation obtained by transforming the input by randomly chosen parameters α ∈ A. Inverse
classifier is trained on a canonicalized data representation achieved by first applying the inverse
transformation to the transformed input. Finally, One4One represents a set of networks, each trained
and tested on the dataset transformed with a fixed parameter vector α. For a given architecture,
dataset, and loss function, a well-trained One4One baseline excels in in-distribution generalization,
yet implementing its dynamic configuration on resource-constrained platforms is unfeasible. In this
sense, it upper bounds the performance which can be achieved by any domain adaptation method
using the same data. When comparing model performance throughout this work, all baselines feature
the same model architecture and have the same capacity as the SCN inference network. We use a
1-layer MLP with 64 hidden units as the configuration network architecture to learn the configuration
subspace β = h(α). Our main evaluation metric is the test accuracy, but we also analyze the impact
of SCN dimensionality D on its performance, and the structure of the β-space.

Figure 2 and Figure 3 present different views on the SCN test accuracy as a function of the number
of dimensions D when the concept is applied to different transformations, datasets, and architectures.
Figure 2 left shows the performance of SCNs on 0 − 2π rotation angles. The test accuracy for
D = 1 matches One4All but quickly approaches Inverse and One4One baselines for higher D.
For the scaling transformation shown in Figure 2 top right, SCNs for D > 1 easily outperform
One4All. They also outperform Inverse for α < 0.3 and α > 1.2 already for small D. Non-invertible
transformations introduce significant distortion to the input data complicating feature re-use across
inputs for different α. In some cases, SCNs achieve higher accuracy than One4One networks trained
and tested only on the transformed data for some fixed value of α, since One4One does not make use
of data augmentation but SCN implicitly does due to its structure given in Equation 1.

Figure 3 presents an aggregated view on the SCN test accuracy for 2D rotations on ShallowCNN–
SVHN and ResNet18–CIFAR10, and also for translation on MLP–FMNIST and ShallowCNN–SVHN.
Each violin comprises accuracies achieved by models tested on all parameter settings traversed with
a very small discretization step (with a granularity of 1◦, 0.05 and 1 pixel for 2D rotation, scaling
and translation respectively). The only exception here is the One4One baseline, represented by a
violin plot for five models, each trained and tested on fixed-parameter transformed inputs. The fixed
parameters are chosen to cover A from the most beneficial (e.g., α = (0, 0) for translation) to the
most suboptimal (α = (±8,±8) for translation) setting. This is why the violins for scaling and
translation transformations have a long tail of low accuracies. The performance of SCNs is consistent
across dataset-architecture pairs, matching the best performing baselines already for a small number
of dimensions D (also see Appendix B).

4 CONCLUSION

This paper presents subspace-configurable networks (SCNs) designed for model reconfiguration and
robustness to input transformations under severe resource constraints, achieving high accuracies with
low-dimensional configuration subspaces. SCNs facilitate post-deployment adaptation on resource-
limited devices, offering a compact solution for robotics, edge computing and embedded systems.
Further explorations and more details, refer to the Appendix and our arXiv paper (Saukh et al., 2023).
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APPENDIX

Table 1: Training hyper-parameters for all architecture-dataset pairs.

MLP- ShallowCNN- ResNet18- LeNet5- M5-
Hyper-param. FMNIST SVHN CIFAR10 ModelNet10 SpeechCmds

Optimizer Adam Adam Adam Adam Adam
LR 0.001 0.001 0.001 0.006 0.01
Weight decay 0.0001
LR schedule CosineLR CosineLR CosineAnnealing CosineAnnealing CosineAnnealing

WarmRestarts, Tmax = 6′000, Tmax = 100,
T0 = 25, ηmin = 5 · 10−6 ηmin = 0
Tmult = 25

Batch size 64 256 512 256 256
Epochs 500 500 1’000 6’000 100
Data augment. Normali- Normali- Normalization, None Resample

zation zation HorizontalFlip to 16 KHz

A IMPLEMENTATION DETAILS

The source code of all experiments is available online.4 We trained over 1’000 models on a workstation
featuring two NVIDIA GeForce RTX 2080 Ti GPUs to evaluate the performance of SCNs presented
in this work. Training a model takes up to several hours and depends on the SCN dimensionality and
model complexity. WandB5 was used to log hyper-parameters and output metrics from runs.

A.1 DATASETS AND NETWORK ARCHITECTURES

Configuration network. Throughout all experiments we used the configuration network architecture
featuring one fully-connected layer comprising 64 neurons. Depending on the input (whether 2
values for 2D rotation and translation, 6 values for 3D rotation, and 1 value for all other considered
transformations), the configuration network contains 64(input size+1)+65D trainable parameters.
Note that D is the size of the configuration network’s output. The architecture includes the bias term.
For example, for 2D rotation with 3 outputs, the configuration network has 387 parameters.

We test the configuration space hypothesis using SCNs on five dataset-architecture pairs described
below. For MLPs and ShallowCNNs we vary architectures’ width and depth to understand the impact
of network capacity on the efficiency of SCNs for different D. To scale up along the width dimension,
we double the number of neurons in each hidden layer. When increasing depth, we increase the
number of layers of the same width. To improve training efficiency for deeper networks (deeper than 3
layers), we use BatchNorm layers (Ioffe & Szegedy, 2015) when scaling up MLPs and ShallowCNNs
along the depth dimension. The number of parameters for the network architectures specified below
(excluding BatchNorm parameters) is only for a single inference network G. D base models of this
size are learned when training a SCN.

MLPs on FMNIST. FMNIST (Xiao et al., 2017) is the simplest dataset considered in this work. The
dataset includes 60’000 images for training and 10’000 images for testing. The dataset is available
under the MIT License.6 We use MLPs of varying width w and depth l to evaluate the impact of the
dense network capacity on SCNs. The number of parameters of the MLP inference network for 10
output classes scales as follows:

(322 + 1)w + (l − 1)(w2 + w) + 10(w + 1).

ShallowCNNs on SVHN. SVHN (Netzer et al., 2011) digit classification dataset contains 73’257
digits for training, 26’032 digits for testing, and 531’131 additionally less difficult digits for assisting

4Source code: https://github.com/osaukh/subspace-configurable-networks
5https://wandb.ai
6https://github.com/zalandoresearch/fashion-mnist

8

https://github.com/osaukh/subspace-configurable-networks
https://wandb.ai
https://github.com/zalandoresearch/fashion-mnist


Published as a conference paper at ICLR 2024

training. No additional images are used. The dataset is available for non-commercial use.7 Shallow
convolutions (ShallowCNNs) were introduced by Neyshabur (2020). We scale the architecture along
the width w and depth d dimensions. The number of parameters scales as follows:

(9× 9× 3 + 1)w + (l − 1)(13× 13× w + 1)w + 10(w + 1).

LeNet5 on ModelNet10. ModelNet10 (Wu et al., 2015) is a subset of ModelNet40 comprising a
clean collection of 4,899 pre-aligned shapes of 3D CAD models for objects of 10 categories. We use
this dataset to evaluate SCN performance on images of 3D rotated objects. We first rotate an object
in the 3D space, and subsample a point cloud from the rotated object, which is then projected to a
fixed plane. The projection is then used as input to the inference network. Rotation parameters α
are input to the trained hypernetwork to obtain the parameters in the β-space to construct an optimal
inference network. We use LeNet-5 (Lecun et al., 1998) as inference network architecture with
138’562 parameters.

(a) 2D rotation transformation parameterized by an angle ϕ in the range (0–2π). The transformation
preserves angles and distances and can be undone with little loss of image quality (the edges of the input image
may get cropped, rounding effects may occur).

(b) Scaling transformation parameterized by a scaling factor in the range (0.2–2.0). Preserves only angles,
not fully invertible, reduces input quality, large portions of the input image may get cropped.

(c) Translation transform with a shift in (-8,-8)–(8,8). Fully invertible only for the part of the input image
inside the middle square (8,8) to (24,24).

(d) 3D rotation transform. We rotate an object in 3D along XY, YZ, and XZ planes using 3 angles (ϕ1, ϕ2, ϕ3),
ϕi ∈ (−π, π) and sample a point cloud of 4’096 points. Rotations in XZ (e.g., angles=(0, π

2
, 0)) and YZ (e.g.,

angles=(π
2
, 0, 0)) planes can block some pixels (e.g., the table surface, which is not visible in the picture).

Figure 4: Geometric transformations used in this work applied to a sample input. Notice how the
images get impacted when inverse transformation is applied, showing a loss of input quality due to
rounding, re-scaling and cropping.

7http://ufldl.stanford.edu/housenumbers/
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ResNet18 on CIFAR10. This work adopts the ResNet18 implementation by He et al. (2015) with
around 11 million trainable parameters. We use ResNet18 on CIFAR10 (Krizhevsky et al., 2009),
one of the most widely used datasets in machine learning research. The dataset comprises 60’000
color images from 10 classes and is publicly available.8

M5 on Google Speech Commands. We explore the performance of SCNs in the audio signal
processing domain by adopting M5 (Dai et al., 2016) convolutional architecture to classify keywords
in the Google Speech Commands dataset (Warden, 2018)). M5 networks are trained on the time
domain waveform inputs. The dataset consists of over 105,000 WAV audio files of various speakers
saying 35 different words and is available under the Creative Commons BY 4.0 license. It is part of
the Pytorch common datasets.9

A.2 TRAINING HYPER-PARAMETERS

Table 1 summarizes the set of hyper-parameters used to train different networks throught this work.

A.3 TRANSFORMATIONS

This paper evaluates SCNs on the following computer vision and audio signal transformations: 2D
rotation, scaling, translation, 3D rotation-and-projection, brightness, contrast, saturation, sharpness,
pitch shift and speed change described below. Figure 4 additionally illustrates examples of transfor-
mations applied to a sample input, showcasing various non-obvious effects that result in a decrease
of input quality. Consequently, this decrease in quality adversely affects the accuracy of a trained
classifier.

2D rotation. The 2D rotation transformation is parameterized by a single angle ϕ in the range 0–2π.
We use α = (cos(ϕ), sin(ϕ)) as input to the configuration network when learning SCNs for 2D
rotations. The transformation preserves distances and angles, yet may lead to information loss due to
cropped image corners and rounding effects. It can be inverted with little loss of image quality.

Scaling. The transformation is parameterized by the scaling factor in the range 0.2–2.0, which is input
to the hypernetwork to learn the configuration β-space for this transformation. Scaling transformation
leads to a considerable loss of image quality. When inverted, the image appears highly pixelated or
cropped.

Translation. We consider image shifts within the bounds (-8,-8) and (8,8) pixels. A shift is
represented by two parameters α = (αx, αy) reflecting the shift along the x and y axes. Note that an
image gets cropped when the translation is undone. In the FMNIST dataset the feature objects are
positioned at the center of the image, which mitigates the negative impact of translations compared to
other datasets like SVHN and CIFAR10.

3D rotation. The 3D rotation transformation is parameterized by the three Euler angles that vary in
the range (−π, π). We use α = (cos(ϕ1), sin(ϕ1), cos(ϕ2), sin(ϕ2), cos(ϕ3), sin(ϕ3)) as the input
to the hypernetwork for learning SCNs on 3D rotations. Note that a different order of the same
combination of these three angles may produce a different transformation output. We apply a fixed
order (ϕ1, ϕ2, ϕ3) in all 3D rotation experiments. After rotation the 3D point cloud is projected on a
2D plane. When applying 3D rotations, it is possible to lose pixels in cases where the rotation axis is
parallel to the projection plane. An example is shown in Figure 4.

Color transformations. We explore SCN performance on four common color transformations:
brightness, contrast, saturation, and sharpness. The brightness parameter governs the amount
of brightness jitter applied to an image and is determined by a continuously varying brightness
factor. The contrast parameter influences the distinction between light and dark colors in the image.
Saturation determines the intensity of colors present in an image. Lastly, sharpness controls the level
of detail clarity in an image. We vary the continuously changing α parameter between 0.2 and 2.0 for
all considered color transformations. Augmenting the list of standard color transformations, we also
experiment with image-based classification tasks under varying natural light conditions on Arduino
Nano 33 BLE Sense. An example is shown in our arxiv paper (Saukh et al., 2023).

8https://www.cs.toronto.edu/˜kriz/cifar.html
9https://pytorch.org/audio/stable/datasets.html
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Audio signal transformations. We use SCNs with pitch shift and speed adjustment transformations.
Pitch shift modifies the pitch of an audio frame by a specified number of steps, with the parameter
adjusted within the range of -10 to +10. Similarly, speed adjustment alters the playback speed by
applying an adjustment factor, with speed changes applied within the range of 0.1 to 1.0.

Figure 5: SCN test accuracy trained on 2D rotations. From left to right: A pair of plots for
ShallowCNN–SVHN and ResNet18–CIFAR10. The models in each pair show SCN’s performance
for changing input α = (cos(ϕ), sin(ϕ)) and for the fixed α with ϕ = 0◦.

B CONFIGURATION SUBSPACES AND SCNS

B.1 SCN PERFORMANCE

SCN performance on geometric transformations. Figure 5 complements Figure 2 in the main
paper and presents the performance of SCN for 2D rotation on ShallowCNN–SVHN and ResNet18–
CIFAR10. We observe the high efficiency of SCNs compared to the baselines even for very small
D. A close inspection of models trained for a fixed input degree (ϕ = 0◦) shows increasingly higher
specialization of the trained models to the respective parameter setting.

SCN performance on color transformations. Color transformations are simple. SCNs achieve high
performance already for very small D (see Figure 6). There is little performance difference between
our baselines One4All, One4One and Inverse despite the small inference network architectures
(1-layer MLP with 32 hidden units for FMNIST and 2-layer ShallowCNN with 32 channels for
SVHN) used in the experiments. Nevertheless, SCNs can often outperform all baselines.

Figure 6: Summary of SCN performance on color transformations: brightness, contrast, saturation
and sharpness. We present the results for MLP-FMNIST and ShallowCNN-SVHN architecture-
dataset pairs. All transformations are simple. SCNs match the baselines for very low D. Note that
saturation has no effect on black-white images. Therefore, for MLP-FMNIST the difference in model
performance is the same up to the choice of a random seed.
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SCN performance on the audio signal transformations. Figure 7 presents the performance of
SCNs on two audio signal transformations: pitch shift and speed change. For both transformations a
small D is sufficient for SCN to match or outperform the baselines. Note that the M5 architecture
takes raw waveform as input rather than a spectrogram.

Figure 7: Summary of SCN performance on audio signal transformations: pitch shift and speed
using M5 as inference architecture. SCNs match the performance of baselines already for small D.

B.2 CONFIGURATION β-SPACE VISUALIZATION

The β-space learned by the configuration network h for different transformations, datasets, and
inference network architectures is shown in Figure 8. For 2D rotation, the transformation parameters
α = (cos(ϕ), sin(ϕ)) are drawn from a circle and result in all βi being continuous curves arranged
around the cylinder in our α-β visualization. For all transformations, if D = 1, the SCN training
yields β1 = 1 due to the use of softmax in the last layer of the configuration network and a single
base model. For D ̸= 1, each βi is high for a certain contiguous range of αs and low outside of
this range. For small D, the regions of high βs are largely disjoint, yet overlap as D is scaled up.
Interestingly, the shape of the learned transformation is preserved across datasets and inference
network architectures, although minor differences do exist.

We claim that the subspace of optimized configurations for data transformations parameterized by
α is nicely structured: (i) We achieve good accuracies even for a linear subspace of low degrees of
freedom D. (ii) We observe a nice structure of optimal solutions in the space, as represented by the
function β = h(α) and supported by our theoretical results in our arxiv paper (Saukh et al., 2023).
This finding is related to the recent literature on linear mode connectivity of independently trained
solutions (Entezari et al., 2021), the solutions that share a part of the training trajectory (Frankle
et al., 2020), and those trained on data splits (Ainsworth et al., 2022). SCNs establish linear mode
connectivity between models trained for different transformation parameters, enhancing the existing
literature.

C 3D ROTATION TRANSFORMATION

Figure 9 shows all views of the β-space of SCN for 3D rotation as a function of input parameters
α = (cos(ϕ1), sin(ϕ1), cos(ϕ2), sin(ϕ2), cos(ϕ3), sin(ϕ3), where ϕi, i = 1..3 is a rotation angle in
the YZ, XZ and XY planes, respectively. Figure 9 shows the whole β-space for 3D rotation presented
as a function of all pairwise combinations of ϕi. In Figure 9 middle and bottom, βs show a stable
trend along the ϕ3-axis, indicating that the 3D rotation in the XY plane keeps all object pixels (and
is basically the same as 2D rotation in this case). In Figure 9 (top), β-space has cosine-like trend
along both ϕ1 and ϕ2 axes, reflecting the 3D rotations in YZ and XZ planes. These transformations
lead to information loss as some parts of an object rotate out of the view and get blocked. In all
plots β-surfaces are not flat or degenerated. By observing the similarities and changing trends in the
learned β-space for 3D rotation, it can be inferred that the shape of this configuration space primarily
relies on the transformation itself and its associated parameters, namely (ϕ1, ϕ2, ϕ3). We provide a
link10 to an interactive website visualizing the β-space of sample SCNs, including those trained for
3D rotation.

10https://subspace-configurable-networks.pages.dev/
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Figure 8: A typical view of the β-space for 2D rotation, scaling, and translation, D = 1..8. The
β-space is nicely shaped, with each β being responsible for a specific range of inputs with smooth
transitions. Top: SCNs for 2D rotation on ResNet18–CIFAR10. Transformation parameters are a
vector α = (α1, α2) = (cos(ϕ), sin(ϕ)), with ϕ being a rotation angle. Middle: SCNs for scaling
on ShallowCNN–SVHN, with a scaling factor α between 0.2 and 2.0. Bottom: SCNs for translation
on MLP–FMNIST. A shift is specified by two parameters (αx, αy) varying in the range (-8,8) along
x and y axes.

D SEARCH ALGORITHM IN THE α-SPACE

This section provides details on the performance of the search algorithm which estimates α from
a stream of input data. As mentioned in the main paper, we can leverage the fact that the correct
input parameters α should produce a confident low-entropy classification result (Wortsman et al.,
2020; Hendrycks & Gimpel, 2016). Therefore, our search algorithm estimates α from a batch of
input data by minimizing the entropy of the model output on this batch by exploring the output of
optimal models in the learned low-dimensional subspace. We use the basinhopping11 method to find
the solution (with default parameters, iter = 100, T = 0.1, method=BFGS).

The following code snippet runs the search in the α-space to estimate the best rotation angle α from a
batch of data X by minimizing the function f(). The angle transformation function converts an input
angle in degrees to the corresponding (cos, sin) pair.

from scipy import optimize

# function to be minimized by the basin hopping algorithm
def f(z, *args):

alpha = transform_angle(((1+z)*180)%360-180)
X = args[0]
logits = model(Tensor(X), hyper_x=Tensor(alpha))
b = (F.softmax(logits, dim=1)) * (-1 * F.log_softmax(logits, dim=1))

# entropy
return b.sum().numpy()

# given a batch of images find the rotation angle alpha using basin
hopping algorithm

11https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
basinhopping.html
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Figure 9: α− β space of SCNs trained for 3D rotation on ModelNet10 with LeNet5 inference
architecture for D = 1..8. Transformation parameters α result from applying cos(·) and sin(·)
functions to the vector of rotation angles (ϕ1, ϕ2, ϕ3), with each ϕi in the range (−π, π). Top:
Subspace of SCNs when changing (ϕ1, ϕ2), and fixing ϕ3 = −π. Middle: Subspace of SCNs when
changing (ϕ1, ϕ3), and fixing ϕ2 = −π. Bottom: Subspace of SCNs when changing (ϕ2, ϕ3), and
fixing ϕ1 = −π.

def findalpha(X):
mkwargs = {"method": "BFGS", "args":X}
res = optimize.basinhopping(f, 0.0, minimizer_kwargs=mkwargs,

niter=100, T=0.1)
alpha = ((1+res.x[0])*180)%360-180
return alpha

# test search algorithm performance on a test set
result = 0.0
for (X, y) in test_loader:

angle = random.uniform(-180, 180)
X = TF.rotate(X, angle)

alpha = findalpha(X)

# compute model prediction with the estimated alpha
logits = model(X, hyper_x=transform_angle(alpha))
# y is the true label --> calculate accuracy
correct = (logits.argmax(1) == y).type(torch.float).sum().item() /

batch_size
result += correct

result /= len(test_loader.dataset) / batch_size
print(f"Test accuracy: {(100*result):>0.1f}%")

To improve the accuracy of the search, SCN training is enhanced with an additional regularizer to
minimize the model output entropy value for the correct α and maximise it for a randomly sampled
α. The train function is sketched in the listing below.

loss_fn = nn.CrossEntropyLoss()
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optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
cos = nn.CosineSimilarity(dim=0, eps=1e-6)

def train(dataloader, model, loss_fn, optimizer):
for (X, y) in dataloader:

X, y = X.to(device), y.to(device)
angle = random.uniform(0, 360)
X = TF.rotate(X, angle)

# make prediction and compute the loss
pred = model(X, hyper_x=transform_angle(angle).to(device))
loss = loss_fn(pred, y)

# regularize (cosine similarity squared) in the beta space
beta1 = model.hyper_stack(transform_angle(angle).to(device))
angle2 = random.uniform(0, 360)
beta2 = model.hyper_stack(transform_angle(angle2).to(device))
loss += pow(cos(beta1, beta2),2)

# minimize entropy for the correct degree
b1 = (F.softmax(pred, dim=1)) * (-1 * F.log_softmax(pred, dim=1))
loss += 0.01*b1.sum()

# maximize entropy for a wrong / random degree
logits = model(X, hyper_x=transform_angle(angle2).to(device))
b2 = (F.softmax(logits, dim=1)) * (-1 * F.log_softmax(logits,

dim=1))
loss -= 0.01*b2.sum()

optimizer.zero_grad()
loss.backward()
optimizer.step()

Figure 10: Performance of the search algorithm in the α-space. We enhance SCN evaluation plots
in Figure 1 right and Figure 3 left and middle right with the performance of the presented search
algorithm in the α-space. For higher batch sizes (≥4) the search algorithms performs close to the
respective SCNs with known α.

In Figure 10, we enhance three plots from Figure 1 and Figure 3 to show the performance of the
search in the α-space. Note that the proposed input-based search algorithm allows constructing
invariant SCNs, which we refer to as I-SCNs. We compare to the test accuracy achieved by the
respective SCNs with known and correct input α to I-SCNs. The search algorithm operates on batches
(bs = batch size). Batch size ≥4 allows for an accurate estimation of α from the input data and yields
high I-SCN performance.

Note that the basin hopping algorithm is computationally expensive. For the 2D rotation transfor-
mation on the FMNIST dataset, the method may run several hundreds of model inferences to find a
good solution. Optimizing the running time of the method is beyond the scope of this paper, because
in practice α-search can be avoided, e.g., by using an additional sensor modality as input or by
discretizing the search space to a manageable number of models. The expensive α-search shows aims
to show that the problem of estimating α and building I-SCNs is solvable in principle.
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Table 2: Comparison of SCN to rotation-invariant TI-Pooling network. With D=16 SCN is more
parameter-efficient and yields higher accuracy than the baseline.

Model Test accuracy [%] #parameters
TI-Pooling 88.03 13’308’170
SCN(D=4) [ours] 87.37 374’582
SCN(D=8) [ours] 88.04 674’146
SCN(D=16) [ours] 88.42 1’273’274

Network architectures can be designed to be invariant to transformations. For example, to achieve
rotation invariance in 2D and 3D, an element-wise maxpooling layer can be utilized (Laptev et al.,
2016; Su et al., 2015; Savva et al., 2016). TI-Pooling (called Transformation-Invariant Pooling)
model (Laptev et al., 2016) employs parallel Siamese network layers with shared weights and different
transformed inputs. We compare SCN and TI-Pooling models trained on 2D rotations with ϕ in the
range (0, π) on the FMNIST dataset. For SCNs, the inference network architecture is a 3-layer MLP
with 64 hidden units in each layer. Tab. 2 shows the average classification accuracy and the number
of parameters. SCN with D=16 dimensions demonstrates greater parameter efficiency compared to
TI-Pooling, while also achieving higher accuracy than the baseline model.
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