Under review as a conference paper at ICLR 2023

NON-GAUSSIAN PROCESS REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Standard GPs offer a flexible modelling tool for well-behaved processes. How-
ever, deviations from Gaussianity are expected to appear in real world datasets,
with structural outliers and shocks routinely observed. In these cases GPs can
fail to model uncertainty adequately and may over-smooth inferences. Here we
extend the GP framework into a new class of time-changed GPs that allow for
straightforward modelling of heavy-tailed non-Gaussian behaviours, while re-
taining a tractable conditional GP structure through an infinite mixture of non-
homogeneous GPs representation. The conditional GP structure is obtained by
conditioning the observations on a latent transformed input space and the random
evolution of the latent transformation is modelled using a Lévy process which
allows Bayesian inference in both the posterior predictive density and the latent
transformation function. We present Markov chain Monte Carlo inference proce-
dures for this model and demonstrate the potential benefits compared to a standard
GP.

1 INTRODUCTION

Gaussian processes (GPs) are stochastic processes which are widely used in nonparametric regres-
sion and classification problems to represent probability distributions over functions (Rasmussen &
Williams| (2006)). They allow Bayesian inference in a space of functions such that consistent uncer-
tainty measures over predictions are obtained rather than only point estimates. In its simplest form
a GP defines a distribution over functions through its particular mean and covariance (kernel) func-
tions which determine the smoothness, stationarity and periodicity of a random realisation in the
function space. As a prior distribution in Bayesian inference, using a zero mean GP reflects the lack
of information in the values and trend of the function. In this case the covariance function, which
defines the similarity between any two points in the input space, fully characterises the properties of
the random function space.

The design of kernel functions that are able to represent a wide range of characteristics and make
consistent generalisations is a fundamental area of research. Some recent work in this area include
modelling the kernel via spectral densities that are scale-location mixtures of Gaussians (Wilson
& Adams| (2013)), and similarly using Lévy process priors over adaptive basis expansions for the
spectral density (Jang et al. (2017)). Furthermore, extensions to the standard GP model can be
made by directly modelling the covariance matrix as a stochastic process (Wilson & Ghahramani
(2011)), assuming heteroscedastic noise on the observations and carrying out variational inference
(Lazaro-Gredilla & Titsias| (2011)), or learning nonlinear transformations of the observations such
that the latent transformed observations are modelled well by a GP (Snelson et al.| (2003)); |Lazaro-
Gredillal (2012)). Nonstationarity in the measurement process can be expressed as a product of
multiple GPs (Adams & Stegle| (2008)) and heavy-tailed observations may be modelled through the
Student-t process (Shah et al.|(2014)). Particularly relevant extensions of GP models are presented
in (Rasmussen & Ghahramani| (2001))) where the input space is locally modelled by separate GPs,
and string GPs (Samo & Roberts| (2016))) introduce link functions between local GPs such that the
global process is still a GP and provides efficient inference methods on large data sets. In (Schmidt
& O’Hagan|(2003));|Snoek et al.|(2014))) a latent space is defined between the inputs and observations
through a separate GP and a class of bounded functions in [0, 1], respectively.

By designing expressive covariance functions or stacking multiple GPs in structured arrangements,
the GP framework produces accurate predictive models in numerous application domains. How-
ever, these models are limited by their Gaussianity assumption such that the local patterns learned
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through these models are highly dependent on particular observations instead of learning the overall
dynamics of the data generating system. A more natural and interpretable way to define complex
relationships may be to assume that the underlying random function is non-Gaussian which yields
more sparse representations (Unser & Tafti| (2014)) as discussed in Section@]

In this work, we present a novel approach to modelling non-Gaussian dynamics by constructing a
non-Gaussian process (NGP) such that the observations form a conditional GP that is conditioned
on a latent input transformation function that is separately modelled as a Lévy process. Building on
the definition of a stationary kernel, the latent layer between the input and output spaces represent
the random distances between any two points on an input space. In order to define the distribution
of random distances without referring to a specific origin, and in order to maintain monotonicity of
the input space transformation, the latent space of transformation functions is modelled by a special
class of Lévy process called a subordinator that is non-negative and non-decreasing. Such a process
is characterised by the distribution of its stationary and independent increments which as a result
defines a probability distribution over the distance between any two input values. Making random
monotonic transformations of input values allow the kernel to adapt to the local characteristics of
an input space or in other words to the varying rate of change in the observations and the learned
subordinator provides uncertainty estimates over the variation of the observed process everywhere
on its domain. In this paper we focus principally upon 1-dimensional GPs for the sake of brevity,
but we emphasise that our approach can be readily extended to multiple dimensions, as described
throughout the text and illustrated in the experimental results.

NGPs are related to continuous-time stochastic volatility models studied in the mathematical fi-
nance literature to model the behaviour of a stochastic process which has a randomly distributed
variance (Ghysels et al.| (1996))). The time-change operation defined for continuous-time stochastic
processes is a standard approach to building stochastic volatility models. A common example is the
time-changed Brownian motion where the time-change is chosen to be a subordinator and the time-
changed motion produces a Lévy process (Veraart & Winkel (2010)). In such a model, the process
is conditionally a Brownian motion i.e. the integral of a white-noise GP. Similarly, our construction
of a stationary NGP follows a GP conditioned on the latent values of a subordinator, thus it is a
time-changed GP. Particular non-Gaussian behaviour can be expressed through the characterisation
of a subordinator, examples include the stable law, normal-tempered stable, and generalised hyper-
bolic (including Student-t) processes. Hence, NGPs provide a flexible and expressive probabilistic
framework for nonparametric learning of functions.

In Section [2] we briefly review the GP regression framework, introduce the time-change operation
and define NGPs. An inference method for NGP regression is presented in Section 3| following
an introduction to shot-noise simulation methods for Lévy processes. In Section[d] we present the
results of applying NGP regression on representative synthetically generated non-Gaussian data sets
to visually highlight their dynamics and compare the results to alternative GPs. Furthermore, a
multidimensional example using a data set available in TensorFlow is presented.

2 MODELS

In this section, we briefly present the standard GP regression framework and introduce the time-
change operation which results in a non-Gaussian process (NGP). The series representation of a
Lévy process (Rosinski| (2001)) reviewed in Section 2.2] is central to the inference methodology
studied in Section[3l

2.1 GAUSSIAN PROCESS REGRESSION

A stochastic process {f(z) € R;x € X'} is defined by the probability distribution of all possible
finite subsets of its values, where X € R? is a d-dimensional input space. In the case of GPs, for any
finite set of inputs {x;}!_; the corresponding values of the function { f(x;)}?_; has a multivariate
Gaussian distribution (MacKay| (2003)) characterised by its mean m(x) = E[f(x)] and covariance
kernel functions K (z',z) = Cov (f(z'), f(z)) where ',z € X. Given a set of inputs {z;} the
mean function forms a vector m and the kernel function forms a positive-definite covariance matrix
3. The resulting multivariate Gaussian distribution can be extended to any input z* € X" follow-



Under review as a conference paper at ICLR 2023

ing the Kolmogorov extension theorem (@ksendal| (2014)) which produces an interpretation of the
stochastic process as a random function f such that p(f) ~ GP(m(z), K (', z)).

In the standard GP regression setting, it is assumed that noisy observations of a function f(x) are
made such that y;.,, = f(%1.,) + €1., Where €1., ~ N(0,€) are a sequence of independent and
identically distributed Gaussian noise. Following a Bayesian approach, a prior distribution on the
function space is defined such that p(f) ~ GP(0, K (2’, z)) where any marginal f; = f(z;) has a
Gaussian distribution. In general referring to any particular marginal of f is not necessary since a
GP is defined for all points in X and the finite distribution is understood from the context. Since the
likelihood p(y1.»| f) is a product of Gaussians, the posterior distribution over the function space can
be analytically found to be a GP with a particular mean m(-) and kernel function K (-, -) where both
functions are defined for any finite set of inputs as shown in (Rasmussen & Williams| (2006)). The
posterior GP is denoted as p(f|y1.n) ~ GP(m, K).

2.2 TIME-CHANGE

In this section, the classical time-change operation is introduced in one dimension of time and the
operation is generalised to multidimensional input spaces using subordinated Gaussian fields (Do-
brushin| (1979); [Merkle & Barth| (2022a:b)).

Let {g(t)}+>0 be an isotropic stochastic process which has uniformly distributed variance. The
operational time ¢ can be interpreted as a linear representation of change such that the derivative
dt is proportional to a deterministic constant. Hence the variance of g(t) scales proportionally
to time intervals. Random evolution in variance may be obtained by considering a representation
of change that is random and nonlinear. Hence define a non-negative, non-decreasing stochastic
process { W (¢) }+>0 such that it randomly maps time instances while preserving their order, therefore
changing the time. A time-changed stochastic process { f(¢) }+>¢ is then defined as f(t) = g(W (t))
where the evolution of f is governed by dW (t) instead of dt. In other words, the change in f will
have variance proportional to W (t) — W (s), instead of ¢ — s where ¢ > s. Assuming that g(¢) is
Gaussian, this operation enables large deviations from Gaussian behaviour to occur when dW (t) is
large, while retaining a conditionally Gaussian form.

The random evolution of W (¢) can be modelled as a subordinator that take values in [0, c0) such
that it has independent and stationary increments with no fixed discontinuities (Feller|(1966); Bertoin
(1997)). Thus, a subordinator increases non-linearly with a certain statistical distribution defined by
the random number of discontinuities and their random magnitudes. A Lévy process W (t) in [0, c0)
having no drift or Brownian motion is defined through its characteristic function E [exp(iuW (t))] =

exp (t [f(oyoo)(ei““’ — I)Q(dw)D (Kallenberg|(2002), Corollary 15.8) where @ is a Lévy measure

that satisfies f(o Oo)(l A x)Q(dr) < oo (Bertoin|(1997), p.72). The Lévy measure () is defined on

the random magnitudes of discontinuities, called jumps, and denotes the expected number of jumps
per unit time whose magnitudes belong to some subset of the jump space (Tankov, P. and Cont, R.
2015)).

By the Lévy-It6 decomposition, a pure jump Lévy process (i.e. containing no Brownian motion)
may be expressed using a stochastic integral as

W(L‘):/(0 )wN([O,t],dw) (D

where N is a bivariate point process having mean measure Leb x @ on [0, T] x (0, 00) which can
be conveniently expressed using a Poisson random measure as

N = 25\4,1\@ 2
i—1

where {V; € [0,T]} are i.i.d. uniform random variables which give the times of arrival of jumps,
{M,} are the sizes of the jumps and dv; 5y, is Dirac measure centered at time V; and jump size M;.
Substituting NV into Eq. leads to a representation of a Lévy jump process as an infinite series
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W(t) =Y MIv< a.s. 3)

i=1

The almost sure convergence of this series to {W (¢)} is proved in (Rosinski| (2001)). Therefore,
by sampling pairs of jump times and sizes {V;, M;}, a realisation of a Lévy process W (¢) may be
obtained.

The standard formulation of the time-change operation on [0, oc) can be extended to d-dimensional
input spaces X’ by considering the Poisson random measure representation N of a Lévy process. A
homogeneous Poisson process expressing the jump times can be generalised to any number of di-
mensions where we define arbitrary inputs =/, z € R4 (Kingman, J.F.C.|(1992)). The independence
properties of a Lévy measure allow the definition on the unit time interval to be extended to unit d-
dimensional volumes by appropriately scaling the rate of the process (Wolpert & Ickstadt| (1998b)).
For multidimensional input transformations a subordination field on R? is a d-dimensional stochas-
tic process such that each of its dimensions is a subordinator. Thus the i-th dimension of an input
vector (%) is mapped to W) (()) where W () denotes the subordinator on i. Therefore a distance
d(«', x) can be randomly transformed as d(W (2’), W (z)). Hence, the choice of a Lévy measure
characterise the distribution of the random distances over the input space. The notation introduced
for the multidimensional treatment of subordination is omitted for brevity in the following sections
as it is straightforward to extend the model into multidimensional input spaces.

2.3 NON-GAUSSIAN PROCESSES

A non-Gaussian process (NGP) prior on functions can be obtained by randomly transforming the
inputs using a subordinator and carrying out GP regression on the transformed input space. The
resulting posterior distribution follows a non-Gaussian stochastic process. Given a set of input-
output pairs {z;,y; } consider a latent input transformation such that x; is mapped to W (x;) where
{W(z);z € X} is a subordinator. The associated prior on the transformation function is then
defined as p(W) and the conditional prior over f is p(f|W) ~ GP(mw(z), Kw(z',z)) where
mw (@) = m(W(@)), Kw(a',z) = K(W(@),W(x) = K(W ') — W)]) and K(-,) is
a stationary kernel function e.g. squared exponential or Matérn. The joint distribution over the
product space of f and W, p(f, W|y1.,) characterises the NGP prior.

The conditional GP structure of a NGP induces a posterior mean myy(-) and kernel function
K (-, ) that can be evaluated analytically, i.e. p(f|y1.n, W) ~ GP(mw, Kw ). The conditional
likelihood p(y1.,|W) is of particular interest in this framework since it is a measure of how well
the data is represented by the model given a random transformation and it can also be evaluated
analytically.

The NGP posterior distribution over the function space is found as

Mﬂm@z/ﬂﬂmmemmeW

where p(W|y1.,) is the posterior distribution of the subordinator process. Inferring p(W|y;.,) and
hence p(f|y1.,) is analytically intractable, however using approximate inference methods allow for
straightforward extensions of the model and fully Bayesian inference as discussed in the following.

3 SAMPLING AND INFERENCE

In this section, we review shot-noise simulation methods for simulating Lévy processes based on
series representations (Rosinski| (2001))). We describe a novel Metropolis-Hastings-within-Gibbs
(MH-in-Gibbs) algorithm (Hastings| (1970); (Chib & Greenberg| (1995)) to obtain samples from the
posterior distribution of a subordinator and estimate a non-Gaussian process posterior p(f|y1.,).
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3.1 SHOT-NOISE SIMULATION METHODS

The jump magnitudes {M;}72, shown in Eq. of a Lévy process cannot be directly simulated
because there may be an infinite number of jumps in any finite interval. One way to obtain approx-
imate samples from such an infinite sequence is to consider ordering the jump magnitudes by size
and simulating large jumps while ignoring or approximating the residual error as discussed in (Fer-
guson & Klass| (1972); Rosinski (2001)); Wolpert & Ickstadt] (1998alb); (Godsill & Kindap| (2021)).
Once the ordered jump sizes have been obtained, the corresponding jump positions {V; }$2; may be
simulated independently from a uniform distribution on (zy, z,,) where xy,, @, are some lower
and upper bounds, or sequentially in space from a homogeneous Poisson process if preferred.

Consider a bivariate point process N’ that has the same form as Eq. where the jump magnitudes
M; are expressed as the output of a function h(I';) where {I';}32, are the epochs of a unit rate
Poisson process, i.e. the cuamulative sum of exponential random variables with unit rate, independent
of {V;}5°,. Similar to the standard inverse CDF method for random variate generation, the upper
tail mass of a Lévy measure Q*(z) = Q([z,0)) can be inverted to produce jump magnitudes
of a subordinator by passing epochs of a homogeneous Poisson process through the inverse Lévy
measure Q' (+). The corresponding function h(-) = Q* ' (-) is non-increasing thus {(T;)} is an
ordered sequence representing random jump sizes. Note that the epochs of a homogeneous Poisson
process are analogous to uniformly distributed random variables in (0, co) and the mapping theorem
states that the resulting points {V;, h(I';)} form a Poisson point process N’ = >, dy, p(r,) on
(Z1py Tup) X (0, 00) (Kingman, J.F.C./(1992)). N’ converges almost surely to NV as the {T'; } sequence
is simulated indefinitely (Rosinski|(2001)) and approximations of the point process may be obtained
through finite samples.

The explicit evaluation of the inverse tail measure Q+_1(-) in general is not possible. The Lévy
measures considered in this paper possess a density function denoted as Q(z) such that Q(dzx) =
Q(x)dx. The approach taken in this work is to simulate from a tractable dominating point process
Ny having Lévy measure (g such that Qo(dz)/Q(dx) > 1, Vx € (0,00) for which h(-) can
be explicitly evaluated. The resulting jump magnitudes belonging to Ny are then thinned with
probability Q(z)/Qo(x) as in (Lewis & Shedler| (1979)) to obtain the desired approximate jump
magnitudes {M;} of a subordinator.

As a motivating example in this paper, we consider tempered stable (TS) processes which are com-
monly used in mathematical finance to model stochastic volatility (Carr et al.| (2003)). We note that
our methodology is equally applicable to other subordinator processes for which shot noise sim-
ulation methods can be applied (Godsill & Kindap| (2021)); (Godsill et al.| (2019)). A TS process
exhibits both a-stable and Gaussian trends depending on the distance it travels. For short distances
the stable characteristics prevail and the TS process produces larger jumps compared to a Gaus-
sian process. For longer distances the tempering causes a TS process to produce Gaussian trends
(Rosinski| (2007)). Thus, a TS process is a natural extension to Gaussian processes.

The Lévy density for the subordinator TS process is defined as (Shephard & Barndorff-Nielsen
(2001); Rosinski| (2007))

Q(x) = Cx~ 12 P, x>0 4)

where o € (0,1) is the tail parameter and [ is the tempering parameter. The corresponding tail
probability may be calculated in terms of gamma functions but it cannot be analytically inverted
and numerical approximations are needed (Imai & Kawail (2011))). Instead, we adopt a thinning
approach where the Lévy density is factorised into a a-stable subordinator process with Lévy density
Qo(x) = Cx~17 (Samorodnitsky & Taqqu|(1994); |Godsill et al.| (2019)) and a tempering function

e~P%. The tail mass of a stable process can be found to be Q7 (z) = %x_a and inverting this

. . . . -1 . . .
function produces the simulation function h(y) = (%’Y) /* Given points x; from a stable point

process with density Qo (), individually selecting (thinning) points with probability e =% results
in a tempered stable process. The associated sampling algorithm is shown in Alg. for reference.

Alg. generates the jumps that correspond to a TS process in (0,1). Since the jumps of a Lévy
process are independent and stationary it is straightforward to adjust the interval. For instance,
setting the rate of the underlying Poisson process produced in the second stage of Alg. to the
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Algorithm 1 Generation of the jumps of a tempered stable process with Lévy density Qrg(x) =
Cx~ 175 where « is the tail parameter and 3 is the tempering parameter.

1. Assign Npg = (),
2. Generate the epochs of a unit rate Poisson process, {I';; i = 1,2,3...},
3. Fori =1,2,3...,

* Compute z; =

s

CS
C

* With probability e 7%, accept x; and assign N7g = Npg U ;.

length of the interval (xyp, z,) produces the associated TS process. Similarly, for d-dimensional
input spaces the jumps on a n-dimensional hypercube can be simulated by setting the rate to the
associated volume (Wolpert & Ickstadt| (1998b)).

3.2 APPROXIMATE INFERENCE

Since a stochastic process is defined as an infinite collection of random variables, designing direct
sampling methods from the posterior p(W|y1.,,) based on batch Monte Carlo methods is a difficult
task. Instead a more appropriate approach to high dimensional problems is to use a Gibbs sampler
which approximates samples from a multivariate probability distribution or in this case a stochastic
process.

A Gibbs sampler approximating samples from p(W|y;.,) can be implemented by simulating the
associated bivariate random points that define the jump size and position on small disjoint intervals
T = (x;,x;) conditioned on the previous sample points in —7 = X \ (z;, ;) and observations.
Progressively simulating these points such that the whole input space is covered leads to approximate
samples from the target distribution. While Gibbs sampling reduces the complexity of sampling a
stochastic process for each small interval, direct sampling from the conditional posterior for each
interval is still intractable in general. Thus for each interval a Metropolis-Hastings algorithm is used
yielding a MH-within-Gibbs sampling algorithm (Chib & Greenberg| (1995))). The proposal density
for the MCMC sampling procedure is p(W..|W_.) which produces new bivariate points (jump sizes
and times) on some interval 7 conditioned on all points in —7 as described in Alg. (2).

Algorithm 2 Simulating sample paths from the proposal density p(W..|W_.).

Given a random length set Ny = {Vi(k), Mi(k)} and an interval (x;,2;) € X,
1. Simulate {Vi(/), Mi(/)} with rate |z; — x;| using Algorithm

2. Remove all points {Vi(k), Mi(k)} from Ny such that z; < Vi(k) < a7 and add {Vi('), Mi(’)},
Nw = Nw U{v,", M},
3. Substitute the points of Ny into Eq. to obtain the proposed sample path ().

For each realisation of the subordinator W (*), the conditional likelihood p(¥1.,,| W *)) may be used
as a weight in a Markov chain Monte Carlo sampler since it is proportional to the posterior distribu-
tion p(W |y1.,) and we are proposing from p(W,|[W_.). As discussed in Section 2.3|the conditional
likelihood p(yl;n|W(k)) may be analytically found given the values of W (¥). Then given a sample
W) and proposal W), the acceptance probability for the proposal is

()
(/) (k) _ . p(yl:n|W )
a(WY W) = min (1, pi(ylznn/v(k)) )
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Algorithm 3 MH-within-Gibbs sampler for p(W|y1.,,).

1. Initialise W (®) by simulating {V;, M;} from the associated bivariate point process using
Alg.

2. Analytically evaluate myy (o), K w) which define the conditional GP posterior
P(fy1:m, W), and the conditional likelihood p(31., | W (),

J
3. For N times, iterate over 7; € X where U T = X,
j=1

(a) Using 7; and the points {Vi(k) , Mi(k)} associated with W) sample a proposed sam-
ple path W) using Alg.

(b) Evaluate myy(), Ky o) and p(y1.,| W),

(c) With probability a/(W ), W (*)) the proposal is accepted and W *+1) = W) other-
wise reject and set W (k1) = 7 (k).

The MH-within-Gibbs sampling procedure is described in Alg. . The resulting samples {W(k)}
are individually associated with conditional GP posterior functions p(f|yy.,, W*)) that are com-
pletely defined through their mean my; (xy and covariance Ky (x) functions. Such a collection forms
a Gaussian mixture distribution and the mean and covariance of the corresponding mixture density
can be obtained as

N
1 _
Enylfl= > Mg =myy (6)
k=1
and
1 N _ _ T
COVf|y(f) = N Z [Kw(k) + (mw(k) — mfly)(mw(k) — mf|y) ] (7)
k=1

where N is the number of samples and E |y [f], Covy,(f) define the posterior mean and covari-
ance of the random function f. It is straightforward to obtain the corresponding predictive density
p(y*|y1.n) by adding the observation noise matrix €2 to each covariance matrix sample Ky ). Us-
ing a constant noise matrix {2 corresponds to the assumption that the observation likelihood model
is Gaussian (Rasmussen & Williams| (2006)). This assumption can be relaxed by sampling a noise
matrix Q) for each individual sample to consider non-Gaussian likelihood models such as scale
mixture of normals which includes the Student-t and Laplace distributions (Barndorff-Nielsen et al.
(1982)). This results in doubly non-Gaussian behaviour which is highly expressive while retaining
interpretation of individual components of the behaviour.

Following a similar approach the hyperparameters C, o and /3 of the subordinator process may be
included in the sampling procedure by considering an appropriate prior distribution over their values.
Hence these parameters may be marginalised out using the Monte Carlo procedure, which leaves the
same number of kernel parameters that define a standard GP. This approach works successfully and
will be reported in a future publication. Furthermore, a nonparametric kernel may be included in this
framework by considering a prior distribution on stationary kernel functions and sampling a kernel
function for each proposed sample. Some examples of nonparametric kernel design can be found in
(Wilson & Adams|(2013)); [Tobar et al.| (2015)); [Bruinsma et al.| (2022)).

A straightforward extension of Alg. to multidimensional input spaces can be achieved by as-
suming that individual subordinator dimensions z(?) are independent a priori. The simulation steps
defined by Alg. (I) and (Z) can be independently applied to each dimension and the other steps
remain unchanged, replacing step 3. (b) with the multidimensional GP likelihood.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the results of applying NGP regression to non-Gaussian data sets and
compare the results with alternative standard GP regression settings. In order to emphasise the
differences in non-Gaussian and Gaussian processes, we first use a synthetically generated data set
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Figure 1: Regression analysis results for NGP and two alternative GP models where the observations
are generated from a NGP prior.

using a tempered stable subordinator. Afterwards, in order to demonstrate the generalisation of a
NGP to multidimensional input spaces a two dimensional example problem is presented using a toy
data set available in TensorFlow (Wickham|(2016)) on diamond prices.

Any stationary kernel function can be used to define the conditional kernel function in NGP re-
gression. Here a squared exponential (SE) kernel is selected for the conditional GP. In order to
demonstrate the ability of a NGP in identifying local characteristics, a length-scale [ = 0.1 is used
and an observation set defined on a small region of the input space (0, 0.5) is simulated from a NGP
prior. The latent transformation space in this example is generated as a TS subordinator with o = 0.8
and 8 = 5 and the observations have i.i.d. noise with standard deviation 0.1. The observations and
results are shown in Fig. (I)).

The NGP predictive posterior density shown in the first column of Fig. (T) clearly identifies some
local changes in the variance that match with large jumps observed in the latent transformation pos-
terior samples above. Furthermore, for input differences on the order of [ the density retains close to
Gaussian behaviour. The posterior sample paths on the latent transformation space identify how fast
the SE kernel decays to zero around different regions in X. Large jump sizes break the correlation
between local points and the associated observations are treated as statistically independent. From
this perspective, if the model correctly identifies large jumps this shows that it discovers some obser-
vations contain more information about their local region than a stationary GP can encode. Hence,
the sample paths provide an expressive probabilistic layer for interpreting non-Gaussian behaviour.

Two alternative GP regression results are presented in the second column of Fig. (I). Firstly, using
the ground truth value of [ = 0.1, a smooth approximation of the predictive posterior density can be
obtained. Alternatively, a GP with a higher marginal likelihood can be obtained by optimising the
length-scale. In order to adapt to large deviations in some regions of X’ the optimisation results in
a smaller value of [ = 0.01. This can be considered as a trade-off between in-sample performance
and the generalisation capability of the model. As [ gets smaller each observation is modelled as
almost statistically independent and there are no long distance dependencies between inputs. Such
a representation will likely be an overfitted model that does not have any generalisation capability
and interpolations will produce white-noise. NGP regression provides a more sparse representation
of the random function in the sense that it only defines local statistical independence assumptions if
the observations show non-Gaussian behaviour and otherwise retain long distance dependencies.

For the multidimensional case an example regression model for diamond prices is presented. The
features used in this task are the carat of a diamond which is a measure of its weight and the per-
centage length of its table which is the largest flat facet of the diamond and affects how the diamond
interacts with light. For ease of visualisation, both input dimensions are linearly transformed to lie
between [0, 1]. The experiment is designed such that a 1000 randomly selected input-output pairs
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Figure 2: Regression analysis results for NGP and GP models with for the diamond price data set
using a TS subordinator. The posterior means are plotted as a surface and the 3 standard deviation
surface is overlaid on the mean as a wireframe plot. The right hand column shows the posterior
subordinator samples for a TS subordinator.

are chosen as the training set and the learned posterior surface is compared against another randomly
selected 1000 pairs.

Figure (Z) show the results of NGP regression using a TS subordinator. The main distinguishing
property of the diamond price data set is that the price increases non-linearly with increases in the
carat feature. The GP surface shown here forms a smooth function that cannot model the rapid
change in prices around these regions of non-linear increase. Furthermore, the predictive surface
is making non-zero predictions around out-of-sample regions which are undesirable in downstream
decision-making tasks. The NGP surface is able to identify the non-linear increase in prices and the
increased uncertainty in prices for larger carat values. These properties can be most clearly identified
in the posterior subordinator samples. Note that the mean log conditional likelihood of the MCMC
samples are found as —97873.9 and the GP log likelihood is found to be —113731.8.

NGP regression with a tempered stable subordinator presented in this work may be applied to
datasets where there are local deviations from Gaussian behaviour but the overall trend of the func-
tion closely follows a GP. Using alternative characterisations of the subordinator, varying degrees of
non-Gaussian behaviour can be modelled in a NGP regression framework as briefly demonstrated
in Section 4] Some practical examples of subordinator processes are gamma processes (Rosiniski
(2001))) and inverse Gaussian processes (Rydberg (1997); Barndorff-Nielsen| (1997)) which both
lead to analytical probability density functions unlike the TS process. This fact can be utilised to
design better proposal densities for a MCMC procedure. However given any Lévy density a similar
formulation to Section [3.1] can be readily designed and used for inference as studied in Section 3.2}
A particularly interesting case is the generalised inverse-Gaussian process which can capture vari-
ous degrees of semi-heavy-tailed behaviour, including the gamma and inverse Gaussian processes
(Eberlein & v. Hammerstein|(2004); (Godsill & Kindap| (2021)).

Using NGP regression produces a generative model conditioned on a dataset where samples from
both the posterior density over the input transformation and the predictive density over the observa-
tions can be generated. A probabilistic representation of a latent layer between the input and output
spaces may lead to new insights about the underlying data generating mechanism. Furthermore, our
construction of a NGP using the time-change operation may potentially be extended to any prob-
abilistic setting for interpreting non-Gaussian behaviour. For example, Lévy fields can be used to
model the first layer of a deep GP architecture (Titsias & Lawrence|(2010); Damianou & Lawrence
(2013)).



Under review as a conference paper at ICLR 2023

REFERENCES

Ryan Prescott Adams and Oliver Stegle. Gaussian Process Product Models for Nonparametric
Nonstationarity. In Proceedings of the 25th International Conference on Machine Learning,
ICML °08, pp. 1-8, New York, NY, USA, 2008. Association for Computing Machinery. ISBN
9781605582054. doi: 10.1145/1390156.1390157. URL https://doi.org/10.1145/
1390156.1390157.

O. Barndorff-Nielsen, J. Kent, and M. Sgrensen. Normal Variance-Mean Mixtures and z Distribu-
tions. International Statistical Review / Revue Internationale de Statistique, 50(2):145-159, 1982.
ISSN 03067734, 17515823. URL http://www. jstor.org/stable/1402598.

O. E. Barndorff-Nielsen. Processes of normal inverse Gaussian type. Finance and
Stochastics, 2(1):41-68, 1997. URL https://ideas.repec.org/a/spr/finsto/
v2y1997ilp41-68.html.

J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press,
1997.

Wessel P. Bruinsma, Martin Tegnér, and Richard E. Turner. Modelling Non-Smooth Signals With
Complex Spectral Structure. In Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics, Proceedings of Machine Learning Research. PMLR, 2022.

Peter Carr, Hélyette Geman, Dilip B. Madan, and Marc Yor. Stochastic Volatility for Lévy Processes.
Mathematical Finance, 13(3):345-382, 2003. URL https://EconPapers.repec.org/
RePEc:bla:mathfi:v:13:v:2003:1:3:p:345-382.

Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-Hastings Algorithm. The
American Statistician, 49(4):327-335, 1995. ISSN 00031305. URL http://www. jstor.
org/stable/2684568.

Andreas Damianou and Neil D. Lawrence. Deep Gaussian processes. In Carlos M. Carvalho and
Pradeep Ravikumar (eds.), Proceedings of the Sixteenth International Conference on Artificial In-
telligence and Statistics, volume 31 of Proceedings of Machine Learning Research, pp. 207-215,
Scottsdale, Arizona, USA, 29 Apr—01 May 2013. PMLR. URL https://proceedings.
mlr.press/v31l/damianoul3a.html.

R. L. Dobrushin. Gaussian and their Subordinated Self-similar Random Generalized Fields. The
Annals of Probability, 7(1):1 — 28, 1979. doi: 10.1214/a0p/1176995145. URL https://doi.
org/10.1214/a0p/1176995145|

E Eberlein and E. A. v. Hammerstein. Generalized hyperbolic and inverse Gaussian distributions:
Limiting cases and approximation of processes. In Robert C. Dalang, Marco Dozzi, and Francesco
Russo (eds.), Seminar on Stochastic Analysis, Random Fields and Applications 1V, pp. 221-264,
Basel, 2004. Birkhduser Basel. ISBN 978-3-0348-7943-9.

W. Feller. An introduction to probability theory and its applications. Number v. 2 in Wiley mathe-
matical statistics series. Wiley, 1966.

T. S. Ferguson and M. J. Klass. A Representation of Independent Increment Processes without
Gaussian Components. The Annals of Mathematical Statistics, 43(5):1634 — 1643, 1972. doi:
10.1214/a0ms/1177692395. URL https://doi.org/10.1214/aoms/1177692395.

Eric Ghysels, Andrew C. Harvey, and Eric Renault. Stochastic volatility. In Statistical Meth-
ods in Finance, volume 14 of Handbook of Statistics, pp. 119-191. Elsevier, 1996. doi:
https://doi.org/10.1016/S0169-7161(96)14007-4. URL https://www.sciencedirect.
com/science/article/pii/S0169716196140074.

Simon Godsill and Yaman Kindap. Point process simulation of generalised inverse Gaussian pro-
cesses and estimation of the Jaeger integral. Statistics and Computing, 32(1):13, Dec 2021.
ISSN 1573-1375. doi: 10.1007/s11222-021-10072-0. URL https://doi.org/10.1007/
s11222-021-10072-0.

10


https://doi.org/10.1145/1390156.1390157
https://doi.org/10.1145/1390156.1390157
http://www.jstor.org/stable/1402598
https://ideas.repec.org/a/spr/finsto/v2y1997i1p41-68.html
https://ideas.repec.org/a/spr/finsto/v2y1997i1p41-68.html
https://EconPapers.repec.org/RePEc:bla:mathfi:v:13:y:2003:i:3:p:345-382
https://EconPapers.repec.org/RePEc:bla:mathfi:v:13:y:2003:i:3:p:345-382
http://www.jstor.org/stable/2684568
http://www.jstor.org/stable/2684568
https://proceedings.mlr.press/v31/damianou13a.html
https://proceedings.mlr.press/v31/damianou13a.html
https://doi.org/10.1214/aop/1176995145
https://doi.org/10.1214/aop/1176995145
https://doi.org/10.1214/aoms/1177692395
https://www.sciencedirect.com/science/article/pii/S0169716196140074
https://www.sciencedirect.com/science/article/pii/S0169716196140074
https://doi.org/10.1007/s11222-021-10072-0
https://doi.org/10.1007/s11222-021-10072-0

Under review as a conference paper at ICLR 2023

Simon Godsill, Marina Riabiz, and Ioannis Kontoyiannis. The Lévy State Space Model. In 2019
53rd Asilomar Conference on Signals, Systems, and Computers, pp. 487-494, 2019. doi: 10.
1109/IEEECONF44664.2019.9048715.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97-109, 1970. doi: 10.1093/biomet/57.1.97. URL http://biomet.
oxfordjournals.org/cgi/content/abstract/57/1/97.

Junichi Imai and Reiichiro Kawai. On finite truncation of infinite shot noise series representation
of tempered stable laws. Physica A-statistical Mechanics and Its Applications, 390:4411-4425,
2011.

Phillip A Jang, Andrew Loeb, Matthew Davidow, and Andrew G Wilson. Scalable Levy Process
Priors for Spectral Kernel Learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/02b1lbe0d48924c327124732726097157-Paper.pdfl

0. Kallenberg. Foundations of Modern Probability. Springer-Verlag, 2nd edition, 2002.
Kingman, J.E.C. Poisson Processes. Oxford Studies in Probability. Clarendon Press, 1992.

Miguel Lazaro-Gredilla. Bayesian Warped Gaussian Processes. In F. Pereira, C.J. Burges, L. Bot-
tou, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, vol-
ume 25. Curran Associates, Inc.,, 2012. URL https://proceedings.neurips.cc/
paper/2012/fi11e/d840cc5d906c3e9c84374¢c8919d2074e—-Paper.pdf.

P. A. W Lewis and G. S. Shedler.  Simulation of nonhomogeneous Poisson processes
by thinning. Naval Research Logistics Quarterly, 26(3):403—413, September 1979.
doi: 10.1002/nav.3800260304. URL https://ideas.repec.org/a/wly/navliog/
v26y197913p403-413.htmll

Miguel Lazaro-Gredilla and Michalis Titsias. Variational Heteroscedastic Gaussian Process Regres-
sion. pp. 841-848, 01 2011.

David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Copyright Cam-
bridge University Press, 2003.

Robin Merkle and Andrea Barth. On Some Distributional Properties of Subordinated Gaussian
Random Fields. Methodology and Computing in Applied Probability, apr 2022a. doi: 10.1007/
s11009-022-09958-x.

Robin Merkle and Andrea Barth. Subordinated Gaussian random fields in elliptic partial differential
equations. Stochastics and Partial Differential Equations: Analysis and Computations, pp. 1-49,
2022b.

Bernt @ksendal. Stochastic Differential Equations: An Introduction with Applications. Springer,
6th edition, January 2014.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

Carl Rasmussen and Zoubin Ghahramani. Infinite Mixtures of Gaussian Process Experts. In T. Di-
etterich, S. Becker, and Z. Ghahramani (eds.), Advances in Neural Information Processing Sys-
tems, volume 14. MIT Press, 2001. URL |https://proceedings.neurips.cc/paper/
2001/file/9%9afefc52942cb83¢c7¢clfl14b2139009%ba—-Paper.pdf.

J. Rosifiski. Series Representations of Lévy Processes from the Perspective of Point Processes, pp.
401-415. Birkhduser Boston, Boston, MA, 2001. ISBN 978-1-4612-0197-7. doi: 10.1007/
978-1-4612-0197-7_.18. URL https://doi.org/10.1007/978-1-4612-0197-7__
18.

11


http://biomet.oxfordjournals.org/cgi/content/abstract/57/1/97
http://biomet.oxfordjournals.org/cgi/content/abstract/57/1/97
https://proceedings.neurips.cc/paper/2017/file/02b1be0d48924c327124732726097157-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/02b1be0d48924c327124732726097157-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/d840cc5d906c3e9c84374c8919d2074e-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/d840cc5d906c3e9c84374c8919d2074e-Paper.pdf
https://ideas.repec.org/a/wly/navlog/v26y1979i3p403-413.html
https://ideas.repec.org/a/wly/navlog/v26y1979i3p403-413.html
https://proceedings.neurips.cc/paper/2001/file/9afefc52942cb83c7c1f14b2139b09ba-Paper.pdf
https://proceedings.neurips.cc/paper/2001/file/9afefc52942cb83c7c1f14b2139b09ba-Paper.pdf
https://doi.org/10.1007/978-1-4612-0197-7_18
https://doi.org/10.1007/978-1-4612-0197-7_18

Under review as a conference paper at ICLR 2023

Jan Rosinski. Tempering stable processes. Stochastic Processes and their Applications, 117(6):
677-707, 2007. ISSN 0304-4149. doi: https://doi.org/10.1016/j.spa.2006.10.003. URL https:
//www.sciencedirect.com/science/article/pii/S030441490600144X.

T. H. Rydberg. The normal inverse Gaussian Lévy process: simulation and approxima-
tion. Communications in Statistics. Stochastic Models, 13(4):887-910, 1997. doi: 10.1080/
15326349708807456. URL https://doi.org/10.1080/15326349708807456

Y-LK Samo and Stephen J Roberts. String and membrane Gaussian processes. Journal of Machine
Learning Research, 17, 2016.

G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes : stochastic models
with infinite variance. CRC Press, 1994.

Alexandra M. Schmidt and Anthony O’Hagan. Bayesian Inference for Non-Stationary Spatial
Covariance Structure via Spatial Deformations. Journal of the Royal Statistical Society. Se-
ries B (Statistical Methodology), 65(3):743-758, 2003. ISSN 13697412, 14679868. URL
http://www. jstor.org/stable/3647549.

Amar Shah, Andrew Wilson, and Zoubin Ghahramani. Student-t Processes as Alternatives to Gaus-
sian Processes. In Samuel Kaski and Jukka Corander (eds.), Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of
Machine Learning Research, pp. 877-885, Reykjavik, Iceland, 22-25 Apr 2014. PMLR. URL
https://proceedings.mlr.press/v33/shahl4.html.

N. Shephard and O. E. Barndorff-Nielsen. Normal Modified Stable Processes. Economics Series
Working Papers 72, University of Oxford, Department of Economics, July 2001. URL https:
//ideas.repec.org/p/oxf/wpaper/72.htmll

Edward Snelson, Zoubin Ghahramani, and Carl Rasmussen. Warped Gaussian Processes. In
S. Thrun, L. Saul, and B. Scholkopf (eds.), Advances in Neural Information Processing Sys-
tems, volume 16. MIT Press, 2003. URL https://proceedings.neurips.cc/paper/
2003/file/6b5754d737784b51ec5075c0dc437bf0-Paper.pdf.

Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input Warping for Bayesian Op-
timization of Non-Stationary Functions. In Eric P. Xing and Tony Jebara (eds.), Proceed-
ings of the 31st International Conference on Machine Learning, volume 32 of Proceedings of
Machine Learning Research, pp. 1674—1682, Bejing, China, 22-24 Jun 2014. PMLR. URL
https://proceedings.mlr.press/v32/snoekl4.htmll

Tankov, P. and Cont, R. Financial Modelling with Jump Processes, Second Edition. Chapman and
Hall/CRC Financial Mathematics Series. Taylor & Francis, 2015.

Michalis Titsias and Neil D. Lawrence. Bayesian Gaussian Process Latent Variable Model. In
Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning
Research, pp. 844-851, Chia Laguna Resort, Sardinia, Italy, 13—15 May 2010. PMLR. URL
https://proceedings.mlr.press/v9/titsiasl0a.htmll

Felipe Tobar, Thang D Bui, and Richard E Turner. Learning Stationary Time Series using Gaussian
Processes with Nonparametric Kernels. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
95e6834d0a3d99e9€a8811855ae9229d-Paper.pdfl

Michael Unser and Pouya D. Tafti. An Introduction to Sparse Stochastic Processes. Cambridge
University Press, 2014. doi: 10.1017/CB0O9781107415805.

AED Veraart and M Winkel. Time change. In Encyclopedia of Quantitative Finance, pp. 1812—
1816. Wiley, 2010. doi: 10.1002/9780470061602.eqf19026. URL http://dx.doi.org/
10.1002/9780470061602.egf19026.

Peter Whittle. Stochastic-processes in several dimensions. Bulletin of the International Statistical
Institute, 40(2):974-994, 1963.

12


https://www.sciencedirect.com/science/article/pii/S030441490600144X
https://www.sciencedirect.com/science/article/pii/S030441490600144X
https://doi.org/10.1080/15326349708807456
http://www.jstor.org/stable/3647549
https://proceedings.mlr.press/v33/shah14.html
https://ideas.repec.org/p/oxf/wpaper/72.html
https://ideas.repec.org/p/oxf/wpaper/72.html
https://proceedings.neurips.cc/paper/2003/file/6b5754d737784b51ec5075c0dc437bf0-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/6b5754d737784b51ec5075c0dc437bf0-Paper.pdf
https://proceedings.mlr.press/v32/snoek14.html
https://proceedings.mlr.press/v9/titsias10a.html
https://proceedings.neurips.cc/paper/2015/file/95e6834d0a3d99e9ea8811855ae9229d-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/95e6834d0a3d99e9ea8811855ae9229d-Paper.pdf
http://dx.doi.org/10.1002/9780470061602.eqf19026
http://dx.doi.org/10.1002/9780470061602.eqf19026

Under review as a conference paper at ICLR 2023

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.ordq.

Andrew Wilson and Ryan Adams. Gaussian Process Kernels for Pattern Discovery and Ex-
trapolation. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th Inter-
national Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pp. 1067-1075, Atlanta, Georgia, USA, 17-19 Jun 2013. PMLR. URL https:
//proceedings.mlr.press/v28/wilsonl3.htmll.

Andrew Gordon Wilson and Zoubin Ghahramani. Generalised Wishart Processes, 2011. URL
https://arxiv.org/abs/1101.0240.

R.L. Wolpert and K. Ickstadt. Poisson/gamma random field models for spatial statistics. Biometrika,
85(2):251-267, 06 1998a. ISSN 0006-3444. doi: 10.1093/biomet/85.2.251. URL https:
//doi.org/10.1093/biomet/85.2.251.

Robert L. Wolpert and Katja Ickstadt. Simulation of Lévy Random Fields, pp. 227-242. Springer
New York, New York, NY, 1998b. ISBN 978-1-4612-1732-9. doi: 10.1007/978-1-4612-1732-9_
12. URL https://doi.org/10.1007/978-1-4612-1732-9_12,

A APPENDIX

A.1 ADDITIONAL DETAILS OF THE EXPERIMENTAL SETUP

For the first experimental setup, our Gibbs sampler defines a grid of 100 disjoint intervals and iterates
over the whole space 50 times. After initial samples are discarded for burn-in the average log
conditional likelihood of the remaining samples is found to be 51.46 with a standard deviation of
3.17. In comparison the log conditional likelihood of the data generating process is found as 59.09
which suggests that the NGP does not overfit. The log marginal likelihood of the GPs with [ = 0.1
and 0.01 are found as —388.39 and —71.38, respectively. The mean acceptance probability for each
step in Alg. [3|is found as 0.72. The confidence intervals in regression results show 3 standard
deviations. Lastly, on the right column we show 5 samples from the NGP posterior density and its
smooth approximation.

Given the results above the two main aspects that require further attention are the design of a sensible
prior distribution on the latent transformation space and the initialisation of the Gibbs sampler. The
tempered stable (TS) subordinator is characterised by three parameters, «, 8 and C, that represent
the tail heaviness, tempering and scale. The expected value and variance of the subordinator process
on an input space X is a function of these parameters and the length (or measure) of X. In order to
produce results that are comparable with Gaussian process (GP) regression, the expected value of
the subordinator process is set to the length of X, i.e. given an interval (Z,in, Tmas) the expected
value is |Zmaz — Tminl|. As discussed in Section if the observed input points are assumed to
lie on a Euclidean space, the change in the covariance scales linearly according to |Zymaz — Tmin-
On the latent transformation space, this corresponds to an identity map in (in, Tmaz)- Setting
the expected value to the length of the input set expresses a preference towards regular Gaussian
behaviour and the deviations from the identity map provide insight into the characteristics of the
observed data set.

Note again that the shot-noise simulation methods studied in Section [3.1| produce approximate sam-
ple paths from a Lévy process since the infinite series described by Eq. have to be truncated to
a finite number of terms. The convergence of the series is found in practice to be faster for smaller
values of « and 3 parameters. The number of terms that are required to obtain a sufficiently close es-
timate can be adaptively found using probabilistic asymptotic bounds and will be presented in future
extensions of our work. However, a simple way to ensure the required convergence is to increase
the number of terms produced as /3 gets larger. In practice for 5 = 5, producing 1000 terms in Alg.
[Mis found to work well.

The initialisation of the Gibbs sampler in practice is one of the central issues in designing Markov
chain Monte Carlo methods. In Alg. [3] the sampling method depends on the number and size
of small disjoint intervals 7. As the size of 7 is decreased, the acceptance rates for the Gibbs

13


https://ggplot2.tidyverse.org
https://proceedings.mlr.press/v28/wilson13.html
https://proceedings.mlr.press/v28/wilson13.html
https://arxiv.org/abs/1101.0240
https://doi.org/10.1093/biomet/85.2.251
https://doi.org/10.1093/biomet/85.2.251
https://doi.org/10.1007/978-1-4612-1732-9_12

Under review as a conference paper at ICLR 2023

sampler increase and convergence can be achieved in a few number of iterations of the whole input
space. However, this also results in an increased number of intervals and each iteration requires more
computation and time. Our strategy to initialise the Gibbs sampler is to obtain a crude estimate of the
latent transformation function by running the same algorithm on a few number of intervals 7 and set
the initial state of the Gibbs sampler to the jump magnitudes and positions that correspond to the last
sample path. The chain can then be simulated starting from this state and only a few samples have
to be discarded as burn-in. Alternatively, a simpler initialisation is to generate linearly spaced points
with equal magnitudes that represent the identity map corresponding to a GP regression setting.
This alternative initialisation can be particularly useful for dataset that display close to Gaussian
behaviour.

NGP regression GP regression

+ unobserved data
e observed data i
—— mixture mean Ry 2
mixture 3 std 7

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Regression analysis results for NGP and GP models with the Matérn kernel where the
observations are generated from a NGP prior.

It is straightforward to change the particular choice of a kernel function without any changes in our
presented algorithms. In Fig. [3|an example regression problem is presented using the conditional
kernel function specified as the Matérn kernel. The Matérn kernel decays slower than a squared
exponential kernel and therefore can be used to model long range dependencies. Particular parameter
values of the Matérn kernel correspond to the covariance of certain stochastic differential equations
as described in [Whittle| (1963). The results are again compared with a GP regression setting to
highlight the differences. The smoothness parameter is chosen as ¥ = 5/2 and the length-scale is
I = 0.1. The subordinator parameters are identical to the previous example in Fig. [I] A dataset
of size 500 is generated on (0, 1) from the NGP prior and a set of size 100 is randomly selected
as the observations. In this case, the unobserved elements in the dataset serve as the test set. For
the NGP regression, most unobserved data points lie inside the confidence intervals while the GP
regression misses these points around local deviations. The log conditional likelihood of the NGP
and the marginal likelihood of the GP models are 18.25 and —114.97 respectively.

Additionally, in order to emphasise that our framework works for any choice of Lévy process with a
measure that possesses a density function, the multidimensional experiment is run separately using a
gamma subordinator. The required simulation algorithm for the gamma subordinator is presented in
Rosinski|(2001));|Godsill & Kindap|(2021). The training set is independently sampled and the results
are presented Figures 4] and [5} Similar conclusions can be made using the gamma subordinator.
However note that the gamma subordinator is characterised by the flat intervals shown in Fig. [5|and
there may be other applications that are more appropriate for such a posterior surface.
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Optimised GP surface (Angle 1) Optimised GP surface (Angle 2)
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+ unobserved points
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Figure 4: Regression analysis results for NGP and GP models with for the diamond price data set
using a gamma subordinator. The posterior means are plotted as a surface and the +3 standard
deviation surface is overlaid on the mean as a wireframe plot.
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Figure 5: Posterior subordinator samples for a gamma subordinator.
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