
An Equivariant Flow Matching Framework for Learning Molecular Crystallization

Shengchao Liu 1 Divin Yan 1 Hongyu Guo 2 3 Anima Anandkumar 1 3

Abstract
Molecular crystallization is the transformation of
molecules from weakly-correlated structures to
strongly-correlated structures, e.g., liquid water
freezing into solid ice. It is essential in deter-
mining the functionalities of compounds across
various fields, from pharmaceuticals to materi-
als science. However, existing simulation meth-
ods for crystallization, which primarily rely on
numerical techniques, can be exceedingly time-
consuming. In this work, we build up a novel ML
paradigm for solving the crystallization problem,
i.e., learning a distribution mapping from weakly-
correlated structures to strongly-correlated struc-
tures. First, we construct two datasets, coined
COD-Cluster17, for benchmarking and also de-
sign two packing matching metrics for crystalliza-
tion evaluation. Second, we propose CrystalFlow,
an SE(3)-equivariant Flow Matching framework,
for modeling the crystallization trajectories of
molecular clusters. The data and code are avail-
able on this GitHub link.

1. Introduction
In the past years, advanced machine learning (ML)
techniques have proven adept at effectively narrowing
the chemical search space and sufficiently expediting the
molecular discovery process across critical tasks, including
molecular property prediction (Raccuglia et al., 2016; Ward
et al., 2016), de novo molecule design (Sanchez-Lengeling
& Aspuru-Guzik, 2018), molecular dynamics simulation,
and quantum chemistry calculation (Wang et al., 2018),
amongst many others. Despite its significance, machine
learning for crystallization represents a challenging and
fundamental aspect of the pipeline, yet it remains relatively
underexplored. This paper aims to fill this gap.

Crystallization. This is a process where atoms, ions, or

1Caltech 2NRC 3Joint Advising. Correspondence to:
Shengchao Liu <shengchao1224@gmail.com>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at 41 st International Conference on Ma-
chine Learning, Vienna, Austria. Copyright 2024 by the author(s).

Figure 1. Demonstration of crystallization on a cluster of six
molecules: liquid water freezing into solid ice. In CrystalFlow,
we adopt an equivariant Conditional Flow Matching framework to
learn such a process.

molecules arrange themselves from weakly-correlated struc-
tures to strongly-correlated structures, with a repetitive pat-
tern known as the crystal lattice. One classic example is
water-to-ice crystallization as depicted in Figure 1.

For the experimental chemist, employing ML for crystal-
lization to generate reasonable crystal structures can be
helpful in many scenarios. For instance, X-ray diffrac-
tion is commonly used to determine crystal structures post-
crystallization. However, the diffraction signal can some-
times be weak due to the poor crystal quality, making it
impractical to solve the crystal structure directly. ML for
crystallization can serve as a validation tool providing plau-
sible crystal structures which can be used to simulate diffrac-
tion pattern and compare with the experiment results. Be-
sides, such a tool also has the potential for virtual screening
databases where experimentally determined crystal struc-
tures are not available. Reasonable virtual crystal structures
can be generated based on the molecular entities on which
calculations can be run for screening target properties.

For the computational chemist, methods like molecular dy-
namics simulation and structure minimization (or energy
minimization) have been used for estimating the crystalliza-
tion process. Nonetheless, these methods present notable
challenges. In particular, the energy landscape is complex
due to the presence of multiple local minima. Additionally,
the computational demands of these methods are substantial.
Moreover, the intricacies of crystallization, encompassing
both kinetics and thermodynamics, add further challenges
to achieving accurate estimations.

1

https://github.com/chao1224/CrystalFlow

We also want to highlight that from the ML aspect, exist-
ing tools have shown great promise in tackling complex
tasks. For instance, AlphaFold has made significant strides
in predicting the structures of macromolecules by accurately
simulating the protein folding process (Jumper et al., 2021).
Both protein folding and molecule crystallization involve
predicting how molecules arrange themselves into stable
structures, which is critical for understanding their function
and properties. However, while ML for folding has demon-
strated success in computational biology, the application of
ML to molecular crystallization remains underdeveloped.

Group symmetry and SE(3)-equivariance. When mod-
eling geometric data, such as atomic coordinates in 3D
Euclidean space (also known as conformation), the repre-
sentation/density function must be equivariant with respect
to translations and rotations. These rigid motions in 3D Eu-
clidean space form the SE(3) group, and functions that main-
tain the equivariance property under these transformations
are called SE(3)-equivariant. Existing SE(3)-equivariant
models can be categorized into two families: projecting
the vector variables onto either spherical harmonics basis
or the vector frame basis (Liu et al., 2023). In addition to
SE(3)-equivariance, crystal structures also possess a peri-
odic lattice, so modeling them needs to be periodic-invariant
as well. We note that since crystal structures only appear
after the crystallization process, we do not need to consider
periodic-invariance in this work.

Dataset curation. In this work, we construct a dataset
COD-Cluster17 from the Crystallography Open Database
(COD). COD-Cluster17 has two versions, with and with-
out the molecule inversion when creating the dataset, and
both include 106,672 molecules. Each crystal molecule
in COD-Cluster17 includes a cluster of weakly-correlated
structures as the initial position and a cluster of strongly-
correlated structures as the final position after crystallization.
The inversion dataset introduces a fifty percent chance of
inverting each molecule to account for achiral phenomena
in crystallization. Also, these datasets are in a format that
is easily accessible and user-friendly for machine learning
researchers. The overall concept for constructing the dataset
is illustrated in Appendix C.

Diffusion and Flow Matching. Denoising diffusion proba-
bilistic model (Ho et al., 2020) or denoising score matching
model (Song et al., 2020; Vincent, 2011) has been widely
used for learning the target data distribution from a standard
Gaussian prior. This has shown its advantage in learning
the data distribution in the continuous space, e.g., the geo-
metric coordinates in the Euclidean space. More recently,
Flow Matching (Albergo & Vanden-Eijnden, 2022; Lipman
et al., 2022; Liu et al., 2022) is proposed as a more general
framework that learns the mapping from an arbitrary prior
distribution to a target distribution, following a linear inter-

polation (LERP) path. Additionally, as shown in (Lipman
et al., 2022), Diffusion is a special case of Flow Matching,
and we will benchmark both for the crystallization task.

CrystalFlow framework. In our work, we propose Crys-
talFlow, the first SE(3)-equivariant flow matching frame-
work for learning molecular crystallization, to the best of our
knowledge. In specific, (1) CrystalFlow leverages Condi-
tional Flow Matching techniques to effectively map weakly-
correlated distributions to strongly-correlated distributions.
We benchmark three main variants of CrystalFlow, with Dif-
fusion or LERP path. Experiments reveal that LERP is more
appealing because it can learn distributions from arbitrary
prior distributions as long as the probability path follows
Gaussian transformation, while FM with Diffusion path re-
quires the prior distribution to be Gaussian. (2) CrystalFlow
aims at molecular clusters for crystallization. Modeling
molecular clusters excludes the need for periodic informa-
tion during the crystallization process. (3) CrystalFlow
benchmarks on the two versions of COD-Cluster17, each
with three subsets. Results are quantitatively measured with
two packing matching metrics. We further qualitatively il-
lustrate that CrystalFlow can resemble the crystallization of
clusters of molecules.

2. CrystalFlow Framework
For each molecule, we have its composition (atom types)
as a, weakly-correlated geometry as xw, and strongly-
correlated geometry as xs. The goal of ML for crystal-
lization is to predict the crystal structure given the weakly-
correlated geometry, namely p(xs|xw,a). In this section,
we propose CrystalFlow, an SE(3)-equivariant Flow Match-
ing framework for learning the crystallization process.

2.1. SE(3)-equivariant Modeling

Interactions between molecules significantly influence the
nucleation, growth, and stabilization processes inherent in
crystallization. Consequently, CrystalFlow aims at simulta-
neously modeling a cluster of B molecules. The key mod-
eling challenge here is the absence of lattice information
during the crystallization process.

To be more concrete, CrystalFlow models the crystallization
as a conditional generative process, with the learning and
inference scaled to a time range of t ∈ [0, 1]. In it, the core
module is an SE(3)-equivariant function f(·). The inputs
are atomic types a (composition) and atomic coordinates
xt at timestep t, and the outputs are the coordinates xt+1 =
f(xt,a) at timestep t+ 1.

Ideally, any expressive SE(3)-equivariant model can be ap-
plied here. However, because we are modeling clusters of
B = 17 molecules simultaneously for each molecule in
COD-Cluster17, we prefer the SE(3)-equivariant model that

2

offers a great balance between efficiency and effectiveness.
(The distribution on # atoms in each molecule is illustrated
in Appendix D.) As extensively verified in Geom3D (?),
PaiNN is adopted here for geometric modeling (Schütt et al.,
2021). The high-level idea is that for each atom i, we
have a corresponding scalar representation hs

i ∈ Rd and
hv
i ∈ R3×d where d is the latent dimension. At the initial

layer, hs is the one-hot encoding of atomic number a, and
hv is initialized as zero-tensor. Then we apply the message
passing between each atom i and its neighborhood atoms j
within a cutoff threshold c, i.e., ∥xij∥ ≤ c. There are two
stages for message passing in PaiNN, the first stage is from
scalar to scalar and vector:

hs
i = hs

i +
∑
j

MLP(hs
j) · MLP(∥xij∥),

hv
i = hv

i +
∑
j

hv
j · MLP(hs

j) · MLP(∥xij∥)

+
∑
j

xij

∥xij∥
· MLP(hs

j) · MLP(∥xij∥),

(1)

where MLP(·) is the multi-layer perceptron, and · is the
element-wise product. The second stage is atom-wise up-
date, from vector to scalar and vector:

hs
i = hs

i + MLP(hs
i ⊕ ∥V hv

i ∥)
+ MLP(hs

i ⊕ ∥V hv
i ∥) · ⟨Uhv

i , V hv
i ⟩,

hv
i = hv

i + MLP(hs
i ⊕ ∥V hv

i ∥) · Uhv
i ,

(2)

where ⊕ is the concatenation, U = MLP(hv
j), V =

MLP(hv
j), ∥ · ∥ means taking the norm along the three

Euclidean bases, and ⟨·⟩ is the inner product. By repeat-
ing Equations (1) and (2) for L layers, and we can take the
xi = MLP(hv

L) as the coordinate shift from time t to t+ 1.

The resulting atom displacements from this geometric mod-
eling are then utilized by a Flow Matching algorithm to
capture the transitional trajectories from weakly-correlated
to strongly-correlated geometries during the crystallization
process, which is detailed in Section 2.3.

2.2. Conditional Flow Matching.

Conditional Flow Matching (CFM) (Lipman et al., 2022)
and two parallel works (Rectified Flow (Liu et al., 2022) and
Stochastic Interpolants (Albergo & Vanden-Eijnden, 2022))
formulate the distribution modeling problem as learning a
vector field that can generate a probability path mapping
from simple distribution at t = 0 to the target distribution at
t = 1. We provide a brief introduction here and the detailed
derivatives can be found in Appendix B.

First, we need to bring in four key concepts. Our geomet-
ric data are atomic coordinates in the 3D Euclidean points
x ∈ R3, and the atomic type is fixed during the whole crys-
tallization process, so we may as well ignore that. Then we

define time-dependent vector field v : [0, 1]× R3 → R3. A
time-dependent vector field defines a time-dependent diffeo-
morphic map, called flow, ϕ : [0, 1]×R3 → R3. The vector
field defines flow via an ordinary differential equation as

d

dt
ϕt(x) = ut(ϕt(x)). (3)

A probability density path is denoted as p : [0, 1]× R3 →
R>0. Existing flow model (Chen et al., 2018) maps a prior
distribution p0 to another distribution pt with push-forward
equation or change of variable rule:

pt(x) = [ϕt]∗p0(x) = p0(ϕ
−1
t (x))det

∣∣∣dϕt(x)

dx

∣∣∣−1

. (4)

Thus, modeling the likelihood of data distribution at t = 1
can be transformed into modeling the velocity field match-
ing problem with parameterized velocity field vθ, i.e., Flow
Matching:

LFM = Et,x

∥∥ut(x)− vθ(x, t)
∥∥2. (5)

With the continuity equation (Villani et al., 2009), we can
further get an equivalent objective by considering the con-
ditional vector field conditioned on the empirical data x1,
i.e., ut(x|x1), and the objective is the Conditional Flow
Matching:

LCFM = Et,x,x1

∥∥ut(x|x1)− vθ(x,x1, t)
∥∥2. (6)

2.3. CrystalFlow Framework

We briefly introduce how to utilize Conditional Flow Match-
ing to solve the general distribution estimation problem
(Equation (6)). To adapt it in our setting, the question is
how to construct the conditional velocity field ut(x|xs) and
with a preference for a closed-form formulation.

Fortunately, Lipman et al. (Lipman et al., 2022) show that
when considering a class of Gaussian conditional probability
paths, one can analytically compute the conditional vector
field provided the means and the standard deviations are
differentiable. This has inspired the following forms of
vector fields by defining the means and deviations.

A simple example provided in (Lipman et al., 2022)
is a Gaussian conditional probability path pt(x|xs) =
N (x|µt(xs), σt(xs)

2I), and its corresponding objective
function is:

LCFN = Et,x0,xs

∥∥ut(ϕ(xw)|xs)− vθ(xt,xw, t)
∥∥2, (7)

where ut(ϕt(x)|xs) =
σ′
t(xs)

σt(xs)

(
ϕt(x)− µt(xs)

)
+ µ′

t(xs).

Linear interpolation (LERP) path. First let us consider the
linear interpolation (LERP) path between xw and xs, which
is one of the most straightforward path designs inspired by

3

Table 1. Results for CrystalFlow on COD-Cluster17 without inversion. The evaluation metrics are packing matching (PM) on the
atom-level and mass-center-level, and achieving a smaller PM indicates better performance.

COD-5K COD-10K COD-100K

PM (atom) ↓ PM (center) ↓ PM (atom) ↓ PM (center) ↓ PM (atom) ↓ PM (center) ↓
GNN-MD 13.668± 0.062 13.799± 0.069 13.831± 0.061 13.902± 0.052 22.296± 12.044 14.511± 0.816
CrystalSDE-VE 15.517± 1.484 16.456± 0.987 17.252± 2.459 17.863± 1.113 17.285± 0.730 18.918± 0.030
CrystalSDE-VP 18.154± 3.023 19.147± 4.463 22.200± 3.292 21.388± 1.496 18.032± 4.561 20.018± 3.699
CrystalFlow-LERP 13.589 ± 0.087 13.256 ± 0.089 13.539 ± 0.033 13.197 ± 0.032 13.608 ± 0.005 13.278 ± 0.009

Table 2. Results for CrystalFlow on COD-Cluster17 with inversion. The evaluation metrics are packing matching (PM) on the atom-level
and mass-center-level, and achieving a smaller PM indicates better performance.

COD-5K COD-10K COD-100K

PM (atom) ↓ PM (center) ↓ PM (atom) ↓ PM (center) ↓ PM (atom) ↓ PM (center) ↓
GNN-MD 15.356± 0.089 14.054± 0.094 15.390± 0.024 14.085± 0.017 15.512± 0.013 14.191± 0.010
CrystalSDE-VE 18.775± 0.517 19.438± 0.617 20.769± 2.634 19.282± 1.816 15.651± 0.303 16.786± 0.387
CrystalSDE-VP 14.600± 5.088 14.066± 4.628 20.390± 2.141 18.497± 1.733 21.335± 0.217 20.209± 0.116
CrystalFlow-LERP 13.630 ± 0.065 13.315 ± 0.069 13.599 ± 0.024 13.269 ± 0.031 13.580 ± 0.025 13.252 ± 0.027

the flow matching framework. We design the mean and
variance at time t as:

µt(x) = (1− t)xw + txs, σt(x) = 1− (1− σmin)t. (8)

Then we have the conditional velocity as ut(ϕt(x)|xs) =
xs−σminxw−(1−σmin)x

1−(1−σmin)t
. Plugging this into Equation (7), the

objective function is:

LLERP = Exw,xs,t

[∥∥∥xs − xw − vθ(xt,xw, t)
∥∥∥2]dt. (9)

For more detailed derivations, please check Appendix B.

3. Experiment
3.1. Experiment Setup

Baselines. GNN-MD (Liu et al., 2024) is a simple baseline
method where the task is to predict the strongly correlated
structures directly from weakly correlated structures us-
ing a geometric model. Then we adopt CrystalSDE-VE
and CrystalSDE-VP, the two SDE variations of SDE (Song
et al., 2020), to model the crystallization as a conditional
distribution estimation problem.

Metrics. We consider applying the packing match-
ing (Chisholm & Motherwell, 2005) on the atom-level and
mass-center-level for evaluation. The packing matching
measures the degree of resemblance between the spatial ar-
rangements of our predicted strongly correlated geometries
and the ground-truth crystal geometries.

Hyperparameters. In CrystalFlow, one of the most impor-
tant hyper-parameters is the option of the interpolation path,
and our experiment carefully compared this in the main
results. For the cutoff threshold, we consider c ∈ {20, 50}.

3.2. Main Results

The main results are in Tables 1 and 2. An interesting ob-
servation is the Flow Matching framework performs much
better compared to the DDPM framework. We test one
CrystalFlow-LERP and two Diffusion models, VE and VP.
Among all six datasets and 12 metrics, LERP reaches con-
sistently better packing matching than the two Diffusion
variants. This aligns with our intuition that the diffusion
path, which estimates the probabilistic trajectory from a
random Gaussian to the target data distribution, is not as
suitable as Flow Matching for the crystallization task.

4. Conclusion
This study begins with a comprehensive and concise review
of the motivation and definition of machine learning for
crystallization. We then introduce a dataset named COD-
Cluster17. Based on this dataset, we propose CrystalFlow,
an SE(3)-equivariant framework aiming for estimating the
crystallization process. We thoroughly evaluate the Crys-
talFlow framework on COD-Cluster17 and demonstrate its
potential for both the machine learning and chemistry com-
munities. Although the generalization performance remains
an open challenge, we assert that COD-Cluster17 and the
CrystalFlow framework serve as valuable benchmarks. En-
hancing the CrystalFlow framework for practical applica-
tions will require collaborative efforts from both the ma-
chine learning and chemistry communities.

4

References
Albergo, M. S. and Vanden-Eijnden, E. Building normal-

izing flows with stochastic interpolants. arXiv preprint
arXiv:2209.15571, 2022.

Chen, R. T. and Lipman, Y. Riemannian flow matching on
general geometries. arXiv preprint arXiv:2302.03660,
2023.

Chen, R. T. and Lipman, Y. Flow matching on general
geometries. In The Twelfth International Conference on
Learning Representations, 2024.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Chisholm, J. A. and Motherwell, S. Compack: a program
for identifying crystal structure similarity using distances.
Journal of applied crystallography, 38(1):228–231, 2005.

Davtyan, A., Sameni, S., and Favaro, P. Efficient video
prediction via sparsely conditioned flow matching. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 23263–23274, 2023.

Downs, R. T. and Hall-Wallace, M. The american mineral-
ogist crystal structure database. American Mineralogist,
88(1):247–250, 2003.

Dunn, I. and Koes, D. R. Mixed continuous and categorical
flow matching for 3d de novo molecule generation. arXiv
preprint arXiv:2404.19739, 2024.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Jiao, R., Huang, W., Lin, P., Han, J., Chen, P., Lu, Y., and
Liu, Y. Crystal structure prediction by joint equivariant
diffusion. Advances in Neural Information Processing
Systems, 36, 2024.

Jing, B., Berger, B., and Jaakkola, T. Alphafold meets
flow matching for generating protein ensembles. arXiv
preprint arXiv:2402.04845, 2024.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. arXiv
preprint arXiv:2210.02747, 2022.

Liu, S., Du, W., Li, Y., Li, Z., Zheng, Z., Duan, C., Ma,
Z.-M., Yaghi, O. M., Anandkumar, A., Borgs, C., Chayes,
J. T., Guo, H., and Tang, J. Symmetry-informed geo-
metric representation for molecules, proteins, and crys-
talline materials. In Thirty-seventh Conference on Neu-
ral Information Processing Systems Datasets and Bench-
marks Track, 2023. URL https://openreview.
net/forum?id=ygXSNrIU1p.

Liu, S., Du, W., Li, Y., Li, Z., Bhethanabotla, V., Rampal, N.,
Yaghi, O., Borgs, C., Anandkumar, A., Guo, H., et al. A
multi-grained symmetric differential equation model for
learning protein-ligand binding dynamics. arXiv preprint
arXiv:2401.15122, 2024.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
arXiv preprint arXiv:2209.03003, 2022.

Luo, Y., Liu, C., and Ji, S. Towards symmetry-aware gener-
ation of periodic materials. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Raccuglia, P., Elbert, K. C., Adler, P. D., Falk, C., Wenny,
M. B., Mollo, A., Zeller, M., Friedler, S. A., Schrier, J.,
and Norquist, A. J. Machine-learning-assisted materials
discovery using failed experiments. Nature, 533(7601):
73–76, 2016.

Sanchez-Lengeling, B. and Aspuru-Guzik, A. Inverse
molecular design using machine learning: Generative
models for matter engineering. Science, 361(6400):360–
365, 2018.

Schütt, K. T., Unke, O. T., and Gastegger, M. Equivariant
message passing for the prediction of tensorial properties
and molecular spectra. arXiv preprint arXiv:2102.03150,
2021.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Vaitkus, A., Merkys, A., Sander, T., Quirós, M., Thiessen,
P. A., Bolton, E. E., and Gražulis, S. A workflow for de-
riving chemical entities from crystallographic data and its
application to the crystallography open database. Journal
of Cheminformatics, 15(1):123, 2023.

Villani, C. et al. Optimal transport: old and new, volume
338. Springer, 2009.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural computation, 23(7):1661–
1674, 2011.

5

https://openreview.net/forum?id=ygXSNrIU1p
https://openreview.net/forum?id=ygXSNrIU1p

Wang, H., Zhang, L., Han, J., and Weinan, E. Deepmd-
kit: A deep learning package for many-body potential
energy representation and molecular dynamics. Computer
Physics Communications, 228:178–184, 2018.

Ward, L., Agrawal, A., Choudhary, A., and Wolverton, C. A
general-purpose machine learning framework for predict-
ing properties of inorganic materials. npj Computational
Materials, 2(1):1–7, 2016.

Wu, L., Wang, D., Gong, C., Liu, X., Xiong, Y., Ranjan, R.,
Krishnamoorthi, R., Chandra, V., and Liu, Q. Fast point
cloud generation with straight flows. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9445–9454, 2023.

Yang, M., Cho, K., Merchant, A., Abbeel, P., Schuurmans,
D., Mordatch, I., and Cubuk, E. D. Scalable diffusion for
materials generation. arXiv preprint arXiv:2311.09235,
2023.

Yim, J., Campbell, A., Foong, A. Y., Gastegger, M.,
Jiménez-Luna, J., Lewis, S., Satorras, V. G., Veeling,
B. S., Barzilay, R., Jaakkola, T., et al. Fast protein back-
bone generation with se (3) flow matching. arXiv preprint
arXiv:2310.05297, 2023.

6

A. Related Work
Flow Matching. Flow Matching (Lipman et al., 2022), Rectified Flow (Liu et al., 2022), and Stochastic Interpolants (Albergo
& Vanden-Eijnden, 2022) were originally proposed for modeling data distribution. It has shown two advantages: better
convergence performance and flexible interpolation between any two distributions. In this work, our proposed CrystalFlow is
mainly focusing on the second utilization. Meanwhile, Flow Matching has been widely used in many different applications,
including but not limited to image generation (Chen & Lipman, 2024; Lipman et al., 2022), video prediction (Davtyan et al.,
2023), point cloud generation (Wu et al., 2023), manifold data generation (Chen & Lipman, 2023), and molecule and protein
generation (Dunn & Koes, 2024; Jing et al., 2024; Yim et al., 2023).

ML for crystal structure prediction. We would like to highlight a closely related but fundamentally different research line,
ML for crystal structure prediction (CSP). ML for CSP utilizes generative models to predict strongly correlated positions.
Existing ML works can be split into two main venues: (1) Generate the crystal structure from scratch (Luo et al., 2024;
Yang et al., 2023). (2) Generate the crystal structure given the molecular compositions (Jiao et al., 2024; Yang et al., 2023).
In contrast, this work introduces a novel third category: (3) Generate the crystal structure given the weakly correlated
structures, i.e., the crystallization process.

ML for crystallization. To the best of our knowledge, our work is the first to apply machine learning algorithms (Flow
Matching) to tackle the distribution shift in molecular crystallization problems, specifically the transition from a distribution
of weakly correlated structures to strongly correlated structures. Along the ML for CSP research line, our CrystalFlow
framework possesses three fundamental differences from existing ML methods. (1) The first fundamental difference is the
task design. In existing ML methods for CSP, the condition is the composition or without any condition; while in ML for
crystallization, the condition is the weakly correlated geometry. (2) Existing ML for CSP works are modeling the atom-level
geometry inside each crystal structure, and our work utilizes the geometry on clusters of molecules instead of the periodic
information in the crystals. (3) Existing ML methods either generate the atomic coordinates conditioned on the crystal
lattice (Luo et al., 2024; Yang et al., 2023), or generate the atomic coordinates and crystal lattice iteratively during the
training and inference process (Jiao et al., 2024). However, in reality, the periodic structure of a lattice only emerges after the
crystallization process itself. In other words, no crystal lattice information should be considered during the crystallization
process, and we follow this criterion in our design of ML for crystallization.

7

B. Background: Flow Matching and Conditional Flow Matching
Flow Matching and Conditional Flow Matching (Lipman et al., 2022) essentially formulate the density estimation problem
as learning a vector field that determines a probability path: it maps a simple distribution to the target data distribution.
In this section, we provide a brief description of the algorithm and recommend referring to the original paper for more
details. We also acknowledge two parallel works that offer similar ideas: Rectified Flow (Liu et al., 2022), or Stochastic
Interpolants (Albergo & Vanden-Eijnden, 2022).

B.1. Key Concepts

Let us first introduce several key concepts.

Data. Assume the each data point has dimension of d, i.e., x ∈ Rd.

Vector Field. A time-dependent vector field v : [0, 1]× Rd → Rd.

Flow. A time-dependent vector field defines a time-dependent diffeomorphic map, called flow, ϕ : [0, 1]× Rd → Rd. The
vector field defines flow via an ordinary differential equation as

d

dt
ϕt(x) = vt(ϕt(x))

ϕ0(x) = x.
(10)

To put this under the physics context, this is essentially saying that at time 0, we have a data point at position x. Then at
time t, we move the data point to position ϕt(x).

Probability density path. A probability density path p : [0, 1]× Rd → R>0. Existing flow model (Chen et al., 2018) maps
a prior distribution p0 to the target distribution pt with push-forward equation or change of variable rule:

pt(x) = [ϕt]∗p0(x) = p0(ϕ
−1
t (x))det

∣∣∣dϕt(x)

dx

∣∣∣−1

. (11)

Connection. Suppose we have a vector field vt determines a flow ϕt as Equation (10), and the flow ϕt and probability path
pt satisfy Equation (11), then we say this vector field vt generates a probability density pt.

B.2. Flow Matching

Based on these definitions, a straightforward way is to learn the vector field directly, which gives us the objective function of
Flow Matching:

LFM = Et,x

[∥∥∥ut(x)− vθ(x, t)
∥∥∥2], (12)

where vθ is the learnable neural network.

B.3. Conditional Flow Matching

Suppose we have data sample x1, and we define a probability path pt(x|x1) s.t. when t = 0, pt is a simple prior distribution
like Gaussian, and when t = 1, pt is a Gaussian distribution centered around the target data. Then we can have a marginal
probability path as:

pt(xt) =

∫
pt(xt|x1)q(x1)dx1, (13)

where at time t = 1, the marginal probability p1 approximates the data distribution q, as:

p1(x1) =

∫
p1(x1|x1)q(x1)dx1 ≈ q(x). (14)

We can also define a marginal vector field:

ut(xt) =

∫
ut(xt|x1)

pt(xt|x1)q(x1)

pt(xt)
. (15)

8

where u(·|x1) is a conditional vector field that generates pt(·|x1).

We want to prove that: Given a conditional vector field ut(x|x1) that generates conditional probability paths pt(xt|x1).
Then we can see that the marginal vector field u(xt) (in Equation (15)) can generate the marginal probability path p(xt) (in
Equation (13)).

Proof. We first need to recall the continuity equation (Villani et al., 2009). It provides a necessary and sufficient condition
to ensure that a vector field ut generates probability path pt as long as they satisfy the continuity equation:

∂pt(xt)

∂t
= −divxt

(
pt(xt)ut(xt)

)
, (16)

where div is the divergence operator. Similarly, a condition vector field generates a conditional probability path as long as
they satisfy the following:

∂pt(xt|x1)

∂t
= −divxt

(
pt(xt|x1)ut(xt|x1)

)
. (17)

To adapt this to our proof, we have:

∂pt(xt)

∂t
=

∂
∫
pt(xt|x1)q(x1)dx1

∂t

=

∫
∂pt(xt|x1)

∂t
q(x1)dx1 // Leibniz Rule

= −divxt

∫
pt(xt|x1)ut(xt|x1)q(x1)dx1 // Equation (17)

= −divxt

(
ut(xt)pt(xt)

)
. // Leibniz Rule

(18)

Thus, we can verify that the vector field ut(xt) generates the probability pt(xt).

This reveals that constructing the conditional vector field is equivalent to constructing the vector field. And by plugging this
into Equation (12), we have the following objective for Conditional Flow Matching:

LFM = Et,x,x1

[∥∥∥ut(x|x1)− vθ(x,x1, t)
∥∥∥2]. (19)

B.4. Gaussian Probability Path

A simple example provided in (Lipman et al., 2022) is a Gaussian conditional probability path, namely having conditional
probability paths that maintain the shape of a Gaussian:

pt(x|x1) = N (x|µt(x1), σt(x1)
2I). (20)

For t = 0, we set µ0(x1) = 0 and σ0(x1) = 1, i.e., all probability paths converge to a same Gaussian distribution,
p(x) = N (x|0, I). For t = 1, we set µ1(x1) = x1 and σ1(x1) = σmin with a sufficiently small value.

A simple way to define the flow by affine transformation: ϕt(x) = σt(x1)x+ µt(x1), where x ∈ N (0, I). This means the
flow ϕt

pt(x|x1) = [ϕt]∗p0(x|x1) = [ϕt]∗p(x). (21)

The corresponding vector field is:
d

dt
ϕt(x) = ut(ϕt(x)|x1). (22)

Thus, after reparameterization using x0, the objective of Conditional Flow Matching is

LCFM = Et,x,x0

[∥∥∥ut(ϕt(x0)|x1)− vθ(x,x0, t)
∥∥∥2]. (23)

Notice that here ϕt is an affine transformation, thus, there is an analytical form of ut in Equation (22) as

ut(ϕt(x)|x1) =
σ′
t(x1)

σt(x1)

(
ϕt(x)− µt(x1)

)
+ µ′

t(x1). (24)

9

Proof. According to Equation (10), we have

ϕ′
t(x) = ut(ϕt(x)|x1). (25)

Recall that x = ϕt(x)−µt(x1)
σt(x1)

, and differentiating ϕt w.r.t. t leads to ϕ′
t(x) = σ′

t(x1)x + µ′
t(x1). Injecting both

into Equation (25) can give us

ut(ϕt(x)|x1) =
σ′
t(x1)

σt(x1)

(
ϕt(x)− µt(x1)

)
+ µ′

t(x1). (26)

B.5. Diffusion with Variance Exploding

The denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) or denoising score matching model (Vincent, 2011)
has been well studied in learning data distributions. More recently, (Song et al., 2020) summarized that both methods can
be formulated as solving a stochastic differential equation (SDE), coined Variance Exploding and Variance Preserving,
respectively. Along this line, (Lipman et al., 2022) provides another aspect that both can be formulated under the Conditional
Flow Matching framework.

The diffusion model gradually adds noise to the data distribution until it reaches a Gaussian distribution. The Gaussian
probability path of Variance Exploding (VE) is:

pt(x) = N (x|x1, σ
2
1−tI), (27)

where 0 = σ0 ≤ ... ≤ σt ≤ ...σ1. For time t, the mean and standard deviation are µt(x1) = x1 and σt(x1) = σ1−t,
respectively. Plugging this into Equation (24) gives us:

ut(x|x1) = −
σ′
1−t

σ1−t
(x− x1). (28)

Plugging this into Equation (23), the objective is:

LDiffusion-VE = Et,x0,x1

[∥∥∥σ′
1−t

σ1−t
(x1 − x0)− v(xt,x0, t)

∥∥∥2]. (29)

B.6. Diffusion with Variance Preserving

For Variance Preserving, the probability path is

pt(x|x1) = N (x|α1−tx1, (1− α2
1−t)I), (30)

where αt = e−T (t)/2, T (t) =
∫ t

0
β(s)ds, and β is the noise scale function. With mean µt(x1) = α1−tx1 and standard

deviation σt(x1) =
√
1− α2

1−t. Plugging this into Equation (24) gives us:

ut(x|x1) =
α1−tα

′
1−t

1− α2
1−t

(x− α1−tx1)− α′
1−tx1

=
α′
1−t

1− α2
1−t

(α1−tx− x1)

= −T ′(1− t)

2

e−T (1−t)x− e−T (1−t)/2x1

1− e−T (1−t)
.

(31)

Plugging this into Equation (23), the objective is:

LDiffusion-VP = Et,x0,x1

[∥∥∥T ′(1− t)

2

e−T (1−t)/2x1 − e−T (1−t)x0

1− e−T (1−t)
− v(xt,x0, t)

∥∥∥2]. (32)

For implementation, we follow (Ho et al., 2020; Lipman et al., 2022) by taking β(s) = βmin + s(βmax − βmin), we can
have

T (t) = tβmin +
1

2
t2(βmax − βmin). (33)

10

B.7. Linear interpolation (LERP)

The optimal transport-based conditional probability path (Lipman et al., 2022) that linearly interpolates between the base
and the conditional target distribution has shown promising results. In specific, First let us take the linear interpolation
between x0 and x1, then we have:

µt(x) = (1− t)x0 + tx1

σt(x) = 1− (1− σmin)t.
(34)

This gives us
µ′
t(x) = x1 − x0

σ′
t(x) = σmin − 1.

(35)

Plugging this into Equation (24), then we have the conditional velocity as

ut(x|x1) =
σ′
t(x1)

σt(x1)

(
x− µt(x1)

)
+ µ′

t(x1)

=
(σmin − 1)(x− (1− t)x0 − tx1) + (1− t+ σmint)(x1 − x0)

1− (1− σmin)t

=
x1 − σminx0 − (1− σmin)x

1− (1− σmin)t
.

(36)

Plugging this into Equation (23), the objective is:

LLERP = Et,x0,x1

[∥∥∥x1 − x0 − v(xt,x0, t)
∥∥∥2]. (37)

11

C. Dataset Construction
To construct the dataset for crystallization modeling, we consider experimentally-verified crystal structures stored in
Crystallographic Information File (CIF) from Crystallography Open Database (COD) with open access (Downs & Hall-
Wallace, 2003; Vaitkus et al., 2023).

Crystal selection criteria. In this work, we consider a simple setting: how a molecule of a given geometry will pack itself
in its crystallized form. We start with 225K CIFs in COD supplied with SMILES strings and the following criteria were
applied to the selection of the qualified molecular crystals. (1) Crystals of one type of molecule and a z prime value no larger
than one: z prime value denotes how many chemical formulas (molecules) are there in one asymmetric unit. This criterion
considers molecules that have only one local environment in their crystallized form, where the local environment refers
to the spatial relationship between a central molecule and its neighboring molecules. While crystals can contain multiple
components and molecules in various local environments, which can be handled by designing more sophisticated models,
this criterion simplifies the problem to a manageable level. Applying this criterion results in 133K qualified crystals. (2)
Crystals having no disordered atoms: In crystallography, disorder occurs when different atoms can occupy the same position
or the same atom can occupy multiple positions. In both scenarios, disordered atoms exhibit occupancy values smaller
than one. Such uncertainty in atomic positions and atomic types introduces challenges for machine learning modeling and
crystal structure generation. (3) Non-polymeric crystals: Some crystal formations involve polymerization reactions between
molecules, resulting in polymers that can extend across infinite unit cells in one, two, or three dimensions. Modeling
polymeric crystals requires additional information about the polymerization process, such as which bonds are newly formed
and which atoms act as leaving groups. This level of detail is beyond the scope of the current study.

Preprocessing of atomic coordinates The crystal structure information stored in a CIF (Crystallographic Information File)
comprises two essential components: symmetry information and atomic coordinates. The symmetry information includes
the periodicity (unit cell parameters) and space group. It is important to note that the atomic coordinates in a CIF pertain
only to one asymmetric unit. The atomic coordinates of the entire crystal can be derived by applying symmetry operations
to those in the asymmetric unit. For machine learning modeling, the atomic coordinates of the asymmetric unit must first
be converted to those of the molecules within one unit cell, ensuring the integrity of each molecule remains intact. This
conversion is accomplished using a Perl program called cod-tools. Moreover, the above-mentioned detection of polymeric
crystals is also achieved by cod-tools.

The effect of conditions. Crystallization conditions are crucial in the molecule crystallization process. Molecules can
crystallize from their liquid state, gas state, or from a solution. Depending on the specific conditions, the same molecule
can form different crystal structures, known as polymorphs. In our preliminary trials of applying machine learning to
crystallization, we do not include crystallization conditions in the dataset. This is because these conditions are typically
described textually in the original literature rather than being formatted in CIF files, making them difficult to extract. Instead,
we generate a set of plausible crystal structures for a given molecular geometry and verify if any of them match the actual
crystal structure.

Cluster of molecules. There are various methods to determine whether two crystal structures are identical. In our approach,
we compare the local environment surrounding a central molecule. Since we focus on molecules that have only one local
environment in their crystallized form, if the local environments are the same, the crystal structures are considered identical.

Figure 2. Dataset curation of COD-Cluster17.
12

To achieve this, we extract a cluster of molecules representing the local environment. Specifically, we select a single
molecule and its 16 nearest neighbors, extracting their coordinates in Euclidean space, to create the dataset of final positions.

Two types of COD-Cluster17: with and without inversion. In addition to translation and rotation, another critical
symmetry element in crystal structures is inversion. An inversion center can be located either at the center of a molecule or
between two molecules. In the first scenario, the molecule itself is symmetric. In the second scenario, the two molecules
have identical connectivity but are mirror images of each other. These can be either left-handed and right-handed chiral
molecules or the left-handed and right-handed geometries of an achiral molecule. The former are known as optical isomers
and cannot interconvert during crystallization, while the latter arise from flexibility in geometry and can interconvert during
crystallization. To account for second type of inversion, when noise is added to the final positions, we also introduce a fifty
percent chance of inverting each molecule, creating an additional dataset incorporating inversion noise.

13

D. Dataset Statistics
In this section, we list certain key statistics of COD-Cluster17.

Figure 3. Distribution on the number of atoms in COD-Cluster17.

(a) Weakly correlated structures. (b) Strongly correlated structures.

Figure 4. Atom pairwise distance distribution on COD-Cluster17.

(a) Weakly correlated structures. (b) Strongly correlated structures.

Figure 5. Correlation distribution on the atom level. (sampled 5K molecules)

14

