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ABSTRACT

Neural speech codecs, predominantly based on Vector-Quantized Variational Au-
toencoders (VQ-VAEs), serve as fundamental audio tokenizers for speech large
language models (SLLMs). However, their reconstruction fidelity is limited by
quantization errors introduced during latent space discretization. Existing solu-
tions typically increase model complexity through larger codebooks or hierarchical
quantization, which subsequently intensify the modeling challenge for downstream
SLLMs. Inspired by the key insight that the codec decoder produces superior output
from continuous pre-quantize embeddings, we propose a novel self-guided training
mechanism that addresses this problem by enhancing decoder robustness rather
than modifying the quantization process. Our method introduces an additional
training objective that aligns the decoder’s intermediate features when processing
both quantized tokens and continuous pre-quantized embeddings through a feature-
mapping loss. Extensive experiments on XCodec2 demonstrate that self-guidance
consistently improves reconstruction quality across various codebook sizes and
quantization techniques (FSQ, SimVQ), achieving state-of-the-art performance for
low-bitrate speech codecs. The method requires minimal additional training cost
and no inference-time modifications, offering an efficient solution for high-fidelity
neural audio coding. Remarkably, our approach enables a 4× reduction in codebook
size while maintaining comparable fidelity. Downstream text-to-speech experi-
ments confirm that this reduction significantly improves LLM-based synthesis
performance by simplifying the token modeling space.

1 INTRODUCTION

Audio codecs serve as essential tools for audio compression, originally designed to encode continuous
audio signals like human speech into sequences of reconstructable discrete codes, enabling efficient
data transmission and storage (Wu et al., 2024a). Recently, neural speech codecs, pioneered by
SoundStream (Zeghidour et al., 2021) and EnCodec (Défossez et al., 2022), leverage the Vector-
Quantized Variational AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017; Esser et al., 2021)
architectures to achieve high-fidelity reconstruction at compression ratios significantly exceeding
traditional codecs. This breakthrough facilitates the integration of large language models (LLMs)
in speech processing and generation, where the discretized audio tokens could be directly adopted
in the standard next-token-prediction frameworks of LLMs. Benefiting from large-scale speech
modeling with LLMs, numerous studies have advanced downstream tasks, including text-to-speech
generation (Wang et al., 2023; Yang et al., 2023b) and interactive multimodal large language models
(MLLMs) (Défossez et al., 2024; Zhan et al., 2024).

The transformation from continuous audio to discrete tokens in a VQ-VAE is enabled by a latent
vector quantizer. This component maps continuous latent vectors from the encoder to entries in a
finite codebook via nearest-neighbor search (i.e., vector quantization) (Van Den Oord et al., 2017; Yu
et al., 2021; Mentzer et al., 2023). The corresponding codebook embeddings are then passed to the
decoder to reconstruct the audio waveform.

However, quantization is inherently lossy. As noted in prior work (Liu et al., 2024) and confirmed by
our preliminary experiments (Section 3.2), the decoder produces higher-fidelity audio when using the
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continuous, pre-quantized latents compared to the quantized tokens. This performance gap confirms
that quantization error constitutes a major obstacle to high-fidelity reconstruction, as it restricts the
information available to the decoder.

To suppress quantization error, existing neural codecs typically employ strategies such as hierarchical
quantization with multiple residual codebooks (Zeghidour et al., 2021; Yang et al., 2023a) or simply
scaling up the codebook size (Parker et al., 2024; Xin et al., 2024; Wu et al., 2024b; Ye et al., 2025a).
While effective for compression, these approaches introduce significant challenges for downstream
LLM modeling. Hierarchical codebooks require complex mechanisms to fit within auto-regressive
transformer frameworks (Wang et al., 2023; Yang et al., 2023b; Défossez et al., 2024), while a large
codebook size exponentially increases the token modeling space, complicating the language modeling
task (Ye et al., 2025b).

Thus, reducing quantization error often involves intricate codec designs that inadvertently transfer
complexity to downstream LLMs. In this paper, we shift the focus from modifying the quantizer or
latent space to enhancing the decoder itself. Our core idea is to guide the decoder to narrow the
output gap between the pre-quantized latent vectors and the quantized tokens. By aligning the
decoder’s outputs for these two inputs, we directly mitigate the artifacts introduced by quantization,
thereby relieving the quantizer of the sole burden of error elimination.

To this end, we propose a novel learning scheme for VQ-VAE-based codecs, which we call self-
guidance. During training, the decoder receives both the quantized token embeddings and the
continuous pre-quantized latent vectors. We then apply a feature mapping loss between the decoder’s
intermediate features or outputs for these two paths. This additional objective uses the high-fidelity
output from the pre-quantized latents as a target, guiding the decoder to produce similar, high-quality
features when driven by the quantized tokens. Consequently, the decoder becomes more robust to
quantization artifacts, enhancing the final reconstructed audio’s fidelity.

We implement our self-guidance approach on the state-of-the-art single-codebook neural speech
codec XCodec2 (Ye et al., 2025b), applying the feature mapping loss to the outputs of the decoder’s
transformer backbone. Experiments on LibriSpeech show consistent reconstruction improvements
across various codebook sizes and quantization techniques (e.g., FSQ, SimVQ). Notably, we achieve
comparable reconstruction quality with only a quarter of the original codebook size. The benefits of a
smaller codebook are further demonstrated in downstream text-to-speech LLM experiments. Audio
samples are available on our demo website.1

Our main contributions are as follows:

1. We propose a novel self-guidance mechanism for VQ-VAEs that directs the decoder to
mitigate the detrimental effects of quantization error on reconstruction fidelity.

2. We apply self-guidance to the XCodec2 model, achieving state-of-the-art reconstruction
performance for low-bitrate speech codecs.

3. Through extensive experiments, we demonstrate that the improvements generalize across
different codebook sizes and vector quantization methods.

4. We provide statistical evidence confirming that self-guidance primarily regulates the decoder
rather than the encoder.

5. We show that self-guidance reduces the codec’s dependency on large codebooks, yielding
significant benefits for downstream LLM-based applications.

2 RELATED WORKS

2.1 VECTOR QUANTIZATION

VQ-VAE (Van Den Oord et al., 2017) introduced discrete latent representations for generative
models, and VQ-VAE2 (Razavi et al., 2019) enhanced representation richness through hierarchical
architectures. VQGAN (Esser et al., 2021) integrated adversarial networks, establishing a fundamental
VQ framework for high-quality generative models such as Stable Diffusion (Rombach et al., 2022).

1https://sgvqvae.github.io/sgvqvae-demo

2

https://sgvqvae.github.io/sgvqvae-demo


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Nevertheless, these methods encounter representation collapse when dealing with large codebook
sizes, which restricts their scalability.

To tackle this issue, DALL-E (Ramesh et al., 2021) employs Gumbel-Softmax sampling to activate
more codes during training, although only a small subset of codes is used for quantization during
inference (Zhang et al., 2023). VQGAN-FC (Yu et al., 2021) mitigates collapse by reducing latent
dimensionality and applying L2 normalization. Finite scaler quantization (FSQ) (Mentzer et al., 2023)
and its variant Look-up free quantization (LFQ) (Yu et al., 2023) project latents to low-dimensional
spaces (e.g., binary codes), but this comes at the cost of model capacity, as performance degrades
when codebooks are small or collapse is not severe. Recently, VQGAN-LC (Zhu et al., 2024a) and
SimVQ (Zhu et al., 2024b) enable stable training with codebook sizes up to 100k by incorporating a
linear projector for the codebook.

2.2 NEURAL CODEC

In early neural codec model studies, SoundStream (Zeghidour et al., 2021) utilized residual vector
quantizers (RVQs) to distribute the codec model’s total bitrate across multiple codebooks, preventing
codebook size explosion. However, this hierarchical design complicates downstream applications
due to the multiple tokens within each frame, necessitating additional flattening or joint modeling.

In recent years, single-codebook codecs have emerged as a simpler and more efficient alternative,
demonstrating strong performance at low bitrates (Li et al., 2024; Guo et al., 2024; Ji et al., 2024;
Xin et al., 2024; Della Libera et al., 2025). For instance, BigCodec (Xin et al., 2024) employs larger
model sizes and advanced learning objectives to achieve high-fidelity audio decoding from a single
quantizer of frame rate 80Hz. Despite these advancements, the reconstruction fidelity of BigCodec on
perspective metrics significantly degrades at lower frame rates. While high frame rate incurs longer
audio token sequences, resulting in a quadratic increase in downstream LLM computation cost, and
the language modeling complexity (Wang et al., 2024).

To address this challenge, XCodec (Ye et al., 2025a) and FocalCodec (Della Libera et al., 2025)
integrate pretrained self-supervised audio encoders to support the reconstruction performance on
perspective metrics. Thanks to the stabilized quantizer like FSQ, TS3Codec (Wu et al., 2024b)
and XCodec2 (Ye et al., 2025b) extend the codebook size to over 216 to further boost the model
performance, achieving state-of-the-art performance on single-codebook codec of frame rate around
50Hz. However, the drastically extended codebook size poses a significant challenge to the language
modeling of downstream LLMs. This issue motivates the development of this paper to explore an
approach that relieves the existing codec model’s dependency on the large codebook.

3 PRELIMINARY: THE EFFECT OF QUANTIZATION IN NEURAL CODEC

3.1 REVISITING THE VQ-VAE FRAMEWORK

The Vector-Quantized Variational Autoencoder (VQ-VAE) framework forms the foundation of
modern neural audio codecs. As illustrated in Figure 1 (left), the architecture consists of three main
components: an encoder, a vector quantizer, and a decoder. The encoder processes an input audio
signal x to produce a sequence of continuous latent embeddings ze ∈ Rde , where de is the latent
dimension. The vector quantizer then maps each embedding in ze to the nearest entry in a finite
codebook Q ⊂ Rde . This operation produces a sequence of quantized token embeddings zq . Finally,
the decoder reconstructs the audio signal x̂ from zq. During training, gradients are propagated
through the non-differentiable quantization operation using straight-through estimation (STE), which
copies gradients from zq directly to ze.

The quantization process inherently introduces error as it projects continuous latent vectors onto a
discrete codebook. The quantization error can be quantified as:

eq = ∥ze − zq∥2 (1)

This error represents the information loss incurred during discretization.

3
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Figure 1: Illustration of the VQ-VAE architecture and the proposed self-guidance (SG) mechanism
with the introduced feature mapping loss Lguide.

Table 1: Comparing the reconstruction performance of neural speech codec models with different
decoder inputs.

Codec model bitrate decoder input STOI↑ WER↓ SIM↑
Ground Truth 1.00 2.4 1.000

Encodec 6kbps zq 0.88 2.7 0.861
Encodec 6kbps ze 0.95 2.7 0.922

BigCodec 1.04kbps zq 0.93 3.6 0.841
BigCodec 1.04kbps ze 0.95 2.9 0.872

3.2 OBSERVATION OF QUANTIZATION ARTIFACTS

The quantization error eq introduces information loss that propagates to the decoder, resulting in
artifacts that degrade reconstruction fidelity. This phenomenon is evident even though the decoder is
exclusively trained on quantized inputs during standard VQ-VAE training.

As shown in Table 1, according to the findings from Liu et al. (2024) on the EnCodec model
(Défossez et al., 2022), when the decoder processes the continuous pre-quantized latents ze instead
of the quantized tokens zq, reconstruction quality improves significantly. This observation aligns
with our evaluations of BigCodec (Xin et al., 2024).

These results demonstrate that quantization artifacts substantially limit reconstruction quality, pre-
senting a major obstacle for achieving optimal performance in neural codecs.

4 METHODOLOGY

To mitigate quantization artifacts in neural speech codecs, we propose a novel learning scheme called
self-guidance (SG) for VQ-VAE decoders. This section details the self-guidance mechanism and
explains our rationale for applying it to the XCodec2 model to construct a high-fidelity neural speech
codec.

4
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4.1 SELF-GUIDANCE MECHANISM

The self-guidance mechanism is designed to enhance the decoder’s ability to compensate for the
information loss caused by quantization error in the input tokens zq. Specifically, we aim to enable
the decoder to produce similar outputs from both the quantized tokens zq and the continuous pre-
quantized latents ze.

While the vanilla VQ-VAE reconstruction loss implicitly guides the decoder toward this objective by
using the original input x as a target, our preliminary analysis indicates that this alone is insufficient
to fully address quantization artifacts. This suggests the need for more explicit guidance during
training.

Inspired by our preliminary findings, we propose using the pre-quantized latent ze itself as an internal
guidance signal. As illustrated in Figure 1 (right), during training we introduce an additional forward
pass that feeds ze to the decoder. We then extract intermediate hidden features from both paths: he

from the ze branch and hq from the zq branch. We introduce a feature-mapping loss Lguide to align
these features:

Lguide = ∥sg(he)− hq∥22 (2)

where sg(·) denotes the stop-gradient operation. This loss term is added to the original VQ-VAE
objectives to form an end-to-end self-supervised training process.

The self-guidance mechanism introduces minimal computational and architectural overhead:

• Training: Only an additional forward pass through the decoder with ze is required, with no
gradient computation needed for this branch.

• Inference: No modifications are required; the decoder operates exclusively on zq as in
standard VQ-VAE models.

4.2 NEURAL SPEECH CODEC MODEL

To validate the effectiveness of self-guidance, we apply it to XCodec2, a state-of-the-art neural speech
codec that has demonstrated strong performance in low-bitrate speech encoding and downstream
speech generation tasks (Boson AI, 2025; Ye et al., 2025b).

XCodec2 comprises several key components: a convolutional encoder, a single-layer finite scalar
quantizer (FSQ), and an acoustic decoder. Additionally, it includes a semantic encoder and decoder
that form an auxiliary autoencoder operating on Wav2Vec2-BERT features (Barrault et al., 2023),
enhancing the semantic content of the encoded latents for improved downstream performance.

A distinctive feature of XCodec2 is its acoustic decoder architecture. Like in TS3Codec (Wu
et al., 2024b), rather than using stacked convolutional upsampling blocks, it employs a Transformer
backbone followed by an inverse short-time Fourier transform (iSTFT) head (Siuzdak, 2024). This
design naturally suggests using the Transformer backbone outputs for computing Lguide because: (i)
the Transformer contains the majority of learnable parameters in the decoder, providing sufficient
capacity to benefit from self-guidance; and (ii) the subsequent iSTFT head separates the hidden
features from the final waveform generation, preventing potential interference from waveform-level
reconstruction losses.

The complete training objective for our enhanced codec is:

Ltotal = Lguide + Lsemantic + Lacoustic + Ladv (3)

where:

• Lguide is the self-guidance feature mapping loss defined in Equation 2, computed using the
Transformer backbone outputs;

• Lsemantic is the mean squared error semantic feature reconstruction loss;

• Lacoustic is the multi-scale mel-spectrogram reconstruction loss;

• Ladv is the adversarial loss from a multi-period discriminator (Kong et al., 2020) and a
spectrogram discriminator (Parker et al., 2024).

5
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5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENT SETTINGS

Dataset We use the full Librispeech Panayotov et al. (2015) training set for the training of all
versions of codec models, which comprises 960 hours of English speech audio at a sampling rate of
16kHz. For evaluation, the test-clean subset of LibriSpeech that contains 2620 utterances from 40
speakers is used to assess reconstruction performance.

Implementation details We build our neural codec model based on the offical open-source code
of XCodec2 2. The modifications required to implement self-guidance are minimal: (i) adding an
additional forward pass in the forward function 3; (ii) incorporating the computation of Lguide in
the compute_gen_loss function 4. The full modified code script is attached in the supplementary
material. Detailed configurations are included in Section A.2. The BigCodec model involved in the
preliminary study (Section 3.2) and comparative experiments (Section 5.2) is obtained via training
with the official open-source implementation 5

Training cost We train all of the codec models on 8 NVIDIA GeForce RTX 4090 GPUs for
600 thousand iterations. The total training time of each codec model is around 237.75 hours.
Notably, the self-guidance variant incurs negligible additional training time compared to the baseline
XCodec2, with differences of only seconds. This efficiency aligns with our design in Section 4.1: the
additional forward pass through the acoustic decoder requires no backward propagation, making the
computational overhead minimal compared to other components (e.g., discriminators) and gradient
synchronization. This demonstrates that the performance gains from self-guidance come at virtually
no additional training cost.

Table 2: Comparing reconstruction evaluation results with other existing neural codecs on the
LibriSpeech test-clean dataset. (SG signifies the proposed self-guidance mechanism; details about
each metric are included in Section A.1)

Codecs models Frame
rate

Codebook
size(s) PESQ↑ STOI↑ MCD↓ WER↓ SIM↑ UTMOS↑

Ground Truth 4.64 1.000 0.00 2.5 1.00 4.08

DAC 50Hz 1024×8 2.72 0.940 − − 0.87 −
DAC 50Hz 1024×2 1.13 0.730 − − 0.32 −
WavTokenizer 75Hz 4096 2.05 0.886 4.00 6.8 0.59 3.89
BigCodc 80Hz 8192 2.68 0.935 2.93 3.6 0.84 4.11

WavTokenizer 40Hz 4096 1.88 0.868 4.32 8.0 0.57 3.77
BigCodec 40Hz 8192 2.11 0.894 3.72 6.7 0.66 4.05
XCodec2 50Hz 8192 2.03 0.892 3.84 4.1 0.72 4.09
XCodec2+SG 50Hz 8192 2.13 0.898 3.60 3.8 0.73 4.08

TS3Codec 40Hz 65536 2.01 0.893 3.81 4.9 0.61 3.69
TS3Codec 40Hz 131072 2.06 0.897 3.75 4.5 0.63 3.73
TS3Codec 50Hz 65536 2.22 0.909 3.52 3.6 0.68 3.85
TS3Codec 50Hz 131072 2.23 0.910 3.50 3.6 0.68 3.84
XCodec2 50Hz 65536 2.28 0.910 3.57 3.2 0.79 4.06
XCodec2+SG 50Hz 65536 2.39 0.915 3.41 3.2 0.80 4.10

2https://github.com/zhenye234/X-Codec-2.0
3https://github.com/zhenye234/X-Codec-2.0/blob/main/lightning_module.

py#L146
4https://github.com/zhenye234/X-Codec-2.0/blob/main/lightning_module.

py#L239
5https://github.com/Aria-K-Alethia/BigCodec
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5.2 RECONSTRUCTION PERFORMANCE

We first evaluate the overall reconstruction performance of our proposed model against existing
low-bitrate speech codecs. For DAC, WavTokenizer, and TS3Codec, we report results from papers.
For BigCodec and XCodec2, we retrain models and include variations with different configurations
(XCodec2 default: frame rate = 50 Hz, |Q| = 65,536; BigCodec default: frame rate = 80 Hz, |Q| =
8,192).

As shown in Table 2, our proposed model (XCodec2 with self-guidance) achieves the best performance
across most evaluation metrics. For codecs with frame rates of 40–50 Hz, our approach consistently
outperforms competitors with similar codebook sizes (8,192 and below, or 65,536 and above),
establishing new state-of-the-art performance for low-bitrate speech codecs.

Specifically, while the original XCodec2 with codebook size 65,536 shows competitive performance,
self-guidance provides further improvements across all metrics. Reducing XCodec2’s codebook
size to 8,192 significantly degrades acoustic reconstruction quality (PESQ, STOI, MCD), falling
behind BigCodec. However, when augmented with self-guidance, this reduced-size model surpasses
BigCodec on all metrics

5.3 ABLATION STUDIES

We conduct ablation studies to isolate the contribution of self-guidance and evaluate its robustness
under different configurations. We compare models trained with and without self-guidance while
varying quantizer settings.

Figure 2: Comparison of the reconstruction performance under various settings along the training
process. Horizontal axis is the training iterations. Best viewed in color.

Codebook size We experiment with codebook sizes of 8,192, 16,384, and 65,536. As shown in
Table 3, self-guidance improves performance across all settings, except for a minor degradation in
word error rate (WER) at the intermediate size (16,384). Figure 2 shows that with self-guidance, a
model with codebook size 16,384 achieves similar performance to the baseline XCodec2 with a 4×
larger codebook (65,536) on several metrics.

7
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Table 3: Reconstruction evaluation results of the proposed neural speech codec across different
codebook sizes. (with SG signifies whether the proposed self-guidance mechanism is applied)

Codebook
size with SG PESQ-WB↑ PESQ-NB↑ STOI↑ MCD↓ WER↓ SIM↑ UTMOS↑

Ground Truth 4.64 4.54 1.000 0.00 2.49 1.00 4.08

8192 % 2.03 2.59 0.892 3.84 4.08 0.72 4.09
8192 ✓ 2.13 2.69 0.898 3.79 3.77 0.73 4.08

16384 % 2.15 2.73 0.901 3.71 3.47 0.76 3.98
16384 ✓ 2.27 2.86 0.907 3.70 3.53 0.77 4.08

65536 % 2.28 2.89 0.910 3.57 3.23 0.79 4.06
65536 ✓ 2.39 2.98 0.915 3.41 3.15 0.80 4.10

Table 4: Reconstruction evaluation results of the proposed neural speech codec across different types
of vector quantizers (XCodec2 adopts FSQ by default), with codebook size fixed at 16384. (with SG
signifies whether proposed self-guidance mechanism is applied).

Quantizer with SG PESQ-WB↑ PESQ-NB↑ STOI↑ MCD↓ WER↓ SIM↑ UTMOS↑
Ground Truth 4.64 4.54 1.000 0.00 2.49 1.00 4.08

FSQ % 2.15 2.73 0.901 3.71 3.47 0.76 3.98
FSQ ✓ 2.27 2.86 0.907 3.60 3.53 0.77 4.08

SimVQ % 2.10 2.67 0.900 3.63 3.59 0.75 3.85
SimVQ ✓ 2.17 2.74 0.904 3.56 3.63 0.76 3.93

Type of vector quantizer To assess generalization across quantizer types, we replace the default
FSQ quantizer in XCodec2 with SimVQ (VQGAN-FC suffered from codebook collapse and produced
unintelligible results). Table 4 shows that self-guidance consistently improves performance with
SimVQ, reproducing the minor WER degradation observed with FSQ. We hypothesize this effect
relates to self-guidance being applied only to the acoustic decoder.

Quantization error Since Lguide gradients propagate to the encoder via straight-through estimation,
we investigate whether performance gains stem from decoder guidance or implicit quantization error
reduction. Figure 3 shows quantization error (eq) distributions on the test-clean dataset for baseline
and self-guidance models across different codebook sizes. The closely overlapping distributions
demonstrate that self-guidance enhances reconstruction by improving decoder robustness rather
than reducing quantization error.

Figure 3: The histogram of the quantization error eq on LibriSpeech test-clean dataset with the
self-guidance mechanism activated (w_guide) or omitted (wo_guide) across different codebook
sizes (from left to right: 65536, 16384, 8192).

8
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5.4 DOWNSTREAM AUTO-REGRESSIVE TTS

Building on our finding that self-guidance enables smaller codebooks to achieve performance compa-
rable to larger ones (Figure 2), we evaluate its impact on downstream autoregressive text-to-speech
(TTS) synthesis. We hypothesize that reduced codebook size simplifies the language modeling task,
potentially improving final TTS quality.

We conduct rapid TTS experiments using a Qwen2.5-0.5B causal LLM backbone (Qwen et al., 2025)
trained on LibriTTS-R (Koizumi et al., 2023). Input text is phonemized before training. Models are
supervised fine-tuned for phoneme-to-audio-token generation for 85 epochs. For inference, we use the
continual synthesis approach from VALL-E (Wang et al., 2023), providing phoneme sequences and
first 3-second audio tokens as prompts for continuation generation. We filter LibriTTS-R test-clean
samples longer than 6 seconds and generate continuations using top-k (50) and top-p (0.9) sampling.

As shown in Table 5, results support our hypothesis: the self-guidance model with smaller codebook
demonstrates stronger performance in autoregressive audio generation. This indicates that self-
guidance not only enhances codec reconstruction fidelity but also facilitates downstream LLM
applications by reducing language modeling complexity through smaller codebook requirements.

Table 5: Downstream text-to-speech continuation performance on the LibriTTS test-clean dataset.
Codec model Codebook size UTMOS↑ WER↓ SIM↑

XCodec2 65536 3.33 33.03 0.58
XCodec2+SG 16384 3.58 28.02 0.58

6 CONCLUSION

We proposed self-guidance, a novel training mechanism for VQ-VAE-based neural speech codecs
that enhances decoder robustness to quantization artifacts. By aligning the decoder’s outputs for
quantized and continuous latent representations through an additional feature-mapping loss, our
method improves reconstruction fidelity without modifying the inference process. Experiments
demonstrate that self-guidance consistently enhances performance across various codebook sizes
and quantization techniques, enabling comparable quality with 4× smaller codebooks. Downstream
TTS results confirm that this reduction simplifies language modeling for LLMs, improving synthesis
quality. Our approach provides an effective and efficient solution to mitigate quantization errors,
advancing high-fidelity neural audio compression.

Future work could explore applying self-guidance to other VQ-VAE domains beyond speech, such as
music or general audio processing, and investigating its combination with more advanced quantization
techniques.

Ethics statement This work presents research on neural audio codecs, which have significant
potential for positive applications in speech compression, communication, and generative modeling.
However, we acknowledge several ethical considerations:

1. Positive Impacts: Our method enables higher-quality audio compression at lower bitrates,
which could improve accessibility and efficiency in telecommunication, hearing assistance
devices, and low-bandwidth applications. The reduction in codebook complexity may also
decrease computational requirements for downstream applications.

2. Potential Misuse: Like other audio generation technologies, neural codecs could potentially
be misused for creating deepfake audio or other deceptive content. However, our work
focuses specifically on reconstruction quality rather than generative capabilities. The codec
itself does not generate novel content without being integrated into a full generative system.

Reproducibility statement As stated in Section 5.1, the proposed approach is adapted from the
official open-source code of XCodec2. The modified code script that implements self-guidance is
attached in the supplementary material. We have attached the modified code script to the supple-
mentary materials. We have also described the computational requirements of our experiments in
Section 5.1. Details about the model configuration are included in Section A.2 for confirmation.
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A APPENDIX

A.1 EVALUATION METRICS OF RECONSTRUCTION

We evaluate acoustic fidelity, intelligibility, and naturalness of the speech audio reconstructed by
neural codecs using the following metrics:

Perceptual Evaluation of Speech Quality (PESQ) PESQ Rix et al. (2001) compares degraded and
reference speech to predict human-perceived quality. We use a Python implementation 6 to compute
wide-band (PESQ-WB) and narrow-band (PESQ-NB) scores, where higher values indicate better
quality.

Mel Cepstral Distortion (MCD) MCD measures the difference between mel-frequency cepstral
coefficients (MFCCs), a standard metric for speech synthesis quality.

Short-Time Objective Intelligibility (STOI) STOI Taal et al. (2011) evaluates speech intelligi-
bility by comparing temporal envelopes of clean and degraded signals, with scores ranging from 0
(unintelligible) to 1 (perfect intelligibility).

6https://github.com/ludlows/PESQ
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Word Error Rate (WER) WER is calculated using a HuBERT Hsu et al. (2021) speech recognition
model finetuned on Librispeech 7, reporting percentage errors in transcribed words.

Speaker Similarity (SIM) Speaker characteristics are evaluated via cosine similarity between orig-
inal and reconstructed utterances, using a WavLM-large Chen et al. (2022)-based speaker verification
model 8.

UTMOS UTMOS Saeki et al. (2022) predicts Mean Opinion Score (MOS) for speech naturalness,
with scores from 1 (poor) to 5 (excellent). We use a pretrained UTMOS strong model 9.

Table 6: Model configurations

Configuration entry Value
Acoustic encoder hidden dim 1024
Acoustic encoder convoution blocks 5
Acoustic encoder up ratio [2, 2, 4, 4, 5]
Acoustic decoder hidden dim 1024
Acoustic decoder Transformer layers 12
Semantic encoder hidden dim 1024
Semantic decoder hidden dim 1024
FSQ scales (codebook size = 65536) [4, 4, 4, 4, 4, 4, 4, 4]
FSQ scales (codebook size = 16384) [4, 4, 4, 4, 4, 4, 4]
FSQ scales (codebook size = 8192) [4, 4, 4, 4, 4, 4, 2]

loss weight λsemantic 5.0
loss weight λacoustic 15.0
loss weight λadv 1.0
loss weight λguide (codebook size = 65536) 5.0
loss weight λguide (codebook size = 16384) 10.0
loss weight λguide (codebook size = 8192) 10.0

batch size 16
optimizer AdamW
optimizer betas [0.8, 0.9]
learning rate warmup steps 1000
learning rate decay steps 500000
learning rate min value 2e-5
learning rate max value 1e-4

A.2 MODEL CONFIGURATION

The detailed model configuration and loss weights are listed in Table 6. Most of the configurations
follows the default configuration of XCodec2. Specifically, the weight of the proposed self-guidance
feature mapping loss weight λguide is selected from the best of [1, 5, 10, 15], according to the overall
reconstruction performance in test trials.

B LLM USAGE

LLM is involved in the production of this paper in the following ways:

1. Polish the human-written manuscripts, correcting grammar and spelling errors, enhancing
readability and clarity of the paper.

7https://huggingface.co/facebook/hubert-large-ls960-ft
8https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_

verification
9https://github.com/tarepan/SpeechMOS
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2. Assisting in implementing the code for dataset preprocessing, as well as the collection and
visualization of the evaluation results.
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