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Abstract

Uniformity testing is arguably one of the most fundamental distribution testing
problems. Given sample access to an unknown distribution p on [n], one must
decide if p is uniform or ε-far from uniform (in total variation distance). A long
line of work established that uniformity testing has sample complexity Θ(

√
nε−2).

However, when the input distribution is neither uniform nor far from uniform,
known algorithms may have highly non-replicable behavior. Consequently, if these
algorithms are applied in scientific studies, they may lead to contradictory results
that erode public trust in science.
In this work, we revisit uniformity testing under the framework of algorithmic
replicability [STOC ’22], requiring the algorithm to be replicable under arbitrary
distributions. While replicability typically incurs a ρ−2 factor overhead in sample
complexity, we obtain a replicable uniformity tester using only Õ(

√
nε−2ρ−1)

samples. To our knowledge, this is the first replicable learning algorithm with
(nearly) linear dependence on ρ.
Lastly, we consider a class of “symmetric" algorithms [FOCS ’00] whose outputs
are invariant under relabeling of the domain [n], which includes all existing unifor-
mity testers (including ours). For this natural class of algorithms, we prove a nearly
matching sample complexity lower bound for replicable uniformity testing.

1 Introduction

Distribution property testing (see [43, 9, 12] for surveys of the field), originated from statistical
hypothesis testing [39, 36], aims at testing whether an unknown distribution satisfies a certain
property or is significantly “far” from satisfying the property given sample access to the distribution.

After the pioneering early works that formulate the field from a TCS perspective [5, 4], a number of
works have achieved progress on testing a wide range of properties [6, 21, 11, 22, 10, 19]. Within the
field, uniformity testing [28] is arguably one of the most fundamental distribution testing problems:
Given sample access to some unknown distribution p on [n] = {1, · · · , n}, one tries to decide
whether p is uniform or far from being uniform.

When the unknown distribution is promised to be either uniform or at least ε-far from being uniform
in total variation (TV) distance, a line of work in the field [28, 40, 47, 20, 1, 16] has led to efficient
testers that achieve information theoretically optimal sample complexity, i.e., Θ(

√
n/ε2). However,

the testers are only guaranteed to provide reliable answers when p fulfills the input promise —
p is either Un or far from it. In practical scenarios, due to a number of reasons such as model
misspecification, or inaccurate measurements, such promises are rarely guaranteed [13]. Since the
tester no longer has a correctness constraint to adhere to, it may have arbitrarily volatile behavior.
Ideally, we hope for algorithmic stability for all distributions, not only on those fulfilling the promises.
Consider the scenario where two group of scientists, as an intermediate step of some scientific study,
are trying to independently test the uniformity of some ground-truth distribution p∗. If the groups

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



reach inconsistent conclusions in the end (as noted in [31, 32, 7], such replicability issues are fairly
common in science), the public might naturally interpret the inconsistency to be caused by procedural
or human errors on the part of one (or both) team(s), therefore eroding public trust in the scientific
community [37, 44, 3, 42]. However, even when both teams follow the experimental procedure
precisely, inconsistencies could still arise simply due to sample variance in the case where p∗ is
neither uniform nor far from uniform. By ensuring that the algorithm is replicable, we can effectively
rule out sample variance as a cause of inconsistency.

In the work of [30], a formal definition of replicability for learning algorithms has been proposed to
mitigate non-replicability caused by statistical methods. Specifically, replicable learning algorithms
are required to give identical outputs with high probability in two different runs where it is given
sample access to some common, but potentially adversarially chosen data distribution.
Definition 1.1 (Replicability [30]). A randomized algorithm A : Xn 7→ Y is ρ-replicable if for all
distributions p on X , Prr,T,T ′ (A(T ; r) = A(T ′; r)) ≥ 1− ρ, where T, T ′ are i.i.d. samples taken
from p and r denotes the internal randomness of the algorithm A. .

A number of works have explored the connection between replicability and other algorithmic stability
notions [8, 34, 15, 38, 23], and shown efficient replicable algorithms for a wide range of machine
learning tasks [8, 34, 24, 25, 35, 26, 33]. In the context of uniformity testing, if we can design testers
that conform to the above replicability requirement, consistencies of their outputs can be guaranteed
even when there are no promises on the data distribution. This then motivates the study of replicable
uniformity testing.
Definition 1.2 (Replicable Uniformity Testing). Let n ∈ Z+ , and ε, ρ ∈ (0, 1/2). A randomized
algorithm A, given sample access to some distribution p on [n], is said to solve (n, ε, ρ)- replicable
uniformity testing if A is ρ-replicable and it satisfies the following: (1) If p is uniform, A should
accept with probability at least 1− ρ. 1 (2) If p is ε-far from the uniform distribution in TV distance,
A should reject with probability at least 1− ρ.

As observed in [30], learning algorithms usually incurs additional sample complexity overhead in the
replicability parameter ρ compared to their non-replicable counterpart. In this work, we characterize
the sample complexity of replicable uniformity testing up to polylogarithmic factors in all relevant
parameters n, ε, ρ (under mild assumptions on the testers).

1.1 Relationship with Tolerant Testing

An alternative approach to address the stringency of the promises in the formulation of uniformity
testing is the concept of tolerant testing [41]. At a high level, given some 0 < ξ < ε, the unknown
distribution is now relaxed to be either ε far from Un or ξ close to Un in TV distance. The tester is then
required to reject in the former case but accept in the latter. As shown in [45, 46, 48, 13], assuming
that ε is some constant 2, the sample complexity of tolerant testing quickly grows from strongly
sublinear, i.e., Θ(

√
n), to barely sublinear, i.e, Θ(n/ log n) as ξ increases from 0 to ε/2. In replicable

uniformity testing the testers are not required to accept or reject for intermediate distributions p, i.e.,
p such that 0 < TV(p, Un) < ε. Instead, for all possible distributions p, the testers are only required
to give replicable answers (with high probability). While we can construct an (n, ε′, ρ)-replicable
uniformity testing algorithm using tolerant testing by randomly sampling some threshold r ∈ (0, ε′)
and performing tolerant testing with ξ = r − ρε′ and ε = r + ρε′, the sample complexity of such an
approach will be barely sublinear in n even for constant ρ as discussed above. Notably, the replicable
algorithm in our work has a sample complexity that remains strongly sublinear in n.

1.2 Our Results

When n = 2, uniformity testing amounts to distinguishing a fair coin from an ε-biased coin. It is well
known that the task requires Θ(ε−2) samples without the replicable requirement. When the tester is
required to be ρ-replicable, [30] shows that Θ̃(ε−2ρ−2) many samples are necessary and sufficient

1In this work, we do not focus on the dependency on the failure probability of the tester. The common
formulation is that A should succeed with some large constant probability, i.e., 2/3. However, if A is at the
same time required to be replicable with probability at least 1− ρ, one can see that A must also be correct with
probability at least 1− ρ.

2See [13] for the dependency on ε and ξ for the full landscape of the problem.

2



for replicable coin testing, demonstrating a quadratic blowup in ρ compared to the non-replicable
counterpart of the problem. For large n, the sample complexity of non-replicable uniformity testing
has been resolved after a long line of work [28, 40, 47], and shown to be Θ(

√
nε−2). Following

the pattern, one naturally expect that replicable uniformity testing would have sample complexity
Θ̃(
√
nρ−2ε−2). In fact, this is exactly the sample complexity reached if one views the outcome of an

optimal non-replicable uniformity tester as a coin flip, and uses an optimal replicable coin tester to
convert the given uniformity tester into a replicable one.

Somewhat surprisingly, we show that the sample complexity from this blackbox reduction is sub-
optimal for replicable uniformity testing — it is possible to additionally shave one ρ factor and make
the dominating term’s dependency on ρ linear. To our knowledge, this is the first replicable algorithm
that has nearly linear dependence on the replicability parameter in the dominating term.

Theorem 1.3 (Replicable Uniformity Testing Upper Bound). Let n ∈ Z+, ε, ρ ∈ (0, 1/2). Algorithm

1 solves (n, ε, ρ)-replicable uniformity testing with sample complexity Õ
(√

n
ε2ρ + 1

ρ2ε2

)
.3

Remark 1.4. [27] showed that the more general problem of identity testing, i.e., testing whether an
unknown distribution p is equal or far from some known distribution q with explicit description, can
be reduced to uniformity testing with only a constant factor loss in sample complexity. It is not hard
to verify that this reduction preserves replicability. This immediately implies a replicable identity
tester with the same asymptotic sample complexity (see Appendix C.3 for more detail).

As our second result, we provide a nearly matching sample complexity lower bound for a natural
class of testers whose outputs are invariant under relabeling of the domain elements [n]. The class of
testers are commonly referred as Symmetric Algorithms, and first studied in the work of [5].

Definition 1.5 (Symmetric Algorithms, Definition 13 of [5]). Let f : [n]×m 7→ {0, 1} be a binary
function. We say that f is symmetric if for any sample set (x1, · · ·xm) ∈ [n]×m and any permutation
π ∈ Sn, we have that f(x1, · · ·xm) = f(π(x1), · · · , π(xm)). We say an algorithm A(; r) is
symmetric if it computes some symmetric function fr under any fixed random seed r.

Without the replicability requirement, it can be shown that assuming the algorithm is symmetric is
without loss of generality for uniformity testing. This is due to a simple observation that uniformity
itself is a symmetric property: if p is uniform or far from the uniform distribution, the property is
preserved even if we permute the labels of the elements within [n]. Consequently, all known optimal
uniformity testers, including our replicable uniformity tester, are indeed symmetric algorithms. For
this natural class of testers, we show that the sample complexity achieved is essentially optimal (up
to polylogarithmic factors).

Theorem 1.6 (Symmetric Testers Lower Bound). Let n ∈ Z+, ε, ρ ∈ (0, 1/2). Any symmetric algo-

rithm solving the (n, ε, ρ)-replicable uniformity testing problem requires Ω̃
(√

n
ε2ρ + 1

ρ2ε2

)
samples.

Unfortunately, when replicability is concerned, it is unclear whether we can still assume that the
optimal algorithm is symmetric. Whether the above lower bound holds for all algorithms is left as
one of the main open questions of this work.

1.3 Limitations, Discussion, and Future Work

In this paper, we present a replicable algorithm for uniformity testing using Õ(
√
nε−2ρ−1+ ε−2ρ−2)

samples. We provide a matching lower bound for a natural class of symmetric uniformity testers
— algorithms that essentially consider only the frequency of each element without discriminating
between distinct labels. Since all known uniformity testing algorithms are symmetric, we tend to
believe that the lower bound can be established unconditionally and leave it as an open question. We
discuss some issues in generalizing our current approach to realize this goal in Appendix C.2.

While uniformity testing is a central problem in distribution property testing, there are many other
settings where it would be interesting to develop replicable algorithms, such as closeness and
independence testing [18].

3Õ hides polylogarithmic factors in n, ρ
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1.4 Technical Overview
√
nρ−2 Barriers for ℓ2 based Statistics. Most of the well known non-replicable uniformity

testers compute an unbiased estimator for the ℓ2 norm of the the unknown distribution p, i.e.,
||p||22 =

∑
i=1 p

2
i , from the number of occurrences Xi of each element i among the observed

samples. These include the testers from [28, 17], which are based on counting pair-wise collisions,
i.e., 1

2

∑n
i=1 Xi(Xi − 1), and the ones from [14, 1, 47, 20], which are based on variants of the χ2

statistic, i.e.,
∑n

i=1

(
(Xi −m/n)2 −Xi

)
/(m/n). As one can see, these estimators all rely heavily

on computing the quantities X2
i , which could have large variances even when there is a single heavy

element. This poses serious challenges on designing replicable testers based on these statistics 4. In
the following paragraphs we discuss the challenge for collision based testers in more detail. A similar
barrier exists for χ2 based statistics, which we defer to Appendix C.1.

Given an unknown distribution p, the expected number of pairs of collision will be exactly∑n
i=1

(
m
2

)
p2
i . If p is uniform, the expected value of the test statistic will be about m2

2n . If p is

ε-far from being uniform, the expected value will be at least m2(1+ε2)
2n . To construct a replicable

uniformity tester from the collision statistics, a natural idea is to select a random threshold r between
the two extrema to be the decision threshold. Consequently, the tester fails to replicate if and only
if the random threshold falls between the realized values of the test statistics in two different runs.
Conditioned on that the test statistics computed in two different runs deviate by ∆, the above events
happens with probability exactly ∆ 2n

m2ε2 . Hence, for the tester to be ρ-replicable, the test statistics
will need to deviate by no more than ∆ = O

(
m2ε2ρ/n

)
with constant probability.

To focus on the dependency on ρ, we let ε be a small constant. We now construct a hard instance that
makes collision-based statistics violate the above concentration requirement unless m ≫

√
nρ−2.

Consider a distribution with a single heavy element with probability mass p ≫ 1/
√
n. Let X ∼

Binom (m, p) denote the number of occurrences of this heavy element. It is not hard to see that
this element contributes to the total collision counts by

(
X
2

)
, which deviates by Ω

(
mp
√
mp
)
=

Ω(m3/2/n3/4) from its mean with constant probability. Consequently, over two runs of the algorithm,
with constant probability the numbers of collisions may differ by Ω(m3/2/n3/4). Therefore, the
tester will fail to be ρ-replicable unless m3/2/n3/4 ≪ ρm2/n or equivalently m≫

√
n

ρ2 .

Total Variation Distance Statistic To make the test statistics less sensitive to the counts of heavy
elements, we compute the total variation statistic, which has been used in [16] to achieve optimal
uniformity testing in the high probability regime. In particular, the test statistics measures the TV
distance between the empirical distribution over samples and the uniform distribution:

S =
1

2

n∑
i=1

|Xi/m− 1/n|,

where Xi is the number of occurrences of the i-th element. Unlike collision-based statistics, note
that the TV statistics depends only linearly on each Xi. For a heavy element Xi, the contribution to
the empirical total variation distance is (up to normalization) at most Xi with variance Var(Xi) =
Θ (mp) = Θ

(
m/n1/2

)
opposed to Var(X2

i ) = Θ
(
m3/n3/2

)
. Intuitively, this allows us to obtain

tighter concentration bounds on the test statistic S, thereby improving the final sample complexity.

First, we observe that when the distribution is ε-far from uniform, [16] shows that the expected
value of S exceeds the expected value of S under the uniform distribution by at least some function
f(m,n, ε) (see Equation (2) for the full expression). To establish a replicable tester in the super-linear
case (m = Θ(

√
nε−2ρ−1) ≥ n), we use McDiarmid’s inequality to directly argue that the TV test

statistic deviates by at most ρf(m,n, ε) with high probability. Hence, if we use a random threshold
that lies within the gap interval, the threshold will be ρf(m,n, ε) close to the expected value of the
test statistic with probability at most O(ρ), ensuring replicability of the final result.

4Interestingly, the large variance caused by heavy elements is usually not an issue in the non-replicable
setting where the distribution is promised to be either uniform or far from uniform. This is because heavy
elements could only exist in the latter case. In that case, the expected value of the test statistic must also be
large, thus adding more slackness to the concentration requirement of the test statistics. Unfortunately, to obtain
replicability, we need to deal with distributions that have heavy elements but are still relatively close to the
uniform distribution.
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The key challenge lies in obtaining the desired concentration in the sublinear regime, i.e. m ≤ n. In
this regime, the expectation gap is given by f(m,n, ε) = ε2m2

n2 . Unfortunately, the presence of heavy
elements, i.e., element with mass pi ≥ 1/m, can still make the test statistic have high variance. As a
result, it becomes challenging to obtain the desired concentration of ρf(m,n, ε) on the test statistic.
However, in the presence of very heavy elements (e.g., pi ≥ m/n) which causes the variance of the
test statistic to be too large, we observe that these elements cause the expectation of the test statistic
to increase sufficiently beyond the expectation gap so that the tester rejects consistently, even though
the distribution may not be ε-far from uniform. To formalize the intuition, we show that whenever the
variance of the test statistic is large, so is its expected value, thereby ensuring consistent rejection. In
particular, in Lemma 3.3 we show that, whenever

√
Var(S)≫ ρf(m,n, ε) = ρε2m2

n2 , it holds that

E [S]−
√
Var(S) ≥ µ(Un) + ε2m2/n2 (1)

where µ(Un) is the expected value of S under the uniform distribution Un. At a high level, Equa-
tion (1) is shown by rewriting S with indicator variables representing whether some sample collides
with another, and we use correlation inequalities to show that these collision indicators are “almost”
independent of each other (see proof sketch of Lemma 3.3 for more detail). Combining Equation (1)
with Chebyshev’s inequality, we then have that S ≫ µ(Un)+ε2m2/n2 with high constant probability
(which can be easily boosted to 1− ρ with the standard “median trick”). As we choose our random
threshold from the interval [µ(Un), µ(Un) + ε2m2/n2], it follows that the tester must consistently
reject. Otherwise, we have

√
Var(S) ≤ ρf(m,n, ε). Applying Chebyshev’s inequality gives that

Pr (|S − E [S] | > ρf(m,n, ε))≪ 1. The rest of the argument is similar to the super-linear case.

Sample complexity Lower Bound At a high level, we present a family of distributions {p(ξ)}ξ
parametrized by some parameter ξ ∈ [0, ε] satisfying the following: no symmetric tester that takes
fewer than Ω̃

(√
nε−2ρ−1

)
many samples can be replicable with high probability against a random

distribution from the family. Since we have fixed the testing instance distribution, using a minimax
style argument similar to [30], we can assume that the testing algorithm is deterministic 5. The family
of distributions is constructed to satisfy the following properties: (i) p(0) is the uniform distribution
and p(ε) is ε-far from uniform (ii) for any two distributions p(ξ),p(ξ+ δ), where δ < ερ, within the
family, no symmetric tester taking fewer than Ω̃

(√
nε−2ρ−1

)
many samples can reliably distinguish

them. By (i) and the correctness guarantee of the algorithm, the acceptance probabilities of the tester
should be near 1 under p(0) and near 0 under p(ε). This implies that there exists some ξ∗ within
the range such that the acceptance probability is 1/2 under p(ξ∗).6 By property (ii), p(ξ∗) cannot
be distinguished from p(ξ∗ ±O(ερ)) by the tester, which immediately implies that the acceptance
probability of the tester is near 1/2 whenever ξ = ξ∗ ± O(ερ), and therefore not replicable with
constant probability. Thus, if we sample ξ uniformly from [0, ε], the tester will fail to replicate with
probability at least Ω(ρ).

The construction of p(ξ) is natural and simple: half of the elements will have mass (1 + ξ)/n and
the other half will have mass (1 − ξ)/n. Property (i) follows immediately. The formal proof of
Property (ii) is technical, but the high level intuition is straightforward. If we assume the underlying
tester is symmetric, the most informative information is essentially the number of elements that have
frequencies exactly 2 among the samples (as elements having frequencies more than 2 are rarely seen
and the numbers of elements having frequencies 0 or 1 are about the same in the two cases.) If the
tester takes m samples, it observes about

m2
(
(1 + ξ)2 + (1− ξ)2

)
/n = 2m2(1 + ξ2)/n

many frequency-2 elements under p(ξ) in expectation. On the other hand, the standard deviation
of the number of such elements is about

√
m2/n = m/

√
n. Hence, for the tester to successfully

distinguish the two distributions, m needs to be sufficiently large such that

m√
n
≪ m2

n

(
(1 + (ξ + ερ)2)− (1 + ξ2)

)
≈ m2(ξ + ερ)ερ

n
,

5More precisely, we pick a “good random string” such that the induced deterministic tester is correct and
replicable at the same time against our fixed testing instance distribution with high probability.

6An omitted technical detail is that our construction ensures that the acceptance probability is a continuous
function of ξ.
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which yields m≫
√
n

(ξ+ερ)ερ > Ω
(√

n
ε2ρ

)
.

To formalize the above intuition, we will use an information theoretic argument 7. Note that for
such an argument to work, one often need to randomize the order of heavy and light elements
[18, 16]. Otherwise, a tester could simply group the elements whose mass is above 1/n under
p(ξ) into one giant bucket and reduce the problem into learning the bias of a single coin, which
requires much fewer samples. To achieve this randomization, we consider the Local Swap Family
(see Definition 4.2), where we pair the elements with mass (1+ ξ)/n with those with mass (1− ξ)/n
and randomly swap their orders. Since pairs are ordered randomly, no algorithm can hope to identify
heavy/light elements without taking a significant number of samples. Thus, this creates distribution
families containing p(ξ) and p(ξ + δ) that are information theoretically hard to distinguish even
for asymmetric testers. Consequently, this shows the existence of some permutation πξ of [n] such
that the permuted distributions πξ · p(ξ) and πξ · p(ξ + δ) are hard to distinguish. However, recall
that in the replicability argument we need to first fix some ξ∗ such that p(ξ∗) = 1/2. Thus, we have
to prove specifically that p(ξ) and p(ξ + δ) themselves are hard to distinguish. Fortunately, for
symmetric testers, the acceptance probabilities of πξ · p(ξ) and πξ · p(ξ + δ) must be identical to
those of p(ξ) and p(ξ + δ) respectively. Consequently, no symmetric tester can easily distinguish
p(ξ) and p(ξ + δ).

2 Preliminaries

For any positive integer n, let [n] = {1, 2, . . . , n}. We typically use n to denote the domain size, p
to denote a distribution over [n] and m to denote sample complexity. Given a distribution p over [n],
let px denote the probability of x in p. For a subset S ⊂ [n], pS =

∑
x∈S px. For distributions p,q

over [n], the total variation distance is dTV (p,q) = 1
2

∑
x∈[n] |px − qx| = maxS⊆[n] pS − qS . We

also recall the definition of mutual information. Let X,Y be random variables over domain X . The
mutual information of X,Y is I(X : Y ) =

∑
x,y∈X Pr((X,Y ) = (x, y)) log Pr((X,Y )=(x,y))

Pr(X=x) Pr(Y=y) . We
use a≫ b (resp. a≪ b) to denote that a is a large (resp. small) constant multiple of b.

3 Replicable Uniformity Testing Algorithm

Algorithm Overview At a high level, our algorithm computes the TV-distance statistic and com-
pares it with a random threshold. Correctness of the algorithm largely follows from the analysis of
the test statistics from [16]. To show replicability of the algorithm, we need a better understanding of
the concentration properties of the test statistic when the unknown distribution is neither uniform
nor ε-far from being uniform. In particular, we show that when the variance of the test statistic is
too large, even if the input distribution itself is not ε-far from uniform, the test statistic is with high
probability larger than any random threshold that may be chosen, leading the algorithm to replicably
reject in this case. On the other hand, when the variation is sufficiently small, we have sufficiently
strong concentration in the test statistic, so that a randomly chosen threshold does not land between
empirical test statistics computed from independent samples.

Proof of Theorem 1.3. Our starting point is the “expectation gap” of the test statistic shown in [16].

Lemma 3.1 (Lemma 4 of [16]). Let p be a distribution on [n] such that ξ = dTV (p, Un). For any
distribution p, let µ(p) denote the expectation of the test statistic S = 1

2

∑n
i=1

∣∣Xi

m −
1
n

∣∣ given m
samples drawn from p. For all m ≥ 6, n ≥ 2, there is a constant C such that

µ(p)− µ(Un) ≥ R := C ·


ξ2m2

n2 m ≤ n

ξ2
√

m
n n < m ≤ n

ξ2

ξ n
ξ2 ≤ m

. (2)

We require the following structural lemmas, whose formal proofs can be found in Appendix A, on the
test statistic Smedian. These lemmas show that the test statistic S (and therefore Smedian) concentrates

7The use of information theory in showing lower bounds for replicability has also appeared in the manuscript
[29]. But our argument and construction are significantly more involved and exploit symmetries in the underlying
algorithm.
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Algorithm 1 RUNIFORMITYTESTER(p, ε, ρ)

Input :Sample access to distribution p on domain [n]
Parameters :ε tolerance, ρ replicability
Output :ACCEPT if p ∼ Un is uniform, REJECT if dTV (p, Un) ≥ ε

1 m← Θ
(√

n
ρε2

√
log n

ρ + 1
ρ2ε2

)
, m0 ← Θ(log 1/ρ).

2 for 1 ≤ j ≤ m0 do
3 Dj gets m samples from p

4 Sj ← 1
2

∑n
i=1

∣∣Xi

m −
1
n

∣∣ where Xi is the occurrences of i ∈ [n] in Dj

5 Smedian ← median of {Sj}
6 µ(Un) is expectation of 1

2

∑n
i=1

∣∣Xi

m −
1
n

∣∣ under uniform distribution.
7 Set threshold r ← µ(Un) + r0 ·R (R given by Lemma 3.1) where r0 ← Unif

(
1
4 ,

3
4

)
.

8 return ACCEPT if Smedian < r. Reject otherwise.

around its expectation µ(p) = Ep[S] in the sublinear (m < n) and superlinear (m ≥ n) cases
respectively. For the superlinear case, we bound the sensitivity of S with respect to the input sample
set T and apply McDiarmid’s inequality to obtain the desired concentration result.

Lemma 3.2 (Superlinear Concentration). Assume that we are in the superlinear regime (i.e., m ≥ n).
Denote by µ(p) the expectation of the test statistic S under the distribution p. If n ≤ m ≤ n

ε2 , then
Pr
(
|Smedian − µ(p)| ≥ ρ C

16ε
2
√

m
n

)
< ρ

4 . If n
ε2 ≤ m, then Pr

(
|Smedian − µ(p)| ≥ ρ C

16ε
)
< ρ

4 .

For the sublinear case, we provide a proof sketch below, deferring the details to Appendix A.

Lemma 3.3 (Sublinear Concentration). Suppose m ≤ n. If Var(S) ≥ (C/64)ρ2ε4m4n−4, then
E [S]−

√
Var(S) > µ(Un) + Cε2m2n−2 where µ(Un) is the expectation of S under the uniform

distribution and C is given by Lemma 3.1. As a consequence, with probability at least 1− ρ/4, we
have Smedian > µ(Un) + Cε2m2n−2.

On the other hand, if Var(S) ≤ (C/64)ρ2ε4m4n−4, then it holds that
Pr
(
|Smedian − µ(p)| ≥ (C/16)ρε2m2n−2

)
< ρ/4. Furthermore, for the uniform distribu-

tion Un, Var(S) ≤ (C/64)ρ2ε4m4n−4.

Proof Sketch. In the proof sketch, for simplicity, we assume that ε is some small constant and ignore
its dependency. When Var(S) is small, we simply apply Chebyshev’s inequality to obtain the desired
concentration of S. The concentration of Smedian then follows from the standard median trick.

In the rest of the sketch we focus on the case Var(S) ≥ (C/64)ρ2ε4m4n−4. In this case, the key is
to show that

E [S]−
√
Var(S) > µ(Un) + Cε2m2n−2 (3)

as the claim Smedian > µ(Un) + Cε2m2n−2 with high probability follows almost immediately by
an application of Chebyshev’s inequality (and the standard analysis for the median trick).

Towards Equation (3), define Xi as the number of occurrences of element i ∈ [n]. We begin with an
observation from [16] stating that the test statistic S = Z/n where Z = |{i s.t. Xi = 0}| denotes the
number of “empty” buckets. Furthermore, we can write Z = n−m+

∑m
i=1 Yi where Yi indicates

whether the i-th sample collides with a previous sample j < i. Then, Var(S) = Var(Z)/n2 =
Var(

∑
Yi)/n

2. To bound the variance, we argue that the indicators Yi are “almost” negatively
correlated using correlation inequalities (specifically Kleitman’s Theorem Lemma A.8), so that
(roughly) Var(

∑
Yi) ≪

∑
i Var(Yi) ≪

∑
E [Yi] (see Lemma A.5 for the accurate statement).

Observe that under Un, we have
∑

E [Yi] ≤ m2n−1 so that E [S]−µ(Un) ≥ E [
∑

Yi] /n−m2/n2.
It follows that

E [S]−
√
Var(S)− µ(Un) ≥

(
E
[∑

Yi

]
−
√
E
[∑

Yi

])
/n− (m2/n2).

By our assumption, E [
∑

Yi] ≥ n2Var(S) ≫ ρ2ε4m4n−2 ≫ 1 so that it suffices to show
E [
∑

Yi] ≫ (C + 1)m2/n. Since Var(S) ≥ (C/64)ρ2ε4m4n−4 which is further bounded from
below by m2/n3 whenever m≫

√
nε−2ρ−1 we conclude E [

∑
Yi] ≥ n2Var(S)≫ m2/n.
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We are now ready to show Theorem 1.3 — our main algorithmic result. We begin with correctness
for the uniform distribution. Suppose m ≤ n. By Lemma 3.3, Smedian ≤ µ(Un) + R/16 ≤
µ(Un) +R/4 ≤ r with probability at least 1− ρ

4 so the algorithm outputs ACCEPT.

Otherwise, if n ≤ m, we have by Lemma 3.2 that with probability at least 1 − ρ
4 , Smedian ≤

µ(Un) +R/16 ≤ µ(Un) +R/4 ≤ r so that the algorithm outputs ACCEPT.

On the other hand, suppose ξ = dTV (p, Un) ≥ ε. We note that the algorithm of [16] computes
the test statistic S using Θ

(
(
√

n log(1/ρ) + log(1/ρ))ε−2
)

samples and compares S with some
fixed threshold R that is strictly larger than the random threshold r of our choice. By the correctness
guarantee of their algorithm, it holds that Pr[S > R] ≥ 1 − ρ/100, which further implies that
Pr[Smed > R > r] ≥ 1− ρ/4.

We now proceed to replicability. Consider two executions of the algorithm. If p is uniform or
ξ = dTV (p, Un) ≥ ε, then following a union bound on the correctness condition, two executions
of the algorithm output different values with probability at most ρ/2. Then, suppose m ≤ n and
Var(S) ≥ (C/64)ρ2ε4m4n−4. By Lemma 3.3, both samples lead the algorithm to output REJECT
with probability at least 1− ρ so that the algorithm is ρ-replicable.

Otherwise, Lemma 3.2 and Lemma 3.3 guarantees strong concentration of the test statistic Smedian.
In particular, with probability at least 1− ρ/2, we have |Smedian − µ(p)| ≤ ρ

16R over both samples,
where R is the expectation gap defined as in Equation (2). In particular, whenever the random
threshold r does not fall in the interval (µ(p)±ρR/16) both executions output the same result. Since
r is chosen uniformly at random, this occurs with probability at most (ρR/8)/(R/2) = ρ/4. By a
union bound, we observe that Algorithm 1 is ρ-replicable.

Finally, the sample complexity is immediately obtained by our values of m ·m0.

4 Lower Bound for Replicable Uniformity Testing

In this section, we outline the important lemmas used in showing the sample complexity lower bound
for ρ-replicable symmetric uniformity testers, and give their proof sketches. The formal argument
can be found in Appendix B.

Note that the lower bound Ω̃
(
ε−2ρ−2

)
holds even for testing whether the bias of a coin is 1/2 or

1/2 + ε (see [30]). We therefore focus on the more challenging bound of Ω̃
(√

nε−2ρ−1
)
. Consider

the canonical hard instance for uniformity testing where half of the elements have probability mass
(1 + ξ)/n and the other half have probability mass (1− ξ)/n:

p(ξ)i =

{ 1+ξ
n if i mod 2 = 0 ,

1−ξ
n otherwise.

(4)

Our hard instance for replicable uniformity test is as follows: we choose ξ from the interval [0, ε]
uniformly at random, and let the tester observe samples from p(ξ).

Fix some uniformity tester Am that takes m samples. We will argue that if Am is ρ-replicable and
correct with probability at least 0.99, then we must have m = Ω̃(

√
nε−2ρ−1).

At a high level, we follow the framework of [30]. First, we fix some good random string r such
that the induced deterministic algorithm Am(; r) is replicable with probability at least 1− 10ρ, and
is correct on p(0) and p(ε) with probability at least 0.99. Then, consider the function Accm(ξ)
that denotes the acceptance probability of Am(S; r) when the samples S are taken from p(ξ).
Note that Accm(ξ) must be a continuous function. Moreover, by the correctness of Am(; r), it
holds that Accm(0) ≥ 0.99 and Accm(ε) < 0.01. Hence, there must be some value ξ∗ such that
Accm(ξ∗) = 1/2. To show the desired lower bound on m, it suffices to show that Accm(ξ∗ + δ)
must not be too far from Acc(ξ∗) for any δ ≪ ερ if m = õ(

√
nε−2ρ−1).

Proposition 4.1 (Lipschitz Continuity of Acceptance Probability). Assume that m = õ(
√
nε−2ρ−1).

Let Am(; r) be a deterministic symmetric tester that takes m samples, and define the acceptance
probability function Accm(ξ) = PrS∼p(ξ)⊗m [A(S; r) = 1] , where p(ξ) is defined as in Equation (4).
Let ε0 < ε1 ∈ (0, ε) be such that ε1 − ε0 < ερ. Then it holds that |Accm(ε0)− Accm(ε1)| < 0.1.
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Given the above proposition, since we choose ξ from [0, ε] uniformly at random, it follows that
the acceptance probability of the algorithm is around 1/2 with probability at least Ω(ρ) if m =
õ(
√
nε−2ρ−1), implying that the algorithm is not O(ρ)-replicable. The proof of Proposition 4.1 is

based on an information theoretic argument based on ideas developed in [29]. We defer the formal
proof of Proposition 4.1 to Appendix B.3 and give its proof outline below. Let m, ε0, ε1 be defined
as in Proposition 4.1. At a high level, we construct two families of probability distributions, which
we denote byM0 andM1, that satisfy the following properties: (i)Mi contains distributions that
are identical to p(εi) up to domain element relabeling. (ii) Any tester that uses at most m samples
cannot effectively distinguish between a random probability distribution fromM0 and a random
one fromM1. For the sake of contradiction, assume that there is a deterministic symmetric tester
using m samples such that the acceptance probabilities on p(ξ) and p(ξ + δ) differ by at least 0.1.
Since all distributions within M0 are identical to p(ξ) up to element relabeling, it follows that the
acceptance probabilities of the symmetric tester on any of the distribution withinM0 must be the
same (and similarly forM1). This then further implies that the tester can successfully distinguish
a random distribution fromM0 versus one fromM1, contradicting property (ii). Proposition 4.1
thereby follows.

It then remains to construct the two families of distributions. Recall thatMi contains distributions
that are identical to p(εi) up to element relabeling. We will consider all distributions that can be
obtained by performing “local swaps” on p(εi). In particular, we first group the elements into n/2
many adjacent pairs, and then randomly exchange the labels within each pair.

Definition 4.2 (Local Swap Family). Let n be an even number, and p be a probability distribution
on [n]. We define the Local Swap Family of p as the set of all distributions p̃ such that

(p̃(εi)j , p̃(εi)j+1) = (p(εi)j , p(εi)j+1) or (p̃(εi)j , p̃(εi)j+1) = (p(εi)j+1, p(εi)j)

for all odd numbers j ∈ [n].

Lemma 4.3 (Indistinguishable Distribution Families). Let m = õ(
√
nε−2ρ−1), and ε0 < ε1 ∈ (0, ε)

be such that ε1 − ε0 < ερ. Let p(ε0),p(ε1) be defined as in Equation (4), andM0,M1 be the
Local Swap Families (see Definition 4.2) of p(ε0),p(ε1) respectively. Let S be m samples drawn
from either a random distribution fromM0 or a random one fromM1. Given only S, no algorithm
can successfully distinguish between the two cases with probability more than 0.6.

The formal proof of Lemma 4.3 can be found in Appendix B.2. At a high level, we use an information
theoretic argument. In particular, we consider a stochastic process where we have a random unbiased
bit X that controls whether we sample from a random distribution fromM0 or a random distribution
fromM1. Let T be the obtained sample set. We show that T and X has little mutual information. A
simple application of the data processing inequality then allows us to conclude the proof. To simplify
the computation involved in the argument, we will also apply the standard “Poissonization” trick. In
particular, we assume that the algorithm draws Poi (m) many samples instead of exactly m samples.
The advantage of doing so is that we can now assume that the random variables counting the number
of occurrences of each element are mutually independent conditioned on the probability distribution
from which they are sampled. Moreover, one can show that this is without loss of generality by a
standard reduction-based argument using the fact that Poisson distributions are highly concentrated.
The formal statement of the mutual information bound is provided below.

Lemma 4.4. LetM0,M1 be defined as in Lemma 4.3. Let X be a random unbiased bit, p̃ a random
probability distribution fromMX , and S be Poi (m) many samples from p̃. Moreover, let Mi be the
occurrences of element i among S. Then it holds that

I(X : M1, · · · ,Mn) = O

(
ε4ρ2

m2

n
log4(n)

)
+ o(1).

To show Lemma 4.4, we first note that if we group the random variables into n/2 many adjacent
pairs, the pairs (Mi,Mi+1) are conditionally independent and identical given X . Therefore, we can
bound I(X : M1, · · · ,Mn) from above by n

2 I(X : M1,M2). To tackle I(X : M1,M2), we break
into three regimes depending on the relative sizez of m,n, ε: the sub-linear regime (approximately
m ≪ n), the super-linear regime (approximately n < m < n/ε2), and the super-learning regime
(approximately m > n/ε2). The formal proofs involves writing the probability distributions of Mis as
Taylor expansions in ε. The calculations are rather technical and therefore deferred to Appendix B.1.
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A Omitted Proofs for Replicable Uniformity Testing Upper Bound

A.1 Concentration of the Total Variation Distance Statistic

We now prove the required lemmas for Theorem 1.3. This section is dedicated to proving the required
lemmas regarding the concentration properties of Smedian.

Superlinear Case: m ≥ n

First, we consider the superlinear case, when m ≥ n.

Lemma 3.2 (Superlinear Concentration). Assume that we are in the superlinear regime (i.e., m ≥ n).
Denote by µ(p) the expectation of the test statistic S under the distribution p. If n ≤ m ≤ n

ε2 , then
Pr
(
|Smedian − µ(p)| ≥ ρ C

16ε
2
√

m
n

)
< ρ

4 . If n
ε2 ≤ m, then Pr

(
|Smedian − µ(p)| ≥ ρ C

16ε
)
< ρ

4 .

Proof. Recall that Algorithm 1 uses the median trick to boost the success probability. Here we focus
on the test statistic S := Sj computed in a single iteration j ∈ [m0]. An essential tool in the analysis
is McDiarmid’s Inequality.

Theorem A.1 (McDiarmid’s Inequality). Let X1, . . . , Xm be independent random variables
taking values in X . Let f : Xm 7→ R be a function such that for all pairs of tuples
(x1, . . . , xm), (x′

1, . . . x
′
m) ∈ Xm such that xi = x′

i for all but one i ∈ [m],

|f(x1, . . . , xm)− f(x′
1, . . . , x

′
m)| ≤ B,

Then,

Pr (|f(X1, . . . , Xm)− E [f(X1, . . . , Xm)]| ≥ t) < 2 exp

(
− 2t2

mB2

)
.

Observe that the samples Tj are independent and a change in Tj changes S by at most 1
m , since at

most two values Xi change by at most 1
2m each. Then, applying Theorem A.1 to S = f(T1, . . . , Tm),

we obtain

Pr (|S − µ(p)| ≥ t) < 2 exp

(
−2m2t2

m

)
= 2 exp

(
−2mt2

)
. (5)

When n ≤ m ≤ n
ε2 , we can conclude

Pr

(
|S − µ(p)| ≥ ρ · C

16
· ε2
√

m

n

)
< 2 exp

(
−2C2ρ2ε4m2

162n

)
<

1

10
.

The first inequality follows from Equation (5) and the second holds whenever m ≥ Θ
(√

n
ρε2

)
for some

sufficiently large constant factor. Finally, we show Smedian is concentrated with high probability, i.e.

Pr

(
|Smedian − µ(p)| ≥ ρ · C

16
· ε2
√

m

n

)
<

ρ

4
.

Note that the median fails to satisfy the concentration condition only if at least half of the intermediate
statistics Sj do not satisfy the concentration condition. By a Chernoff bound, this occurs with

probability at most ρ for m0 = Θ
(
log 1

ρ

)
a sufficiently large constant.

Now consider the case m ≥ n
ε2 . Note

Pr

(
|S − µ(p)| ≥ ρ · C

16
· ε
)

< 2 exp

(
−2C2ρ2ε2m

162

)
<

1

10

whenever m ≥ Θ
(

1
ρ2ε2

)
. Concentration of Smedian then follows from a similar argument as

above.
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Sublinear Case: m ≤ n

We now consider the sublinear case. Again, we consider a single iteration j and examine the
concentration of the test statistic S = Sj . Following an observation from [16], we rewrite the test
statistic as

S =
1

2

∑
i=1

∣∣∣∣Xi

m
− 1

n

∣∣∣∣ = 1

2

∑
i=1

Xi

m
− 1

n
+

2

n
· 1[Xi = 0] =

1

n
|{i s.t. Xi = 0}| = Z

n
,

where we define the random variable Z = |{i s.t. Xi = 0}|.
Our goal now is to bound the variance of Z. To do so, we further define some useful random variables.

Preliminaries Let T ∈ [n]m be the m samples drawn, i.e., Ti denotes the element corresponding
to the i-th sample. We use Y1, . . . , Ym to denote whether the i-th sample collides with any samples
j < i, i.e., Yi = 1 if and only if there exists some j < i such that Ti = Tj . We will consider
decomposition of the domain into “heavy” and “light” elements.

Definition A.2. Let p be a distribution on [n]. For each k ∈ [n], k is heavy if pk ≥ 3
m log 10n

ρ and
light otherwise. Let nH , nL denote the number of heavy and light elements respectively.

Let bk,p = 1[pk ≥ 3
m log 10n

ρ ] indicate whether k is a heavy element in p. When the distribution is
clear, we omit p and write bk.

We define Ỹ1, . . . , Ỹm to indicate that the i-th sample comes from some light element and collides
with some previous sample: Ỹi = Yi 1{bTi

= 0}. Let H denote the number of occurrences of heavy
elements among the samples: H = |i s.t. bTi

= 1|. Finally, define ZH , ZL to be the contributions to
Z from heavy and light elements respectively:

ZH = |{i s.t. bk = 1 and Xi = 0}|
ZL = |{i s.t. bk = 0 and Xi = 0}|.

We then show the following.

Lemma A.3. Var(Z) ≤ ρ3

500 + 32 log 10n
ρ

∑m
i=1 E [Yi]. In particular, Var(S) = Var(Z)

n2 ≤ ρ3

500n2 +
32
n2 log

10n
ρ

∑m
i=1 E [Yi].

Proof of Lemma A.3. Recall the random variables Y1, . . . , Ym to indicate whether the i-th sample
collides with any samples j < i. Then, we obtain the following identities:

Z = n−m+

m∑
i=1

Yi = ZH + ZL

ZH = |{i s.t. Xi = 0 and bi = 1}|

ZL = |{i s.t. Xi = 0 and bi = 0}| = nL − (m−H) +

m∑
i=1

Ỹi,

We will bound the variance of ZH , ZL separately. First, we note that ZH = 0 with high probability.
In particular, the probability that an element with bk = 1 does not occur in m samples is at most
(1−px)

m <
(

ρ
10n

)3
, so that applying the union bound the probability that some heavy element does

not occur is at most ρ3

1000n2 , showing Pr(ZH > 0) < ρ3

1000n2 . In particular,

Var(ZH) ≤
n∑

ℓ=0

Pr(ZH = ℓ)ℓ2

≤ n2 ρ3

1000n2

≤ ρ3

1000
.
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In the remaining proof, we bound the variance of ZL. To bound the variance of ZL, we separately
bound the variance of H and

∑m
i=1 Ỹi, since nL,m are fixed constants. We begin with the first term,

beginning with an upper bound on the expectation of H . We show the expected number of heavy
elements is at most a constant multiple of the expected number of collisions.

Lemma A.4.

4

m∑
i=1

E [Yi] ≥ m
∑
bk=1

pk = E [H] ≥ Var(H).

Proof of Lemma A.4. Note that H is a binomial random variable so that its expectation is an upper
bound on its variance. Since the Yi are non-negative random variables and E [Yi] is increasing in i, it
suffices to show the following lower bound:

4

m∑
i=1

E [Yi] ≥ 4

m∑
i=m/2

E [Yi] ≥ 2mE
[
Ym/2

]
≥ m

∑
bk=1

pk,

or equivalently

E
[
Ym/2

]
= Pr(Ym/2 = 1) ≥ 1

2

∑
bk=1

pk.

Consider an element k such that bk = 1 or equivalently pk ≥ 3
m log 10n

ρ . Then, the probability that
k does not occur in the first m/2 samples is at most (ρn−1/10)3/2 ≤ ρ

10n . Union bounding over at
most n elements, each element with bk = 1 occurs in the first m

2 samples with probability at least
1− ρ

10 ≥
9
10 . Conditioned on this, Pr(Ym/2 = 1) ≥

∑
bk=1 pk so that we conclude

Pr(Ym/2 = 1) ≥ 9

10

∑
bk=1

pk.

Now, we move on to the term
∑m

i=1 Ỹi.

Lemma A.5.

Var

(
m∑
i=1

Ỹi

)
≤
(
1 + 3 log

10n

ρ

) m∑
i=1

E [Yi]

Proof. Using linearity of expectation, we have

E

( m∑
i=1

Ỹi

)2
 =

m∑
i=1

E
[
Ỹ 2
i

]
+
∑
i ̸=j

E
[
ỸiỸj

]
.

For the first term, E
[
Ỹ 2
i

]
= E

[
Ỹi

]
since Ỹi is an indicator variable. Considering the second term, we

introduce the variables Zi,j denoting whether the i-th and j-th samples collide, i.e. Zi,j = 1[Ti = Tj ].
We can write

E
[
ỸiỸj

]
= Pr(ỸiỸj = 1) = Pr(ỸiỸj = 1, Zi,j = 1) + Pr(ỸiỸj = 1, Zi,j = 0).

We now bound the first term.

Lemma A.6. ∑
i ̸=j

Pr(ỸiỸjZi,j = 1) ≤ 3 log
10n

ρ

m∑
i=1

E
[
Ỹi

]
≤ 3 log

10n

ρ

m∑
i=1

E [Yi]

Proof of Lemma A.6. The event Ỹi, Ỹj = 1, Zi,j = 1 happens when there is some element k ∈ [n]
such that
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1. bk = 0

2. both samples Ti = Tj = k

3. some samples from T<i falls in k. We denote this event as Ei,k.

We compute as follows:

Pr(ỸiỸjZi,j = 1) =
∑
bk=0

Pr(Ei,k = 1)Pr(Ti = k) Pr(Tj = k)

=
∑
bk=0

Pr(Ei,k = 1)p2
k

≤ 3

m
log

10n

ρ

∑
bk=0

pk Pr(Ei,k = 1)

=
3

m
log

10n

ρ
E
[
Ỹi

]
where in the inequality we have used bk = 0 gives an upper bound on pk. Then, for each i we sum
over m− 1 ≤ m indices j ̸= i to conclude the proof.

For the second term, we argue it can be upper bounded by Pr(Ỹi = 1)Pr(Ỹj = 1) with Kleitman’s
Lemma. We define monotonically increasing and decreasing subsets.

Definition A.7. Let x, y ∈ {0, 1, 2}n. We say x ⪯ y is xi ≤ yi for all i ∈ [n]. A subset
S ⊂ {0, 1, 2}n is monotonically increasing if x ∈ S and x ⪯ y implies y ∈ S. S is monotonically
decreasing if x ∈ S and y ≤ x implies y ∈ S.

In fact, we require a small modification of Kleitman’s Lemma.

Lemma A.8 (Kleitman’s Lemma [2]). Let Q be a distribution over random bit strings {0, 1, 2}n.
Let A,B be two subsets of {0, 1, 2}n such that A is monotonically increasing and B is monotonically
decreasing. Then, it holds

Pr (A(Q)B(Q)) ≤ Pr (A(Q)) Pr (B(Q)) ,

where A(Q),B(Q) denotes the event that a random string draw from Q lies in A,B.

Proof. Kleitman’s Lemma is proven for distributions over random bit strings {0, 1}n, or equivalently
subsets of [n], replacing the ⪯ relation with ⊆ inclusion. Given a distribution Q over {0, 1, 2}n, we
design a distribution Q′ over [2n] as follows. Let v ∈ {0, 1, 2}n. We map v to the subset S =

⋃n
i=1 Si

where Si = ∅ if vi = 0, Si = {2i} if vi = 1 and Si = {2i− 1, 2i} if vi = 2. Denote this mapping
as f . This naturally induces a distribution Q′ over subsets of [2n]. Let A′ = {f(a) s.t. a ∈ A} and
B′ = {f(b) s.t. b ∈ B}.
Note that we can add sets with probability 0 under Q′ to A′ (resp. B′) to ensure that they are
monotonically increasing (resp. decreasing) without changing Pr(A′) (resp. Pr(B′)). In particular,
suppose there is a set X ∈ A′ and Y ̸∈ A′ such that X ⊂ Y . Since A is a monotonically increasing
subset of {0, 1, 2}n, Y ̸∈ A′ implies that Yi = {2i− 1} for some i ∈ [n], but this set has probaility
0 under the distribution Q′, so we can safely add it to A′. In particular, applying Kleitman’s Lemma
[2], we obtain

Pr (A(Q)B(Q)) = Pr (A′(Q′)B′(Q′)) ≤ Pr (A′(Q′)) Pr (B′(Q′)) = Pr (A(Q)) Pr (B(Q)) .

Using Lemma A.8, we bound the collision probability of distinct buckets.

Lemma A.9. For i ̸= j, we have Pr(Ỹi Ỹj = 1, Zi,j = 0) ≤ Pr(Ỹi = 1)Pr(Ỹj = 1).

Proof of Lemma A.9. Without loss of generality, we assume i < j. Recall T<i = (T1, . . . , Ti−1).

The event Ỹi Ỹj = 1, Zi,j = 0 happens when there exists two distinct elements k ̸= ℓ ∈ [n] such
that:

16



1. the i-th sample is Si = k, the j-th sample is Sj = ℓ

2. some samples from S<i fall in k, some samples from S<j fall in ℓ. We denote the two
events as Ei,k and Ej,ℓ respectively.

Hence, we can write

Pr[Ỹi Ỹj = 1, Zi,j = 0] =
∑

k ̸=ℓ,bk=bℓ=0

Pr[Ei,k, Ej,ℓ] pk pℓ. (6)

Fix a pair of k < ℓ. Consider the string β(k,ℓ) such that β(k,ℓ)
i = 0 if the i-th sample falls in the k-th

bucket, β(k,ℓ)
i = 1 if the i-th sample fall in neither k-th nor ℓ-th bucket, β(k,ℓ)

i = 2 if the i-th sample
falls in the ℓ-th bucket. Then, both events Ei,k, Ej,ℓ are completely determined by the string β(k,ℓ).
Moreover, the set of strings for which Ei,k holds is monotonically decreasing and the set of strings
for which Ej,ℓ holds is monotonically increasing. As a result, from Lemma A.8 we have

Pr(Ei,kEj,ℓ) ≤ Pr(Ei,k) Pr(Ej,ℓ).

Substituting this into Equation (6) then gives us

Pr(ỸiỸj = 1, Zi,j=0) ≤
∑
k ̸=ℓ

Pr(Ej,ℓ) Pr(Ei,k)pk pℓ

≤

(∑
k

Pr(Ei,k)pk

) (∑
ℓ

Pr(Ej,ℓ)pℓ

)
≤ Pr(Ỹi = 1)Pr(Ỹj = 1).

To bound the total contribution to the variance of the second term, we sum and obtain∑
i ̸=j

Pr(ỸiỸj = 1, Zi,j=0) ≤
∑
i ̸=j

E
[
Ỹi

]
E
[
Ỹj

]
.

Note that
∑

i ̸=j E
[
Ỹi

]
E
[
Ỹj

]
is at most E

[∑
Ỹi

]2
, so that we bound the variance as

Var
(∑

Ỹi

)
= E

[(∑
Ỹi

)2]
− E

[∑
Ỹi

]2
≤
(
1 + 3 log

10n

ρ

)∑
E [Yi] +

∑
i ̸=j

E
[
Ỹi

]
E
[
Ỹj

]
− E

[∑
Ỹi

]2
≤
(
1 + 3 log

10n

ρ

)∑
E [Yi] .

We thus obtain the following bound on the variance of Z, proving Lemma A.3. In particular,

Var(Z) ≤ 2 (Var(ZH) + Var(ZL))

≤ ρ3

500
+ 4

(
Var(H) + Var

(
m∑
i=1

Ỹi

))

≤ ρ3

500
+ 20

m∑
i=1

E [Yi] + 12 log
10n

ρ

m∑
i=1

E [Yi]

≤ ρ3

500
+ 32 log

10n

ρ

m∑
i=1

E [Yi] .
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We are now ready to prove the required lemma.

Lemma 3.3 (Sublinear Concentration). Suppose m ≤ n. If Var(S) ≥ (C/64)ρ2ε4m4n−4, then
E [S]−

√
Var(S) > µ(Un) + Cε2m2n−2 where µ(Un) is the expectation of S under the uniform

distribution and C is given by Lemma 3.1. As a consequence, with probability at least 1− ρ/4, we
have Smedian > µ(Un) + Cε2m2n−2.

On the other hand, if Var(S) ≤ (C/64)ρ2ε4m4n−4, then it holds that
Pr
(
|Smedian − µ(p)| ≥ (C/16)ρε2m2n−2

)
< ρ/4. Furthermore, for the uniform distribu-

tion Un, Var(S) ≤ (C/64)ρ2ε4m4n−4.

Proof. Our proof considers two sub-cases. In particular, we argue that when the variance of the test
statistic S is large, the algorithm replicably outputs REJECT. On the other hand, when variance is
small, the test statistic S is tightly concentrated.

High Variance — Var(S) ≥ (C/64)ρ2ε4m4n−4

We argue that when the variance of the test statistic is high, the test statistic must also be large with
high probability so that the algorithm replicably outputs REJECT.

First, let us consider the expectation of the test statistic if the input distribution is uniform.

Lemma A.10. Suppose m ≤ n. Let µ(Un) be the expectation of S given a sample from Un. Then

n · µ(Un) ≤ n−m+
m2

n
.

Proof of Lemma A.10. For each i, note that there are at most m distinct elements sampled before the
i-th sample. In particular, E [Yi] = Pr(Yi = 1) ≤ m

n for all i. Then, since in the sub-linear regime
m ≤ n we have the identities

S =
Z

n

Z = n−m+

m∑
i=1

Yi.

We can write the expectation of S as

µ(Un) = E [S] =
E [Z]

n
=

n−m+
∑m

i=1 E [Yi]

n

so that

n · µ(Un) = n−m+

m∑
i=1

E [Yi] ≤ n−m+
m2

n
.

Now, we show that when the variance of S is large, with probability at least 9
10 , S ≥ µ(Un)+Cε2m2

n2

where C is the constant given by Lemma 3.1. Since S = Z
n , this holds if and only if

Z ≥ n · µ(Un) + Cε2
m2

n
. (7)

The expectation of Z is

E [Z] = n−m+

m∑
i=1

E [Yi] .

From Lemma A.3, we have Var(Z) = O
(
ρ3 + log(n/ρ)

∑m
i=1 E [Yi]

)
. By Chebyshev’s inequality,

we have that
Pr
(
Z < E [Z]−

√
10Var(Z)

)
<

1

10
.
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Therefore, it suffices to show E [Z]−
√
10Var(Z) ≥ n · µ(Un) + Cε2m2

n2 . If this holds, then S is
beyond the random threshold and the algorithm outputs REJECT. We rearrange the desired inequality
as follows:

E [Z]−
√

10Var(Z) ≥ n · µ(Un) + Cε2
m2

n2

E [Z]− n · µ(Un)−
√
10Var(Z) ≥ Cε2

m2

n2
.

Plugging in E [Z]− n · µ(Un) ≥
∑m

i=1 E [Yi]− m2

n , it suffices to show

m∑
i=1

E [Yi]−
m2

n
−
√
10Var(Z) ≥ Cε2

m2

n
,

which is true as long as
m∑
i=1

E [Yi]−
√
10Var(Z) ≥ 2C

m2

n
.

Thus, applying Lemma A.3, it remains to show

m∑
i=1

E [Yi]−

√√√√ρ3

50
+ 320 log

10n

ρ

m∑
i=1

E [Yi] ≥
m∑
i=1

E [Yi]− 1−

√√√√320 log
10n

ρ

m∑
i=1

E [Yi] ≥ 2C
m2

n
.

since
√
a+ b ≤

√
a+
√
b and

√
ρ3/50≪ 1. Finally, we observe that by our choice of m, we have

2Cm2n−1 ≫ 1 so that it suffices to show

m∑
i=1

E [Yi]−

√√√√320 log
10n

ρ

m∑
i=1

E [Yi] ≥ 3C
m2

n
.

We simplify the left hand side with the following lemma.

Lemma A.11. For any x ≥ 1280 log 10n
ρ , we have

x−
√
320 log

10n

ρ
x ≥ x

2
.

Proof. Suppose x ≥ 320 log 10n
ρ . Then the inequality holds if and only if

x

2
≥
√

320 log
10n

ρ
x

√
x ≥ 2

√
320 log

10n

ρ

x ≥ 1280 log
10n

ρ
.

We now lower bound
∑m

i=1 E [Yi]. First, from Lemma A.3 we have

m∑
i=1

E [Yi] ≥
Var(Z)− ρ3

500

32 log(10n/ρ)
=

Var(S)n2 − ρ3

500

32 log(10n/ρ)
.

By assumption on Var(S) ≥ (C/64)ρ2ε4m4n−4, we obtain
m∑
i=1

E [Yi] ≥
(C/64)ρ2ε4m4n−2 − ρ3/500

32 log(10n/ρ)
.
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Finally, since m≫
√
nρ−1ε−2

√
log(n/ρ) for some sufficiently large constant, we have

(C/64)ρ2ε4m4n−2 − ρ3/500≫ log2(n/ρ)

ρ2ε4
.

Then,
m∑
i=1

E [Yi]≫
log2(n/ρ)

ρ2ε4 log(n/ρ)
≥ 1280 log

n

ρ
.

Thus, we conclude by

m∑
i=1

E [Yi]−

√√√√320 log
10n

ρ

m∑
i=1

E [Yi] ≥
1

2

m∑
i=1

E [Yi]

≥ 2C
m2

n
.

where the final equality follows from
m∑
i=1

E [Yi] ≥
(C/64)ρ2ε4m4n−2 − ρ3/500

56 log(10n/ρ)
≫ log2(n/ρ)

ρ2ε4 log(n/ρ)
=

log(n/ρ)

ρ2ε4
(8)

and
m2

n
= O

(
log(n/ρ)

ρ2ε4

)
.

and if we choose an arbitrary large constant factor of m, left hand side
∑

E [Yi] takes this constant to
the 4th power while the right hand side takes this constant to the 2nd power.

Thus, whenever the variance of S is large, the test statistic S lies above any random threshold with
probability at least 9

10 . Again applying a Chernoff bound, Smedian does not lie above any random
threshold with probability at most ρ

4 .

For the high variance case, it remains to show the inequality

E [S]−
√

Var(S) ≥ µ(Un) + Cε2
m2

n2
.

From the identities S = Z/n and Z = n−m+
∑

Yi, Lemma A.3 and Lemma A.10, we can rewrite
the above equation as∑

E [Yi]−m2/n

n
−

√
ρ3

500n2
+

32

n2
log

10n

ρ

∑
E [Yi] ≥ Cε2

m2

n2

and we can lower bound the left hand side as∑
E [Yi]− m2

n

n
− 1

n
−
√

32

n2
log

10n

ρ

∑
E [Yi] ≥

∑
E [Yi]−

√
32 log 10n

ρ

∑
E [Yi]

n
− m2

n2
− 1

n

≥
∑

E [Yi]

2n
− m2

n2
− 1

n

where we obtain the first term by using
√
a+ b ≤

√
a+
√
b and ρ3/(500n2) ≤ n−2, the second term

by grouping similar terms, and the final term by our assumption on Var(S) and therefore E [
∑

Yi].
Therefore, it suffices to show ∑

E [Yi] ≥ 1 +
m2

n
+ Cε2

m2

n
.

or since m2n−1 ≫ 1, ∑
E [Yi] ≥ 4max(C, 1)

m2

n
which follows from the lower bound on

∑
E [Yi] given by Equation (8).
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Low Variance — Var(S) ≤ (C/64)ρ2ε4m4n−4

We now show that whenever the number of expected collisions is low, the test statistic is well
concentrated. By Chebyshev’s inequality, we have for any iteration j that

Pr

(
|Sj − µ(p)| > C

16
ρε2

m2

n2

)
= Pr

(
|Sj − µ(p)| > 4 · C

64
ρε2

m2

n2

)
<

1

10
.

Using a Chernoff bound as previously, we obtain the same concentration result for Smedian with high
probability.

Finally, we show that for the uniform distribution Un, we have

Var(S) ≤ (C/64)ρ2ε4m4n−4.

We observe that for the uniform distribution, E [Yi] ≤ m
n since the i-th sample can collide with at

most i ≤ m elements before it and therefore
∑m

i=1 E [Yi] ≤ m2

n . Then, from Lemma A.3,

Var(S) =
Var(Z)

n2
≤ 24 log(10n/ρ)

n2

m∑
i=1

E [Yi] ≤
24m2 log(10n/ρ)

n3
.

We thus require

24m2 log(10n/ρ)

n3
≤ (C/64)ρ2ε4m4n−4

1536n log(10n/ρ)

Cρ2ε4
≤ m2

√
n

ρε2

√
log

n

ρ
≪ m

which is satisfied by our sample complexity m.

B Omitted Proofs for Replicable Uniformity Testing Lower Bound

B.1 Proof of Lemma 4.4

We begin by bounding the mutual information of the sub-linear regime.

Lemma B.1. Let m
n ≤ 1. Let δ = |ε0 − ε1| and ε = max(ε0, ε1). Then,

∑
a,b∈N

(Pr(M1 = a,M2 = b | X = 0)− Pr(M1 = a,M2 = b | X = 1))2

Pr(M1 = a,M2 = b)
≤ O

(
ε2δ2m2

n2

)
. (9)

Proof. First, let us expand the conditional probabilities for a fixed a, b. Expanding the definition of
the random variables M1,M2, X and applying the probability mass function of Poisson distributions,
we arrive at the expression

Pr(M1 = a,M2 = b | X = 0) =
1

2a!b!
exp

(
−2m

n

) (m
n

)a+b (
(1 + ε0)

a
(1− ε0)

b
+ (1− ε0)

a
(1 + ε0)

b
)
,

Pr(M1 = a,M2 = b | X = 1) =
1

2a!b!
exp

(
−2m

n

) (m
n

)a+b (
(1 + ε1)

a
(1− ε1)

b
+ (1− ε1)

a
(1 + ε1)

b
)

Define the function

fa,b(x) := (1 + x)a(1− x)b + (1− x)a(1 + x)b.

21



Then we have∑
a,b∈N

(Pr(M1 = a,M2 = b | X = 0)− Pr(M1 = a,M2 = b | X = 1))2

Pr(M1 = a,M2 = b)

= O(1)
∑
a,b∈N

1

a!b!
exp

(
−2m

n

)(m
n

)a+b (fa,b(ε1)− fa,b(ε0))
2

fa,b(ε1) + fa,b(ε0)

≤ O(1)
∑
a,b∈N

1

a!b!
exp

(
−2m

n

)(m
n

)a+b maxε0≤x≤ε1

(
∂
∂xfa,b(x)

)2
fa,b(ε0) + fa,b(ε1)

(ε1 − ε0)
2
, (10)

where in the last line we use the mean value theorem. The main technical step will be to bound from

above the quantity
maxε0≤x≤ε1(

∂
∂x fa,b(x))

2

fa,b(ε0)+fa,b(ε1)
. Specifically, we show the following technical claim.

Claim B.2. There exists an absolute constant C such that

max
ε0<x<ε1

(
∂
∂xfa,b(x)

)2
(fa,b(ε0) + fa,b(ε1))

= C


0 if a+ b ≤ 1

(a4 + b4)ε2 if 1 < a+ b ≤ ε−1/2

(a+ b)2
(

1+ε
1−ε

)a+b

if a+ b > ε−1/2.

Proof. If a+ b ≤ 1, fa,b(x) = 2. Thus, d
dxfa,b(x) = 0, which gives the first case.

We next analyze the case 2 ≤ a+ b ≤ ε−1. Note that fa,b(x) is an even function with respect to x,
i.e., fa,b(x) = fa,b(−x). This allows us to write fa,b(x) =

1
2 (fa,b(x) + fa,b(−x)). As a result, we

can conclude that fa,b(x) does not contain any monomial of x with odd degree. Thus, we can write

fa,b(x) = c
(0)
a,b +

∑
d∈[a+b] is even

c
(d)
a,bx

d

for some coefficients c(d)a,b that depend on a, b only. This implies that

∂

∂x
fa,b(x) =

∑
d∈[a+b] is even

dc
(d)
a,bx

d−1.

When 2 ≤ a + b ≤ ε−1/2, the coefficients c(d)a,b is of order
(
a+b
d

)
. Since x < ε, we must have that

|d c
(d)
a,b xd−1| decreases exponentially fast in d. This shows that | ∂∂xfa,b(x)| is dominated by the

contribution from the monomial |c(2)a,bx|, which implies that

max
ε0<x<ε1

∣∣∣∣ ∂∂xfa,b(x)
∣∣∣∣ ≤ O(1) (a+ b)2ε. (11)

To finish the analysis for this case, it then suffices to bound from below fa,b(ε0) + fa,b(ε1). Without
loss of generality, assume that a ≤ b. Then we have

fa,b(ε1) ≥ (1− ε21)
a ≥ Ω(1− aε21) ≥ Ω(1) , (12)

where the last inequality follows from a ≤ a + b < ε−1/2 and ε1 < ε. Combining Equation (11)
and Equation (12) then concludes the proof of the second case.

Lastly, we analyze the case (a+ b) > ε−1/2. In this case, for ε0 ≤ x ≤ ε1, we note that

∂

∂x
fa,b(x) = (1 + x)a(1− x)b

(
a

1 + x
− b

1− x

)
+ (1− x)a(1 + x)b

(
b

1 + x
− a

1− x

)
.

It then follows that∣∣∣∣ ∂∂xfa,b(x)
∣∣∣∣ ≤ O(a+ b)

(
(1 + x)a(1− x)b + (1− x)a(1 + x)b

)
≤ O(a+ b)

(
(1 + x)a + (1 + x)b

)
, (13)
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where in the first inequality we use that |u− v| ≤ u+ v for any u, v > 0, and the second inequality
simply follows from 1− x < 1. We can therefore conclude that

max
ε0≤x≤ε1

(
∂
∂xfa,b(x)

)2
fa,b(ε0) + fa,b(ε1)

≤ O(1)(a+ b)2
(
(1 + ε1)

a + (1 + ε1)
b
)2

(1 + ε1)a(1− ε1)b + (1 + ε1)b(1− ε1)b

≤ O(1)(a+ b)2
(
(1 + ε1)

a

(1− ε1)b
+

(1 + ε1)
b

(1− ε1)a

)
≤ O(1)(a+ b)2

(
1 + ε1
1− ε1

)a+b

,

where in the first inequality we bound from above the numerator with the square of the right hand
side of Equation (13) substituted with x = ε1, and bound from below the denominator by fa,b(ε1),
in the second inequality we use the fact that (u+ v)2 ≤ 2u2 + 2v2, and in the last inequality we use
that (1 + ε1)

a, (1 − ε1)
−a are increasing in a and (1 + ε1)

b, (1 − ε1)
−b are increasing in b. This

concludes the proof of the third case and also Claim B.2.

It immediately follows from the claim that∑
a,b:a+b<2

(Pr(M1 = a,M2 = b | X = 0)− Pr(M1 = a,M2 = b | X = 1))2

Pr(M1 = a,M2 = b)
= 0. (14)

Consider the terms with 2 ≤ a+ b ≤ ε−1/2. From Equation (10) and Claim B.2, we have that∑
a,b:2≤a+b≤ε−1/2

(Pr(M1 = a,M2 = b | X = 0)− Pr(M1 = a,M2 = b | X = 1))2

Pr(M1 = a,M2 = b)

≤ O(1)
∑

a,b:2≤a+b≤ε−1/2

1

a!b!
exp

(
−2m

n

)(m
n

)a+b

(a4 + b4)δ2ε2

= O(δ2ε2)

∑
a∈N

∑
b:2≤a+b≤ε−1/2

a4

a!b!

(m
n

)a+b

+
∑
b∈N

∑
a:2≤a+b≤ε−1/2

b4

a!b!

(m
n

)a+b

 . (15)

Define A :=
∑

a∈N

∑
b:b:2≤a+b≤ε−1/2

a4

a!b!

(
m
n

)a+b
and B :=∑

b∈N

∑
a:2≤a+b≤ε−1/2

b4

a!b!

(
m
n

)a+b
. One can see the two terms are similar to each other.

So we focus on the term A. We have that

A =

ε−1/2−1∑
b=1

1

b!

(m
n

)1+b

+
∑
a≥2

a4

a!

(m
n

)a ∑
b:b:2≤a+b≤ε−1/2

1

b!

(m
n

)b
≤ O(1)

(m
n

)2
+O(1)

∑
a≥2

a4

a!

(m
n

)a
.

≤ O(1)
(m
n

)2
+O(1) exp(m/n)

∑
a≥2

exp(−m/n)
a(a− 1) + a(a− 1)(a− 2)(a− 3)

a!

(m
n

)a
≤ O(1)

(m
n

)2
+O(1) exp(m/n) Ey∼Poi(m/n) [y(y − 1) + y(y − 1)(y − 2)(y − 3)] ,

≤ O(1)
(m
n

)2
.

where in the first inequality we use the assumption m < n to bound from the above the summation
over b by a geometric series with common ratio at most 1/2, in the second inequality we use
the fact that a4 is at most 10 (a(a− 1) + a(a− 1)(a− 2)(a− 3)) for all a ≥ 2, in the third
inequality we observe that the summation over a can be bounded from above by the moments
of some Poisson random variable with mean m/n, and in the last inequality we use the fact that
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Ey∼Poi(λ)[y(y − 1) + y(y − 1)(y − 2)(y − 3)] = λ2 + λ4. One can show the same upper bound for
B via an almost identical argument. Substituting the bounds for A,B into Equation (15) then gives∑
a,b:2≤a+b≤ε−1/2

(Pr(M1 = a,M2 = b | X = 0)− Pr(M1 = a,M2 = b | X = 1))2

Pr(M1 = a,M2 = b)
≤ O(δ2ε2)

(m
n

)2
.

(16)

It then remains to analyze the terms where a+ b ≥ ε−1/2. Again from Equation (10) and Claim B.2,
we have that ∑

a,b∈N

(Pr(M1 = a,M2 = b | X = 0)− Pr(M1 = a,M2 = b | X = 1))2

Pr(M1 = a,M2 = b)

≤ O(δ2)
∑

a,b:a+b>ε−1/2

1

a!b!

(m
n

)a+b

(a+ b)2
(
1 + ε

1− ε

)a+b

= O(δ2)
∑

s>ε−1/2

(
m

n

1 + ε

1− ε

)s

s2
∑

a,b:a+b=s

1

a!b!

≤ O(δ2)
∑

s>ε−1/2

(
m

n

1 + ε

1− ε

)s
s3

⌊s/2⌋!

≤ O(δ2)
s3

⌊s/2⌋!

(
1

2

m

n

1 + ε

1− ε

)s ∣∣∣∣
s=ε−1/2

≤ O(δ2ε2(m/n)2) (17)

where in the second inequality we use the observation that we must have either a ≥ s/2 or b ≥ s/2
if a + b = s, in the third inequality we note that the summation over s decreases exponentially
and is therefore dominated by the term where s = ε−1/2, and in the last inequality we use that
s3/ ⌈s/2⌉! ≤ O(1), (m/n)ε

−1/2 ≤ (m/n)2, (1+ε)/(2(1−ε)) < 0.9, and that 0.9ε
−1/2 ≪ poly (ε)

for sufficiently small ε.

Combining Equations (14), (16) and (17) then concludes the proof of Lemma B.1.

We now bound the mutual information for the super-linear regime.

Lemma B.3. Let δ = |ε0 − ε1| and ε = max(ε0, ε1). Let n < m < o
(

n
log2 n ε2

)
. Then,∑

a,b∈N

(Pr(M1 = a,M2 = b | X = 0)− Pr(M1 = a,M2 = b | X = 1))2

Pr(M1 = a,M2 = b)
≤ O

(
ε2δ2m2 log4 n

n2

)
+o(1/n).

Proof. We note that for a Poisson random variable y with mean λ ≥ 1, we have |y − λ| >
√
λ log n

with probability at most o(1/n). We can focus on the terms where l ∈ [λ−
√
λ log n, λ+

√
λ log n].

For reasons that will become clear soon, we will assume that a, b both lie in this range.

As in the sub-linear case, we define the function

fa,b(x) := (1 + x)a(1− x)b + (1− x)a(1 + x)b.

Instead of computing the derivative of fa,b directly, we will first rewrite it slightly.

fa,b(x) = exp (a log(1 + x) + b log(1− x)) + exp (a log(1− x) + b log(1 + x))

= 2 + a log(1− x2) + b log(1− x2)

+

∞∑
i=2

(a log(1 + x) + b log(1− x))
i
+ (a log(1− x) + b log(1 + x))

i

i!
,

where in the second equality we apply the Taylor approximation of the exponential function. We will
analyze the expression terms by terms. In particular, define

gy(x) = y log(1− x2) , ha,b(x) =

∞∑
i=2

(a log(1 + x) + b log(1− x))
i

i!
.
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Then we have

fa,b(x) = 2 + ga(x) + gb(x) + ha,b(x) + ha,b(−x). (18)

We first analyze ga(x). When a ∈ [λ−
√
λ log n, λ+

√
λ log n], we have that

|ga(ε1)− ga(ε0)| =
∣∣∣∣a log(1− ε20

1− ε21

)∣∣∣∣ ≤ a

∣∣∣∣1− 1− ε20
1− ε21

∣∣∣∣
=

a

1− ε21
(ε0 + ε1) |ε0 − ε1| ≤ O

(m
n

ε δ log n
)
, (19)

where in the first inequality we use the fact |log(x)| ≤ x− 1 for x ≥ 1, in the second inequality we
use our assumption that max(ε0, ε1) ≤ ε and |ε0 − ε1| ≤ δ, and our assumption that |a−m/n| <
log n

√
m/n. Using a similar argument, one can also derive that

|gb(ε1)− gb(ε0)| ≤ O
(m
n

ε δ log n
)
, (20)

We then turn to the term ha,b(x). The derivative with respect to x is given by

∂

∂x
ha,b(x) =

(
a

1 + x
− b

1− x

) ∞∑
i=2

(a log(1 + x) + b log(1− x))
i−1

(i− 1)!

=

(
a

1 + x
− b

1− x

)(
(1 + x)a(1− x)b − 1

)
where the second equality follows from the observation that the summation is exactly the Taylor
approximation of exp (a log(1 + x) + b log(1− x)) without the constant term. We next proceed
to bound from above

∣∣ ∂
∂xha,b(x)

∣∣. First, when x is sufficiently small and a, b lie in the range
m
n ±

√
m
n log n, note that∣∣∣∣ a

1 + x
− b

1− x

∣∣∣∣ = |a− b−O(x)(a+ b)|

≤ |a− b|+ (a+ b)O(x)

≤ 2

√
m

n
log n+ 2

m

n
x+ 2

√
m

n
log(n)x

≤ O

(√
m

n
log n

)
, (21)

where in the first line we approximate 1
1+x and 1

1−x with 1−O(x) and 1 +O(x) respectively for
sufficiently small x, the second line follows from the triangle inequality, in the third line we use the
assumption on the ranges of a, b, in the last line we note that

√
m
n log n is the dominating term when

x < ε and m < n/ε2. Next, under the same set of assumptions, we have that(
(1 + x)a(1− x)b − 1

)
≤
(
(1− x2)b(1 + x)|a−b| − 1

)
≤
(
(1−O(bx2))(1 +O(|a− b|)x)− 1

)
≤ O

(
ε

√
m

n
log n

)
, (22)

where in the second inequality we note that since bx2 = O
(
m
n ε2

)
≪ 1 and |a − b|x =

O
(√

m
n log(n)ε

)
≪ 1 we can approximate (1 − x2)b and (1 + x)|a−b| by (1 − O(bx2)) and

(1 +O(|a− b|)x) respectively, and in the last inequality we use the assumption on the range of a, b
and x < ε. Thus, combining Equations (21) and (22), we arrive at the upper bound

max
x∈[ε0,ε1]

∂

∂x
ha,b(x) ≤ O

(
ε
m

n
log2 n

)
,
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when m
n −

√
m/n log n ≤ a, b ≤ m

n +
√
m/n log n. Therefore, by the mean value theorem, we

have that

|ha,b(ε1)− ha,b(ε0)| ≤ O
(
εδ

m

n
log2 n

)
. (23)

Following a similar argument, one can also derive the upper bound

|ha,b(−ε1)− ha,b(−ε0)| ≤ O
(
εδ

m

n
log2 n

)
. (24)

Combining Equations (18) to (20), (23) and (24) then gives that

|fa,b(ε1)− fa,b(ε0)| ≤ O
(
εδ

m

n
log2 n

)
. (25)

Recall that in the proof of Lemma B.1, we have that∑
a,b∈N

(Pr(M1 = a,M2 = b | X = 0)− Pr(M1 = a,M2 = b | X = 1))2

Pr(M1 = a,M2 = b)

= O(1)
∑
a,b∈N

1

a!b!
exp

(
−2m

n

)(m
n

)a+b (fa,b(ε1)− fa,b(ε0))
2

fa,b(ε1) + fa,b(ε0)
. (26)

Hence, we proceed to bound from below fa,b(ε0) + fa,b(ε1). Note that we have

fa,b(ε0) + fa,b(ε1) ≥ (1− x2)min(a,b)(1 + x)|a−b| ≥ 1−O(min(a, b)x2) ≥ Ω(1) , (27)

where the first inequality follows from a case analysis on whether a > b, in the second inequality
we approximate (1 − x2)min(a,b) by 1 − O(min(a, b)x2) since min(a, b)x2 = o(1) for a, b in the
assumed range and x < ε. Combining Equations (25) to (27) then gives that∑
a,b∈N

(Pr(M1 = a,M2 = b | X = 0)− Pr(M1 = a,M2 = b | X = 1))2

Pr(M1 = a,M2 = b)

≤ O(1)
∑
a,b∈N

1

{
m

n
−
√

m

n
log n ≤ a, b ≤ m

n
+

√
m

n
log n

}
1

a!b!
exp

(
−2m

n

)(m
n

)a+b

ε2δ2
(m
n

)2
log4 n

+O(1)

(
1− Pr

a,b∼Poi(m/n)

[
m/n−

√
m/n log n ≤ a, b ≤ m/n+

√
m/n log n

])
≤ ε2δ2

(m
n

)2
log4 n+ o(1/n).

This concludes the mutual information bound for the super-linear case.

Lastly, we present the mutual information bound for the super-learning parameter regime, i.e.,
m ≥ Ω̃

(
n/ε2

)
.

Lemma B.4. Let δ = |ε0 − ε1| and ε = max(ε0, ε1). Let m > Ω
(

n
log2 n ε2

)
. Then it holds

I(X : M1,M2) ≤ O

(
ε2δ2m2 log2 n

n2

)
.

We are going to use the following facts regarding KL-divergence and mutual information.
Claim B.5 (Convexity of KL-divergence). Let w ∈ (0, 1), and p1, p2, q1, q2 be probability distribu-
tions over the same domain. Then it holds

KL(wp1 + (1− w)p2||wq1 + (1− w)q2) ≤ wKL(p1||q1) + (1− w)KL(p2||q2).
Claim B.6 (Additivity of KL-divergence). Let w ∈ (0, 1), and p1, p2, q1, q2 be probability distribu-
tions such that p1, q1 share the same domain and p2, q2 share the same domain. Then it holds

KL(p1 ⊗ p2||q1 ⊗ q2) = KL(p1||q1) + KL(p2||q2).
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Claim B.7 (Mutual Informtion Identity). Let X be an indicator variable, and H0, H1 be a pair of
distributions. Let H be the random variable that follows the distribution of H0 if X = 0 and X1 if
X = 1. Then it holds

I(X : H) =
1

2
KL
(
H0 :

1

2
(H1 +H0)

)
+

1

2
KL
(
H1 :

1

2
(H1 +H0)

)
.

Proof of Lemma B.4. When X = 0, the pair (M1,M2) is distributed as a even mixture of two
distributions that are both product of Poisson distributions:

(M1,M2) | (X = 0) ∼ H0 :=
1

2

(
Poi

(m
n

+ ε0
m

n

)
⊗ Poi

(m
n
− ε0

m

n

)
+ Poi

(m
n
− ε0

m

n

)
⊗ Poi

(m
n

+ ε0
m

n

))
.

Similarly, we have

(M1,M2) | (X = 1) ∼ H1 :=
1

2

(
Poi

(m
n

+ ε1
m

n

)
⊗ Poi

(m
n
− ε1

m

n

)
+ Poi

(m
n
− ε1

m

n

)
⊗ Poi

(m
n

+ ε1
m

n

))
.

From Claim B.7 and Claim B.5, we know that it suffices to show that the KL-divergences between
H0 and H1 are at most ε2δ2m2 log2 n

n2 . We focus on the argument for KL(H0 : H1) as the one for
KL(H1 : H0) is symmetric.

By the definition of H0 and H1, we have that

KL(H0 : H1) ≤
1

2
KL
(
Poi

(m
n

+ ε0
m

n

)
⊗ Poi

(m
n
− ε0

m

n

)
||Poi

(m
n

+ ε1
m

n

)
⊗ Poi

(m
n
− ε1

m

n

))
+

1

2
KL
(
Poi

(m
n
− ε0

m

n

)
⊗ Poi

(m
n

+ ε0
m

n

)
||Poi

(m
n
− ε1

m

n

)
⊗ Poi

(m
n

+ ε1
m

n

)
.
)

= KL
(
Poi

(m
n

+ ε0
m

n

)
||Poi

(m
n

+ ε1
m

n

))
+ KL

(
Poi

(m
n
− ε0

m

n

)
||Poi

(m
n
− ε1

m

n

))
,

where in the first line we use Claim B.5, and in the last line we use Claim B.6.

Let λ1 > λ2 > 0. Note that we have the following closed form for KL divergence between a pair of
Poisson distributions:

KL(Poi (λ1) ||Poi (λ2)) = λ1 log(λ1/λ2) + λ2 − λ1 ≤ λ1
λ1 − λ2

λ2
+ λ2 − λ1 =

(λ1 − λ2)
2

λ2
,

where in the first inequality we use the bound log(x) ≤ x− 1 for all x > 0. Hence, it follows that

KL(H0||H1) ≤
(
m
n (ε1 − ε0)

)2
m
n (1 + ε1)

≤ O(1)
m

n
δ2.

But notice that this is at most O
(

ε2δ2m2 log2 n
n2

)
as long as m ≥ Ω

(
n/(2 log2(n)ε2)

)
which is our

assumed parameter regime in this lemma.

By setting δ = |ε1 − ε0| = O(ερ), it follows from Lemmas B.1, B.3 and B.4 that I(X : M1,M2) ≤
O
(

ε2δ2m2 log4 n
n2

)
+o(1/n). Since the pairs Mi,Mi+1 are conditional independent and have identical

distributions given X , it follows that

I(X;M1, · · · ,Mn) ≤
n

2
I(X;M1,M2) ≤ O

(
ε2δ2m2 log4 n

n

)
+ o(1).

This concludes the proof of Lemma 4.4.

B.2 Proof of Lemma 4.3

Proof. Let T be a set of samples. In case one, T is made up of m samples from a random distribution
fromM0. In case two, T is made up of m samples from a random distribution fromM1. Assume
that there exists a tester A that can distinguish between the two cases given S with probability at
least 0.9. We will show that this implies that m = Ω̃

(√
nε−2ρ−1

)
. Recall that Lemma 4.4 has

the following setup. Let X be an unbiased binary random variable. If X = 0, S will be Poi (2m)
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samples from a random distribution fromM0. If X = 1, S will be Poi (2m) samples from a random
distribution fromM1. Then we can use A to predict X given S in the following way: if S contains
more than m samples, we feed A the first m samples and take its output; otherwise, we declare
failure. By the concentration property of Poisson distributions, it holds that S contains more than m
samples with high constant probability. Hence, the above routine will be able to correctly predict X
with probability at least 0.6. This implies that the mutual information between X and S is at least
Ω(1). However, Lemma 4.4 says that the mutual information is at most

O

(
ε4ρ2

m2

n
log4(n)

)
+ o(1).

This therefore shows that

ε4ρ2
m2

n
log4(n) = Ω(1)

which further implies that
m = Ω

(√
n log−2(n)ε−2ρ−1

)
.

This concludes the proof of Lemma 4.3.

B.3 Proof of Proposition 4.1

Proof. Let m = õ
(√

nε−2ρ−1
)
. For the sake of contradiction, assume that

|Accm(ε0)− Accm(ε1)| > 0.1

for some deterministic symmetric tester A(; r). LetM0,M1 be the local swap family of p(ε0) and
p(ε1) respectively. We show that this could be used to distinguish between a random distribution
fromM0 and a random distribution fromM1. This would then contradict Lemma 4.3. In particular,
since the output of A(; r) is invariant up to domain relabeling, the acceptance probability of A(; r)
when it takes samples from a random distribution fromM0 must be exactly equal to Accm(ε0) (and
similarly forM1). This immediately implies a tester that takes m samples and could distinguish
between a random distribution fromM0 and a random distribution fromM1 with probability at least
1/2 + c for some small constant c. This further implies that if we takes 100mc−1 many samples,
we can boost the success probability to 0.99. Yet, since 100mc−1 = õ

(√
nε−2ρ−1

)
, this clearly

contradicts Lemma 4.3, and hence concludes the proof of Proposition 4.1.

B.4 Proof of Theorem 1.6

Proof. The lower bound Ω̃(ε−2ρ−2) follows from the fact that testing whether an unknown coin has
bias 1/2 or 1/2 + ε replicably requires Ω̃

(
ε−2ρ−2

)
many samples as shown in [30]. In the rest of

the proof, we therefore focus on establishing the lower bound Ω̃(
√
nε−2ρ−1).

Let p(ξ) be the distribution instance defined as in Equation (4). Let A be a ρ-replicable uniformity
tester that takes m samples. We denote by r the random string representing the internal randomness
of A.

Following the framework of [30], we will fix some random string r such that (i) A(; r) accepts the
uniform distribution with probability at least 1−O(ρ) (ii) A(; r) rejects the distribution p(ε) with
probability at least 1−O(ρ) (iii) A(; r) is replicable with probability at least 1−O(ρ) against p(ξ)
for ξ sampled uniformly from [0, ε]. By the correctness guarantees of A, a large constant fraction
of random strings r must satisfy (i) and (ii). By the replicability requirement of A, a large constant
fraction of random strings r must satisfy (iii). By the union bound, there must exist some random
string r that satisfies (i), (ii) and (iii) at the same time. Define the acceptance probability function

Accm(ξ) = Pr
S∼p(ξ)⊗m

[A(S; r) = 1].

Note that Accm(ξ) is a continuous function in ξ since the acceptance probability can be expressed as
a polynomial in ξ. Moreover, it holds that Accm(0) ≥ 1−O(ρ) and Accm(ε) ≤ O(ρ). Therefore,
there must exist some ξ∗ such that Accm(ξ∗) = 1/2. Assume for the sake of contradiction that
m = õ(

√
nε−2ρ−1). By Proposition 4.1, it follows that

Accm(ξ) ∈ [Accm(ξ∗)− 0.1,Accm(ξ∗) + 0.1] = [0.4, 0.6]
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for any ξ such that |ξ − ξ∗| ≤ ρε. In other words, if we sample ξ randomly from [0, ε], whenever
ξ falls into the interval [ξ∗ − ρε, ξ∗ + ρε], the algorithm will fail to be replicable with constant
probability. It is not hard to see that the interval has mass Ω(ρ) under the uniform distribution over
[0, ε]. This would then imply that the tester would not be O(ρ)-replicable, contradicting property (iii).
This shows that m = Ω̃(

√
nε−2ρ−1), and hence concludes the proof of Theorem 1.6.

C Further Discussion and Omitted Proofs

In this section we give additional discussions and omitted proofs.

C.1 Barriers for χ2-Statistics

We show a similar barrier for using the χ2-test statistics. These statistics are used in the several
uniformity testing algorithms, including [14, 1, 47, 20]. The χ2 test statistic (of [1] for example)
computes ∑

i∈[n]

(Xi −m/n)2 −Xi

m/n

where the algorithm takes Poi (m) samples and computes Xi to be the frequency of the i-th element
among the samples. For a uniform distribution, the test statistic is expected to be at most mε2/500,
while if the test statistic is far from uniform the test statistic is at least mε2/5, leading to an expectation
gap with around mε2 (Lemma 2 of [1]). Suppose a tester compares the test statistic with a random
threshold sampled from the interval [mε2/500,mε2/5]. For the tester to be O(ρ)-replicable, we
require that the test statistics deviate by no more than O(ρmε2) with high constant probability, in
other words the variance must be at most O(ρ2m2ε4).

As before, we fix a constant ε > 0 so that we can ignore the dependency with sample complexity, and
consider a hard instance of a distribution with a single heavy element with probability pi = n−1/2.
In particular, we will have Xi ∼ Poi (mpi) = Poi (m/

√
n). Since m/

√
n ≫ 1, there exists some

constant small constant c such that

Pr[Xi > m/
√
n+ c

√
m/n1/4] > c ,

Pr[Xi < m/
√
n− c

√
m/n1/4] > c.

However, in the two cases above, the contributions to the χ2-test statistic from Xi differ by(
m√
n
+ c

√
m

n1/4 − m
n

)2
−
(

m√
n
− c

√
m

n1/4 − m
n

)2
+ 2c

√
m

n1/4

m/n
= Ω

(
m3/2

n3/4 +
√
m

n1/4

m/n

)
= Ω

(√
mn1/4

)
.

Following our previous discussion, for the tester to be O(ρ)-replicable, we therefore require that
m1/2n1/4 ≪ ρm or m ≥ n1/2ρ−2.

C.2 Discussion of Lower Bounds against Asymmetric Algorithms

For non-replicable uniformity testing algorithms, we can typically assume that symmetry is without
loss of generality when analyzing the sample complexity. A common reduction that turns an
asymmetric algorithm into a symmetric algorithm is the following. The algorithm could apply all
permutations to the samples observed, and output the majority answer. However, it is not clear that
such a transformation preserves replicability.

Below we discuss in more detail the barrier hit by our lower bound argument for asymmetric testers.
Suppose we want to prove a lower bound against general algorithms. The known techniques for lower
bounds against replicable algorithms first fix a random seed r such that A(; r) is both correct and
replicable with high probability given a distribution drawn from the adversarial instance (in our lower
bound the instance draws distributions p(ξ) uniformly from ξ ∈ [0, ε]).8 Given a fixed random seed,

8In our lower bound, we use the local swap family to restrict the adversary to a subset of permutations. In
this discussion, we allow a more generic adversary that could permute the domain arbitrarily.
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we now have a deterministic algorithm A(; r) that accepts p(0) and rejects any permutation of p(ε).
By continuity, for any fixed permutation π, there is some ξπ such that A(; r) accepts with probability
1/2 given samples drawn from p(ξπ) permuted according to π. It remains to argue that algorithms
with low sample complexity m≪

√
nρ−1ε−2 cannot successfully distinguish nearby distributions

p(ξπ),p(ξ) (both permuted according to π) for any ξ ∈ (ξπ±ρε) so that the acceptance probability of
A(; r) must be close to 1/2 in this region and therefore A(; r) is not replicable with probability Ω(ρ).
However, our arguments in Appendix B only show that the families p(ξπ),p(ξ) are indistinguishable
when permuted by a random permutation π′, not necessarily when permuted by the permutation π. In
fact our proof only allows us to argue that for any ξ′ ∈ [0, ε], the families are indistinguishable when
permuted by a constant fraction of permutations π′. However, the permutations for which the families
p(ξ′),p(ξ′ + ρε) are indistinguishable may not be the permutations for which ξπ, ξ

′ are close.

C.3 Replicable Identity Testing

The formal definition of replicable identity testing is given below.
Definition C.1 (Replicable Identity Testing). Let n ∈ Z+ , and ε, ρ ∈ (0, 1/2). A randomized
algorithm A, given sample access to some distribution p on [n], is said to solve (n, ε, ρ)- replicable
identity testing if A is ρ-replicable and it satisfies the following for every fixed distribution X:

1. If p is X , A should accept with probability at least 1− ρ. 9

2. If p is ε-far from X in TV distance, A should reject with probability at least 1− ρ.

[27] gives a reduction following reduction between uniformity and identity testing.
Theorem C.2 ([27], restated). Let q be a distribution over [n] with known explicit description. There
is a (randomized) algorithm T such that given m independent samples to a distribution p on [n] and
ε > 0, generates m independent samples from a distribution p′ on [6n] such that:

1. If p = q, p′ is uniform on [6n].

2. If p is ε-far from q in total variation distance, then p′ is ε/3-far from uniform in total
variation distance.

Furthermore, this algorithm runs in O(m) time.

If we want to design a replicable identity tester, we can simply transform the samples using T from
Theorem C.2 (note that we don’t even need to share the randomness of T across different runs)
and then feed the transformed dataset to the replicable uniformity tester from Theorem 1.3. The
correctness guarantees follow immediately. Let p′ be the output distribution of T . Since in both
runs the replicable uniformity tester takes samples from p′, replicability of the process follows from
Theorem 1.3. Lastly, it is not hard to see that the number of samples consumed is asymptotically the
same as the uniformity tester.

9As in the case of uniformity testing, we do not focus on the dependence of the sample complexity with the
error parameter.
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class of algorithms) in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Answer: [Yes] .
Justification: Yes, all claims are proven either in the main body or the appendix. For results
not proven in the main body, we provide a proof sketch and leave details to the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include experiments requiring code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: While the paper focuses on foundational research, replicable uniformity testing
is aimed towards building an algorithmic framework for replicability in scientific analysis,
helping build an efficient procedure to verify experimental procedures are followed correctly
and building public trust in science. The authors are not aware of any potential negative
impacts.
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• The answer NA means that there is no societal impact of the work performed.

34

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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