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Abstract

A major challenge for narrative reasoning001
is to learn narrative coherence. Existing002
works mainly follow the contrastive learning003
paradigm. However, the negative samples004
in their methods can be easily distinguished,005
which makes their methods unsatisfactory. In006
this work, we devise two strategies for mining007
hard negatives, including (1) crisscrossing a008
narrative and its contrastive variants; and (2)009
event-level replacement. To obtain contrastive010
variants, we utilize the Brownian Bridge pro-011
cess to guarantee the quality of generated con-012
trastive narratives. We evaluate our model on013
several tasks. The result proves the effective-014
ness of our method, and shows that our method015
is applicable to many applications.016

1 Introduction017

Narrative reasoning (Charniak, 1972; Winograd,018

1972) is an account of the development of events,019

along with explanations of how and why these020

events happened (Hutto, 2015), which has pro-021

voked a variety of applcations, including common-022

sense causal reasoning (Roemmele et al., 2011;023

Gordon et al., 2012; Luo et al., 2016), abductive024

reasoning (Bhagavatula et al., 2019), and so on.025

A major challenge for narrative reasoning is to026

evaluate narrative coherence (Mostafazadeh et al.,027

2016). Existing methods mainly focus on devising028

self-supervised tasks, in which positive samples029

are from large-scale real narratives (Mostafazadeh030

et al., 2016; Yao and Huang, 2018), and negative031

samples are created by sampling-based strategies.032

For example, Xie et al. (2020); Lin et al. (2020b);033

Uehara et al. (2020) create negative samples by034

shuffling or masking real narratives. Krishna et al.035

(2022) incorporates randomly sampled sequences036

and model-completed (Radford et al., 2019; Brown037

et al., 2020) sequences as negative samples. How-038

ever, these strategies are generally coarse-grained039

and superficial. The resulting negatives still face040

problems of low quality, such as being irrelevant or 041

repetitive (Krishna et al., 2022), making them less 042

representative, and easily distinguishable. 043

Figure 1: We define that an example consists of a prefix
(P) and a suffix (S). Left: An ideal contrastive narra-
tive Xc, which is similar with X but conveys different
semantics. Text with red color denotes the difference.
Right: The solid line denotes the data manifold. The
dashed line represents the methods for synthesizing neg-
ative samples, such as Mixup (Zhang et al., 2017) or
crisscrossing. As Xc approaches X , the corresponding
negative sample should be more “hard".

Hard negatives are critical in the contrastive 044

learning framework (Wu et al., 2017; Mishchuk 045

et al., 2017; Xuan et al., 2020). The ideal of hard 046

negative samples should be that are similar to a 047

real narrative but actually less coherent. To mine 048

such negatives, a possible approach is to introduce 049

contrastive narratives. Contrastive narratives are 050

examples that are similar in content, but convey 051

different semantics (Margatina et al., 2021; Wang 052

et al., 2021). Due to this property, we can criss- 053

cross1 a narrative and its contrastive variants to 054

obtain negative samples, as shown in Figure 1. The 055

resulting negatives should be similar to the real nar- 056

ratives but less coherent, making them good candi- 057

dates for hard negatives. However, existing works 058

for collecting contrastive narratives rely heavily on 059

manual annotation, which is costly and not scal- 060

able. To solve this problem, exploiting automated 061

methods has great value, but is difficult since it 062

requires preserving subtle differences while pro- 063

viding a clear delineation between the observed 064

narrative and the generated ones. 065

1For example, according to X = (P, S) and Xc =
(Pc, Sc), we can exchange their prefixes and suffixes to obtain
the negatives (P, Sc) and (Pc, S). We define this strategy as
“crisscrossing", and use this definition in the rest of our paper.
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Actually, the generation of contrastive narratives066

involves exploring the latent space surrounding a067

given narrative, enabling the creation of similar068

narratives with distinct characteristics. Assuming069

that the evolution tendency of an observed narra-070

tive can be represented as a continuous trajectory071

in latent space, which can be modeled by Brow-072

nian motion (Revuz and Yor, 2013; Wang et al.,073

2022). Consequently, we can sample the latent tra-074

jectories which exhibit proximity to the observed075

trajectory, and then decode the sampled trajectories076

into explicit narratives. But the problem is that the077

decoded narratives may differ significantly in con-078

tent from the observed narrative, which may not079

meet the requirements for contrastive narratives.080

To simplify the problem, we further suggest that081

contrastive narratives keep the same endpoint as the082

observed narrative, which directly models the fact083

that a narrative event can evolve to the same end084

through different paths (Qin et al., 2019). Based085

on this constraint, we are able to sample different086

trajectories from the Brownian Bridge (Majumdar087

and Orland, 2015; Wang et al., 2022) region that is088

centered around the observed narrative. The sam-089

pled trajectories are decoded as narratives with the090

same start and end as the observed narrative, while091

also having similar but different intermediate event092

chains. Then we crisscross the observed narrative093

and the generated ones to synthesize negative sam-094

ples. In fact, in our crisscrossing strategy, the start095

and end points of resulting negatives remain the096

same as the positive ones. That is, the start and097

end of positive narratives will never be perturbed.098

This further motivates us to design an event-level099

perturbation to obtain negatives, as more diverse100

negatives definitely benefit contrastive learning.101

In this paper, we devise two strategies to cre-102

ate hard negatives for narrative coherence learning.103

The first strategy crisscrosses a narrative with its104

contrastive variants, and the second strategy per-105

forms an event-level replacement. To obtain con-106

trastive narratives, we first sample different latent107

trajectories from the Brownian Bridge region, then108

fix the start and end points of the narrative, and109

generate diverse contrastive narratives.110

Our contributions can be summarized as follows.111

(1) Based on the Brownian Bridge process, we gen-112

erate high-quality contrastive narratives, which are113

used to synthesize hard negatives. (2) We propose114

a new coherence evaluator (CohEval), which is115

enhanced by diverse and high-quality hard nega-116

tives. Our model is trained entirely through self-117

supervised contrastive learning, and can be applied 118

to a wide range of downstream tasks. 119

We evaluate our model on multi-choice tasks and 120

one narrative generation task. We also conduct an 121

in-depth analysis of our negative sample synthesis 122

strategies. The experimental results demonstrate 123

the effectiveness of our method. 124

2 Related Work 125

Counterfactual Story Generation Counterfac- 126

tual story generation (Qin et al., 2019; Hao et al., 127

2021; Chen et al., 2021) requires predicting how 128

alternative events, contrary to what actually hap- 129

pened, might have resulted in different story end- 130

ings. Existing works for counterfactual story gener- 131

ation mainly include manual annotation (Qin et al., 132

2019) or supervised fine-tuning (Hao et al., 2021) 133

methods. In our work, contrastive narratives can 134

be seen as a special case of counterfactual narra- 135

tives, where we confine that an observed narrative 136

and its contrastive variants have the same start and 137

end. We generate contrastive narratives in a self- 138

supervised manner, which is based on the Brownian 139

Bridge process (Wang et al., 2022). 140

Language Modeling via Stochastic Process 141

Generating long, coherent text is conceptually dif- 142

ficult for autoregressive models because they lack 143

the ability to model text structure and dynamics 144

(Lin et al., 2020a). Wang et al. (2022) explicitly 145

models latent structure with Brownian Bridge dy- 146

namics, which can capture how sentence embed- 147

dings evolve over a document. Motivated by Wang 148

et al. (2022), we use Brownian Bridge for gener- 149

ating contrastive stories because it allows for the 150

smooth modeling of gradual changes between two 151

narrative states. Based on the simple constraint, we 152

are able to generate coherent contrastive narratives, 153

which are used to synthetic hard negatives. 154

Hard Negatives Mining Earlier researchers de- 155

vise a series of corrupting strategies, such as shuf- 156

fling, masking, or lexical conversion, to perturb 157

real narratives (Cai et al., 2020; Xie et al., 2020; 158

Lin et al., 2020b; Uehara et al., 2020; Zhou et al., 159

2022a,b). Recent methods focus on mining hard 160

negatives. For example, Jwalapuram et al. (2021) 161

retrieves hard negatives from the corpus with a mo- 162

mentum encoder. Krishna et al. (2022) incorporates 163

random sequences and model-generated sequences 164

as hard negatives. Kalantidis et al. (2020) mixes 165

different negatives in latent space to create hard 166
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negatives. Zhang et al. (2022) mixes multiple pos-167

itive samples to produce hard negatives. Instead,168

we propose to use a narrative with its contrastive169

variants to synthesize hard negatives. Since the con-170

trastive narratives are similar to the original ones,171

we can obtain qualified negatives.172

3 Methods173

3.1 Data Preparation174

Following the previous method (Cai et al., 2020),175

we use RocStories (Mostafazadeh et al., 2016) as176

our data corpus, since it contains abundant event177

commonsense knowledge, making it a good re-178

source for narrative reasoning. Due to the limi-179

tation of computational resources, we randomly180

select about 20k samples from RocStories, and de-181

note them as the positive sample set D+. Each182

sample in D+ is a narrative X = {e1, · · · , e5},183

in which each ei (i = 1, · · · , 5) is an event. Fol-184

lowing previous works, we lay narrative coherence185

learning in the contrastive learning framework, in186

which the negative samples are needed for training.187

We devise two strategies for mining hard neg-188

atives: (1) crisscrossing a narrative and its con-189

trastive variants; (2) event-level replacement. Next,190

we introduce how to obtain contrastive narratives.191

3.2 Generating Contrastive Narratives via the192

Brownian Bridge Process193

Given a narrative, the contrastive variants should194

be similar to it and express distinctive characteris-195

tics. We regard this problem as exploring the latent196

space surrounding the given narrative, and propose197

to model this problem by the Brownian Bridge pro-198

cess (Wang et al., 2022). The transition distribution199

of a Brownian Bridge process from a start point z0200

at t = 0 to an endpoint zT at t = T is:201

p(zt|z0, zT ) ∼ N ((1− t

T
)z0 +

t

T
zT ,

t(T − t)

T
). (1)202

It acts like a noisy linear interpolation between the203

start and end points of the trajectory, which can204

maintain a smooth transition of event evolution205

given the start and end points.206

Following (Wang et al., 2022), we pre-train an207

encoder with the Brownian Bridge loss2, so that208

we can encode an event e to the latent code z.209

Then, by fixing (z1, z5), we sample zt accord-210

ing to Equation 1 to obtain the latent trajectories211

Z = {z1, z2, z3, z4, z5}. To generate contrastive212

narratives, we encode (e1, e5) with BART (Lewis213

2See Appendix A and (Wang et al., 2022) for details.

et al., 2019) to obtain the context embeddings: 214

Hc = BARTEncoder([e1, e5]), (2) 215

where [; ] denotes the concatenation, Hc ∈ Rl×d, 216

l is the length of [e1; e5]. Next, given Hc and 217

latent codes Z, we generate middle events y = 218

(e2, e3, e4). Specifically, let yt denotes the t-th to- 219

kens in y. At the timestep t, the decoder must 220

predict yt using Hc, all tokens in the past y<t, as 221

well as the event latent codes Z, 222

hyt = BARTDecoder(y<t,Hc,W
T
z Z)

P (yt|Y<t) = softmaxV (Wvhyt + b).
(3) 223

where V denotes the standard vocabulary, Wz de- 224

notes a linear layer that maps the dimension of z to 225

be identical to Hc. This can be seen as decoding 226

a latent trajectory {z1, z2, z3, z4, z5} into narrative 227

events given the start event e1 and end event e5. 228

However, in our preliminary trials, we found that 229

the generated narratives are coherent but less simi- 230

lar to the original one, which brings difficulties to 231

the construction of hard negatives. The possible 232

reason is that the encoding process, i.e., encoding e 233

to z, lost too much information, making it difficult 234

for the model to reconstruct y. To solve this prob- 235

lem, we randomly mask the y with the ratio of ρ 236

(0.85 by default), and use the masked sequence as 237

the prompt for the decoding phrase, which encour- 238

ages the decoder to generate more similar events 239

to y. Actually, these can be seen as two types of 240

constraints, where Z requires that y and the gener- 241

ated text show similar trajectories in latent space, 242

and the masked prompt requires that y and the gen- 243

erated text are similar in vocabulary. The whole 244

training process is shown in Figure 2. 245

When training, we use RocStories excluding 246

D+ as training data. We have also tried other pre- 247

trained models, such as GPT2 (Radford et al., 2019) 248

and T5 (Raffel et al., 2020), and BART empirically 249

performs best, as shown in Appendix B. Therefore, 250

we choose BART as the backbone. After train- 251

ing, for each X ∈ D+, we fix its start and end 252

events, then sample different intermediate events. 253

For each X , we first generate 200 candidates, then 254

use several criteria3 to filter low-quality candidates. 255

We finally retain N (60 by default) most-qualified 256

contrastive examples. 257

3.3 Synthesizing Negative Examples 258

We devise two strategies to create negative exam- 259

ples. The first strategy crisscrosses a narrative with 260

3See Appendix C for details.
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Figure 2: The training phrase of contrastive narratives generation. Given z1 and z5, Z is sampled according to
Equation 1. The masked e2, e3, e4 are used as the prompt for decoding.

its contrastive variants, and the second strategy per-261

forms an event-level replacement.262

3.3.1 Crisscrossing a Narrative and its263

Contrastive Variants264

Note that each X contains five events. For sim-265

plicity, we define the first two events as the prefix266

(P ), and the last three events as the suffix (S), so267

that we denote X = (P, S) and the contrastive268

variant Xc = (Pc, Sc). Then we are able to syn-269

thesize the negative example X− = (P, Sc). The270

basic intuition is: Sc is coherent with Pc, so it271

should be less coherent with P . This is because272

X and Xc are different paths with the same start273

and end points. Meanwhile, X− = (P, Sc) is sim-274

ilar to X = (P, S), making it qualified as a hard275

negative4. With loss of generality, we denote the276

obtained negative samples as CX = {X−
i }2Ni=1.277

For each training epoch, we randomly sample K278

(15 by default) negatives samples {X−
k }

K
k=1 from279

CX for each X , and feed them as well as X into a280

pre-trained language model (PLM) (Devlin et al.,281

2018a; Liu et al., 2019), e.g. RoBERTa, to obtain282

sequence-level representations:283

h+ = RoBERTa(X),h−
k = RoBERTa(X−

k ), (4)284

where k = {1, · · · ,K}, h+ and h−
k ∈ R

d, d is285

the hidden size of RoBERTa. We have also tried286

BERT (Devlin et al., 2018b) as the backbone, as287

shown in Appendix E. Next, the sequence-level288

representations are passed into a linear layer Wc ∈289

Rd to derive coherence scores of all samples:290

s+ = WT
c h

+, s−k = WT
c h

−
k . (5)291

Lastly, we use the contrastive classifying objec-292

tive to distinguish the positive examples from the293

corresponding negative examples:294

L1 = − 1

|D+|
∑
D+

log
exp(s+)

exp(s+) +
∑K

k=1 exp(s
−
k )

. (6)295

It should be noted that the difference between296

X− = (P, Sc) and X = (P, S) lies in the third and297

fourth events, i.e., e3 and e4. Due to the masked298

4Similarly, we can obtain the negative example X− =
(Pc, S) by defining the first three events as the prefix.

prompt, some tokens in (e3, e4) of X− are similar 299

to those of X , making X− qualified. However, in 300

the crisscrossing strategy, e1 and e5 will never be 301

perturbed. This further motivates us to perform a 302

simple event-level perturbation to X to creating 303

more diverse negative samples. 304

3.3.2 Event-level Replacement 305

Due to the fact that events are the basic semantic 306

unit of neural language, for a narrative, if we re- 307

place a component event with another similar but 308

different event, the resulting example should be 309

less coherent and similar to the original narrative. 310

Specifically, based on D+, we build an event 311

pool, which consists of about 100k different events. 312

We pre-compute the cosine similarity among all 313

event pairs using SimCSE (Gao et al., 2021), 314

and cache the top 20 most similar events Qe for 315

each query event e. Then, given a positive ex- 316

ample X , we randomly select a position i and 317

replace i-th event ei with a randomly sampled 318

event ē from Qe to create a negative example 319

X̄ = {· · · , ei−1, ē, ei+1, · · · }. Likewise, for each 320

training epoch, we create K negatives samples 321

{X̄k}Kk=1. After obtaining hidden states of neg- 322

atives: h̄k = RoBERTa(X̄k), we derive coherence 323

scores of all samples and use the contrastive loss 324

to rank the positive sample above the negatives: 325

s+ = WT
c h

+, s̄k = WT
c h̄k,

L2 = − 1

|D+|
∑
D+

log
exp(s+)

exp(s+) +
∑K

k=1 exp(s̄k)
.

(7) 326

3.4 Training and Knowledge Transferring 327

When training, the final loss is 328

L = γL1 + (1− γ)L2, (8) 329

where γ is set to 0.5. It should be noted that an- 330

other way is to merge two types of negatives and 331

directly perform contrastive learning. However, 332

this requires more GPU memory, which exceeds 333

our condition. Therefore, we calculate the two 334

losses separately and then average them. 335

Our CohEval can be easily transferred to many 336

downstream applications. For example, for the 337
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multi-choice task with a input C and option candi-338

dates O = {o1, · · · , on}, we can use CohEval to339

select most reasonable o by:340

o← argmax
i

CohEval([C, oi]). (9)341

Motivated by existing plug-and-play text genera-342

tion methods (Miao et al., 2018; Chen et al., 2021),343

we also evaluate our CohEval in narrative text gen-344

eration, with CohEval as coherence guidance. De-345

tails can be seen in the experiment.346

4 Experiment347

4.1 Datasets and Experimental Details348

The evaluation datasets include COPA (Roemmele349

et al., 2011), e-Care (Du et al., 2022a), αNLI350

(Bhagavatula et al., 2020), Cloze (Mostafazadeh351

et al., 2016), Swag (Zellers et al., 2018), HellaSwag352

(Zellers et al., 2019), and TimeTravel (Qin et al.,353

2019). TimeTravel is a text-generation dataset,354

while others are multi-choice datasets. We evaluate355

our model on these datasets in the zero-shot setting.356

Note that the test sets of e-Care and HellaSwag357

are not released. So we evaluate our model on the358

validation set of the three datasets. The statistics of359

the datasets, as well as the experimental details are360

shown in Appendix D.361

Methods COPA e-Care αNLI Cloze Swag HS.

LLMs-based Prompting
Alpaca-lora (7B) 57.4 54.5 52.6 66.1 36.0 30.2
ChatGLM2 (6B) 78.1 66.9 58.1 84.3 48.7 41.2
ChatGPT 96.2 81.8 75.5 94.7 70.7 76.4

Contrastive Training Based Methods
RankGen(base) 63.8 70.3 52.2 50.7 46.3 33.9
RankGen(large) 70.2 72.1 54.8 54.4 49.2 40.5
EventBERT N/A N/A 59.5 75.6 N/A N/A
CohEval (ours) 77.8 71.9 67.6 77.6 67.4 44.9

Ablation Study

MER 73.4 75.4 65.3 77.1 61.8 38.9
MCC 75.8 68.2 67.2 69.4 66.9 44.7

Table 1: The accurary (%) on multi-choice datasets. HS.
denotes HellaSwag. Scores with bold denote the best
results among contrastive training based methods.

4.2 Baselines and Metrics362

For multi-choice tasks, the metric is Accuracy.363

We compare our method with EventBERT (Zhou364

et al., 2022a), RankGen (Krishna et al., 2022)365

and several large language models (LLMs), in-366

cluding Alpaca-lora (7B)5, ChatGLM2 (6B) (Du367

5The checkpoint is at https://github.com/tloen/alpaca-lora.

et al., 2022b; Zeng et al., 2022) and ChatGPT 368

(OpenAI. , 2023). For LLMs, we use one-shot 369

prompting for experiments, the used prompts are 370

in Appendix F. For TimeTravel, we follow Chen 371

et al. (2021) and formulate this task in the MCMC- 372

based sampling paradigm. The details are in 373

Appendix G. We compare our method with DE- 374

LOREAN (Qin et al., 2020), ClarET (Zhou et al., 375

2022b), CGMH (Miao et al., 2018), EDUCAT 376

(Chen et al., 2021). Automatic evaluation metrics 377

include BLEU4 (Papineni et al., 2002), BertScore 378

(Zhang et al., 2019), ENTScore (Chen et al., 2021), 379

and HMean= 2·BLEU4·ENTScore
BLEU4·ENTScore (Chen et al., 2021). 380

Manual evaluation metrics include Fluency, Min- 381

Edits (Chen et al., 2021), and Coherence. The 382

details of manual evaluation are in Appendix H. 383

4.3 Overall Results 384

Automatic Evaluation The automatic evaluation 385

result can be seen in Table 1 and 2, respectively. 386

We have the following observations. 387

• In Table 1, our model surpasses all contrastive 388

training-based methods. This indicates that the 389

negative samples we create are more qualified, 390

which verifies the effectiveness of our method. 391

• Although there is still a significant gap com- 392

pared to ChatGPT, our method surpasses smaller 393

LLMs, e.g., ChatGLM2, on most datasets. 394

• In Table 2, our method outperforms EDUCAT. 395

Since EDUCAT uses the off-the-shelf PLMs for 396

evaluating coherence, the performance improve- 397

ment proves that our CohEval is better at evalu- 398

ating narrative coherence. 399

• Compared with our method, ChatGLM2 and 400

ChatGPT achieve high ENTScore, but low 401

BLEU4. This indicates that auto-regressive meth- 402

ods tend to generate coherence counterfactual 403

ending with massive edits. These behaviors con- 404

flict with the requirements of the task. 405

Ablation Study To investigate the influence of 406

the two kinds of negatives, we devise two ablated 407

variants: (1) MER which means we create nega- 408

tives via event-level replacement; (2) MCC which 409

means we create negatives via the crisscrossing 410

strategy. The ablation study result is shown in Ta- 411

ble 1, 2. We have the following observations. 412

• Compared to CohEval, MER and MCC achieve 413

lower ENTScore, indicating their weaker co- 414

herence evaluation abilities. But both variants 415

obtain higher BLEU4 and BertScore. In Time- 416

Travel, there is a trade-off phenomenon between 417

5



Methods BLEU4 BertS. ENTS. HMean

LLMs-based Prompting
ChatGLM2 (6B) 16.47 60.03 66.15 26.37
ChatGPT 36.41 69.81 82.62 50.55

Off-the-shelf small PLMs
DELOREAN 23.89 59.88 51.40 32.62
ClarET 23.75 63.93 N/A N/A
CGMH† 41.09 73.90 28.06 33.34
EDUCAT 44.05 74.06 32.28 37.26
EDUCAT† 43.57 74.00 33.41 37.82
CohEval (ours) 42.46 73.36 37.39 39.77

Ablation Study

MER 44.18 74.34 34.63 38.82
MCC 42.99 73.64 35.78 39.05

Table 2: The automatic result on TimeTravel. † denotes
our implementation. BertS. denotes BertScore. ENTS.
denotes ENTScore. Scores with bold denote the best
results among off-the-shelf small PLMs.

BLEU and EntScore. This is because the gold418

y′ is obtained through editing the original y with419

minimal-edits. This leads to a high word over-420

lap between y′ and y. Due to the weaker co-421

herence evaluation abilities of the two variants,422

the probability of accepting transitions is lower423

when adopting MCMC for rewriting. In other424

words, when using MER and MCC , the number425

of rewritings is relatively low, resulting in higher426

BLEU4 and BertScore but lower ENTScore.427

• The best ENTScore is achieved by combining428

two kinds of hard negatives. This indicates the429

two kinds of negatives complement each other.430

The reason is that more diverse negative exam-431

ples contribute to contrastive learning.432

• MCC generally performs better than MER. The433

possible reason is that, compared to the criss-434

crossing strategy, the event-level perturbation is435

more coarse-grained. Nevertheless, event-level436

replacement is an effective supplement to the437

crisscrossing strategies.438

Manual Evaluation on TimeTravel We perform439

an A/B test to compare our method with several440

baselines. The details of manual evaluation are in441

Appendix H. As is shown in Table 3, LLMs are442

able to generate fluent and coherent counterfactual443

ending, but tend to massively edit the original end-444

ing, which coincides with the finding in automatic445

evaluation. Compared to EDUCAT and two ab-446

lated variants, CohEval achieves better fluency and447

coherence results. In addition, these four models448

achieve similar Min-Edits results, this is because449

they run for the same editing steps. The Fleiss’s 450

kappa reliability of Fluency, Min-Edits, and Coher- 451

ence is 0.488, 0.507, and 0.428, respectively. 452

Methods Fluency Min-Edits Coherence

W(%) L(%) W(%) L(%) W(%) L(%)

vs. EDUCAT† 27.0 13.7 23.0 24.7 33.7 4.7
vs. MER 25.7 16.7 22.3 23.3 28.0 6.7
vs. MCC 20.0 12.0 23.7 22.3 23.0 7.0
vs. ChatGLM2 13.3 45.3 84.7 7.7 19.0 37.0
vs. ChatGPT 14.7 41.3 60.3 25.0 13.7 40.0

Table 3: Manual evaluation result on TimeTravel.
Scores indicate the percentage of Win(W) and Lose(L).

Human Correlation with our CohEval Same 453

as (Chen et al., 2021), we analyze the correlation 454

between our CohEval and human ratings in terms 455

of coherence evaluation. We calculate three coeffi- 456

cients, including Pearson’s r and Kendall’s τ . The 457

result is shown in Appendix I. All results show a 458

positive correlation. The result of our CohEval is 459

close to that of ENTScore. Notice that ENTScore 460

is trained with human-labeled counterfactual data, 461

while our CohEval is trained in a self-supervised 462

manner. This demonstrates the applicability of our 463

CohEval. 464

Overall, the result demonstrates that our CohE- 465

val is a generic narrative coherence evaluator, and 466

can be applied to a wide range of downstream tasks. 467

4.4 Deeper Analysis about Contrastive 468

Narratives Generation 469

Indirect Evaluation through Multi-choice Tasks 470

We conduct an ablation experiment to explore the 471

impact of different sub-modules in contrastive nar- 472

ratives generation. We compare our Brownian- 473

Bridge based method (denoted as “BB") with the 474

following variants. (1) “w/o prompt", in which 475

we ablate the masked prompt when training. (2) 476

“w/o trajectory", in which we ablate the latent tra- 477

jectories sampled from the Brownian bridge. (3) 478

“Infilling", in which we ablate the masked prompt 479

and the sampled latent trajectory when training. 480

In this case, the ablated variant degenerates into a 481

text-infilling model. We use the counterparts gener- 482

ated by different variants for crisscrossing to obtain 483

negative examples, which are then used for con- 484

trastive learning. The result is shown in Table 4. 485

We find: (1) Compared to “BB", “w/o prompt" and 486

“w/o trajectory" get result drops, respectively; (2) 487

“Infilling" gets a further performance drop. 488
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The possible reasons lie in the following aspects.489

(1) If contrastive narratives are incoherent, then the490

synthesized negatives are not “hard". The sampled491

latent trajectories help to maintain the coherence of492

generated contrastive narratives, which benefits the493

quality of synthesized negatives. (2) The masked494

prompt helps to reduce the difficulty of the gener-495

ation process, as a result, the obtained contrastive496

counterparts are similar to the original ones, mak-497

ing the resulting negatives more qualified.498

Methods COPA e-Care αNLI Cloze Swag HS. ∇

BB (our MCC ) 75.8 68.2 67.2 69.4 66.9 44.7 —
w/o prompt 79.0 65.4 68.5 75.6 59.2 39.9 -4.6
w/o trajectory 71.0 71.2 65.9 69.9 67.1 42.0 -5.1
Infilling 72.2 71.9 64.8 77.7 58.1 40.4 -7.1

Table 4: The result (%) of different kinds of counterparts
for synthesizing negative examples.

Methods Coherence Similarity SubtleDiff.

W(%) L(%) W(%) L(%) W(%) L(%)

vs. w/o prompt 43.0 19.0 46.0 6.3 27.3 7.0
vs. w/o trajectory 53.7 15.3 26.7 7.7 28.0 12.7
vs. Infilling 60.3 10.3 56.3 5.7 49.0 6.7
vs. ChatGLM2 40.0 20.0 39.0 20.3 24.3 28.3
vs. ChatGPT 21.0 26.0 30.7 17.0 18.0 23.0

Table 5: The manual evaluation on contrastive narratives
generation. We compare “BB" with “w/o prompt", “w/o
trajectory", “Infilling", ChatGLM2, and ChatGPT.

Direct Evaluation through Manual Judgement499

We further conduct a manual evaluation to directly500

evaluate the quality of generated contrastive nar-501

ratives. Since we want the generated narrative to502

be similar to the original one and reflect subtle dif-503

ferences (such as changes in opinions or entities)504

to make itself a different story, we use Coherence,505

as well as Similarity and SubtleDifference (Sub-506

tleDiff.) as metrics. Details about the evaluation507

setting, as well as the used metrics, are in Appendix508

H. In Table 5, ChatGPT generally exhibits the best509

result, which reflects its powerful reasoning ability.510

Our “BB" is slightly inferior to ChatGLM2 on Sub-511

tleDiff. , but wins on the other two metrics. This512

indicates that our method is comparable to small513

LLMs. In addition, “BB" significantly surpasses514

the ablated variants. Specifically, we find that the515

masked prompt helps to improve Similarity, while516

latent trajectory helps to improve Coherence. This517

coincides with human intuition. The Fleiss’s kappa518

reliability of Coherence, Similarity, and SubtleDiff.519

Figure 3: Results under the different number of retrained
contrastive narratives.

is 0.369, 0.371, 0.244, respectively. 520

Generally, by utilizing the Brownian bridge pro- 521

cess, we harvest qualified contrastive narratives, 522

which contributes to contrastive learning. 523

4.5 Further Discussion 524

Influence of Different Strategies for Creating 525

Negatives In our method, we crisscross a posi- 526

tive narrative with its contrastive counterparts to 527

create negatives. Here, we further investigate the 528

result when using Mixup (Zhang et al., 2017) to 529

create negatives. Settings and results are shown in 530

Appendix J. The crisscrossing strategy is superior 531

then Mixup by a large margin. We speculate that in 532

the era of transformer (Vaswani et al., 2017), using 533

the transformer to directly learn the representation 534

of negative samples is better than manipulating rep- 535

resentations of samples in the hidden space. 536

Results under Different Number of Retained 537

Contrastive Narratives We explore the influ- 538

ence of the number of retained contrastive narra- 539

tives. The result is shown in Figure 3. Our method 540

generally achieves the best result when N = 60, 541

and the result even decreases when N further in- 542

creases. We speculate that as N increases, inco- 543

herent contrastive examples increase, which has 544

a negative impact on the quality of synthesized 545

negative examples. So, we set N = 60 by default. 546

Impact of the Mask Ratio ρ We investigate the 547

impact of the different mask ratio ρ when gener- 548

ating contrastive narratives. In Table 6, the result 549

is best when ρ = 0.85. As ρ decreases, the result 550

gets worse. To investigate the reason, we man- 551

ually examine the generated examples, and find 552

the model tends to paraphrase the original story 553

and generate duplicate examples when ρ decreases. 554

This is because more information about the origi- 555

nal story will be exposed when using a lower mask 556

rate, making it easier to reconstruct the original 557

story. We additionally calculate the diversity of the 558

contrastive narratives generated at different ρ. We 559

use Distinct-n (Li et al., 2015) as the metric. As 560
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shown in Table 6, as ρ decreases, the corresponding561

Distinct scores also decrease. This indicates that a562

lower mask rate ρ may lead to duplicate samples563

when the generation phase, which harms the diver-564

sity of synthesized negative samples. Therefore,565

we proactively filter out duplicate items.

ρ
Accuracy(%) Dist-2 Dist-3

αNLI Swag HS.

ρ = 0.90 65.2 67.5 42.6 26.4 41.0
ρ = 0.85 67.5 67.4 44.9 27.1 42.6
ρ = 0.80 66.2 66.5 43.3 26.8 42.9
ρ = 0.70 64.0 63.4 42.9 25.0 40.7

Table 6: The result under the different ρ. Dist-n denotes
Distinct-n. Scores with bold denote the best result.

566

Types ENTScore FN Rate

Positive examples 94.6 N/A
Negatives via replacement 54.5 3.0%
Negatives via crisscrossing 65.9 4.3%

Table 7: The reliability evaluation of created negatives.
FN denotes false negative.

The Reliability of Created Negative Examples567

We further analyze whether the created negative568

samples are indeed “negative". On the training569

set, we first use ENTScore to directly evaluate the570

coherence of positive samples and two types of571

negatives. As shown in Table 7, the real positive ex-572

amples receive an especially high ENTScore. How-573

ever, the synthesized two types of negatives receive574

lower ENTScore, proving that they are obviously575

less coherent than positive examples. Next, we576

sample 100 cases and ask the annotators to make577

a judgment about whether the created ‘negatives‘578

are actually more coherent than positives, making579

them false negatives. As shown in Table 7, both580

types of negatives show a low FN rate. We show581

the error cases in the Appendix K.582

Visualize the Representations of Examples using583

t-SNE It is interesting to qualitatively visualize584

our model’s ability to distinguish hard negatives.585

Based on the test set of TimeTravel, we are able to586

obtain positive examples and corresponding hard587

negatives. We leave the details in Appendix L.588

We use our CohEval and the ablated variant MER,589

respectively, to obtain the representations of the590

examples, then we use t-SNE (Van der Maaten591

and Hinton, 2008) to visualize the representations.592

As shown in Figure 4 (a), the representations of593

positive and negative examples obtained by MER 594

entangle together, this shows that MER, a model 595

that significantly outperforms baselines, still suf- 596

fers from distinguishing the created positive and 597

negative examples. But in Figure 4 (b), positive 598

samples are concentrated on the right, while neg- 599

ative samples are concentrated on the left. This 600

proves our CohEval’s ability to distinguish positive 601

examples from hard negatives, and confirms the ef- 602

fectiveness of the generated contrastive narratives. 603

(a) MER (b) CohEval

Figure 4: Visualization of the representations of exam-
ples obtained from different models.

Case Study Appendix M, Table 15 presents a 604

case study for the task of TimeTravel. The coun- 605

terfactual endings generated by ChatGLM2 and 606

ChatGPT are coherent but very different from the 607

original ending. This conflicts with the minimal- 608

editing requirement of the task. On the contrary, 609

based on the MCMC sampling, our method can 610

produce similar and coherent counterfactual end- 611

ings. Appendix M, Table 16 presents a case study 612

for contrastive narratives generation. Due to the 613

sampled different trajectories, in the case #1, our 614

method shifts the topic of accent to personality, and 615

produces a coherent story. And in the case #2, our 616

method exchanges the opinions of two participants. 617

On the contrary, the middle events generated by 618

ChatGLM2 and ChatGPT show a significant differ- 619

ence from that of the original story. 620

5 Conclusion 621

In this paper, we propose to use the Brownian 622

Bridge process to generate contrastive narratives, 623

then we crisscross a positive story and its con- 624

trastive variants to create negative examples for 625

contrastive learning. In addition, we devise the 626

event-level replacement, which is the effective sup- 627

plement to the crisscrossing strategy. The exper- 628

iment verifies that (1) the generated contrastive 629

narratives are qualified, and (2) our CohEval is ef- 630

fective and is a general coherence evaluator that is 631

applicable to many downstream tasks. 632
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6 Limitations633

To automatically generate contrastive narratives,634

we made the following assumption: the observed635

story and its contrastive variants have the same start636

and end events. However, this assumption may not637

be consistent with reality. In addition, under limited638

computing resources, we are unable to explore our639

method on larger data scales and larger pre-trained640

models. The experiment shows that our method641

is not able to surpass ChatGPT. But this does not642

mean that our work has no value in the era of large643

language models.644

Our method is essentially a discriminative model,645

while LLMs are generative models. They have dif-646

ferent advantages. For example, LLM is better at647

generating coherent text, and our CohEval is bet-648

ter at multi-choice tasks. In fact, on TimeTravel,649

we use MCMC to make our CohEval applicable to650

generating tasks. Therefore, the gap between our651

method and LLM has been magnified. On discrim-652

inative tasks, although our model is not as good as653

ChatGPT, it outperforms the smaller ChatGLM on654

most multi-choice tasks. On the other hand, it is655

inherently unfair to directly compare small models656

with LLMs, as large models are obtained with mas-657

sive resources, e.g., data, hardware, funding, etc.658

Due to resource limitations, our method is not as659

good as ChatGPT, but it is superior to ChatGLM,660

which also indicates that our method is valuable in661

low-resource scenarios. Meanwhile, as data and662

methods can be shared, with sufficient computa-663

tional resources, we can use a larger backbone and664

more data for training, which is expected to yield665

better results. We leave this in future works.666

7 Ethical Considerations667

This work does not involve any sensitive data, but668

only crowd-sourced datasets released in previous669

works, including RocStories (Mostafazadeh et al.,670

2016), COPA (Roemmele et al., 2011), e-Care (Du671

et al., 2022a), αNLI (Bhagavatula et al., 2020),672

Cloze (Mostafazadeh et al., 2016), Swag (Zellers673

et al., 2018), HellaSwag (Zellers et al., 2019), and674

TimeTravel (Qin et al., 2019). We believe that our675

research work meets the ethics of ACL.676
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PLMs Fluency (↓) ENTScore (↑)

GPT2 2.8 58.2
T5 3.3 52.2
BART 3.4 66.7

Table 8: Impact of different backbones for contrastive
narratives generation.

A Training Details about the Event902

Encoder903

The event encoder is a nonlinear mapping from raw904

input space to latent space, fθ : X → Z . Con-905

sider a set of triplet observations, (x1, x2, x3), the906

goal is to ensure that fθ(x1), fθ(x2), fθ(x3) follow907

the Brownian bridge transition density in Equation908

1. Following (Wang et al., 2022), we ensure this909

using a contrastive objective. Formally, given a910

narrative event sequences, S = {e0, · · · , e4}, we911

draw batches consisting of randomly sampled pos-912

itive triplets e0, et, eT where 0 < t < T : B =913

{(e0, et, eT )}. Note that we use indices 0, t, T to914

denote the start, middle, and end points of a Brow-915

nian bridge, but these do not correspond to strictly916

sampling the first, middle, and last events of a nar-917

rative story. The encoder is optimized by,918

Lf = − log
exp(d(e0, et, eT ; fθ))∑

(e0,et′ ,eT )∈B
exp(d(e0, et′ , eT ; fθ))

d(e0, et, eT ; fθ) = − 1

2σ2
||fθ(et)− µ||22,

(10)919

where µ and σ2 are the mean and variance in Equa-920

tion 1. As suggested by (Wang et al., 2022), we921

freeze the BART and add a non-linear layer that922

converts the BART output to a latent vector. The923

size of the latent space is set to 64 by default.924

B Impact of Different Backbones for925

Generating Contrastive Narratives926

We conduct a preliminary study on the influence927

of different backbones, including GPT2 (Radford928

et al., 2019) and T5 (Raffel et al., 2020), and BART929

(Lewis et al., 2019), for generating contrastive nar-930

ratives. We use Fluency and ENTScore as metrics.931

Fluency evaluates whether the generated text is a932

fluent text sequence. We use off-the-shelf GPT2 to933

calculate Fluency. ENTScore evaluates the coher-934

ence of the generated stories. We randomly sample935

2000 examples that do not exist in training for eval-936

uation. We calculate the average result. As shown937

in Table 8, GPT2 is good at generating more flu- 938

ent text, and BART generates more coherent text. 939

A possible reason is that the contrastive narrative 940

generation is more compatible with BART’s pre- 941

training task, e.g., masked auto-encoding. Finally, 942

we choose BART as the backbone. 943

C Criteria for Filtering Low-Quality 944

Candidates 945

For each positive narrative, we generate 200 can- 946

didates. In practice, we observe that the generator 947

may produce incoherent or duplicate candidates. 948

Therefore, we set several rules to filter low-quality 949

items. We first use our event-level replacement 950

strategy to train the base evaluator MER. We use 951

MER to filter items whose coherence scores are 952

smaller than a threshold (empirically set to 0). Next, 953

for each candidate, we calculate its text similarity 954

with the remaining candidates. We gradually dis- 955

card the candidates with the highest similarity until 956

there are 100 remaining. When training Coheval, 957

we select N top-ranked candidates according to 958

their coherence scores for synthesizing negative 959

samples. 960

D Statistics and Experimental Details 961

Statistics Table 11 shows the statistics of the 962

used datasets. 963

Experimental Details For training the con- 964

trastive narratives generator, we use BART-base 965

as the backbone. Batch-size is set to 16. We use 966

the AdamW optimizer. lr is set to 5e-5. Weight- 967

decay is set to 1e-4. We train the generator with 968

10 epochs and linearly decrease the lr to zero with 969

no warmup. When the generation phase, we kept 970

the N = 60 most qualified contrastive narratives 971

for creating negative examples. For training our 972

CohEval, we adopt RoBERTa-large as the back- 973

bone. We train our model for 5 epochs, and then 974

evaluate it on downstream tasks. We set batch-size 975

to 1 and gradient-accumulation-steps to 16. For 976

each positive example, we sample 15 negative ex- 977

amples for contrastive training. lr is set to 5e-5. 978

Weight-decay is set to 1e-4. We use the AdamW 979

optimizer and linearly decrease the lr to zero with 980

a 10% warmup ratio. The random seed is set to 42 981

for all experiments. All experiments are performed 982

on a Ubuntu server with 4×RTX2080Ti GPUs. 983
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Tasks Prompt

HellaSwag

Multi-choice Task: Given a context event, select the most reasonable subsequent event from the following four choices.

Here is one example:
###
Context event: The man examines the instrument in his hand.
Please select the most reasonable subsequent event from the following four choices.
Choice1: The person studies a picture of the man playing the violin.
Choice2: The person holds up the violin to his chin and gets ready.
Choice3: The person stops to speak to the camera again.
Choice4: The person puts his arm around the man and backs away.
Between Choice1, Choice2, Choice3 and Choice4, the correct one is:
Choice2
###
Now, given the following example, please select the correct answer. No further explanation is required.

Context event: {context}
Please select the most reasonable subsequent event from the following four choices.
Choice1: {op1}
Choice2: {op2}
Choice3: {op3}
Choice4: {op4}
Between Choice1, Choice2, Choice3 and Choice4, the correct one is:

TimeTravel

Each story contains 5 sentences, where the first two sentences are the story premise, and the last 3 sentences are the story ending.
I will apply subtle a perturbation to the second sentence, making the first two sentences a counterfactual story premise.
Due to the slight perturbation, the counterfactual premise is very similar to the original premise, with only some words being
different. According to the original story and the counterfactual story premise, you are required to predict the counterfactual
story ending. Note that the counterfactual story ending should be similar to the original story ending, as well as be coherent
with the counterfactual story premise.

Here is one example:
###
<Original 5-sentences story>
1. Bella wanted to cook some spaghetti and meatballs.
2. She discovered she had no pasta noodles.
3. She found a recipe online that used spaghetti squash instead.
4. Bella luckily had a spaghetti squash on hand.
5. She was surprised to find the spaghetti and meatballs delicious!

<Counterfactual story premise>
1. Bella wanted to cook some spaghetti and meatballs.
2. She realized she didn’t have the time to make it properly so she changed made an omelette instead.

<Counterfactual story ending>
3. She found a recipe online that used egg whites instead.
4. Bell luckily had many eggs on hand.
5. She was surprised to find the egg white omelette delicious!
<END>
###
Now, given the following example, please write the counterfactual story ending.
There should be only three sentences at the counterfactual story ending. Ending with <END>.

<Original 5-sentences story>
{original_story}

<Counterfactual story premise>
{counterfactual_premise}

<Counterfactual story ending>

Contrastive
Narratives
Generation

Contrastive story generation:
You will see a five-sentence story. Now let’s fix the first and last sentences, and you need to generate another middle three
sentences to make the resulted five sentences form a different story.
Ensure that your generation is similar to the original story and conveys different semantics.
Here is one example:

###
<Original Story>
1. Sam and John went out to play some ultimate Frisbee one day.
2. Upon arrival at the field, there was a pickup game of football going.
3. Sam approached them and asked them to let him and John play as well.
4. After a few minutes talk, they agreed and everyone played for a bit.
5. Then they all went home.

<The fixed first and last sentences>
1. Sam and John went out to play some ultimate Frisbee one day.
5. Then they all went home.

<Generated middle 3 sentences>
2. Upon arrival at the field they found it deserted.
3. Sam and John played on the field by themselves.
4. After a few minutes, they agreed they were bored.
###
Now, given the following input, generate the middle three sentences.

<Original Story>
{original_story}

<The fixed first and last sentences>
{first_last_events}

<Generated middle 3 sentences>

Table 9: The prompts used for different tasks.
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Premise (z) Alec’s daughter wanted more blocks to play with.
Initial (x) Alec figured that blocks would develop her scientific mind.

Original Ending (y) Alec bought blocks with letters on them. Alec’s daughter made words with them rather
than structures. Alec was happy to see his daughter developing her verbal ability.

Counterfactual (x′) Alec couldn’t afford to buy new blocks for his daughter.

Edited Ending (y′) Alec decided to make blocks with letters on them instead. Alec’s daughter made words
with the blocks. Alec was happy to see his daughter developing her verbal ability.

Table 10: An examples from TimeTravel.

COPA e-Care αNLI Cloze Swag HS. TimeT.

#numAns 2 2 2 2 4 4 N/A
#numVal 500 2132 1532 1871 20006 10041 1871
#numTest 500 N/A 3059 1871 N/A N/A 1871

Table 11: The statistics of the used datasets. #numVal
and #numTest denotes the number of samples in the val
and test set. #numAns denotes the size of the answer
set of multi-choice datasets. HS. and TimeT. denotes
HellaSwag and TimeTravel, respectively.
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Figure 5: Results under different backbones for narra-
tive coherence learning.

E Different Backbones for Narrative984

Coherence Learning985

We additionally build our method on the BERT-986

base (Devlin et al., 2018b) and RoBERT-base back-987

bones, as shown in Figure 5. RoBERTa-base has988

a better performance than BERT-base, and the989

RoBERTa-large tends to have a better result than990

RoBERTa-base. However, due to the limitation of991

computing resources, we are not able to evaluate992

our method under larger pre-trained models.993

F The Prompts for Different Tasks994

The used multi-choice datasets have a similar for-995

mat except for the number of choices. For simplic-996

ity, we take the HellaSwag dataset as an example.997

An example and its corresponding instruction are998

shown in Table 9. For other multi-choice datasets,999

we use a similar format for evaluation.1000

G The Non-autoregressive Generation1001

Process on TimeTravel1002

TimeTravel is a counterfactual story generation1003

dataset. A story is defined as a five-sentence text1004

{z, x, y}, where the first sentence z is the premise, 1005

the second sentence x is the original condition, and 1006

the last three sentences constitute the original end- 1007

ing, abbreviated as y. After given a counterfactual 1008

condition denoted as x′, the task requires revising 1009

the original ending y into a counterfactual ending 1010

y′ which minimally modifies the original one and 1011

regains narrative coherency to the counterfactual 1012

condition. An example is shown in Table 10. 1013

Existing EDUCAT (Miao et al., 2018; Chen 1014

et al., 2021) adopts the Markov chain Monte Carlo 1015

(MCMC) sampling process to this task. EDUCAT 1016

directly samples from the sentence space with three 1017

local operations: token replacement, deletion and 1018

insertion. During sampling, after an edit position is 1019

found, the operation is randomly chosen with equal 1020

probability. Finally, the proposed new sentence will 1021

either be accepted or rejected according to the ac- 1022

ceptance rate computed by desired properties π(y). 1023

The above process is repeated till convergence. 1024

The stationary distribution π(y) in EDUCAT is 1025

defined as the product of the fluency score and the 1026

coherence score as follows: 1027

π(y) = XLM (y) · XCoh(y), (11) 1028

where the fluency score XLM (y) is the probabil- 1029

ity of the generated ending based on GPT2. The 1030

coherence score XCoh(y) is defined by: 1031

XCoh(y
′) =

PCoh(Y = y′|z, x′)
PCoh(Y = y′|z, x)

, (12) 1032

where PCoh(·) is the conditional probability cal- 1033

culated by GPT2. This definition encourages the 1034

generated y′ to be more coherent to x′ instead of x. 1035

Following EDUCAT, we define the stationary 1036

distribution π(y) as Equation 11. The difference is 1037

that we replace XCoh(y) with our CohEval: 1038

XCoh(y) = CohEval([z;x; y′]), (13) 1039

where [; ] denotes the concatenation. Same as ED- 1040

UCAT, we run our model and its variants for 100 1041

steps for fairness. 1042
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H Details of Manual Evaluation1043

TimeTravel Following Qin et al. (2019); Chen1044

et al. (2021), the human evaluation mainly focuses1045

on three primary criteria: i) Fluency, whether a1046

model produces fluent text; ii) Coherence, the logi-1047

cal consistency between the counterfactual context1048

(z, x′) and the generated endings y; and iii) Min-1049

Edits, the extent of minimal revision between two1050

endings. We carry out a pairwise comparison with1051

CGMH, EDUCAT, and two ablated models: Mexp1052

and Mimp. We randomly sample 100 cases for each1053

pair of models. Three annotators are recruited to1054

make a preference among win, tie, and lose given1055

the counterfactual context and two outputs by our1056

model and a baseline respectively. The annotators1057

are research students from the field of text genera-1058

tion to make sure they have a fair judgment of used1059

metrics. We calculate Fleiss’s kappa reliability as1060

the inter-annotator agreement.1061

Contrastive Narratives Generation We ran-1062

domly select 100 stories, which have no overlap1063

with train data for experiment. For each story, we1064

use different models to generate its contrastive vari-1065

ant. We also perform a pairwise comparison with1066

“w/o prompt", “Infilling", and two LLMs: Chat-1067

GLM2 and ChatGPT. The same three annotators1068

are asked to make a preference among win, tie, and1069

lose for each pair of generation. We use Coherence,1070

Similarity, and SubtleDiff. as metrics. Coherence1071

reflect the logical consistency between the given1072

(start,end) events and the generated middle events.1073

Similarity reflects the similarity between the gener-1074

ated middle events and those of the original story.1075

SubtleDiff. measures whether the generated ex-1076

ample is a qualified contrastive narrative, which1077

reflects subtle difference to the original story but1078

actually a different story.1079

I The Correlation between Automatic1080

Metrics and Human Ratings1081

Metrics Pearson’s r Kendall’s τ

ENTScore 0.25 0.24
CohEval 0.20 0.18

Table 12: The correlation between automatic metrics,
e.g., ENTScore and CohEval, and human ratings. All
of these numbers are statistically significant at p < 0.01.

Table 12 shows the correlation between auto-1082

matic metrics, including ENTScore, CohEval, and1083

human ratings in coherence. All results show a 1084

positive correlation. The result of our CohEval is 1085

similar to that of ENTScore. Notice that ENTScore 1086

is trained with human-labeled counterfactual data, 1087

while our CohEval is trained in a self-supervised 1088

manner. 1089

J Details and Results for Mixing-up in 1090

Latent Space 1091

The mixup strategy creates negative examples via 1092

mixing-up a positive X and several counterparts 1093

{Xk
c }Kk=1 in the latent space: 1094

h+ = RoBERTa(X)

hk
c = RoBERTa(Xk

c ),

h̄k = αkh
+ + (1− αk)h

k
c ,

αk ∼ Uniform[0, 1].

(14) 1095

Then, the loss is: 1096

s+ = WT
c h

+,

s̄k = WT
c h̄

k,

LM = − 1

|D+|
∑
D+

log
exp(s+)

exp(s+) +
∑K

k=1 exp(s̄
k)

.

(15) 1097

The experiment setting details are the same as those 1098

used in Appendix D. 1099

Strategies COPA e-Care αNLI Cloze Swag HS.

Mixup
Random 60.2 49.7 52.1 59.1 32.7 28.8
w/o prompt 61.8 55.5 57.0 64.3 35.4 32.1
BB 63.6 60.0 64.4 66.5 41.9 29.3

CrissC.
Random 72.6 71.8 58.8 70.0 53.6 37.4
w/o prompt 79.0 65.4 68.5 75.6 59.2 39.9
BB (our MCC ) 75.8 68.2 67.2 69.4 66.9 44.7

Table 13: The result of different strategies for creating
negatives. CrissC. denotes the crisscrossing strategy.

We additionally explore three ways of obtaining 1100

the counterparts: (1) “BB" denotes our Brownian- 1101

Bridge based contrastive narratives; (2) “w/o 1102

prompt" denotes we ablate the prompt when gen- 1103

erating contrastive narratives; (3) Random denotes 1104

we randomly select different positive narratives as 1105

counterparts. The result is shown in Table 13. We 1106

observe that: 1107

• The crisscrossing strategy is superior then Mixup 1108

by a large margin. We speculate that in the era 1109

of self-attention (Vaswani et al., 2017), using the 1110

transformer to directly learn the representation 1111

of negative samples is better than manipulating 1112

representations of samples in the hidden space. 1113
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• Whether adopting “CrissC." or Mixup, our BB-1114

based contrastive narratives far surpass “ran-1115

dom", which proves the strength of our method.1116

K Error Cases when Creating Negative1117

Examples1118

The most common error in event-level replacement1119

is that the sampled event ē from Qe is especially1120

similar to the original e, or is the paraphrase of1121

the original e, as shown in Table 14, Case #1. The1122

most common mistake in cross strategy is that the1123

contrastive variant and the original story describe1124

different actions for the same purpose, resulting in1125

the false negative. An example is shown in Table1126

14, Case #2.1127

Overall, the proportion of errors is relatively low.1128

Event-level replacement

#1

Original story: Rod was ironing his clothes.
His iron is very old.
The iron left a burn mark on his favorite shirt!
Rod got very angry.
He bought a new iron.

Created negative: She even ironed her sheets!
His iron is very old.
The iron left a burn mark on his favorite shirt!
Rod got very angry.
He bought a new iron.

Crisscrossing

#2

Original story: Katie needed to cross the street by herself.
Being seven, she hadn’t done it by herself before.
She looked left then right.
The coast was clear.
She crossed the street successfully and was full of pride.

Contrastive example: Katie needed to cross the street by herself.
Being seven she knew it was possible.
The nearest crosswalks were just behind her.
She held her breath and did her best.
She crossed the street successfully and was full of pride.

Created negative: Katie needed to cross the street by herself.
Being seven, she hadn’t done it by herself before.
The nearest crosswalks were just behind her.
She held her breath and did her best.
She crossed the street successfully and was full of pride.

Table 14: Error cases when creating negatives.

L Details of Obtaining Samples in t-NSE1129

Visualization1130

In TimeTravel, each example consists of an original1131

story (z, x, y) and a counterfactual story (z, x′, y′),1132

where y′ is similar to y. Motivated by (Chen et al.,1133

2021), we obtain positive and negative samples1134

from the perspective of natural language inference,1135

i.e., the original context (z, x) entails by y but1136

contradicts with y′, and the counterfactual context1137

(z, x′) entails by y′ but contradicts with y. Because1138

y is similar to y′, (z, x, y′) and (z, x′, y) tend to be1139

hard negatives. Based on the test set of TimeTravel,1140

we obtain 3742 positive examples and 3742 neg-1141

ative examples. Then, we use t-SNE to visualize1142

representations of the examples that are encoded 1143

by different models. 1144

M Case Study 1145

Table 15 presents a case study for the task of 1146

TimeTravel. The counterfactual endings gener- 1147

ated by ChatGLM2 and ChatGPT are very different 1148

from the original ending, which conflicts with the 1149

minimal-edits requirement of the task. On the con- 1150

trary, based on the MCMC-sampling, our method 1151

produces the counterfactual ending, which is simi- 1152

lar to the original ending, as well as coherent to the 1153

counterfactual condition. 1154

Table 16 presents a case study for the task of 1155

contrastive narratives generation. In the case #1, 1156

our method shifts the topic of accent to personality. 1157

In the case #2, our method exchanges the opinions 1158

of two participants. Due to the limited changes, the 1159

generated story is very similar to the original story 1160

and meets the requirements for contrastive narra- 1161

tives. On the contrary, the middle events generated 1162

by ChatGLM2 and ChatGPT show a significant dif- 1163

ference from that of the original story, as a result, 1164

the synthesized negative samples should be easily 1165

distinguished. 1166
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#1

Original context Tim was mad. He saw roaches in his house.

Original ending
He bought some cheap bug spray.
However, it did not get rid of them.
Tim called an exterminator.

Counterfactual context Tim was mad. He saw rats in his house.

GhatGLM2
He found a rat trap and was able to catch them.
Tim was relieved that the problem had been solved.
He called an exterminator to make sure they were gone for good.

ChatGPT
He bought some cheap rat traps.
However, they did not catch any rats.
Tim called a professional pest control service.

CohEval(ours)
He bought rat poison.
And it did not get rid of the rats.
So he hired an exterminator.

#2

Original context Jim worked at the local coffee shop.
He was the best barista in town.

Original ending
He always made sure his customers had the best drinks.
Jim’s boss saw him working one day and was impressed.
Jim got a promotion for doing such a good job.

Counterfactual context Jim worked at the local coffee shop.
He was the worst barista in town.

GhatGLM2
He found a recipe online to make better drinks.
Jim decided to try it out and impressed his boss.
Jim got a raise for his excellent work.

ChatGPT
He always made sure his customers had the worst drinks.
Jim’s boss saw him working one day and was disappointed.
Jim got fired for doing such a bad job.

CohEval(ours)
He always made sure his customers had the wrong drinks.
Jim’s boss saw him that night and was furious.
He got a beating for doing a bad job.

Table 15: Some cases with the generated text by different models. The cases are from the test set of TimeTravel.
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#1

Original story

Fanny is new at school.
She is from England.
Many kids do not understand her accent.
This made Fanny sad.
Fanny is having a difficult time making friends.

ChatGLM2

Fanny is new at school.
One of the kids at school does understand her accent, and they become her friends.
Fanny meets a new student at her lunch table who helps her feel more comfortable.
Fanny learns to embrace her accent and makes many new friends at school.
Fanny is having a difficult time making friends.

ChatGPT

Fanny is new at school.
During lunchtime, Fanny sat alone at a table in the cafeteria.
Some kids approached Fanny and asked her where she was from.
Fanny tried her best to explain her accent, but they still had trouble understanding her.
Fanny is having a difficult time making friends.

CohEval(ours)

Fanny is new at school.
She has just graduated from college.
She is very shy.
Fanny is not very outgoing.
Fanny is having a difficult time making friends.

#2

Original story

Morgan and Timothy were having an argument.
Morgan thought that all of The Beatles’ music was good.
Timothy thought their early stuff was not very good.
Morgan made her case by simply playing a few songs.
Timothy realized Morgan was probably right about the music.

ChatGLM2

Morgan and Timothy were having an argument.
Timothy tried to reason with Morgan, but she was too set in her opinion.
Morgan refused to back down and continued to play her favorite songs.
Timothy was left feeling frustrated, but eventually came to accept Morgan’s
love for her music. Timothy realized Morgan was probably right about the music.

ChatGPT

Morgan and Timothy were having an argument.
Morgan defended her stance by pointing out the innovative songwriting and
harmonies in their later albums. Timothy reluctantly agreed to listen to a few
songs from their later discography. As the music played, Timothy’s opinion started to
shift, realizing the depth and creativity in The Beatles’ later work.
Timothy realized Morgan was probably right about the music.

CohEval(ours)

Morgan and Timothy were having an argument.
Morgan said the Beatles’ music was terrible.
Timothy said their early music was good.
Morgan disagreed.
Timothy realized Morgan was probably right about the music.

Table 16: Case study for contrastive narratives generation.
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