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Abstract
Real-world datasets often follow a long-tailed dis-
tribution, making generalization to tail classes dif-
ficult. Recent methods resorted to long-tail vari-
ants of Sharpness-Aware Minimization (SAM),
such as ImbSAM and CC-SAM, to improve gen-
eralization by flattening the loss landscape. How-
ever, these attempts face a trade-off between com-
putational efficiency and control over the loss
landscape. On the one hand, ImbSAM is efficient
but offers only coarse control as it excludes head
classes from the SAM process. On the other hand,
CC-SAM provides fine-grained control through
class-dependent perturbations but at the cost of ef-
ficiency due to multiple backpropagations. Seeing
this dilemma, we introduce Focal-SAM, which
assigns different penalties to class-wise sharpness,
achieving fine-grained control without extra back-
propagations, thus maintaining efficiency. Fur-
thermore, we theoretically analyze Focal-SAM’s
generalization ability and derive a sharper gener-
alization bound. Extensive experiments on both
traditional and foundation models validate the ef-
fectiveness of Focal-SAM.

1. Introduction
In the past decades, deep learning has achieved remarkable
success in various fields, including image classification (He
et al., 2016), medical image processing (Ronneberger et al.,
2015), and object detection (Ren et al., 2015). However, this
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success often relies on carefully curated, balanced datasets.
In real-world scenarios, data often exhibits a long-tailed
distribution, where a few categories have abundant sam-
ples while most categories contain only a small number
of examples. Long-tailed learning focuses on effectively
training models on such imbalanced datasets (Zhang et al.,
2023; 2024a). Numerous approaches have been proposed to
address this challenge, including re-sampling (Buda et al.,
2018), re-balancing (Cui et al., 2019; Ren et al., 2020; Wang
et al., 2023), representation learning (Zhu et al., 2022; Cui
et al., 2024), ensemble learning (Wang et al., 2021; Zhang
et al., 2022), and fine-tuning foundation models (Dong et al.,
2023; Shi et al., 2024).

Recently, Rangwani et al. (2022) visualized the loss land-
scape of different classes and observed that tail classes of-
ten suffer from saddle points. Since the loss landscape is
closely related to the generalization of modern neural net-
works (Keskar et al., 2017; Jiang et al., 2020), they apply
Sharpness-Aware Minimization (SAM) (Foret et al., 2021)
to help tail classes escape from saddle points. Later, since
the original SAM operates on all classes, ImbSAM (Zhou
et al., 2023a) excludes the head classes to better focus on flat-
tening the landscape of the tail classes. However, when com-
bined with popular re-balancing methods (Cao et al., 2019;
Kini et al., 2021; Menon et al., 2021), this coarse-grained
approach often overemphasizes the tail classes, leading to
poor head and overall performance. To achieve fine-grained
control, CC-SAM (Zhou et al., 2023b) uses class-dependent
perturbation. However, the per-class perturbation requires at
least C additional backpropagations, where C denotes the
number of classes, making it rather computationally expen-
sive. This raises a natural question: Can we design a method
that achieves both fine-grained control and computational
efficiency?

Targeting this goal, we integrate the focal mechanism (Lin
et al., 2017) with SAM, inducing a novel approach named
Focal-SAM. Specifically, we introduce the focal sharpness
term, which is defined as the weighted sum of class-wise
sharpness, where the weights decrease in a focal-like man-
ner from head to tail classes. On the one hand, Focal-SAM
controls the flatness of different classes in a fine-grained
way, better balancing the performance between head and tail
classes than ImbSAM, as shown in Fig.1(a). On the other
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Figure 1: (a) ImbSAM applies the sharpness penalty only to tail classes, leading to a sharp loss landscape for head classes.
In contrast, Focal-SAM assigns class-specific weights to the sharpness penalty, resulting in smooth loss landscapes for both
head and tail classes. (b) Focal-SAM replaces per-class perturbations in CC-SAM with class-specific sharpness penalties,
significantly enhancing computational efficiency while achieving better performance.

hand, Focal-SAM replaces the per-class perturbations in CC-
SAM with per-class sharpness penalties, making it much
more efficient than CC-SAM, as illustrated in Fig.1(b). Fur-
thermore, we provide an informative generalization bound
based on the PAC-Bayesian theory. This bound not only
decreases at a faster rate than those of SAM and CC-SAM
(Õ(1/n) vs. O(1/

√
n), where n is the number of training

samples) but also demonstrates the influence of the hyper-
parameters and trace of the Hessian.

Finally, we conduct extensive experiments on various bench-
mark datasets to validate the effectiveness of Focal-SAM,
including training ResNet models from scratch and fine-
tuning the foundation model CLIP (Radford et al., 2021).
The results show that Focal-SAM consistently outperforms
other SAM-based methods across multiple datasets and mod-
els in long-tailed recognition tasks. Prior arts (Zhou et al.,
2022; Khattak et al., 2023; Park et al., 2024) have demon-
strated that fine-tuning CLIP often performs well on the
target domain but struggles with domain shifts. Therefore,
we also assess model performance on OOD test sets when
fine-tuning foundation models, referred to as long-tailed
domain generalization tasks. The results indicate that Focal-
SAM improves performance by approximately 0.5%∼4.3%
when combined with baselines on OOD test sets. These
further suggest that Focal-SAM can enhance generalization,
leading to better performance under domain shifts.

In summary, our key contributions are as follows:

• Systematic studies illustrate the limitations of ImbSAM
and CC-SAM. ImbSAM fails to flatten the loss landscape
for head classes, while CC-SAM is highly computation-
ally expensive.

• We propose Focal-SAM, a simple yet effective method
that provides fine-grained control of loss landscape and
maintains computational efficiency. Theoretical analysis
further offers a sharp generalization bound of Focal-SAM.

• Extensive experiments validate the effectiveness of the
proposed Focal-SAM, ranging from training ResNet mod-
els from scratch to fine-tuning foundation models.

2. Related Work
2.1. Long-Tailed Learning

Several approaches address long-tailed learning challenges,
such as re-sampling (Buda et al., 2018; Wang et al., 2019b;
Liu et al., 2022), re-balancing (Cui et al., 2019; Ren et al.,
2020; Wang et al., 2023; 2022; Han et al., 2024; Hou et al.,
2022; Lyu et al., 2025; Yang et al., 2023b;a; 2022; Zhao
et al., 2024a; Dai et al., 2023; Shao et al., 2023; Hong et al.,
2024), data augmentation (Kim et al., 2020; Hong et al.,
2022; Ahn et al., 2023; Wang et al., 2024b;a), representa-
tion learning (Cui et al., 2021; Zhu et al., 2022; Cui et al.,
2024; Gao et al., 2023; Zhang et al., 2024b), ensemble learn-
ing (Wang et al., 2021; Zhang et al., 2022; Li et al., 2022;
Aimar et al., 2023; Yang et al., 2024; Zhao et al., 2024b),
and fine-tuning foundation models (Dong et al., 2023; Shi
et al., 2024). This paper focuses on loss modification, a tech-
nique that modifies the loss function to guide the model’s
attention towards tail classes, consequently improving their
performance. Various methods have been proposed, such
as LDAM (Cao et al., 2019), which enlarges the margin
for tail classes to enhance their generalization performance.
Cao et al. (2019) further introduce a training scheme called
Deferred Re-weighting (DRW) used in conjunction with
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LDAM to improve model performance. However, Menon
et al. (2021) argue that previous loss modification techniques
sacrifice consistency in minimizing the balanced error. They
propose the LA (Menon et al., 2021) loss, which introduces
adjustments to the standard cross-entropy loss to ensure
Fisher consistency for balanced error minimization. Build-
ing on this work, the VS (Kini et al., 2021) loss further
improves upon the LA loss by incorporating both additive
and multiplicative adjustments, beneficial during the initial
and terminal phases of training respectively. Most recently,
Wang et al. (2023) provide a comprehensive generalization
analysis of these losses.

In this paper, we leverage these loss functions while aiming
to specifically improve their generalization ability for long-
tailed classification tasks.

2.2. Sharpness of Loss Landscape

Generalization in deep neural networks has always been a
crucial focus in machine learning research. Recent stud-
ies (Keskar et al., 2017; Jiang et al., 2020) have empirically
and theoretically demonstrated that flatter minima in the loss
landscape typically lead to better generalization. Inspired
by this, Sharpness-Aware Minimization (SAM) (Foret et al.,
2021) is developed to find flatter minima, achieving superior
performance across various tasks.

In the context of long-tailed learning, Rangwani et al. (Rang-
wani et al., 2022) suggest combining SAM with re-balancing
techniques to help the model escape saddle points and im-
prove generalization. Imbalanced SAM (ImbSAM) (Zhou
et al., 2023a) incorporates class priors into SAM by di-
viding classes into head and tail groups. It applies SAM
exclusively to the tail classes while maintaining standard op-
timization for head classes, aiming to specifically enhance
the generalization of tail classes. Class-Conditional SAM
(CC-SAM) (Zhou et al., 2023b) applies SAM to each class
individually, using class-specific perturbation radii. These
radii increase from head to tail classes, enabling fine-grained
control over the loss landscape for each class.

This work also extends the SAM framework for long-tailed
classification. Our method aims to achieve fine-grained con-
trol over the loss landscape while maintaining computational
efficiency.

3. Motivation
3.1. Problem Setup

We define the sample space as X and the label space as
Y = {1, 2, · · · , C}. In the long-tailed recognition task,
the training set follows an imbalanced distribution D and
consists of data pairs denoted as S = {(xi, yi)}ni=1, where
yi ∈ Y is the label for sample xi ∈ X , and n is the to-

tal number of training samples. Let Dbal denote the uni-
form test distribution. Following prior work (Cao et al.,
2019; Hong et al., 2021), given a class y, D and Dbal

share the same class-conditional distribution, denoted as
Dy ≜ P (x|y). We use ny to represent the number of sam-
ples in the y-th class and πy = ny/n to denote the ratio of
the y-th class in the training set. Without loss of generality,
we assume n1 ≥ n2 ≥ · · · ≥ nC , with n1 ≫ nC .

The model parameters are denoted by w, with a total of k pa-
rameters. The loss for sample (x, y) is defined as ℓ(w;x, y).
The training loss over dataset S is given by LS(w) ≜
1
n

∑n
i=1 ℓ(w;xi, yi). Similarly, the loss specifically for

samples from the y-th class within S is defined as Ly
S(w) ≜

1
n

∑
yi=y ℓ(w;xi, yi). We further define the expected loss

over D, Dbal and Dy as LD(w) ≜ E(x,y)∼D[ℓ(w;x, y)],
LDbal

(w) ≜ E(x,y)∼Dbal
[ℓ(w;x, y)] and LDy (w) ≜

Ex∼Dy
[ℓ(w;x, y)], respectively. Our goal is to optimize pa-

rameters w on dataset S such that LDbal
(w) is minimized,

leading to good performance on the balanced test set.

3.2. Limitations in ImbSAM and CC-SAM

ImbSAM. ImbSAM divides classes into head and tail
groups, denoted asH and T . It applies SAM only to the tail
group to focus on flattening loss landscape for these classes.
Its objective function is:

LIS
S (w) ≜ LH

S (w) + max
∥ϵ∥2≤ρ

LT
S (w + ϵ) (1)

From Eq.(1), ImbSAM excludes all head classes from SAM.
As a result, the loss landscape for head classes becomes
sharper, which may reduce their generalization perfor-
mance. To validate this, we analyze the spectral density
of the Hessian H (Ghorbani et al., 2019), a common mea-
sure for the flatness of the loss landscape. We also consider
two key metrics: the largest eigenvalue λmax and the trace
Tr(H). Higher values of λmax and Tr(H) generally indi-
cate a sharper loss landscape. Following prior work (Rang-
wani et al., 2022), we compute the eigen spectral density of
the Hessian for head and tail classes on the CIFAR-10 LT
dataset using the VS loss function. The results are shown in
Fig.2.

A comparison between Fig.2(e) and Fig.2(f) reveals that
ImbSAM effectively reduces Tr(H) and λmax for the tail
classes, suggesting a flatter loss landscape. However, when
comparing Fig.2(a) and Fig.2(b), we observe that with Imb-
SAM, the values of Tr(H) and λmax for head classes
are significantly higher. This indicates that ImbSAM’s
exclusion of head classes from SAM sharpens their loss
landscape, potentially degrading their generalization perfor-
mance.

CC-SAM. CC-SAM applies SAM to each class individu-
ally, using class-specific perturbation radii. The objective
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(a) SAM: Head Classes (b) ImbSAM: Head Classes (c) CC-SAM: Head Classes (d) Focal-SAM: Head Classes

(e) SAM: Tail Classes (f) ImbSAM: Tail Classes (g) CC-SAM: Tail Classes (h) Focal-SAM: Tail Classes

Figure 2: Eigen Spectral Density of Hessian for head and tail classes of ResNet models trained with various SAM variants
on CIFAR-10 LT using VS loss. A smaller λmax and Tr(H) generally indicate a flatter loss landscape.

Table 1: Average training time per epoch (in seconds) for different SAM variants across four long-tailed datasets using
ResNet models. For CC-SAM, we follow its protocol by perturbing only the last few layers to improve its efficiency.

Methods CIFAR-10 LT CIFAR-100 LT ImageNet-LT iNaturalist

SAM 5.66s (1.00×) 4.81s (1.00×) 170.04s (1.00×) 831.67s (1.00×)
ImbSAM 7.80s (1.37×) 6.68s (1.39×) 293.11s (1.72×) 1088.61s (1.31×)
CC-SAM 11.61s (2.05×) 19.70s (4.10×) 1626.54s (9.57×) 12869.89s (15.47×)
Focal-SAM (Ours) 7.67s (1.36×) 6.71s (1.40×) 291.05s (1.71×) 1068.92s (1.29×)

function is defined as:

LCS
S (w) ≜

C∑
i=1

max
∥ϵ∥2≤ρ∗

i

1

πi
· Li

S(w + ϵ) (2)

The optimal perturbation ϵ̂i(w) for each class i is also class-
wise and estimated as ρ∗i∇wLi

S(w)/∥∇wLi
S(w)∥2. The

model parameters are updated with the learning rate η as:

w ← w − η

C∑
i=1

1

πi
· ∇wLi

S(w)|w+ϵ̂i(w) (3)

This fine-grained method flattens the loss landscape of head
and tail classes more effectively, as shown in Fig.2(c) and
Fig.2(g). However, CC-SAM is much more computa-
tionally demanding than SAM. According to Eq.(3), per
parameters update requires computing the gradient for each
class i’s loss at w+ ϵ̂i(w), i.e.,∇wLi

S(w)|w+ϵ̂i(w). There-
fore, CC-SAM requires at least C backpropagations per
update, whereas SAM only needs two. Thus, CC-SAM has
a much higher computational cost than SAM. For details on
the backpropagation requirements for SAM and ImbSAM,
please see App.B.

To confirm this, we measure the average training time per
epoch for various SAM variants across four datasets using
ResNet models. For CC-SAM, we follow its protocol by
perturbing only the last few layers to enhance efficiency. As
shown in Tab.1, despite perturbing fewer parameters, CC-
SAM takes about 2∼15× more time than SAM, depending
on the dataset. The training time ratio of CC-SAM to SAM
grows with the number of classes in the batch. These high
computational costs make CC-SAM particularly impractical
for large-scale datasets or fine-tuning foundation models.

4. Methodology
4.1. Focal Sharpness-Aware Minimization

Motivated by the analysis in Sec.3, we develop a new
method called Focal-SAM. This approach achieves fine-
grained control over the flatness between head and tail
classes while maintaining computational efficiency, as
shown in Tab.1 and Fig.2.

To this end, we first introduce the concept of class-wise
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(a) CIFAR-10 LT (b) CIFAR-100 LT (c) ImageNet-LT (d) iNaturalist

Figure 3: The probability density distributions of (1−πi)
γ for various γ values on CIFAR-10 LT, CIFAR-100 LT, ImageNet-

LT, and iNaturalist.

sharpness, defined as the loss difference between the origi-
nal model parameters w and the perturbed ones, to quantify
the sharpness of loss landscapes across different classes:

L̃i
S(w, ϵ) ≜ Li

S(w + ϵ)− Li
S(w), i ∈ Y. (4)

Next, we propose a new sharpness term called focal sharp-
ness:

L̃FS
S (w) = max

∥ϵ∥2≤ρ

C∑
i=1

(1− πi)
γL̃i

S(w, ϵ), (5)

where (1−πi)
γ is the focal weight that provides fine-grained

control over class-wise sharpness, and γ is a tunable hy-
perparameter. When γ increases, the distribution of focal
weight (1− πi)

γ will skew more to tail classes. Fig.3 illus-
trates how the probability density distributions of (1− πi)

γ

varies with respect to γ on various long-tailed datasets.

Then, the objective of Focal-SAM is defined by the combi-
nation of the training loss and the focal sharpness term:

LFS
S (w) = LS(w) + λ · L̃FS

S (w), (6)

where λ is a hyperparameter controlling the importance of
focal sharpness. This formulation highlights how Focal-
SAM overcomes ImbSAM’s limitations. When γ = 0
and λ = 1, Eq.(5) penalizes the sharpness of each class
equally, reverting to standard SAM. Conversely, when γ
is sufficiently large, focal weights for head classes rapidly
approach 0, while the weights for tail classes remain rel-
atively large. In this scenario, Focal-SAM approximates
ImbSAM. Typically, we select a moderate γ, such that the
focal weights increase smoothly from head to tail classes.
This fine-grained control over loss landscape improves the
flatness of tail classes while maintaining that of head classes,
ultimately enhancing generalization for both traditional and
foundation models.

4.2. Optimizing the Focal-SAM Objective Function

In this section, we discuss how to optimize the Focal-SAM
objective LFS

S (w). Let Lγ
S(w) ≜

∑C
i=1(1 − πi)

γLi
S(w).

Using a first-order Taylor expansion, we approximate the
solution of the inner maximization problem for L̃FS

S (w):

ϵ̂(w) ≈ argmax
∥ϵ∥2≤ρ

ϵT∇wLγ
S(w) = ρ

∇wLγ
S(w)

∥∇wLγ
S(w)∥2

(7)

Then, we can substitute ϵ and compute the gradients of
LFS
S (w) to solve the outer minimization problem:

∇wLFS
S (w) ≈ ∇w

(
LS(w) + λ[Lγ

S(w + ϵ̂(w))− Lγ
S(w)]

)
≈ ∇w

(
LS(w)− λLγ

S(w)
)∣∣

w
+ λ∇wLγ

S(w)
∣∣
w+ϵ̂(w)

(8)
From Eq.(7) and Eq.(8), computing∇wLFS

S (w) to update
model parameters requires only three backpropagations:
one for∇wLγ

S(w), one for∇w(LS(w)−λLγ
S(w))|w, and

one for∇wLγ
S(w)|w+ϵ̂(w). Therefore, Focal-SAM is more

computationally efficient than CC-SAM, making it more
suitable for large-scale datasets or fine-tuning foundation
models.

Overall, Alg.1 gives the pseudo-code to optimize the Focal-
SAM objective, using SGD as the base optimizer.

Algorithm 1 Focal-SAM algorithm

Input: Training set S, perturbation radius ρ, hyperparame-
ter λ, γ, learning rate η

Output: Model trained with Focal-SAM
1: Initialize weights w0, t = 0;
2: while not converged do
3: Sample batch B = {(x1, y1), · · · , (xb, yb)};
4: Compute Lγ

B(w);
5: Compute∇wLγ

B(w) and ϵ̂(w) according to Eq.(7);
6: Perturb w with ϵ̂(w), and compute gradient g1 =

∇wLγ
B(w)|w+ϵ̂(w);

7: Compute gradient g2 = ∇w[LB(w)−λ·Lγ
B(w)]|w;

8: Update weights: wt+1 = wt − η(λg1 + g2);
9: t = t+ 1;

10: end while
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4.3. Generalization Ability of Focal-SAM

Previous works have established the generalization bound
for SAM (Foret et al., 2021) and CC-SAM (Zhou et al.,
2023b). However, these bounds are relatively loose (with
an order of 1/

√
n) and could bias the training process. For

example, the perturbation radius of CC-SAM (i.e., ρi in
Eq.(2)) is set as the solution to minimizing its PAC-Bayesian
bound. Since the generalization is not sharp enough, the
estimated perturbation radius ρ∗i could deviate from the
optimal one, thus leading to inferior performance. In this
section, we develop a sharper generalization bound with an
order of 1/n for Focal-SAM.

We assume the loss function ℓ(w;x, y) has an upper bound
of B, which is a common and practical assumption. Then,
we derive the following generalization bound based on the
PAC-Bayesian theorem proposed in (Tolstikhin & Seldin,
2013). For conciseness, we present an informal formula-
tion in the main content, leaving the formal one and the
corresponding proof in App.A.

Theorem 4.1 (Informal). Assume that ∀(x, y) ∈ D, 0 ≤
ℓ(w;x, y) ≤ B. For any ρ > 0, any uniform distribution
Dbal and any distribution D, with high probability over the
choice of the training set S ∼ D,

LDbal
(w) ≤ 2LFS

S (w)

CπC︸ ︷︷ ︸
(I)

−O
(

λρ2

k + ln(n)
· tr(H(w))

)
︸ ︷︷ ︸

(II)

+ Õ

(
λ
[
k log(∥w∥22/ρ2) + Ψ

]
n

)
︸ ︷︷ ︸

(III)

.

(9)
where n = |S|, Ψ ≜

∑C
i=1(1− πi)

γπi, k is the number of
parameters, H(w) represents the Hessian matrix of Lγ

D(w)
at point w and tr(·) represents the matrix trace.

From the theorem, we have the following insights:

• The generalization bound consists of three components.
Specifically, (I) is the empirical loss on the training set
LFS
S (w), which can be minimized via large-scale mod-

els. (II) reveals how the generalization performance is
affected by multiple factors, including λ, ρ, tr(H(w)).
(III) decreases at a faster rate of Õ(1/n).

• The hyperparameters λ and γ play a crucial role. On the
one hand, a larger λ can increase both components (II)
and (III) of the bound. Therefore, careful tuning of λ
can induce a tighter bound. On the other hand, a larger γ
leads to a smaller Ψ, also leading to a tighter bound. This
suggests that assigning greater weights to the sharpness
of the tail classes can improve the overall generalization
ability.

• Focal-SAM enables a more effective optimization of
LDbal

(w). Specifically, we can reformulate Eq.(9) to

LDbal
(w) + (II) ≤ (I) + (III). (10)

Typically, (II) tends to be large without SAM-based tech-
niques. As a result, minimizing the right-hand side (RHS)
of Eq.(10) in such cases may not induce a small LDbal

(w).
In contrast, Focal-SAM reduces the trace tr(H(w)) by
effectively flattening the loss landscape, leading to a small
(II). This makes it more effective to minimize LDbal

(w)
when we optimize the RHS of Eq.(10). This insight again
validates the necessity of Focal-SAM.

5. Experiments
This section evaluates the effectiveness of Focal-SAM
through a series of experiments. Detailed experimental
settings and additional results are provided in App.C
and App.D due to space constraints.

5.1. Experiment Protocols

Datasets. We use four widely adopted long-tailed datasets
for long-tailed recognition tasks: CIFAR-10 LT (Cao et al.,
2019), CIFAR-100 LT (Cao et al., 2019), ImageNet-LT (Liu
et al., 2019) and iNaturalist (Horn et al., 2018). The CIFAR-
LT datasets include variants with imbalance ratios of {200,
100, 50, 10}. In addition to evaluating model performance
on ID test sets, we also assess it on OOD test sets, referred
to as long-tailed domain generalization tasks. Specifically,
we train the model on ImageNet-LT and evaluate it on three
OOD datasets: ImageNet-Sketch (Wang et al., 2019a), Ima-
geNetV2 (Recht et al., 2019), and ImageNet-C (Hendrycks
& Dietterich, 2019). For more details, see App.C.1.

Competitors. When training ResNet models on the CIFAR-
LT dataset, we assess several loss functions. These meth-
ods are further combined with SAM (Foret et al., 2021),
ImbSAM (Zhou et al., 2023a), and CC-SAM (Zhou et al.,
2023b) as baselines. For the ImageNet-LT and iNatural-
ist datasets, we employ a range of representative meth-
ods as baseline methods. When fine-tuning the foundation
model CLIP (Radford et al., 2021), we evaluate both full
fine-tuning with LA loss (denoted as FFT) and parameter-
efficient fine-tuning using the LIFT method (Shi et al., 2024),
along with their performance when combined with different
SAM variants. For more details, please refer to App.C.2.

Evaluation Protocol. For long-tailed recognition tasks, we
assess model performance using balanced accuracy (Menon
et al., 2021). To provide deeper insights, we split the classes
into three groups: Head, Medium, and Tail, and report ac-
curacy for each group individually. For long-tailed domain
generalization tasks, we evaluate performance on OOD bal-
anced test sets, including top-1 accuracy and accuracy for
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Table 2: Performance comparison on CIFAR-100 LT datasets with various imbalance ratios (IR). FFT denotes fully fine-
tuning the foundation model with LA loss. Due to space limitations, additional CIFAR-100 LT results combining more
methods, as well as the CIFAR-10 LT results, are shown in Tab.6 and Tab.5.

Method IR100 IR200 IR50 IR10
Head Med Tail All All All All

Training from scratch

CE 69.2 41.6 9.0 41.5 37.5 45.6 58.1
CE+SAM 72.7 41.8 7.0 42.2 38.9 46.8 59.7
CE+ImbSAM 68.5 46.0 9.6 43.0 38.7 47.8 60.1
CE+CC-SAM 70.1 44.2 9.0 42.7 39.1 47.4 60.0
CE+Focal-SAM 73.8 44.2 8.9 44.0 39.6 48.1 60.9

LA (Menon et al., 2021) 61.3 42.3 28.6 44.9 41.8 50.3 59.4
LA+SAM 63.1 52.2 32.2 50.0 45.5 52.8 62.6
LA+ImbSAM 57.4 51.1 31.0 47.3 43.4 52.2 62.4
LA+CC-SAM 63.7 51.9 32.3 50.1 45.6 53.0 63.0
LA+Focal-SAM 63.9 53.0 32.5 50.7 46.0 54.5 63.8

Fine-tuning foundation model

FFT 88.2 79.3 66.1 78.5 76.3 81.2 85.5
FFT+SAM 87.9 82.5 70.8 80.9 77.7 83.4 86.8
FFT+ImbSAM 87.5 82.0 70.2 80.4 77.2 81.9 86.7
FFT+CC-SAM 87.8 82.9 70.9 81.0 78.2 83.5 87.0
FFT+Focal-SAM 88.1 82.8 72.4 81.6 79.0 83.9 87.3

LIFT (Shi et al., 2024) 85.3 81.1 79.2 82.0 79.6 82.8 85.0
LIFT+SAM 85.0 81.5 79.4 82.1 79.6 83.0 85.1
LIFT+ImbSAM 84.7 81.9 78.9 82.0 79.8 83.1 85.2
LIFT+CC-SAM 84.8 81.8 79.0 82.0 79.7 83.1 85.2
LIFT+Focal-SAM 85.4 81.9 79.4 82.4 80.0 83.2 85.4

each class group. For more details of the evaluation protocol,
please refer to App.C.3.

Implementation Details. For CIFAR-LT datasets, we train
ResNet models using ResNet-32 (He et al., 2016) as the
backbone. For ImageNet-LT and iNaturalist datasets, we
employ ResNet-50 (He et al., 2016). Training is conducted
for 200 epochs. For fine-tuning foundation models, we
follow the protocols outlined in LIFT (Shi et al., 2024).
Specifically, we fine-tune the image encoder of CLIP (Rad-
ford et al., 2021) with a ViT-B/16 (Dosovitskiy et al., 2021)
backbone. The training lasts for 20 epochs. For further
implementation details, please refer to App.C.4.

5.2. Performance Comparison

Tab.2 summarizes the experimental results on the CIFAR-LT
datasets with different imbalance ratios. From these results,
we have the following observations: 1) Focal-SAM consis-
tently performs better than SAM, ImbSAM, and CC-SAM
across various loss functions. 2) Focal-SAM significantly
outperforms ImbSAM on head classes, while maintaining

or surpassing ImbSAM on tail classes. Additionally, Focal-
SAM generally outperforms CC-SAM on both head and
tail classes, showing its ability to achieve a finer balance
between head and tail classes performance.

Tab.3 presents results on the larger ImageNet-LT and iNatu-
ralist datasets. Combining the baseline LA with Focal-SAM
improves performance by approximately 1.9%∼2.3% when
training ResNet models. Similarly, pairing the baseline
FFT or LIFT with Focal-SAM yields a performance gain of
0.3%∼2.4% when fine-tuning foundation models, outper-
forming several competitors.

5.3. Long-tailed Domain Generalization

In Tab.4, we evaluate the model trained on the ImageNet-LT
dataset across three OOD datasets. The results show the
following: 1) SAM-based methods, when combined with
FFT or LIFT, generally achieve more performance gain on
OOD datasets than on the ID dataset (ImageNet-LT). This
observation aligns with prior studies (Zhou et al., 2022;
Khattak et al., 2023; Park et al., 2024), which suggest that
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Table 3: Performance comparison on ImageNet-LT and iNaturalist. The results for methods marked with † are taken from
the original paper. “-” indicates that the original paper didn’t report the corresponding results.

Method ImageNet-LT iNaturalist
Head Med Tail All Head Med Tail All

Training from scratch

CB (Cui et al., 2019) † 39.6 32.7 16.8 33.2 53.4 54.8 53.2 54.0
cRT (Kang et al., 2020) † 61.8 46.2 27.3 49.6 69.0 66.0 63.2 65.2
DiVE (He et al., 2021) † 64.1 50.4 30.7 49.4 70.6 70.0 67.6 69.1
DRO-LT (Samuel & Chechik, 2021) † 64.0 49.8 33.1 53.5 - - - 69.7
DisAlign (Zhang et al., 2021) † 61.3 52.2 31.4 52.9 69.0 71.1 70.2 70.6
WB (Alshammari et al., 2022) † 62.5 50.4 41.5 53.9 71.2 70.4 69.7 70.2
CC-SAM (Zhou et al., 2023b) † 61.4 49.5 37.1 52.4 65.4 70.9 72.2 70.9

LA (Menon et al., 2021) 62.8 49.0 31.8 52.0 68.4 69.4 69.2 69.2
LA+SAM 63.1 51.7 33.1 53.6 68.3 70.8 71.9 71.0
LA+ImbSAM 62.6 50.3 32.6 52.6 68.0 70.2 70.2 69.9
LA+Focal-SAM 63.9 52.2 34.4 54.3 68.4 72.0 72.5 71.8

Fine-tuning foundation model

Decoder (Wang et al., 2024c) † - - - 73.2 - - - 59.2
LPT (Dong et al., 2023) † - - - - - - 79.3 76.1

FFT 79.9 70.5 51.0 71.5 69.7 71.9 71.7 71.6
FFT+SAM 80.9 72.9 54.3 73.5 69.5 74.4 74.4 73.8
FFT+ImbSAM 80.6 72.6 52.2 72.9 68.5 73.4 73.8 73.1
FFT+CC-SAM 80.6 73.6 54.2 73.6 69.2 74.1 74.2 73.6
FFT+Focal-SAM 80.8 73.9 54.4 73.9 69.1 74.7 74.3 74.0

LIFT (Shi et al., 2024) 79.7 76.2 72.8 77.1 74.1 79.4 81.5 79.7
LIFT+SAM 79.9 76.4 72.7 77.2 73.5 79.7 81.6 79.8
LIFT+ImbSAM 79.8 76.4 72.5 77.2 73.2 79.5 81.4 79.6
LIFT+CC-SAM 79.8 76.4 73.3 77.3 74.0 79.4 81.5 79.7
LIFT+Focal-SAM 79.7 76.6 73.6 77.4 73.9 79.8 81.7 80.0

fine-tuning foundation models often perform well on target
(ID) datasets but struggles with unseen (OOD) datasets. 2)
Focal-SAM achieves a performance improvement of 0.5%
to 4.3%, surpassing SAM, ImbSAM, and CC-SAM. This
is because Focal-SAM effectively enhances the model’s
generalization ability by flattening the loss landscape, which
mitigates performance issues on OOD test sets.

5.4. Training Speed of Focal-SAM

To assess the computational efficiency of Focal-SAM, we
evaluate the training time per epoch across various long-
tailed datasets, as shown in Tab.1. Focal-SAM requires
about 50% more running time than SAM and has a similar
running time to ImbSAM. Given that our method consis-
tently outperforms SAM and ImbSAM, thus the compu-
tational cost is acceptable for the performance gain. Fur-
thermore, Focal-SAM is significantly faster than CC-SAM
while delivering better performance, aligning with our goal

of improving CC-SAM’s efficiency.

5.5. Sharpness of Loss Landscape for Focal-SAM

To examine the impact of Focal-SAM on the loss landscape,
Fig.2(d) and Fig.2(h) show the eigenvalue spectrum of Hes-
sian for head and tail classes of models trained with Focal-
SAM on CIFAR-10 LT using the VS loss function. Com-
paring Fig.2(e) and Fig.2(h), the trace Tr(H) and the max-
imum eigenvalue λmax for tail classes in Focal-SAM are
significantly lower than those in SAM. Similarly, Fig.2(b)
and Fig.2(d) reveal that Tr(H) and λmax for head classes in
Focal-SAM are much smaller than those in ImbSAM. These
results suggest that Focal-SAM achieves a fine-grained bal-
ance in the flatness between head and tail classes.

5.6. Ablation Study About γ and λ

We analyze the influence of hyperparameters γ and λ to
Focal-SAM on the CIFAR-LT datasets.
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Table 4: Performance comparison for domain generalization. The source models are trained on the ImageNet-LT dataset and
evaluated on out-of-distribution datasets, including ImageNet-Sketch, ImageNetV2, and ImageNet-C.

Method ImageNet-Sketch ImageNetV2 ImageNet-C
Head Med Tail All Head Med Tail All Head Med Tail All

FFT 42.9 35.5 21.4 36.4 70.1 60.2 45.2 62.0 50.3 41.4 26.1 42.8
FFT+SAM 44.9 39.3 26.1 39.6 71.2 62.6 48.0 63.9 52.5 44.6 29.3 45.6
FFT+ImbSAM 45.2 39.5 24.8 39.7 71.0 62.2 46.5 63.5 52.0 44.7 28.3 45.2
FFT+CC-SAM 45.0 41.0 26.8 40.6 71.3 63.2 48.4 64.3 52.0 45.1 29.4 45.6
FFT+Focal-SAM 45.5 41.2 27.3 41.0 71.8 63.6 48.8 64.8 52.6 45.5 29.8 46.1

LIFT (Shi et al., 2024) 46.4 43.3 45.7 44.8 70.4 65.9 64.7 67.5 52.6 48.7 47.3 50.0
LIFT+SAM 46.9 43.5 46.4 45.2 70.4 66.0 65.5 67.6 52.9 49.2 48.1 50.5
LIFT+ImbSAM 46.4 43.5 46.0 44.9 70.0 66.2 65.5 67.6 52.6 49.0 47.7 50.2
LIFT+CC-SAM 46.8 44.1 47.6 45.6 70.4 66.2 65.4 67.7 53.0 49.7 49.2 50.9
LIFT+Focal-SAM 46.9 44.7 49.4 46.2 70.0 66.8 66.9 68.0 53.1 49.9 49.8 51.1

(a) CIFAR-10 LT (b) CIFAR-100 LT

Figure 4: Ablation Study of Focal-SAM w.r.t. γ

(a) CIFAR-10 LT (b) CIFAR-100 LT

Figure 5: Ablation Study of Focal-SAM w.r.t. λ

Impact of γ: Fig.4 explores the effect of γ. As γ increases,
performance initially improves, suggesting that assigning
greater weight to the class-wise sharpness of tail classes
benefits performance. However, a further increase in γ leads
to declining accuracy, indicating that assigning excessive
weight to the class-wise sharpness of tail classes can harm
performance.

Impact of λ: Fig.5 investigates the effect of λ. As λ in-
creases, accuracy initially improves but subsequently de-
creases. This indicates a trade-off between minimizing the
training loss and minimizing the sharpness of the loss land-
scape.

6. Conclusion
This paper examines the limitations of ImbSAM and CC-
SAM in long-tailed learning. ImbSAM excludes all head
classes from SAM, often overemphasizing tail classes when
combined with rebalancing methods. CC-SAM’s per-class
perturbation strategy provides fine-grained control over the
loss landscape but is computationally costly. To address
these issues, we propose Focal-SAM, a method that effi-
ciently balances loss landscape flatness between head and
tail classes. Additionally, we offer a theoretical analysis of

Focal-SAM’s generalization ability, deriving a tighter bound.
Extensive experiments validate Focal-SAM’s effectiveness.
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A. Proof of Theorem
A.1. Framework of the Proof

Goal. To bound the balanced loss LDbal
(www) using our objective loss:

LFS
S (www) ≜ [LS(www)− λ · Lγ

S(www)]︸ ︷︷ ︸
(a)

+λ · max
∥ϵϵϵ∥2≤ρ

Lγ
S(www + ϵϵϵ)︸ ︷︷ ︸

(b)

(11)

Framework of the proof.

1. Essentially, the generalization bound describes how empirical values (LFS
S (www)) deviate from the expected one (LDbal

(www)).
To bound such deviations, Bernstein’s inequality (Bernstein, 1924) and PAC-Bayesian theorem (Tolstikhin & Seldin,
2013) are convenient tools. Notice that these tools require the empirical values to be sampled i.i.d. from the
distribution on which the expectation is based. Since the training set S ∼ D, we first transform the distribution from
Dbal to D building on the work of Wang et al. (2023), i.e.,

LDbal
(www) ≲ LD(www)

split into
= [LD(www)− λ · Lγ

D(www)]︸ ︷︷ ︸
(c)

+λ · Lγ
D(www)︸ ︷︷ ︸

(d)

(12)

2. Get (c) ≲ (a) via Bernstein’s inequality (Lem.A.2).

3. Get (d) ≲ (b):

• Bound (d) using a intermediate value Eϵϵϵ[L
γ
D(www + ϵϵϵ)] via Taylor expansion (Lem.A.4).

• Bound Eϵϵϵ[L
γ
D(www + ϵϵϵ)] by (b) via PAC Bayesian bound (Lem.A.3).

Combine all, we get Thm.A.5 as follow:

LDbal
(www) ≲ (c) + (d) ≲ (a) + (b) = LFS

S (www) (13)

A.2. Proof of Lem.A.2

We begin by introducing Bernstein’s inequality to prove the first part.

Lemma A.1 (Bernstein’s Inequality (Bernstein, 1924)). Let X1, · · · , Xn be i.i.d. random variables, µ = E[X1] and
∀i, |Xi − µ| ≤ b. Let σ2 = Var(Xi). With probability at least 1− δ,

|X̄n − µ| ≤

√
4σ2 log( 2δ )

n
+

4b log( 2δ )

3n
(14)

where X̄n = 1
n

∑n
i=1 Xi.

Employing Lem.A.1, we can derive the following lemma to bound LD(w)− λ · Lγ
D(w) by LS(w)− λ · Lγ

S(w).

Lemma A.2. Assume that ∀(x, y) ∈ D, 0 ≤ ℓ(w;x, y) ≤ B. With probability 1 − δ over the choice of the training set
S ∼ D

Φλ
D(w) ≤ 2 · Φλ

S(w) +
40 · (B + λB′) · log( 2δ )

3n
(15)

where B′ ≜
∑C

i=1(1− πi)
γπiB, Φλ

D(w) ≜ LD(w)− λ · Lγ
D(w) and Φλ

S(w) ≜ LS(w)− λ · Lγ
S(w).

Proof. Since ∀(x, y) ∈ D,∀w ∈ W, ℓ(w;x, y) ≤ B, we have

0 ≤ LS(w) ≤ B, 0 ≤ LD(w) ≤ B (16)
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and

0 ≤ Lγ
S(w) =

C∑
i=1

(1− πi)
γLi

S(w) ≤
C∑
i=1

(1− πi)
γπiB ≜ B′

0 ≤ Lγ
D(w) = ES [L

γ
S(w)] ≤

C∑
i=1

(1− πi)
γπiB ≜ B′

(17)

By the above two inequalities, we can obtain
|Φλ

D(w)| ≤ B + λB′

|Φλ
S(w)| ≤ B + λB′ (18)

Thus, we have
|Φλ

S(w)− Φλ
D(w)| ≤ 2 · (B + λB′) (19)

To simplify the analysis, we assume Φλ
D(w) ≥ 0. This assumption is reasonable because our experiments in Sec.5.6

typically show that the best value for λ is slightly less than 1, where this assumption holds true. With this assumption, the
variance of Φλ

S(w) can be bounded as:

Var(Φλ
S(w)) ≤ E[(Φλ

S(w))2] ≤ 2 · (B + λB′) · Φλ
D(w) (20)

Using Lem.A.1, with probability at least 1− δ, we have

Φλ
D(w) ≤ Φλ

S(w) +

√
8 · (B + λB′) · Φλ

D(w) · log( 2δ )
n

+
8 · (B + λB′) · log( 2δ )

3n

≤ Φλ
S(w) +

1

2
· Φλ

D(w) +
20 · (B + λB′) · log( 2δ )

3n

(21)

where the last inequality leverages the property that for any positive numbers a and b,
√
ab ≤ a

2 + b
2 .

Reformulate the inequality, we can obtain that with probability at least 1− δ,

Φλ
D(w) ≤ 2 · Φλ

S(w) +
40 · (B + λB′) · log( 2δ )

3n
(22)

A.3. Proof of Lem.A.3 and Lem.A.4

The following lemmas utilize the PAC-Bayesian theorem to prove the second part. We first derive an intermediate result in
the following lemma.

Lemma A.3. Assume that ∀(x, y) ∈ D, 0 ≤ ℓ(w;x, y) ≤ B. Then, for any ρ > 0 and any distribution D, with probability
1− δ over the choice of the training set S ∼ D

Eϵi∼N (0,σQ)[L
γ
D(w + ϵ)] ≤ max

∥ϵ∥2≤ρ
2Lγ

S(w + ϵ)

+
2 + 2B′ + 2k log

(
1 +

∥w∥2
2

kρ2

)
+ 4k log

(√
k +
√
2 lnn

)
+ 4 log π2√n(nB′+1)2

3δ

n

(23)

where n = |S|, k is the number of parameters, B′ ≜
∑C

i=1(1− πi)
γπiB and σQ ≜ ρ√

k+
√

2 ln(n)
.

Proof. Inspired by the proof technique in SAM (Foret et al., 2021), we provide the following proof.
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Since ∀(x, y) ∈ D,∀w ∈ W, ℓ(w;x, y) ≤ B, we have:

Lγ
S(w) =

C∑
i=1

(1− πi)
γLi

S(w) ≤
C∑
i=1

(1− πi)
γπiB = B′ (24)

Lγ
D(w) = ES [L

γ
S(w)] ≤

C∑
i=1

(1− πi)
γπiB = B′ (25)

Thereby, the right-hand side of the bound in the theorem is lower bounded by k
n log(1 +

∥w∥2
2

kρ2 ) which is greater than B′

when ∥w∥22 > kρ2[exp(nB′/k)− 1] and in this case the inequality holds trivially. Thereby, we only consider the case when
∥w∥22 ≤ kρ2[exp(nB′/k)− 1] in the rest of the proof.

Using PAC-Bayesian generalization bound in (Tolstikhin & Seldin, 2013), for any fixed prior P over parameters, with
probability 1− δ over training set S, for any posterior Q over parameters, the following generalization bound holds:

Ew∼Q[L
γ
D(w)] ≤ Ew∼Q[L

γ
S(w)] +

√
2Ew∼Q[L

γ
S(w)]

KL(Q∥P) + log 2
√
n

δ

n

+ 2
KL(Q∥P) + log 2

√
n

δ

n

≤ 2Ew∼Q[L
γ
S(w)] + 4

KL(Q∥P) + log 2
√
n

δ

n

(26)

where the last inequality leverages the property that for any positive numbers a and b,
√
ab ≤ a+ b.

Following SAM (Foret et al., 2021), we assume P = N (µP , σ
2
P I) and Q = N (µQ, σ

2
QI), then the KL divergence can be

written as:

KL(Q∥P) = 1

2

[
kσ2

Q + ∥µP − µQ∥22
σ2
P

− k + k log

(
σ2
P

σ2
Q

)]
(27)

Let T = {c exp((1 − j)/k)|j ∈ N} be the predefined set of values for σ2
P . If for any j ∈ N, the bounds holds with

probability 1 − δj with δj = 6δ
π2j2 , then by the union bound, all above bounds hold simultaneously with probability

1−
∑∞

j=1
6δ

π2j2 = 1− δ.

Let σQ = ρ√
k+
√

2 ln(n)
,µQ = w and µP = 0. We have:

σ2
Q +

∥µP − µQ∥22
k

≤ ρ2 +
∥w∥22
k
≤ ρ2 exp(

nB′

k
) (28)

Let j = ⌊1− k log((ρ2 + ∥w∥22/k)/c)⌋. We can ensure j ∈ N by setting c = ρ2 exp(nB′/k). For σ2
P = c exp((1− j)/k),

we have:

ρ2 +
∥w∥22
k
≤ σ2

P ≤ exp(
1

k
)(ρ2 +

∥w∥22
k

) (29)
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Building on Eq.(28) and Eq.(29), we can obtain an upper bound for the KL divergence:

KL(Q∥P) = 1

2

[
kσ2

Q + ∥µP − µQ∥22
σ2
P

− k + k log

(
σ2
P

σ2
Q

)]
(30)

≤ 1

2

[
k(ρ2 +

∥w∥2
2

k )

ρ2 +
∥w∥2

2

k

− k + k log

(
exp( 1k )(ρ

2 +
∥w∥2

2

k )

σ2
Q

)]
(31)

=
1

2

[
k log

(
exp( 1k )(ρ

2 +
∥w∥2

2

k )

σ2
Q

)]
(32)

=
1

2

[
k log

(
exp( 1k )(ρ

2 +
∥w∥2

2

k )(
√
k +
√
2 lnn)2

ρ2

)]
(33)

=
1

2

[
1 + k log

(
1 +
∥w∥22
kρ2

)
+ 2k log

(√
k +
√
2 lnn

)]
(34)

Given the bound that corresponds to j holds with probability 1− δj for δj = 6δ
π2j2 , the log term can be bounded as:

log
2
√
n

δj
= log

2
√
n

δ
+ log

π2j2

6
(35)

≤ log
2
√
n

δ
+ log

π2(1 + log(c/ρ2))2

6
(36)

≤ log
2
√
n

δ
+ log

π2(1 + k log(exp(nB′/k)))2

6
(37)

= log
2
√
n

δ
+ log

π2(1 + nB′)2

6
(38)

= log
π2
√
n(1 + nB′)2

3δ
(39)

where the first inequality is derived from the fact that j ≤ 1 + k log(c/(ρ2 + ∥w∥22/k)) ≤ 1 + k log(c/ρ2).

Therefore, the generalization bound can be written as:

Eϵi∼N (0,σQ)[L
γ
D(w + ϵ)] ≤ 2Eϵi∼N (0,σQ)[L

γ
S(w + ϵ)]

+
2 + 2k log

(
1 +

∥w∥2
2

kρ2

)
+ 4k log

(√
k +
√
2 lnn

)
+ 4 log π2√n(1+nB′)2

3δ

n

(40)

Since ∥ϵ∥22 has chi-square distribution, for any positive t, we have:

P (∥ϵ∥22 − kσ2
Q ≥ 2σ2

Q

√
kt+ 2tσ2

Q) ≤ exp(−t) (41)

Therefore, with probability 1− 1/n, we have:

∥ϵ∥22 ≤ σ2
Q

[
k + 2

√
k ln(n) + 2 ln(n)

]
(42)

≤ σ2
Q

[√
k +

√
2 ln(n)

]2
(43)

≤ ρ2 (44)

Therefore, we have:
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Eϵi∼N (0,σQ)[L
γ
D(w + ϵ)] ≤ 2(1− 1/n) max

∥ϵ∥2≤ρ
Lγ
S(w + ϵ) +

2B′

n

+
2 + 2k log

(
1 +

∥w∥2
2

kρ2

)
+ 4k log

(√
k +
√
2 lnn

)
+ 4 log π2√n(nB′+1)2

3δ

n
≤ max

∥ϵ∥2≤ρ
2Lγ

S(w + ϵ)

+
2 + 2B′ + 2k log

(
1 +

∥w∥2
2

kρ2

)
+ 4k log

(√
k +
√
2 lnn

)
+ 4 log π2√n(nB′+1)2

3δ

n

(45)

Combining the above lemma with the Taylor expansion, we can derive the following lemma to bound λ · Lγ
D(w) by

λ ·max∥ϵ∥2≤ρ L
γ
S(w + ϵ).

Lemma A.4. Assume that ∀(x, y) ∈ D, 0 ≤ ℓ(w;x, y) ≤ B. Then, for any ρ > 0 and any distribution D, with probability
1− δ over the choice of the training set S ∼ D

Lγ
D(w) ≤ max

∥ϵ∥2≤ρ
2Lγ

S(w + ϵ)− ρ2

2(
√
k +

√
2 ln(n))2

· tr(H(w))− o(
kρ2

(
√
k +

√
2 ln(n))2

)

+
2 + 2B′ + 2k log

(
1 +

∥w∥2
2

kρ2

)
+ 4k log

(√
k +
√
2 lnn

)
+ 4 log π2√n(nB′+1)2

3δ

n

(46)

where n = |S|, k is the number of parameters, B′ ≜
∑C

i=1(1− πi)
γπiB, H(w) represents the Hessian matrix of Lγ

D(w)
at point w and tr(·) represent the matrix trace.

Proof. By expanding Eϵi∼N (0,σQ)[L
γ
D(w + ϵ)] around w using a second-order Taylor Series expansion, we can obtain

Eϵi∼N (0,σQ)[L
γ
D(w + ϵ)] = Eϵi∼N (0,σQ)[L

γ
D(w) + ϵT∇Lγ

D(w) +
1

2
ϵTH(w)ϵ+ o(∥ϵ∥22)]

= Lγ
D(w) +

1

2
Eϵi∼N (0,σQ)[ϵ

TH(w)ϵ] + Eϵi∼N(0,σQ)[o(∥ϵ∥22)]
(47)

where σQ ≜ ρ√
k+
√

2 ln(n)
and H(w) represents the Hessian matrix of Lγ

D(w) at point w.

Thereby, we have:

Eϵi∼N (0,σQ)[L
γ
D(w + ϵ)] = Lγ

D(w) +
1

2
Eϵi∼N (0,σQ)[ϵ

TH(w)ϵ] + Eϵi∼N(0,σQ)[o(∥ϵ∥22)]

= Lγ
D(w) +

tr(H(w))

2
· Eϵ1∼N(0,σQ)[ϵ

2
1] + o(k · Eϵ1∼N(0,σQ)[ϵ

2
1])

= Lγ
D(w) +

ρ2

2(
√
k +

√
2 ln(n))2

· tr(H(w)) + o(
kρ2

(
√
k +

√
2 ln(n))2

)

(48)

Combining Eq.(48) with Lem.A.3, with probability 1− δ, we have

Lγ
D(w) ≤ max

∥ϵ∥2≤ρ
2Lγ

S(w + ϵ)− ρ2

2(
√
k +

√
2 ln(n))2

· tr(H(w))− o(
kρ2

(
√
k +

√
2 ln(n))2

)

+
2 + 2B′ + 2k log

(
1 +

∥w∥2
2

kρ2

)
+ 4k log

(√
k +
√
2 lnn

)
+ 4 log π2√n(nB′+1)2

3δ

n

(49)
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A.4. Proof of Thm.4.1

Combining the above two parts, we can finally derive the following theorem.

Theorem A.5 (Restate of Thm.4.1). Assume that ∀(x, y) ∈ D, 0 ≤ ℓ(w;x, y) ≤ B. For any ρ > 0, any uniform
distribution Dbal and any distribution D, with probability 1− δ over the choice of the training set S ∼ D,

LDbal
(w) ≤ 2LFS

S (w)

CπC
+

40 · (B + λB′) · log( 4δ )
3n · CπC

− λρ2

2(
√
k +

√
2 ln(n))2 · CπC

· tr(H(w))

+ λ ·
2 + 2B′ + 2k log

(
1 +

∥w∥2
2

kρ2

)
+ 4k log

(√
k +
√
2 lnn

)
+ 4 log 2π2√n(nB′+1)2

3δ

n · CπC

− o(
λkρ2

(
√
k +

√
2 ln(n))2 · CπC

)

(50)

where n = |S|, k is the number of parameters, B′ ≜
∑C

i=1(1− πi)
γπiB, H(w) represents the Hessian matrix of Lγ

D(w)
at point w and tr(·) represent the matrix trace.

Proof. Combining Lem.A.2 and Lem.A.4 and using union bound, with probability at least 1− δ, we have

LD(w) ≤ 2LFS
S (w) +

40 · (B + λB′) · log( 4δ )
3n

− λρ2

2(
√
k +

√
2 ln(n))2

· tr(H(w))

+ λ ·
2 + 2B′ + 2k log

(
1 +

∥w∥2
2

kρ2

)
+ 4k log

(√
k +
√
2 lnn

)
+ 4 log 2π2√n(nB′+1)2

3δ

n

− o(
λkρ2

(
√
k +

√
2 ln(n))2

)

(51)

We further recognize that:

LD(w) =

C∑
i=1

πiLDi(w) ≥
C∑
i=1

πCLDi(w) = CπC · LDbal
(w) (52)

Substituting Eq.(52) into Eq.(51) leads to Thm.A.5.

B. Analysis of Backpropagation Requirements for SAM and ImbSAM
B.1. Backpropagation Requirements for SAM

SAM aims to find flatter minima, ensuring the entire neighborhood around the model parameters has consistently low
training loss. The objective loss function is defined as:

LSAM
S (w) ≜ max

∥ϵ∥2≤ρ
LS(w + ϵ) (53)

The optimal perturbation ϵ̂SAM (w) for the inner maximization problem is estimated as follow:

ϵ̂SAM (w) ≈ ρ
∇wLS(w)

∥∇wLS(w)∥2
(54)

Thus, the gradient of LSAM
S (w) can be approximated as:

∇wLSAM
S (w) ≈ ∇wLS(w)

∣∣
w+ϵ̂(w)

(55)

To update parameters once using SAM, two backpropagations are required: one for ∇wLS(w), and another for
∇wLS(w)

∣∣
w+ϵ̂(w)
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B.2. Backpropagation Requirements for ImbSAM

ImbSAM divides classes into head and tail groups, denoted asH and T , and applies SAM only to the tail group. Its objective
function is:

LIS
S (w) ≜ LH

S (w) + max
∥ϵ∥2≤ρ

LT
S (w + ϵ) (56)

The optimal perturbation ϵ̂IS(w) for the inner maximization problem is estimated as follow:

ϵ̂IS(w) ≈ ρ
∇wLT

S (w)

∥∇wLT
S (w)∥2

(57)

Thus, the gradient of LIS
S (w) can be approximated as:

∇wLIS
S (w) ≈ ∇wLH

S (w) +∇wLT
S (w)

∣∣
w+ϵ̂(w)

(58)

To update parameters once using ImbSAM, three backpropagations are required: one for ∇wLT
S (w), one for ∇wLH

S (w),
and another for∇wLT

S (w)
∣∣
w+ϵ̂(w)

C. More Experiment Protocols
C.1. Datasets

For long-tailed recognition tasks, we conduct experiments on four widely used long-tailed datasets: CIFAR-10 LT, CIFAR-
100 LT, ImageNet-LT, and iNaturalist. For long-tailed domain generalization tasks, we train the model on ImageNet-LT and
evaluate it on three OOD datasets: ImageNet-Sketch, ImageNetV2, and ImageNet-C. Below is a detailed description of
these datasets:

• CIFAR-100 LT and CIFAR-10 LT (Cao et al., 2019). The original CIFAR-100 (Krizhevsky & Hinton, 2009) and
CIFAR-10 (Krizhevsky & Hinton, 2009) datasets contain 50,000 training images and 10,000 testing images for 100 and
10 classes, respectively. We utilize their various long-tailed versions with different imbalance ratios of {100, 50, 10}.

• ImageNet-LT (Liu et al., 2019). The ImageNet-LT dataset is derived from the ImageNet (Deng et al., 2009) dataset
according to a Pareto distribution, containing 1000 categories. The dataset includes 115,846 training images and 50,000
test images. The dataset has an imbalance ratio of 256.

• iNaturalist (Horn et al., 2018). The iNaturalist dataset is a real-world large-scale dataset, consisting of 8142 categories.
The training set contains approximately 430,000 images, while the test set contains about 24,000 images. The dataset’s
imbalance ratio is 500.

• ImageNet-Sketch (Wang et al., 2019a). The ImageNet-Sketch dataset is an OOD test set derived from the ImageNet
(Deng et al., 2009) dataset, comprising 50,000 images across 1000 classes. Each image is a sketch, introducing a
domain shift relative to ImageNet.

• ImageNetV2 (Recht et al., 2019). The ImageNetV2 dataset consists of 10,000 images spanning the same 1000 classes
as ImageNet. The images are sourced differently from the original ImageNet (Deng et al., 2009), resulting in a slight
domain shift.

• ImageNet-C (Hendrycks & Dietterich, 2019). The ImageNet-C dataset includes the same 1000 classes as ImageNet
(Deng et al., 2009) but features corrupted versions of the original validation set. Each image undergoes one of 15
corruption types at 5 severity levels, resulting in 75 dataset variations.

C.2. Competitors

When training ResNet models from scratch, we evaluate serveral competitive methods on different datasets. For the CIFAR-
LT dataset, we assess multiple loss functions, including CE loss, LDAM+DRW (Cao et al., 2019), LA loss (Menon et al.,
2021), and VS loss (Kini et al., 2021). These methods are further combined with SAM (Foret et al., 2021), ImbSAM (Zhou
et al., 2023a), and CC-SAM (Zhou et al., 2023b) as baseline comparisons. For the ImageNet-LT and iNaturalist datasets, we
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employ a range of representative methods, including CB (Cui et al., 2019) for class re-balancing, cRT (Kang et al., 2020) for
decoupled training, DiVE (He et al., 2021) for transfer learning, DRO-LT (Samuel & Chechik, 2021) for representation
learning, DisAlign (Zhang et al., 2021) for class re-balancing, and WB (Alshammari et al., 2022) for regularization. When
fine-tuning the foundation model CLIP (Radford et al., 2021), we use Decoder (Wang et al., 2024c) and LPT (Dong et al.,
2023) as baselines. We also evaluate both fully fine-tuning the models with LA loss (denoted as FFT), and parameter-efficient
fine-tuning using the LIFT method (Shi et al., 2024), as well as their performance when combined with different SAM
variants.

C.3. Evaluation Protocol

For long-tailed recognition tasks, we assess model performance using top-1 accuracy on balanced test sets. This ensures all
classes contribute equally to the evaluation. To provide a more detailed analysis, we follow the approach in (Zhong et al.,
2021; Liu et al., 2019) by splitting the classes into three subsets: Head, Medium, and Tail. Accuracy is then reported for each
subset individually. For CIFAR-10 LT (IR = 100), the Head classes contain more than 1000 samples, the Medium classes
have 200∼1000 samples, and the Tail classes have less than 200 samples. For CIFAR-100 LT (IR = 100), ImageNet-LT,
and iNaturalist, the Head classes contain more than 100 samples, the Medium classes have 20∼100 samples, and the Tail
classes have less than 20 samples. Prior arts (Zhou et al., 2022; Khattak et al., 2023; Park et al., 2024) have demonstrated
that fine-tuning CLIP (Radford et al., 2021) often performs well on the target domain but struggles with domain shifts.
Therefore, when fine-tuning the foundation models, we also assess model performance on OOD test sets, referred to
as long-tailed domain generalization tasks. Specifically, models are trained on the ImageNet-LT dataset and evaluated
on out-of-distribution datasets, including ImageNet-Sketch (Wang et al., 2019a), ImageNetV2 (Recht et al., 2019), and
ImageNet-C (Hendrycks & Dietterich, 2019). We evaluate model performance on these OOD balanced test sets, including
top-1 accuracy and accuracy for each class subset.

C.4. Implementation Details

We follow the procedures described below to train ResNet models from scratch. For the CIFAR-LT datasets, we use
ResNet-32 (He et al., 2016) as the backbone. We employ stochastic gradient descent (SGD) as the base optimizer, with an
initial learning rate of 0.1, a batch size of 64, and a momentum of 0.9. Training spans 200 epochs, using a cosine annealing
scheduler to reduce the learning rate from 0.1 to 0 gradually. For the larger-scale ImageNet-LT and iNaturalist datasets, we
employ ResNet-50 (He et al., 2016) as the backbone. SGD is again used as the base optimizer with a momentum of 0.9.
For ImageNet-LT, the initial learning rate is set to 0.1, with a batch size of 256, while for iNaturalist, the initial learning
rate is 0.2, and the batch size is increased to 512. Training for these datasets also lasts 200 epochs with a cosine annealing
scheduler. Additionally, We employ a step scheduler for ρ, following the approach of Rangwani et al. (2022). This scheduler
initializes ρ until the 160th epoch and then increases its value towards the end of training.

For fine-tuning foundation models, we follow the protocols outlined in LIFT (Shi et al., 2024). A cosine classifier is added
after the image encoder of CLIP (Radford et al., 2021), with its weights initialized using the text encoder, which is then
discarded. We fine-tune the image encoder of CLIP with a ViT-B/16 (Dosovitskiy et al., 2021) backbone. Stochastic gradient
descent (SGD) is used as the base optimizer, with a batch size of 128 and momentum of 0.9. The initial learning rate is
0.01 for parameter-efficient fine-tuning and 0.001 for full fine-tuning. Unlike LIFT (Shi et al., 2024), all models in our
experiments are fine-tuned for 20 epochs across datasets and methods. In LIFT, models are trained for 10 epochs on the
CIFAR-LT and the ImageNet-LT datasets, and 20 epochs on the iNaturalist dataset. We extend the training to 20 epochs
because the models do not fully converge under the original settings.

C.5. Experimental Hardware Setup

All the experiments are conducted on Ubuntu servers equipped with Nvidia(R) RTX 3090 GPUs and RTX 4090 GPUs.
Fine-tuning the foundation models is performed using a single GPU for all datasets. The number of GPUs used for training
the ResNet models from scratch varies based on dataset size: a single GPU for the CIFAT-LT datasets, 2 GPUs for the
ImageNet-LT dataset, and 4 GPUs for the iNaturalist dataset.
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D. More Experiment Results
D.1. Additional Results on the CIFAR-LT Datasets

In this section, we show additional results on the CIFAR-LT datasets. Specifically, Tab.6 presents additional experimental
results on the CIFAR-100 LT dataset with more combined methods. Tab.5 provides the experimental results on the CIFAR-10
LT dataset. The results suggest that Focal-SAM consistently outperforms SAM, ImbSAM, and CC-SAM across all methods
and datasets, regardless of whether ResNet models are trained from scratch or foundation models are fine-tuned. This
indicates that Focal-SAM offers better fine-grained control over the loss landscape for both head and tail classes, leading to
improved overall performance. This further highlights the effectiveness of Focal-SAM.

Table 5: Performance comparison on CIFAR-10 LT datasets with various imbalance ratios (IR). FFT denotes fully fine-tuning
the foundation model with LA loss.

Method IR100 IR200 IR50 IR10
Head Med Tail All All All All

Training from scratch

CE 87.0 73.6 54.0 73.1 68.6 78.3 87.4
CE+SAM 89.5 73.9 56.7 75.0 69.8 79.6 88.8
CE+ImbSAM 88.0 79.0 60.1 76.9 72.6 81.1 89.3
CE+CC-SAM 88.9 74.1 61.3 76.2 71.3 80.0 89.2
CE+Focal-SAM 89.3 75.4 62.9 77.2 71.7 82.0 90.0

LDAM+DRW (Cao et al., 2019) 85.5 74.6 69.0 77.3 73.8 80.8 87.3
LDAM+DRW+SAM 88.9 78.3 73.2 81.0 78.6 84.5 89.4
LDAM+DRW+ImbSAM 86.5 79.7 73.7 80.6 77.3 84.0 88.9
LDAM+DRW+CC-SAM 88.4 79.2 73.3 81.1 78.9 84.4 89.4
LDAM+DRW+Focal-SAM 88.7 79.5 74.2 81.6 79.2 84.5 89.5

LA (Menon et al., 2021) 87.6 72.6 70.1 77.9 74.3 81.6 87.8
LA+SAM 86.7 80.6 78.2 82.3 78.9 85.4 90.2
LA+ImbSAM 84.1 81.6 80.1 82.2 78.6 84.7 89.5
LA+CC-SAM 86.6 80.8 78.5 82.5 79.1 85.5 90.2
LA+Focal-SAM 86.9 81.2 79.2 82.9 79.6 85.5 90.5

VS (Kini et al., 2021) 88.1 77.1 68.4 78.9 74.7 81.5 88.3
VS+SAM 85.6 82.7 76.6 82.0 79.0 85.4 90.3
VS+ImbSAM 85.3 82.1 77.3 81.9 78.7 84.8 90.0
VS+CC-SAM 85.6 82.0 78.2 82.3 79.3 85.5 90.4
VS+Focal-SAM 87.7 80.6 78.8 82.9 79.5 85.8 90.7

Fine-tuning foundation model

FFT 97.9 95.8 95.9 96.7 95.7 97.1 97.9
FFT+SAM 97.5 96.5 97.0 97.0 96.6 97.5 98.0
FFT+ImbSAM 97.0 97.0 97.4 97.1 96.5 97.7 97.9
FFT+CC-SAM 97.6 96.2 97.0 97.0 96.6 97.6 98.0
FFT+Focal-SAM 97.5 96.4 97.5 97.2 96.6 97.5 98.2

LIFT (Shi et al., 2024) 96.6 95.7 97.4 96.6 96.3 96.8 97.2
LIFT+SAM 96.6 95.6 97.8 96.7 96.4 96.7 97.0
LIFT+ImbSAM 96.5 95.9 97.7 96.7 96.4 96.7 97.2
LIFT+CC-SAM 96.5 95.6 97.9 96.6 96.4 96.7 97.3
LIFT+Focal-SAM 96.6 95.6 98.1 96.8 96.4 96.9 97.3
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Table 6: Performance comparison on CIFAR-100 LT with more combined methods

Method IR100 IR200 IR50 IR10
Head Med Tail All All All All

Training from scratch

LDAM+DRW (Cao et al., 2019) 63.1 44.4 18.6 43.2 40.3 46.1 57.3
LDAM+DRW+SAM 67.6 51.7 25.9 49.5 45.8 52.6 61.1
LDAM+DRW+ImbSAM 62.5 48.8 26.4 46.9 42.5 51.3 59.8
LDAM+DRW+CC-SAM 66.5 52.2 26.2 49.4 45.7 52.3 61.0
LDAM+DRW+Focal-SAM 67.9 52.7 26.9 50.3 46.2 53.8 62.3

VS (Kini et al., 2021) 58.3 43.8 31.1 45.1 41.6 49.3 59.4
VS+SAM 62.7 52.0 29.3 49.0 45.5 53.5 62.5
VS+ImbSAM 56.1 53.3 29.9 47.2 44.7 52.6 62.6
VS+CC-SAM 62.2 52.2 30.3 49.1 45.2 53.7 62.9
VS+Focal-SAM 62.7 52.6 31.0 49.7 45.8 54.5 63.7

D.2. CE and mCE Metrics on ImageNet-C for Long-tailed Domain Generalization

ImageNet-C (Hendrycks & Dietterich, 2019) contains the corrupted versions of ImageNet (Deng et al., 2009) dataset, with
15 corruption types applied at 5 severity levels, resulting in 75 dataset variations. In addition to the model’s average accuracy
across these 75 datasets, as shown in Tab.4, ImageNet-C introduces two additional metrics: Corruption Error (CE) and
Mean Corruption Error (mCE). These metrics systematically assess the robustness of models against image corruption.
CE measures the accuracy drop of a model on a specific type and severity of corruption compared to a baseline model,
typically AlexNet (Krizhevsky et al., 2012). mCE aggregates the CE values across all corruption types and severity levels,
providing a single robustness score for the model. Tab.7 presents the CE and mCE results on the ImageNet-C dataset
when fine-tuning the foundation models. The results show that Focal-SAM generally achieves significantly lower CE and
mCE values across the entire dataset and for each corruption type. This further demonstrates Focal-SAM’s effectiveness in
improving generalization.

Table 7: The CE and mCE values for different methods on the ImageNet-C dataset. The source models are trained on
ImageNet-LT and evaluated on ImageNet-C. Lower values indicate better performance.

Method mCE↓ Blur Noise Digital Weather
Motion Defoc Glass Zoom Gauss Impul Shot Contr Elast JPEG Pixel Bright Snow Fog Frost

FFT 72.6 72.8 74.6 78.2 79.4 73.6 74.1 75.1 66.7 80.0 78.4 71.3 63.7 66.6 65.7 68.5
+SAM 69.0 69.2 72.2 76.9 76.9 68.9 69.7 70.7 63.6 77.5 74.5 66.8 59.2 62.6 60.6 65.7
+ImbSAM 69.5 69.4 72.2 76.8 77.1 70.2 70.7 72.0 62.9 77.6 76.4 68.5 59.6 62.5 60.2 65.7
+CC-SAM 69.0 69.0 74.1 76.6 77.8 69.5 69.3 71.2 64.0 76.6 75.2 67.0 58.1 61.3 59.6 65.0
+Focal-SAM 68.3 68.2 72.7 76.6 76.6 68.3 68.8 70.1 63.2 76.2 74.2 66.0 58.0 61.5 59.7 65.1

LIFT 63.6 61.7 67.6 75.9 72.4 61.0 61.2 62.7 54.1 80.8 72.7 60.3 52.1 57.0 52.2 62.1
+SAM 63.0 61.1 67.2 75.7 71.5 60.4 60.6 62.0 53.6 80.6 72.1 59.4 51.7 56.3 51.7 61.7
+ImbSAM 63.4 61.6 67.5 75.8 72.1 60.9 60.9 62.6 53.8 80.6 72.5 59.9 51.9 56.7 51.9 61.8
+CC-SAM 62.5 61.0 66.5 75.3 70.9 59.5 59.9 61.3 53.7 79.9 71.7 58.2 51.3 55.5 51.6 61.2
+Focal-SAM 62.2 60.6 66.3 75.2 71.1 59.3 59.9 61.0 53.1 79.6 71.0 58.2 50.7 55.3 51.1 61.0

D.3. Results for Aligning Computational Cost

Focal-SAM requires about 50% more training time than SAM. To fairly evaluate the benefit of Focal-SAM, we conduct
experiments where we extend the training epochs of SAM to match Focal-SAM’s total computational cost. Specifically,
we increase the training epochs to 300 or 30 (1.5 × the original 200 or 20) for SAM, while keeping Focal-SAM at 200 or
20 epochs. In this setting, the total computational cost of SAM and Focal-SAM becomes comparable. We conduct these
experiments on CIFAR-100 LT, ImageNet-LT, and iNaturalist datasets. The results are shown in Tab.8, Tab.9, and Tab.10.
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Table 8: Performance comparison on CIFAR-100 LT with aligned computational cost.

Method Epoch IR100 IR200 IR50 IR10
All All All All

Training from scratch

CE+SAM 300 43.0 39.2 46.9 60.0
CE+Focal-SAM 200 44.0 39.6 48.1 60.9

LDAM+DRW+SAM 300 50.4 46.4 53.0 61.2
LDAM+DRW+Focal-SAM 200 50.3 46.2 53.8 62.3

VS+SAM 300 49.2 45.5 53.0 63.3
VS+Focal-SAM 200 49.7 45.8 54.5 63.7

LA+SAM 300 50.1 45.5 53.8 63.0
LA+Focal-SAM 200 50.7 46.0 54.5 63.8

Fine-tuning foundation model

FFT+SAM 30 81.2 78.3 83.6 86.9
FFT+Focal-SAM 20 81.6 79.0 83.9 87.3

LIFT+SAM 30 82.1 80.2 83.1 85.2
LIFT+Focal-SAM 20 82.4 80.0 83.2 85.4

Table 9: Performance comparison on ImageNet-LT with aligned computational cost.

Method Epoch ImageNet-LT
Head Medium Tail All

Training from scratch

LA+SAM 300 63.2 51.6 34.8 53.8
LA+Focal-SAM 200 63.9 52.2 34.4 54.3

Fine-tuning foundation model

FFT+SAM 30 80.6 73.1 56.1 73.6
FFT+Focal-SAM 20 80.8 73.9 54.4 73.9

LIFT+SAM 30 79.8 76.1 73.5 77.2
LIFT+Focal-SAM 20 79.7 76.6 73.6 77.4

Table 10: Performance comparison on iNaturalist with aligned computational cost.

Method Epoch iNaturalist
Head Medium Tail All

Training from scratch

LA+SAM 300 68.0 71.4 72.4 71.5
LA+Focal-SAM 200 68.4 72.0 72.5 71.8

D.4. Visualization of Loss Landscape

Fig.6 and Fig.7 visualize the loss landscape for head and tail classes of ResNet models trained with SAM, ImbSAM,
CC-SAM, and Focal-SAM on the CIFAR-100 LT and CIFAR-10 LT datasets using VS loss respectively. From the results,
we can observe that the loss landscape for tail classes with ImbSAM generally appears flatter and smoother than with SAM,
suggesting that ImbSAM better flattens the loss landscape for tail classes. However, the head class loss landscape with
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ImbSAM is generally sharper than with SAM, indicating that ImbSAM’s exclusion of all head classes from the SAM term
can sharpen the loss landscape for head classes, which might reduce their generalization performance. In contrast, CC-SAM
and Focal-SAM provide fine-grained class-wise control, leading to a flatter loss landscape for both head and tail classes.

(a) SAM: Head (b) ImbSAM: Head (c) CC-SAM: Head (d) Focal-SAM: Head

(e) SAM: Tail (f) ImbSAM: Tail (g) CC-SAM: Tail (h) Focal-SAM: Tail

Figure 6: Visualization of loss landscape for head and tail classes of ResNet models trained with SAM, ImbSAM, CC-SAM,
and Focal-SAM on CIFAR-100 LT using VS loss respectively.

(a) SAM: Head (b) ImbSAM: Head (c) CC-SAM: Head (d) Focal-SAM: Head

(e) SAM: Tail (f) ImbSAM: Tail (g) CC-SAM: Tail (h) Focal-SAM: Tail

Figure 7: Visualization of loss landscape for head and tail classes of ResNet models trained with SAM, ImbSAM, CC-SAM,
and Focal-SAM on CIFAR-10 LT using VS loss respectively.

D.5. Ablation Study About Perturbation Radius ρ

Fig.8 illustrates the impact of the hyperparameter ρ on the performance of Focal-SAM when combined with LDAM+DRW,
LA, and VS methods on the CIFAR-LT datasets during ResNet models training. As ρ increases, Focal-SAM’s performance
initially improves but then declines. This indicates a trade-off between achieving flatter minima and reducing training loss.
The optimal value of ρ for Focal-SAM is approximately 0.3, which is higher than the commonly optimal value for SAM on
balanced training datasets, as reported by Foret et al. (2021). This observation is consistent with Rangwani et al. (2022),
who suggest that a larger ρ can enhance performance in long-tailed learning.
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(a) CIFAR-10 LT (b) CIFAR-100 LT

Figure 8: Ablation Study of Focal-SAM w.r.t. ρ

D.6. Additional Results for Eigen Spectral Density of Hessian

This section presents additional results of the spectral density of hessian for ResNet models trained with SAM, ImbSAM,
CC-SAM, and Focal-SAM. We analyze models trained on CIFAR-10 LT and CIFAR-100 LT datasets using VS and CE loss
functions. The results are visualized in Fig.9, Fig.10 and Fig.11.

The results indicate that the largest eigenvalue λmax and the trace tr(H) of the Hessian for tail classes are generally smaller
with ImbSAM than with SAM. This suggests that ImbSAM flattens the loss landscape for tail classes more effectively.
However, λmax and tr(H) for head classes are typically larger with ImbSAM than with SAM, indicating that ImbSAM’s
coarse-grained strategy of excluding all head classes from SAM terms sharpens the loss landscape for those classes. In
contrast, CC-SAM applies finer control over the loss landscape by using class-dependent perturbation radii, generally
achieving lower λmax and tr(H) for head and tail classes. Overall, both λmax and tr(H) for head and tail classes
are relatively lower with Focal-SAM than other SAM-based methods. This further suggests that Focal-SAM provides
fine-grained control over the loss landscape, leading to a flatter landscape for both head and tail classes.

(a) SAM: Head Classes (b) ImbSAM: Head Classes (c) CC-SAM: Head Classes (d) Focal-SAM: Head Classes

(e) SAM: Tail Classes (f) ImbSAM: Tail Classes (g) CC-SAM: Tail Classes (h) Focal-SAM: Tail Classes

Figure 9: Eigen Spectral Density of Hessian for head and tail classes of ResNet models trained with SAM, ImbSAM,
CC-SAM, and Focal-SAM on CIFAR-100 LT using VS loss respectively. A smaller λmax and Tr(H) generally indicate a
flatter loss landscape.
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(a) SAM: Head Classes (b) ImbSAM: Head Classes (c) CC-SAM: Head Classes (d) Focal-SAM: Head Classes

(e) SAM: Tail Classes (f) ImbSAM: Tail Classes (g) CC-SAM: Head Classes (h) Focal-SAM: Tail Classes

Figure 10: Eigen Spectral Density of Hessian for head and tail classes of ResNet models trained with SAM, ImbSAM,
CC-SAM, and Focal-SAM on CIFAR-10 LT using CE loss respectively. A smaller λmax and Tr(H) generally indicate a
flatter loss landscape.

(a) SAM: Head Classes (b) ImbSAM: Head Classes (c) CC-SAM: Head Classes (d) Focal-SAM: Head Classes

(e) SAM: Tail Classes (f) ImbSAM: Tail Classes (g) CC-SAM: Tail Classes (h) Focal-SAM: Tail Classes

Figure 11: Eigen Spectral Density of Hessian for head and tail classes of ResNet models trained with SAM, ImbSAM,
CC-SAM, and Focal-SAM on CIFAR-100 LT using CE loss respectively. A smaller λmax and Tr(H) generally indicate a
flatter loss landscape.
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