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Abstract

Modifying well-trained models for purposes such as pruning or unlearning, without
access to training data or the original loss function, is a challenging problem. While
techniques exist for such modification, they often require training data, are compu-
tationally expensive, or are architecture-specific. To address this, we investigate
the fundamental question of identifying components that are critical to the model’s
predictive performance, without access to either gradients or the loss function, and
with only distributional access such as synthetic data. We theoretically demonstrate
that the global reconstruction error is linearly bounded by local reconstruction
errors for Lipschitz-continuous networks such as CNNs and well-trained Trans-
formers (which, contrary to existing literature, we find exhibit Lipschitz continuity).
This motivates using the locally reconstructive behavior of component subsets to
quantify their global importance, via a metric that we term Subset Fidelity. In the
uncorrelated features setting, selecting individual components via their Subset Fi-
delity scores is optimal, which we use to propose ModHiFi, an algorithm for model
modification that requires no training data or loss function access. ModHiFi-P, for
structured pruning, achieves an 11% speedup over the current state of the art on
ImageNet models and competitive performance on language models. ModHiFi-U,
for classwise unlearning, achieves complete unlearning on CIFAR-10 without
fine-tuning and demonstrates competitive performance on Swin Transformers.2

1 Introduction

Modern deep learning has made significant strides in a wide variety of tasks, such as classification
[39, 40], image generation [23], and natural language processing [54]; moreover, well-trained models
for such tasks are easily accessible. However, significant challenges remain in their deployment,
such as inference in resource-constrained settings [65, 75], inference with unbalanced or biased data
[30, 31], and interpretable inference [101]. These challenges have increased interest in methods that
modify the parameters of well-trained models to alter their behaviour [67, 69, 71]. These methods
include pruning [29], classwise unlearning [34, 38, 71], and debiasing [55, 71], among other model
modifications. Moreover, recent work has studied model modification in the setting where the original
training data and loss function are unavailable [58]; this is motivated by concerns related to privacy
and security [96], and also the use of synthetic data, which has become critical in a variety of language
modeling settings [11, 80]. Thus, we address the challenging problem of altering well-trained models
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without training data or the loss function, and only with distributional access to the original training
distribution in the form of synthetic data, focusing specifically on structured pruning and classwise
unlearning.

Modifying well-trained models without the loss function and only synthetic data requires answering
a fundamental question: which components in a model contribute significantly to its predictive
performance3? However, most methods that identify critical components for specific modifications
(e.g., pruning) cannot be applied to others (e.g., unlearning) [58], often require expensive fine-tuning,
and are architecture-specific. Moreover, most methods utilize gradients to assess the impact of a
component on the loss objective, which is not feasible in the absence of the loss function and the
training data. While the LLM pruning literature uses calibration datasets to mitigate the problem of
the absence of datasets [2, 51], the problem of achieving sparsity in vision models without original
training data is hard and unsolved [29]. Moreover, the problem of performing classwise unlearning
without original training data is unattempted [35, 58].

Towards enabling the modification of well-trained models amidst these challenges, we make the
following contributions:

(C1) Local-to-Global with Lipschitzness. An open question is the extent to which local model
modifications impact the predictive performance of the model. In the absence of loss functions
and training sets, estimating the impact of component modification by using gradients (as done
in [35, 48, 51]) is infeasible. To address this, in Theorem 3.6, we show that for Lipschitz
continuous networks, the reconstruction error at the final layer is at most linear in the local
reconstruction errors. Moreover, contrary to the assertion that transformers are not Lipschitz
continuous [66], in Corollary B.4, we show that this is not the case for well-trained transformers,
allowing us to apply Theorem 3.6 to not just CNNs, but well-trained ViTs and LLMs as well.

(C2) Identifying Subsets of Important Components. Contrary to prior work that usually infer
saliencies for single components, we propose measuring the importance of sets of components
for understanding cumulative effects of groups of components on a model’s predictive per-
formance. Leveraging Theorem 3.6, we propose Subset Fidelity, which quantifies the extent
to which a subset of components can reconstruct the output after modifying their weights.
However, computing optimal subsets is NP-complete, motivating us to compute Subset Fidelity
scores for singleton sets. Theorem 3.9 establishes that selecting singletons with the highest
subset fidelity scores is optimal when the features are uncorrelated.

(C3) Modifying Models with ModHiFi-X. Motivated by Theorem 3.9, we propose the ModHiFi
algorithm, which uses the subset fidelity of singletons to modify models for pruning and
classwise unlearning; the algorithm identifies important components using the singleton scores,
and removes them (for classwise unlearning, ModHiFi-U) or retains them (for structured
pruning, ModHiFi-P). We show that ModHiFi-P achieves state-of-the-art speedup for Imagenet
models, and is consistently competitive with current baselines for language models. For
classwise unlearning, ModHiFi-U achieves complete unlearning on all CIFAR-10 classes
without fine-tuning, and is competitive with baselines on Swin-Transformers that finetune.
When allowing for a similar fine-tuning budget as said baselines, ModHiFi-U outperforms,
particularly when given access to training data. These empirical results demonstrate the practical
effectiveness of Subset Fidelity.

2 Background, Setup, and Related Work

In this section, we describe background relevant to this manuscript, formally set up our problem
statement, and position our work to related prior work in literature.

2.1 Background and Notation

Notation For p ∈ N, let [p] denote {1, . . . , p}. Let v ∈ Rn denote an n-dimensional vector with
entries vi for i ∈ [n]. Let B ∈ Rn×m denote a matrix with rows b⊤i ∈ Rm for i ∈ [n]. The
vectors 1d and 0d denote the all-ones and all-zeros vectors in Rd, respectively. For a vector v,

3We measure predictive performance using accuracy for classification tasks, and perplexity and other
measures for language modeling tasks [58, 71].
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diag(v) denotes the diagonal matrix with diagonal entries vi. Let ∥v∥2 =
√
v⊤v and |v|0 denote

the number of nonzero entries of v. Given matrices C,D ∈ Rn×m, we define the inner product
⟨C,D⟩ = Tr(C⊤D),, the Frobenius norm as ∥C∥F =

√
⟨C,C⟩, and the spectral norm ∥C∥2

is the largest singular value of C. The submatrix of a matrix C with of set of rows A ⊂ [n] and
columns B ⊂ [m] is denoted by C[A,B]. We denote the expectation of the random variable X with
EX [X] and we drop the subscript when it is clear from context.

2D Convolution Let the lth layer of the network be a 2D convolutional layer with clin input channels,
clout output channels, and kl kernel size be parameterized by weights Wl ∈ Rclout×c

l
in×k

l×kl

. The
input to this layer is Φl(X) ∈ Rclin×h

l−1×wl−1

, and the output is Yl(X) ∈ Rclout×h
l×wl

, where
hl−1, wl−1 and hl, wl denote the input and output spatial dimensions, respectively. Each output
channel c ∈ [clout] is computed as

Y l
c (X) =

clin∑
i=1

Φl
i(X) ⋆W l

ci =

clin∑
i=1

Al
ci(X) (CONV)

where ⋆ denotes the 2D convolution operator. We define Al
ci(X) := Φl

i(X) ⋆W l
ci ∈ Rhl×wl

as the
input contribution from input channel i to output channel c. For simplicity, we omit the bias term.

Transformers Transformer models consist of transformer blocks connected by residual connections,
with intermediate activations normalized using LayerNorm or RMSNorm [2, 3]. Each transformer
block consists of a Multi-head Attention (MHA) module, and a Feed Forward Network (FFN) module
consisting of two feedforward layers with weights WU and WD. Formally the FFN block operates
on input X to the block as FFN(X) = σ(XWU )WD. Here σ(·) is an elementwise nonlinearity. In
this work, we consider modifications of the Feed-Forward Network (FFN) block. We define input
contributions for FFN blocks of transformers as follows:

Aci(X) := Φi(X)WD
ci where Φi(X) := (σ(XWU ))i (LIN)

Unified Notation We describe a unified notation encompassing both CNN and transformer archi-
tectures which we use to simplify exposition in the rest of this work. Let Nθ : Rcin×d → Rcout

denote a network parameterized by θ, mapping an input matrix to an output vector. The input
X ∼ D is sampled from a distribution D, and the output is Nθ(X) for some input sample X . The
network is a composition of L layers, Nθ = fL ◦ fL−1 ◦ · · · ◦ f1, where each f l has parameters
W l. For layer l, let clin, c

l
out be the input and output channel counts, and dl1 and dl2 represent the

spatial (or sequence) dimension of layer l. The layer input and output are Φl(X) ∈ Rclin×d
l
1×d

l
2 and

Y l(X) ∈ Rclout×d
l+1
1 ×dl+1

2 . Each output channel c is computed as Y l
c (X) =

∑clin
i=1 A

l
ci(X), where

Al
ci(X) is computed usingW l according to either Eq. (CONV) or Eq. (LIN) depending on the type of

the model.

2.2 Modifying Models without Training Data or the Loss Function

We call methods that selectively modify the parameters of a trained model to alter its behavior,
typically without re-training from scratch [35, 69, 71], model modification. These techniques are
motivated by concerns around efficiency, privacy, and regulatory compliance (e.g., GDPR) [7, 29, 62].
A broad class of tasks are fundamentally model modification tasks, such as debiasing [34], selective
unlearning [21], network scrubbing [41], and continual or lifelong learning [22, 67].

Modifying models in real-world settings is often challenging, especially when the original loss
function or training data is unavailable [29, 71]. Recent works such as [58] have suggested relaxing
the problem to that of modifying models with distributional access, wherein access to the underlying
data distribution is available in the form of a few natural samples. However, synthetic data is a more
prevalent form of distributional access which is widely used in a variety of downstream LLM-related
modification or fine-tuning tasks [11, 80], particularly since original training corpora are rarely
available for use. and curating natural samples is costly. Moreover, the addition of synthetic data to
training data for use in compression pipelines has gained importance [32, 102] when compressing
LLMs. Thus, in this work, we address the following question: Can we effectively modify trained
models, for structured pruning or unlearning, only with distributional access in the form of synthetic
data?

3



Formalizing Model Modification We aim to modify well-trained models by selectively modifying
components that are relevant to a particular modification task. We use the term well-trained model to
be a model that has been trained to accurately perform a specific task (e.g. classification, generation,
etc). Each modification task can be characterized by a set of data distributions and associated weights
{(Di, αi)}, as well as a family of allowable masksM applied to the learned parameters. Despite the
term “mask,”M need not consist solely of binary-valued elements.

Formally, given parameters θ⋆ ∈ RD of a well-trained model, the modified model θE ∈ RD is:

θE = θ⋆ ⊙m⋆, where m⋆ = argmin
m∈M

∑
i

αi EDi
[L(Nθ⋆⊙m(X))] , (MODIFY)

where ⊙ denotes the element-wise product. While a range of tasks may be formulated as problems
involving model modification [71], this work focuses on two cases: structured pruning and classwise
unlearning.

In structured pruning, we seek masks that retain at most B structured components (e.g., channels,
neurons, layers). Structured pruning can be posed under the general formulation of Eq. (MODIFY) as:

m⋆ = argmin
m∈M

ED [L(Nθ⋆⊙m(X))]

whereM consists of elements with at most B non zero structured components.

In classwise unlearning, the objective is to reduce the model’s performance on a target forget class,
sampled from distribution Df , while preserving accuracy on the remain classes drawn from Dr.
Classwise unlearning may be posed under the general formulation of Eq. (MODIFY) as:

m⋆ = argmin
m∈RD

EDr [L(Nθ⋆⊙m(X))]− EDf
[L(Nθ⋆⊙m(X))]

Objective We address the problem of solving Eq. (MODIFY) - modifying well-trained models
through masking - without access to the training loss or data used to obtain θ⋆.

2.3 Related Work

We position our work against relevant works modifying well-trained models for classification (CNNs
& ViTs) and language generation (LLMs). A comprehensive related work is presented in Appendix A.

Modifying Vision Classification Models. Structured pruning algorithms have been developed for
both kinds of models we perform experimental validation on - CNNs ([29] and the references therein)
and ViTs [15, 97, 99]. Similarly, classwise unlearning has been explored in both CNNs and ViTs
[12, 35, 38], and a few works address pruning and classwise unlearning jointly [58]. Also, performing
classwise unlearning without training data is unattempted [35, 58].

Modifying Large Language Models. Modifying LLMs presents its own set of challenges, owing to
the size of both models and datasets [9, 36]. A variety of structured pruning approaches have been
proposed to address the challenge of efficient inference in LLMs [2, 51, 52, 74, 77, 92]. However, no
contemporary works address the problem of modifying LLMs and other models jointly. We compare
performance of our work on LLMs to other structured pruning methods for LLMs in addition to
additional modification tasks.

3 Which Components Are Important for Modifying Well-Trained Models?

In this section, we address the problem of identifying components that strongly contribute to a
model’s predictive performance. To this end, we introduce High-Fidelity (HiFi) components and
provide both theoretical and empirical evidence that these components are crucial to maintaining
model accuracy.

3.1 High-Fidelity Components and the Subset Fidelity Score

Our objective is to estimate how removing a subset of input contributions affects the model’s output,
after optimally compensating for this removal. Directly quantifying this effect is difficult, so we
introduce the Subset Fidelity, a measure of how well a subset of components can locally approximate
the layer’s output.
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Definition 3.1 (Subset Fidelity). The fidelity of a subset of components C ⊆ [clin] in layer l for
output channel c is defined as

FSlc(C) = max
δlc

(
1−

d
(
Y l
c (X),

∑
i∈C δlciA

l
ci(X)

)
d(Y l

c (X),0)

)
(1)

where δlc is a compensation term that scales only the components in C and d(f(X), g(X)) denotes
E[∥f(X)− g(X)∥22] for appropriate functions f, g.

Eq. (1) generalizes the formulation of Halabi et al. [26]. We motivate this definition through the
following properties.
Lemma 3.2 (Properties of Subset Fidelity). For any subset C ⊆ [clin] in layer l, the following hold:
(1) 0 ≤ FSlc(C) ≤ 1, (2) if D ⊂ C, then FSlc(D) ≤ FSlc(C).

The proof is provided in Appendix B.2. A larger Subset Fidelity indicates that the subset more
effectively reconstructs the output. The second property shows that subset fidelities are monotone.
Lemma 3.2 implies two key insights: (1) fidelity serves as a principled measure of component
importance, and (2) monotonicity suggests that greedy selection strategies may be effective.
Remark 3.3. In this work, we focus only on the case where the subset fidelities are measured with the
expected squared difference. We leave to future work an exploration of other possible measures of
distributional similarity.

We now use Definition 3.1 to define subsets of components with high fidelity.
Definition 3.4 ((k, η)-HIFI Set). Given a target subset size k and a threshold η ∈ (0, 1), the
(k, η)-HIFI Set Sk,η

c for output channel c is any subset in [clin] satisfying

FSlc(S
k,η
c ) ≥ η, |Sk,η

c | ≤ k. (HIFI)

Thus, attributing predictive performance to components reduces to finding the HIFI set for a given
(k, η). We can reduce the identification of HIFI sets to solving an optimization problem, the solution
of which yields the Maximum Fidelity Subset, which contains the components that best recover the
layer’s output.
Definition 3.5 (k-Maximum Fidelity Subset). Given a target subset size k for layer l, the Maximum
Fidelity Subset Sl⋆

c for channel c is defined as

Sl⋆
c = argmax

S⊆[clin], |S|=k

FSlc(S). (K-MFS)

A simple algorithm for identifying a (k, η)-HIFI set is to solve Eq. (K-MFS) for the given k and
check whether its fidelity exceeds η. If it does not, no such (k, η)-HIFI set exists.

3.2 Local Distributional Measures of Component Importance

Finding HIFI subsets corresponds to finding subsets that minimize the l2 reconstruction error while ac-
counting for weight compensation. Additionally, it enables the derivation of a closed-form expression
for weight compensation, allowing for accuracy recovery without requiring fine-tuning.

Bounding Global Error via Local Modification We now show that the influence of a component
on its immediate layer output provides a tractable proxy for its overall effect on model predictions. A
proof is provided in Appendix B.1.
Theorem 3.6 (Local to Global). Consider a network as described in Section 2.1. Let all the
parametersWℓ ̸= 0 ∀ℓ ∈ [L]. Let M l represent a mask which modifies the parameters in layer
l. If there exists a positive scalar rℓ for each layer ℓ > l such that ∥Φℓ

c(X)∥F ≥ rℓ ∀c ∈ [cℓout]
almost surely (over the distribution of X), then there exist constants {Cℓ}Lℓ=1 (dependent only on the
architecture) such that:

E
[
∥Nθ(X)−Nθ⊙M l(X)∥2

]
≤ C2

l

clout∑
c=1

(
(1clin

−ml
c)
⊤Ql

c(1clin
−ml

c)
)

(2)

where Ql
c ∈ Rclin×c

l
in is the component similarity matrix (CSM) for channel c, with entries (Ql

c)ij =
E[⟨Al

ci(X),Al
cj(X)⟩].
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Remark 3.7. Theorem 3.6 implies that global error grows at most linearly with local error, mak-
ing local fidelity a practical, architecture-agnostic proxy for component influence. The constant
Cl quantifies the amplification of local errors through subsequent layers and activations, and is
independent of the data distribution. The theorem also necessitates that networks discussed in this
work under suitable conditions are Lipschitz continuous. While CNNs are Lipschitz continuous
[98], transformers are not [66]. In Corollary B.4, we show that this is not the case for well-trained
transformers. Empirical estimates of Cl reported in Appendix C.2 demonstrate the practicality of
these constants.

Subset Fidelity for l2 reconstruction error Next, we show that when the distributional similarity
measure is the l2 reconstruction error, both the compensation term and the singleton fidelity scores
admit closed-form expressions, thus motivating their use in this work.
Proposition 3.8 (Compensation and Singleton Fidelity). For the l2 reconstruction error, the optimal
compensation term δ⋆c , which is the value at which the fidelity score is computed according to Eq. (1)
for a subset C is given by,

δl⋆ci(C) =

{
1 + ((Ql

c[C,C])−1)⊤i Q
l
c[C,C]1n−k if i ∈ C

0 if i /∈ C
(FS)

where Ql
c is the component similarity matrix as in Eq. (2). The singleton fidelity scores are:

slci = FSlc({i}) = 1− E[∥Y l
c (X)− αl

ciA
l
ci(X)∥2]

E[∥Y l
c (X)∥2]

, αl
ci =

E[⟨Y l
c (X),Al

ci(X)⟩]
E[∥Al

ci(X)∥2]
. (3)

The proof is provided in Appendix B.3.

Note that solving Eq. (K-MFS) exactly is still equivalent to a constrained binary quadratic optimiza-
tion problem, known to be NP-hard [1]. Viewing Qc as the adjacency matrix of a weighted graph,
maximizing Eq. (K-MFS) corresponds to identifying a clique of size k, the decision version of the
MAXIMUM CLIQUE problem. Intuitively, such cliques correspond to groups of components whose
joint removal maximally increases the reconstruction error. However, since fidelity is monotonic,
a natural heuristic selects the k components with the highest singleton fidelities slci; we call this
strategy: NAIVE.

Optimal Identification of HIFI Sets We identify conditions under which the NAIVE selection
strategy is optimal.
Theorem 3.9. Consider output channel c in the lth layer of a network described in Section 2.1. Let
the slci be defined according to Eq. (3). Let

Ŝl
c = {i | slci ≥ s(k)}

where s(k) is the k largest value of slc. Assuming that that there are no ties, |Ŝl
c| = k. If

E[⟨Al
ci(X),Al

cj(X)⟩] = 0 ∀i ̸= j, then

Ŝl
c = argmax

S⊆[clin], |S|=k

FSlc(S)

The proof is provided in Appendix B.4.
Remark 3.10. Theorem 3.9 connects a statistical property of the representations to the efficient
discovery of HIFI components. It states that when the input contributions are pairwise uncorrelated,
the optimal subset is the set of components with the highest fidelity score. Although the assumption
of uncorrelated features rarely holds exactly in practice, it offers a useful theoretical justification for
NAIVE HIFI selection. We demonstrate the practical effectiveness of NAIVE HIFI selection through
our experiments in Section 5.

Existence of small HIFI components Our experiments in Section 5.2 empirically establish the
existence of a small subset of components that can achieve high fidelity. Fig. 1 indicates a sample
of the results indicating that fewer than 20% of components can achieve high fidelity (≥ 0.8).
Moreover, in Section 5.3, we validate the effectiveness of HiFi components with the model’s predictive
performance.
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(a) OPT-125M (WikiText) (b) ResNet50 (CIFAR-10) (c) ResNet50 (CIFAR-100) (d) ResNet50 (ImageNet)

Figure 1: Monte Carlo estimation of Eq. (K-MFS) across selected layers of various models. The
x-axis indicates subset size k, and the y-axis the maximum subset fidelity across random samples.

4 Modifying Model Behavior using HiFi Sets

In this section, we describe how the HIFI framework can be used to edit model behavior via structured
pruning and class unlearning. The central idea is to identify high-fidelity (HIFI) components and then
modify them in a targeted manner using a unified algorithmic procedure, Algorithm 1. Additional
details including complexity and implementation specifics are provided in Appendix D.

Algorithm 1 ModHiFi-X
Require: Model parameters θ, layer l, k components,

threshold η, dataD
Ensure: Modified parameters θE

1: Identify (k, η)-HIFI Set via Eq. (3) usingD
2: if X = Prune then
3: for i ∈ [clin] \ {i | (c, i) ∈ Hl} do
4: W l

c,i ← 0 ∀c ∈ [clout]

5: else if X = Unlearn then
6: for (c, i) ∈ Hl do
7: W l

c,i ← 0

8: return θ̂

Structured Pruning In structured pruning, the objective
is to remove entire input channels (or features) that con-
tribute minimally to the model’s predictive performance.
In convolutional architectures, we identify and remove
input channels across all layers that do not appear in the
HIFI sets of any output channel of the residual-coupled
layers. For CNNs, pruning is applied to the input channels
of convolutional layers. For LLMs, we target the input fea-
tures of the MLP down-projection matrices (WD). After
pruning, the compensation term defined in Definition 3.1 is
computed using the remaining weights to restore fidelity.

Class Unlearning To perform unlearning, we first com-
pute HIFI sets using only samples from the class we wish
to forget. The components in these sets are then zeroed out, effectively erasing the influence of that
class. This causes the model’s predictive performance on the forgotten class to degrade without
significantly impacting other classes.

Fidelity Estimation For vision models, the singleton fidelity score FSlc(·) can be estimated effi-
ciently using distributional access to the input data, i.e. synthetic samples. In practice, we compute
scalar values αl

ci which correlate with the importance of component i to output channel c. A large
αl
ci indicates a high-fidelity component. For LLMs, we develop a tractable Cholesky-based heuristic

to estimate the score and provide details in Appendix D.2.

5 Experiments

In this section, we present experimental validation of our work to answer the following questions.
(Q1) Existence of HiFi components. Do a small subset of components exist that can achieve high

fidelity?

(Q2) Effectiveness of HIFI components. Do HIFI components accurately represent those compo-
nents important for the predictive performance?

(Q3) Effectiveness of using HIFI components for pruning using ModHiFi-P. Does ModHiFi-P
result in better accuracy-sparsity tradeoff compared to structured pruning algorithms for vision
tasks and language modeling tasks?

(Q4) Effectiveness of using HIFI components for machine unlearning using ModHiFi-U. Is it
possible to perform machine unlearning, as posed by Jia et al. [35], without fine-tuning? If yes,
how does ModHiFi-U fare against their method?

7



Figure 2: Fidelity score of selected layers of a ResNet-50 model on CIFAR10 and the effect of noise
on the fidelity score.

5.1 Details of the experimental setup

Models, Datasets, and Evaluation We conduct experiments on ResNet-50/101 [27], VGG19
[76], Swin-Transformer [49] and Llama-2-7B [84], benchmarking against relevant experiments from
related literature [2, 51]. For vision tasks, we measure the classification accuracy, and for NLP tasks,
we use EleutherAI’s lm-eval-harness [20].

Distributional Access For CIFAR10/100 [39], we use synthetically generated images as detailed
in Appendix C.3. We use Alpaca [82] (a synthetic dataset) and WikiText-2 [53] as calibration data
for NLP tasks following related literature [2, 51]. We provide ablations to measure the impact of
synthetic data quality in Appendix C.3.3.

Compute platform and implementation details We discuss the compute platform, implementation
details and hyperparameters used for our experiments in Appendix C.6.

5.2 Existence of HIFI components: Exploring (Q1)

To empirically assess whether small subsets can achieve high fidelity, we estimate S⋆
c by sampling

random subsets of size k across different architectures and selecting the subset with the highest
fidelity. Detailed results are presented in Appendix C.1.

Observation 1. Across all evaluated models, each layer typically contains a small subset of input
channels (fewer than 20%) that achieves high subset fidelity (≥ 0.8).

This empirical observation indicates that in trained models, there are only a small set of components
in each layer that are responsible for the model prediction. This observation aligns with the success
of structured pruning algorithms in constructing small subnetworks with high statistical performance.

5.3 Effectiveness of HIFI components: Exploring (Q2)

To answer (Q2), and verify whether HIFI components are the components that matter for the final
predictive performance, we measure the effects of the fidelity of a component getting destroyed by
noising. For a ResNet-50 on CIFAR-10, when 20% of the HIFI components are perturbed with a zero
mean Gaussian noise with standard deviation of 0.01, the accuracy of the model drops by around
12%, whereas perturbing 80% of the non-HIFI components identically results in an accuracy drop
of only 1%. At 50% of components with a noise of standard deviation 0.02, the accuracy drops by
85% when HIFI components are noise compared to only around 1.4% when non-HIFI components
are noised. In Appendix C.1.3, we make similar observations across various models and tasks. In
Appendix C.1.2, we additional experiments where we compare the removal of HIFI, non HIFI, and
random sets of the same size and make similar observations.

5.4 Structured Pruning Experiments: (Q3)

5.4.1 Vision Models

Baselines We compare against the state of the art structured pruning algorithms specialized for
pruning vision models [8, 50, 61, 87], and present additional results on other architectures and
datasets in Appendix C.4 where we make similar observations. Following [18], we update the batch
norm statistics using the data from distributional access.
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Table 1: Comparison of pruning methods on ResNet50 evaluated on ImageNet.
Algorithm Accuracy FLOP Reduction Param Reduction CPU Speedup GPU Speedup

Unpruned 76.1 1x 1x 1x 1x
GReg-2 [87] 73.9 3.02x 2.31x 1.36x 1.53x
OTO [8] 74.7 2.86x 2.81x 1.25x 1.45x
DepGRAPH [14] 75.83 2.07x - - -
ThiNet [50] 71.6 3.46x 2.95x 1.38x 1.50x
DFPC (30) [61] 75.9 1.98x 1.84x 1.42x 1.53x
DFPC (54) [61] 73.80 3.46x 2.65x 2.37x 2.38x
Ours 76.70 2.17x 1.47x 1.69x 1.70x
Ours 73.82 3.66x 3.05x 2.42x 2.38x

Table 2: Comparison of pruning methods on ResNet50 with CIFAR10 (ST: Synthetic Tuning).
Algorithm Accuracy FLOP Reduction Param Reduction

Unpruned 94.99 1x 1x
DFPC [61] 90.25 1.46x 2.07x
L2 [44] 15.91 4.07x 4.71x
L2 w/ ST [44] 90.12 4.07x 4.71x
Ours 91.02 4.07x 5.36x

Observations We find that our method results in better accuracy-vs-sparsity trade off when com-
pared to other algorithms across datasets. We also train a model obtained with L2 norm-based
structured pruning using the synthetic set based on CIFAR10 for comparison. We observe that for
the same FLOP sparsity, our method obtains higher accuracy than the model finetuned on synthetic
samples, indicating that our method is able to outperform fine-tuning in some cases using synthetic
samples for the same sparsity. For the ImageNet dataset, we compare against various state-of-the-art
structured pruning algorithms for networks with complex interconnections with training. In the
training regime, we observe that for models of similar accuracy, our algorithm obtains the best
accuracy-speedup tradeoff with fewer epochs of finetuning. Details of pre-trained networks and
post-training are given in Appendix C.7.2. Our study of the effect of the quality of synthetic samples
on our algorithm in Appendix C.3.3 indicates that the sparsity-accuracy tradeoff of our algorithm
degrades with lower quality samples, but it does not degrade as much as L2 pruning + finetuning on
synthetic samples.

5.4.2 Large Language Models

Table 3: Comparison of pruning methods on Llama-2-7B, measured with PPL and task accuracy

Sparsity Algorithm WikiText PPL ↓ ARC-e ↑ ARC-c ↑ PIQA ↑ WinoG.↑ HellaS. ↑ Average

0% Dense 5.12 74.58 46.25 79.11 69.06 75.99 69.00

10%

SliceGPT [2] 6.46 56.14 35.33 69.53 64.80 59.02 59.96
ModHiFi-P-WikiText (ours) 5.97 68.1 41.89 75.89 65.43 69.92 64.23
ModHiFi–P-Alpaca (ours) 6.36 71.42 42.06 76.44 68.19 71.67 65.96

20%

ShortGPT [52] 14.32 58.33 38.05 72.58 65.51 65.27 59.95
SliceGPT [2] 8.13 50.08 31.14 64.85 62.04 48.84 51.39
ModHiFi-P-WikiText (ours) 7.91 60.1 34.89 70.62 61.48 58.7 57.16
ModHiFi-P-Alpaca (ours) 9.38 64.73 38.22 72.79 64.64 62.7 60.62

30%

ShortGPT [52] 33.21 48.65 32.85 64.31 64.33 56.13 53.25
SliceGPT [2] 10.96 44.19 27.47 58.71 57.46 41.27 45.82
ModHiFi-P-WikiText (ours) 11.53 48.98 28.07 64.03 55.88 46.19 48.63
ModHiFi-P-Alpaca (ours) 14.78 53.15 32.5 66.59 59.35 50.61 52.44

Baselines We evaluate ModHiFi on Llama-2-7B, comparing it against state-of-the-art algorithms
for structured pruning [2, 52]. The use of calibration datasets to compute statistics is in line with our
framing of distributional access to data, since LLMs do not make their training data openly accessible.
Unless otherwise specified, the algorithms use WikiText-2 for calibration, with 128 samples of length
10244. None of the algorithms perform post-pruning recovery fine-tuning. Additional details about
our choice of baselines can be found in Appendix C.4.3.

4ShortGPT’s calibration data is not publicly available.
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Table 4: Comparison of class unlearning methods on CIFAR10.
Model Algorithm Forget Acc. Remain Acc. Time (sec)

ResNet-50

Base 94.99 94.99 -
Gradient Ascent 6.59 93.44 30
Jia et al. [35] 3.54 94.14 363
Ours 0.2 92.98 10

Swin-T [49]
Base 92.31 92.31 -
Jia et al. [35] 1.20 90.69 235
Ours 8.83 73.57 2

Evaluation We also measure the performance of the model via its zero-shot accuracy on a suite
of standard NLP tasks [5, 10, 68, 100] and WikiText perplexity. In Table 3, we see that our method
is competitive, with consistently high average and task-specific performance, and outperforming at
moderate sparsities. We find that the quality of the calibration set plays an important role, with the
performance of ModHiFi-P-Alpaca being consistently higher than that of ModHiFi-P-WikiText. This
tells us that retaining only HIFI components offers a model-agnostic approach to structured pruning,
with its application to LLMs requiring no changes from its application to vision models.

5.5 Class Unlearning Experiments: (Q4)

Baselines and Metrics We report the forget and retain accuracy averaged across 10 classes of the
CIFAR10 dataset on ResNet-50 and Swin-T models. We benchmark against Gradient Ascent and Jia
et al. [35] which are both retraining-based technique for Unlearning.

Unlearning Results We report the results of our algorithm in Table 4. To answer (Q4), we observe
that it is possible to perform unlearning without finetuning in a general editing framework 10×
faster than our baseline. In Appendix C.5, we compare results with finetuning using synthetic and
training data. We note that the results for Swin-Transformer without finetuning fail to achieve state
of the art. However, as reported in Appendix C.5, we observe a drastic improvement with only
3 epochs of finetuning on synthetic samples. With 10 epochs of finetuning with our algorithm,
we find that compared to [35] (who use full training), our forget accuracy is superior when using
synthetic samples, and both forget and remain accuracies are superior when using training samples.
Experiments with VGG-19 are present in Appendix C.5 where we make similar observations.

6 Discussion and Conclusion

In this work, we identify the problem of model modification without access to the loss function
or training data, and address it by using synthetic samples to isolate important, HIFI components.
These components are few in number, are robust to sample noise, and strongly correlate with the
model’s predictive performance. We leverage their existence to develop the ModHiFi algorithm for
pruning and classwise unlearning. Our work differs from prior art in three ways: first, our method is
uniquely suited to synthetic data, the use of which is crucial to modern machine learning. Second, it
enables model modification for a wide variety of tasks, of which we focus on pruning and classwise
unlearning. Last, our method is architecture- and domain-agnostic, being applicable to both CNNs
and transformers, for both vision and language tasks.

Limitations. The bound in Theorem 3.6 cannot be applied to networks at initialization, and we leave
it to future work to explore models that are not well-trained.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We link each contribution in the paper’s contents when we theoretically or
empirically justify the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes, for each theoretical result, we provide a complete set of assumptions and
a correct proof. Proofs are attached in the appendix. We link the relevant appendices in the
main body for the reader.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we fully disclose all the information to reproduce the main experimental
results in Section 5 and the appendices mentioned within that section. Moreover, we provide
our code, and the data sets used are open-sourced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and the instructions to reproduce the experiments are provided in our
Anonymous GitHub link provided in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details to understand the results and reproduce the results are provided in
Section 5 and the appendices mentioned in this section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For experiments where error bars are relevant and computationally feasible,
we report them.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We sufficiently describe the compute resources used for our experiments in
Section 5 and the appendices referred to within the section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We go through the NeurIPS Code of Ethics and confirm that we adhere to
them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: We do not discuss the societal impact of the work performed in this manuscript
since this is foundational research and not tied to particular applications.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release models or data in this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit original owners of assets used in this work appropriately through
citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs to develop any methods presented in this work. We
clarify further in Appendix E.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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APPENDIX

This appendix and their takeaways are summarized below for ease of navigation:

1. Appendix A contains additional related work and description of the gaps in existing literature
addressed in our work.

2. Appendix B contains proofs and discussions not presented in the main body. In particular,
we present the following:

• In Appendix B.1, we provide the proof for Theorem 3.6. We also state and justify the
assumption used towards proving the Theorem.

• In Appendix B.2, we prove the properties of Subset Fidelity stated in Lemma 3.2.
• In Appendix B.4, we prove the optimality of the naive algorithm in selecting the
k-MFS Optimal set. While the assumption of uncorrelated features might not hold
under practical scenarios, this result provides an indication that the method could
result in effective identification of critical model components in practical settings. Our
experiments in Section 5 and Appendix C practically demonstrate the empirical efficacy
of the methodology.

3. Appendix C contains additional experimental validation that make the following points:
• In Appendix C.1 we validate the existence of HiFi sets.

– In Appendix C.1.1, we show the results of the full Monte-Carlo experiments on
more models and datasets to strengthen our answer for Question (Q1).

– In Appendix C.1.2, we conduct counterfactual experiments to validate if the sets
computed by our proposed method are disproportionately responsible for predictive
performance. This emphasizes the effectiveness of Subset Fidelity in addition
to our theoretical results in Theorem 3.9.

– In Appendix C.1.3, we empirically discuss the sensitivity of the estimation of Qc.
This ablation study shows that the Subset Fidelity score is robust to the number of
samples used for estimation. Among the datasets used, we see that we require at
most 200 synthetic samples per class for accurate estimation.

• In Appendix C.3, we study the effect of quality of synthetic samples on our proposed
method. We find that higher quality data leads to an improved sparsity accuracy
tradeoff.

• In Appendix C.4 we provide pruning results on additional datasets strengthen our
validation of Question (Q3).

– In Appendix C.4.1 we show that each sub-module of our model modification is
critical towards successful model modification.

– In Appendix C.4.2 we compare the pruned ImageNet models of ModHiFi-P against
SoTA data-free structured pruning DFPC [61] to compare layer-wise sparsity to
see where is improved speedup coming from.

– In Appendix C.4.3, we justify the appropriateness of our baselines for the LLM
pruning baselines.

• In Appendix C.5 we provide additional unlearning experiments with different models to
strengthen our validation of Question (Q4) and discuss unlearning with finetuning. We
validate that ModHifi-U performs competitively without finetuning against baselines.
Moreover, with very few epochs of finetuning over synthetically generated samples, we
achieve complete unlearning, as opposed to our baselines who fully-finetune on entire
training set.

• In Appendix C.6, we discuss implementation and compute platform details and addi-
tional timing measurements, to improve replicability of our empirical results.

• In Appendix C.7 we discuss hyperparameters used for training, to improve replicability
of our empirical results.

4. Appendix D contains additional algorithmic details including
• Appendix D.1 clarifies of the role of Lipschitz Constants in our algorithms since they

are critical to Theorem 3.6.
• Appendix D.2 presents practical details as to how we implement fidelity estimation in

our model modification algorithms.
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• Appendix D.3 presents the computational complexity of estimating fidelity. The fidelity
is linear in number of layers as opposed to the component identification module of
SoTA in data-free structured pruning, which is quadratic in the number of layers.

A Related Work

We present a short literature review in Section 2. In this section, we discuss recent related work on
structured pruning and unlearning not discussed in the main body.

Structured Pruning Structured pruning has been widely researched, with a wide variety of methods
proposed for it [29]. Unlike unstructured pruning, which sparsifies the weight matrices without
changing the architecture of the model [6, 16, 18, 42, 81], structured pruning enables immediate
improvements in real-world performance measures such as inference time and memory footprint
without requiring specialized hardware or software [29, 56, 65]. A variety of methods have been
proposed for structured pruning of convolutional networks, including using norms of weight tensors
[43, 44], directional derivative scores [56, 57, 73], feature map ranks [46, 78], coresets [4, 45, 85],
discriminative ability of filters [47, 59], and reconstruction error [26, 74, 98]. However, modern
neural networks possess complex interconnections, making them difficult to structurally compress
[13, 48, 61], for which some recent algorithms have been proposed that use gradient information
[48] or bounds on the reconstruction error [61, 98]. Moreover, pruning without access to either the
training data or the loss function is an increasingly important area of research, for which some works
have been proposed that use the discriminative ability of filters as a saliency [47, 59]. However, none
of these works address the problem of pruning large language models.

Pruning of Large Language Models (LLMs) has garnered significant interest in recent years [102].
A variety of unstructured pruning methods have been proposed, such as [17, 79]. However, these
methods do not provide direct improvements on inference time and memory footprint. Thus, the
problem of pruning models with structural interconnections has naturally been applied to pruning
LLMs as well, in works such as [2, 51, 52, 92]. A key drawback of these works is that most are
not applicable to CNNs or other kinds of models. Our work proposes a unified framework for both
pruning models with complex interconnections, including transformers and ResNets, as well as
classwise unlearning.

Classwise Unlearning Machine unlearning has gained significant interest in recent years, both
for data privacy concerns as well as connections to continual learning [7, 30, 62, 89]. Machine
unlearning is typically categorized into exact and approximate unlearning [94]. Exact unlearning
involves training models from scratch without the forget data (the data to be forgotten), or by training
modules or experts on subsets of data [93, 95]. Approximate unlearning, on the other hand, refers to
techniques that approximate exact unlearning via various approaches [33, 94]. Machine unlearning
can be further classified into sample unlearning (wherein individual samples or random subsets of
samples are unlearned)[70, 86] or classwise unlearning (where classes or concepts are unlearned)
[19, 25]. In this work, we focus on classwise unlearning.

A variety of approaches have been proposed for classwise unlearning [25]. Popular methods include
fine-tuning the model without data from the forget class [21, 90], gradient ascent on the forget set
[25, 83], distillation-based approaches [41], and influence function based methods [33]. More recent
work studies using sparsity for machine unlearning, such as [35], which first sparsifies the model, and
then applies a fine-tuning-based unlearning algorithm, or [58, 88], which identify class-discriminative
filters in CNNs, and removes them for unlearning. Two key drawbacks of prior art, however, are:
first they exclusively address classwise unlearning, and do not address wider problems of model
modification. Second, all prior art assumes access to the original training data. Our proposed
approach for classwise unlearning differs from prior art because it only requires synthetic class data,
uses a variety of granularities for sparsity in unlearning, and is part of a unified approach to model
modification.

B Proofs

In this section, we restate the formal statements made in the main body of the paper and present the
proofs ommitted in the main body.
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B.1 Proof of Theorem 3.6

We now provide a proof of Theorem 3.6. We first state our assumptions and provide empirical
evidence to justify their validity, followed by a restatement of the theorem, and its proof. The
assumptions we make are on the norms of the activations of RMSNorm and LayerNorm.
Definition B.1 (RMSNorm and LayerNorm). Let the lth layer be an RMSNorm layer (or equivalently
LayerNorm) with parameters γl ∈ Rd and βl ∈ Rd. For an input Φl(x) ∈ Rd to the layer, the
output yl ∈ Rd is given by

RMSl(x) = yl = γl ⊙ zl

||zl||2
+ βl where zl = MΦl(x)

where ⊙ indicates the element-wise product and M = Id for RMSNorm and M = Id − 1
d1d1

⊤
d for

LayerNorm.

We now state some properties of RMSNorm and LayerNorm layers when the norms of the input are
lower bounded.
Definition B.2. A function f : Rm → Rn is Lipschitz continuous if there exists a positive scalar
constant L such that

∥f(x)− f(y)∥2 ≤ L∥x− y∥2 ∀x,y ∈ Rm

We now state a useful lemma which we use for showing Lipschitzness of RMSNorm.
Lemma B.3. Let r be some positive scalar. Let the function fr : Cr → Rd where Cr ⊂ Rd = {x ∈
Rd | ∥x∥2 ≥ r} be defined as

fr(x) =
x

∥x∥
fr is a Lipschitz continuous function with Lipschitz constant 1

r .

Proof. We have

∥fr(x)− fr(y)∥22 =

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2
2

= 2− 2
x⊤y

∥x∥y∥

and

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2x⊤y

= ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥+ 2∥x∥y∥ − 2x⊤y

= (∥x∥ − ∥y∥)2 + 2(∥x∥y∥ − x⊤y)

= (∥x∥ − ∥y∥)2 + 2∥x∥y∥(1− x⊤y

∥x∥y∥
)

≥ 2∥x∥y∥(1− x⊤y

∥x∥y∥
) since (∥x∥ − ∥y∥)2 ≥ 0

≥ 2r2(1− x⊤y

∥x∥y∥
) since ∥x∥ ≥ r, ∥y∥ ≥ r

= r2∥fr(x)− fr(y)∥22
Thus,

∥fr(x)− fr(y)∥2 ≤
1

r
∥x− y∥

Using the above lemma, we now show that RMSNorm and Layer Norm layers are also Lipschitz
continuous under suitable assumptions.
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Corollary B.4. When the norms of the input to lth layer which is a RMSNorm (or LayerNorm) layer,
∥Φ(x)∥2 are lower bounded by some positive scalar r, for all inputs from a datasetD = {x1, . . .xn},
the layer is maxi |γi|

r -Lipschitz continuous over the dataset D.

Proof. We prove here for RMSNorm, with the proof for LayerNorm following similarly. From
Definition B.1,

∥RMSl(x)− RMSl(y)∥ = ∥γl ⊙ fr(MΦl(x))− γl ⊙ fr(MΦl(y))

≤ (max
i
|γl

i|)∥fr(MΦl(x))− fr(MΦl(y))∥

Under the conditions of the corollary, we may apply Lemma B.3 to complete the proof.

Although the condition on lower bounded inputs holds true if every zl is not zero, we make this
assumption explicit since we do not want the lower bound to be vanishingly small. To justify this
assumption, we show the layer-wise minimum norm of the pre-LayerNorm representations in Fig. 3,
estimated on 100 samples from the Alpaca dataset, where for various models we observe the lower
bound to be between 0.2 to 60. For clarity of exposition, we only show the layers with the largest and
smallest values along with 5 randomly selected layers. Code for generating these plots can be found
in Appendix C. We also observe that this value tends to increase for layers deeper in the network, and
leave the utilization of this observation to future work.
Fact 1. A function f = fL ◦ fL−1 ◦ . . . ◦ f1 where each f i is Lipschitz continuous with Lipschitz
constant Li, is Lipschitz continuous with Lipschitz constant

∏L
i=1 L

i.

We now restate and prove Theorem 3.6.
Theorem 3.6 (Local to Global). Consider a network as described in Section 2.1. Let all the
parametersWℓ ̸= 0 ∀ℓ ∈ [L]. Let M l represent a mask which modifies the parameters in layer
l. If there exists a positive scalar rℓ for each layer ℓ > l such that ∥Φℓ

c(X)∥F ≥ rℓ ∀c ∈ [cℓout]
almost surely (over the distribution of X), then there exist constants {Cℓ}Lℓ=1 (dependent only on the
architecture) such that:

E
[
∥Nθ(X)−Nθ⊙M l(X)∥2

]
≤ C2

l

clout∑
c=1

(
(1clin

−ml
c)
⊤Ql

c(1clin
−ml

c)
)

(2)

where Ql
c ∈ Rclin×c

l
in is the component similarity matrix (CSM) for channel c, with entries (Ql

c)ij =
E[⟨Al

ci(X),Al
cj(X)⟩].

Proof. Consider a network as defined in Section 2.1. Let Nθ = fL ◦ . . . ◦ f l ◦ f l−1:1 where
f l−1:1 = f l−1 ◦ . . . ◦ f1. Under standard assumptions on the smoothness of activations [98], each
layer f l is Lipschitz continuous with Lipschitz constant Ll

f . From Fact 1,

E
[
∥Nθ(X)−Nθ⊙M l(X)∥2

]
≤ (

L∏
ℓ>l

Lℓ
f )

clout∑
c=1

E[∥Y l(X)−
∑
i

mciAci(X)]∥2

By taking an upper bound on the Lipschitz constants of each layer in the composition, we see that the
subnetwork after layer l has a Lipschitz constant of at least Cl =

∏L
ℓ>l L

ℓ
f . Where, for convolution

based networks,

Cl =

(
max

i

γl
i

σl
i

)
ηL−l

∏
ℓ>l

∥Wℓ∥2 ·max
i

|γℓ
i |

σℓ
i

and for transformer models,

Cl = ηL−l
∏
ℓ>l

∥Wℓ∥2 ·max
i

|γℓ
i |
rℓ

The theorem then follows from the definition of expected square loss.
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B.2 Proof of Lemma 3.2

In this section, we prove the properties of Subset Fidelity stated in Lemma 3.2.
Definition 3.1 (Subset Fidelity). The fidelity of a subset of components C ⊆ [clin] in layer l for
output channel c is defined as

FSlc(C) = max
δlc

(
1−

d
(
Y l
c (X),

∑
i∈C δlciA

l
ci(X)

)
d(Y l

c (X),0)

)
(1)

where δlc is a compensation term that scales only the components in C and d(f(X), g(X)) denotes
E[∥f(X)− g(X)∥22] for appropriate functions f, g.
Lemma 3.2 (Properties of Subset Fidelity). For any subset C ⊆ [clin] in layer l, the following hold:
(1) 0 ≤ FSlc(C) ≤ 1, (2) if D ⊂ C, then FSlc(D) ≤ FSlc(C).

Proof. We first show the boundedness of the fidelity score. Let δ⋆c (C) is the value at which the
maximum is attained for all vectors where indices of elements are contained in set C. Since 0clin

is a
feasible solution to this optimization problem,

min
δc

d(Y l
c (X),

∑
i∈C

δciA
l
ci(R)) ≤ d(Y l

c (X),0)

From the definition of a metric, d(Y l
c (X),0) ≥ 0. Thus completing the proof of boundedness.

To prove monotonicity, we show that D ⊂ C =⇒ FSlc(D) ≤ FSlc(C). We again utilize the
optimality of δ⋆c . δ⋆c (D) will always be feasible for the optimization problem for the subset C since
D ⊂ C. Hence, d(Y l

c (X),
∑

i∈C δ⋆ci(D)Al
ci(R)) ≥ d(Y l

c (X),
∑

i∈C δ⋆ci(C)Al
ci(R)). The proof

then follows from the definition of Subset Fidelity.

B.3 Proof of Proposition 3.8

Proposition 3.8 (Compensation and Singleton Fidelity). For the l2 reconstruction error, the optimal
compensation term δ⋆c , which is the value at which the fidelity score is computed according to Eq. (1)
for a subset C is given by,

δl⋆ci(C) =

{
1 + ((Ql

c[C,C])−1)⊤i Q
l
c[C,C]1n−k if i ∈ C

0 if i /∈ C
(FS)

where Ql
c is the component similarity matrix as in Eq. (2). The singleton fidelity scores are:

slci = FSlc({i}) = 1− E[∥Y l
c (X)− αl

ciA
l
ci(X)∥2]

E[∥Y l
c (X)∥2]

, αl
ci =

E[⟨Y l
c (X),Al

ci(X)⟩]
E[∥Al

ci(X)∥2]
. (3)

Proof. The expected square loss is given by as

d

(
Y l
c (X),

∑
i∈C

viA
l
ci(X)

)
= (1clin

− v)⊤Ql
c(1clin

− v)

Consider minimizing the reconstruction error without components in a given set C. Then, the optimal
reconstruction error is obtained at

v⋆ = argmin
v s.t vi=0 ∀i/∈C

(1clin
− v)⊤Ql

c(1clin
− v)

Let z = 1clin
− v and zi = 1 ∀i /∈ C. We have now reduced the problem to a an unconstrained

quadratic. The objective is given by

z⊤CQl
c[C,C]zC + 2 ∗ zCQl

c[C,C]1m + 1⊤mQl
c[C,C]1m

where m = clin − |C| and zC is the sub-vector of z containing indices of C. This is a quadratic
optimization problem with solution,

z⋆
C = −(Ql

c[C,C])−1(Ql
c[C,C])1m.

Substituting v⋆ = 1clin
− z⋆ completes the proof.
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B.4 Proof of Theorem 3.9

In this section, we prove the optimality of the naive algorithm in selecting the k-MFS Optimal set.
Theorem 3.9. Consider output channel c in the lth layer of a network described in Section 2.1. Let
the slci be defined according to Eq. (3). Let

Ŝl
c = {i | slci ≥ s(k)}

where s(k) is the k largest value of slc. Assuming that that there are no ties, |Ŝl
c| = k. If

E[⟨Al
ci(X),Al

cj(X)⟩] = 0 ∀i ̸= j, then

Ŝl
c = argmax

S⊆[clin], |S|=k

FSlc(S)

Proof. The assumption E[⟨Aci,Acj⟩] = 0 ∀i ̸= j implies ((Ql
c)ij)ij = 0 and (Ql

c)ii =
E[||Aci||2] ≥ 0. This implies that the component similarity matrix is diagonal. The Subset fi-
delity of a set is then given by

FSlc(C)
(a)
= 1−

∑clin
i=1 Q

l
cii1[i /∈ C]∑clin

i=1 Q
l
cii

=

∑clin
i=1 Q

l
cii1[i ∈ C]∑clin

i=1 Q
l
cii

=

clin∑
i=1

(
Ql

cii∑clin
i=1 Q

l
cii

)
1[i ∈ C]

=

clin∑
i=1

ζlci1[i ∈ C]

where 1[i ∈ C] is an indicator function that takes 1 for when index i is in C and 0 otherwise.

ζlci =
Ql

cii∑cl
in

i=1 Ql
cii

is the normalized score for each component with
∑clin

i=1 ζ
l
ci = 1. (a) comes from the

fact that δ⋆i (C) = 1[i ∈ C] and substitution into the definition of expected square loss.

Observe now that the fidelity scores for each component can be written as
slcj = FSlc({j}) = ζlcj

The Eq. (K-MFS) objective is then,

S⋆
c = argmax

S⊆[clin], |S|=k

∑
i∈S

ζlci

Clearly, this is a linear objective that is maximized when the set S contains the k largest vales of ζl
c,

which in turn correspond to the k largest values of the fidelity scores.

Remark B.5. While the assumption of uncorrelated features might not hold under practical scenarios,
this result provides an indication that the method could result in effective identification of critical
model components in practical settings. Our experiments in Section 5 and Appendix C practically
demonstrate the empirical efficacy of the methodology.

C Additional Experiments

In this appendix we detail additional results and ablations.

1. We elaborate on the Monte Carlo simulations of Eq. (K-MFS) across multiple models, as
well as the efficiency with which Subset Fidelity estimates this while being robust to data
samples. We present noising and counterfactual results to demonstrate this.

2. We discuss the synthetic samples used in our vision experiments and the effect of their
quality on the algorithm.

3. We provide additional pruning and unlearning experiments for a variety of architectures.
4. We provide details of our compute platform, hyperparameters, and training procedure for

our experiments.

Our code is available at https://github.com/DhruvaKashyap/modhifi.
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(a) OPT-125M (b) OPT-350M

(c) OPT-1.3B (d) Llama-3.2-1B

(e) Llama-2-7B (f) Llama-3.1-8B

Figure 3: Boxplots for the distribution of norms of inputs to normalization layer. Minimum value
indicated in Red, showing that 1

r is at most 5. Y-axis is log scale.

C.1 Validating Subset Fidelity and HIFI Sets

C.1.1 Monte Carlo Experiments

In this section, we provide additional details regarding Fig. 1 and demonstrate this behaviour across
architectures.

Ideally, one would solve Eq. (K-MFS) exactly to compute those sets that have optimal reconstructive
ability at different sizes. However, since enumerating across subsets is a combinatorial problem, we
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instead approximate a solution by randomly sampling 1000 sets of the given size and compute the
maximum across these samples. This will always provide a lower bound for the “true” curve.

Solving Eq. (K-MFS) allows us to compute the optimal (k, η)-HIFI sets, since this captures the
relation between η and k, i.e. the tradeoff between sparsity and accuracy. We observe that in many
layers (at least 50% of the model), across multiple models, there are sets which contain at most 20%
of components but have a subset fidelity of around 0.8. We also observe that as the difficulty of the
task increases (CIFAR10 to ImageNet), fewer layers exhibit this sparsity, validating the assertion that
networks trained on harder problems are less overparameterized.

Figs. 4 to 6 show this for a ResNet-50 trained on CIFAR10, CIFAR100, and ImageNet. Fig. 7 shows
this for a OPT-125m model using 128 samples of WikiText and 100 random subsets instead of a 1000.
Due to the expensive nature of this experiment, we are forced to use only 100 random subsets for
each size, leading to a noisier curve. However, it is clear to see that the general trend continues to
hold for several layers, especially for the “down-projection" weight matrices, which are the focus of
our pruning algorithm for LLMs.

C.1.2 Counterfactual study of HiFi sets

We compare the effect of removing HiFi components from a layer with the effect of removing a
random subset of the same size. For a ResNet-50 model trained on CIFAR-10, when around 22%
of HiFi components are removed, the accuracy drops by around 70%, whereas removing a random
subset of the same size decreases the accuracy by 32%. Note that there is a roughly 1% decrease in
accuracy when only 22% of the non-HiFi components are removed. This indicates that components
classed as “High Fidelity" have a significantly higher impact on the model’s predictive performance
than those with lower fidelity scores.

C.1.3 Robustness of the Fidelity Score

In this section, we perform ablations on the number of samples required for estimating the fidelity
score and show how it reacts to additive noise on the model’s weights.

In Figs. 8 and 9 we show how different data sizes affect different layers in a ResNet50 model trained
on CIFAR10 and ImageNet, respectively. Each data size is selected over 3 random seeds with error
bars shown. For clarity, we show only a subset of layers and provide plots and code to generate them.

We observe that the values are stable for 0.2%, 0.5% and 2% of data selected, indicating that it is
robust to number of samples selected.

We also observe the effect of training in these graphs. In untrained models, almost all components
have very small fidelity scores with a sharp increase for some values. This indicates that HiFi
components are a function of training, with the well-trainedness of the network being a prerequisite
for their presence

When investigating the effect of adding noise to the weights and its effect on accuracy and the fidelity
score, we observe that adding zero mean noise of larger standard deviations, starting from 0.005 to
0.05, decreases the fidelity of components, with noisier weights behaving more like untrained models.
We test this on a ResNet-50 trained on CIFAR10 and present the results in Fig. 10. Again, we present
only a random subset of the layers for clarity.

C.2 Constants in Theorem 3.6

In this section, we provided worst case and average case estimates of the constant Cl in Theorem 3.6.

In Fig. 11, we plot the constants obtained in the proof of Theorem 3.6 in Appendix B.1 for a ResNet-
50 trained on ImageNet, and observe that the values can be very large (1038). However, it is important
to note that these are worst case guarantees, and that these constants are much smaller in practice.

In Fig. 12, we compute the ratio
E[∥y(X)−y(X;M l)∥2]∑clout

c=1 d(Y l
c (X),

∑
i∈C ml

ciA
l
ci(X))

and observe that these values are

indeed much smaller (10-50) for random values of M l for the expected square loss.
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Figure 4: Estimates of Optimal subset fidelity for ResNet-50 on CIFAR10.
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Figure 5: Estimates of Optimal subset fidelity for ResNet-50 on CIFAR100.
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Figure 6: Estimates of Optimal subset fidelity for ResNet-50 on ImageNet.
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Figure 7: Estimates of Optimal subset fidelity for OPT-125M.
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Figure 8: Fidelity scores for select layers of ResNet50 trained on ImageNet showing the effect of
training and data set size.

Figure 9: Fidelity scores for select layers of ResNet50 trained on CIFAR10 showing the effect of
training and data set size.

Figure 10: Fidelity scores for select layers of ResNet50 trained on CIFAR10 showing the effect of
adding noise
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Figure 11: Worst case estimates of constants Cl for a ResNet-50 trained on ImageNet

Figure 12: Empirical estimates of constants Cl for a ResNet-50 trained on ImageNet

C.3 Discussion on the synthetic samples used in the experiments

We describe the synthetic datasets used in our vision experiments to simulate distributional access.
Randomly selected example images are provided in Fig. 13. For NLP tasks, we use WikiText and
Alpaca datasets [53, 82] which are standard in this field.

C.3.1 CIFAR5M

For experiments with the CIFAR10 dataset, we use CIFAR5M, a dataset containing 6 million synthetic
CIFAR-10-like images sampled from a Diffusion model and labeled by a Big-Transfer model [60],
which we randomly sample 10,000 samples from each of the 10 classes to create our dataset. This
dataset has an FID [28] of 15.95 with respect to the CIFAR10 training set. This dataset is obtained
from here.

C.3.2 CIFAR100-DDPM

For experiments with the CIFAR100 dataset, we use CIFAR100-DDPM [24], which we randomly
downsample to contain 1,000 samples from each of the 100 classes. This dataset has an FID of 4.74

(a) Automobile (5M) (b) Deer (5M) (c) Beaver (DDPM) (d) Forest (DDPM)

Figure 13: Randomly selected images from the synthetic sets
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Table 5: Effect of data quality when pruning a ResNet-50 on CIFAR10
FID Diffusion Steps Accuracy FLOP Reduction Param Reduction

85.80 4 86.27 2.63x 2.66x
35.58 5 90.75 2.78x 2.78x
14.42 6 90.39 3.50x 3.60x

Table 6: Comparison of ResNet-50 pruning for CIFAR10 and CIFAR100. ST = Synthetic Training,
i.e. training using synthetic samples.

Dataset Algorithm Accuracy FLOP Reduction Param Reduction

CIFAR10

Unpruned 94.99 1x 1x
DFPC 90.25 1.46x 2.07x
L2 15.91 4.07x 4.71x
L2 w/ ST 90.12 4.07x 4.71x
Ours 91.02 4.07x 5.36x

CIFAR100

Unpruned 78.85 1x 1x
DFPC 70.31 1.27x 1.22x
L2 16.77 1.93x 1.40x
L2 w/ ST 73.83 1.93x 1.40x
Ours 70.93 1.93x 1.38x

with respect to the CIFAR100 training set. We randomly sample 1,000 samples from each of the 100
classes to create our dataset. This dataset is obtained from here.

C.3.3 Effect of Data Quality

To study the effect of data quality on the performance of our algorithm in vision tasks, we apply the
pruning algorithm using synthetic datasets based on CIFAR10 generated with different FIDs. We use
a diffusion model [37] to generate 3 datasets of differing quality by changing the number of diffusion
steps (4,5, and 6). We report the results of our pruning algorithm with different quality datasets in
Table 5. We observe that higher quality data leads to an improved sparsity - accuracy tradeoff.

C.4 Additional Pruning Experiments

We present additional pruning experiments in Tables 6 and 7.

C.4.1 Ablation of weight compensation and BatchNorm correction

In this section, we perform ablations for each component of our pruning algorithm, simple pruning,
correcting batch norm statistics and weight compensation. We report our results for pruning ResNet-

Table 7: Comparison of ResNet-101/VGG-19 pruning on CIFAR10 and CIFAR100. ST = Synthetic
Training, i.e. training using synthetic samples.

Dataset Model Algorithm Accuracy FLOP Reduction Param Reduction

CIFAR-100 VGG19

Unpruned 72.02 1x 1x
DFPC 70.10 1.26x 1.50x
L2 56.46 1.50x 2.40x

L2 w/ ST 72.42 1.50x 2.40x
Ours 70.26 1.51x 2.31x

CIFAR10

ResNet-101

Unpruned 95.09 1x 1x
DFPC 89.80 1.53x 1.84x

L2 w/ ST 90.49 4.20 5.29x
Ours 91.20 4.21x 4.79x

VGG19

Unpruned 93.50 1x 1x
DFPC 90.25 1.46x 2.07x

L2 w/ ST 89.23 2.39x 9.19x
Ours 91.80 2.39x 5.52x
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Figure 14: Number of remaining channels of pruned ImageNet model compared with DFPC (30)

50 on CIFAR 10 in Table 8. We observe that each component allows for a better accuracy sparsity
trade-off.

C.4.2 Final ImageNet Pruned Model

In Figs. 14 and 15 we compare the final pruned models for ResNet-50 on ImageNet with DFPC [61].
We observe that our pruning algorithm removes more channels in later coupled channels than DFPC
leading to higher gains in sparsity.

C.4.3 Baseline selection for LLM Pruning

We choose ShortGPT [52] and SliceGPT [2] as baselines against which we compare ModHiFi. We
do so for two broad reasons: all three methods together represent three different granularities for
conducting structured pruning for LLMs, and both ShortGPT and SliceGPT are the state-of-the-art
within their respective lanes.

The three different granularities are

1. Layer pruning: Entire layers (i.e. transformer decoder blocks) are removed from the network.
This is viable since transformers are constant width networks, i.e., there are no architectural
restrictions to the ordering or number of layers. ShortGPT falls within this granularity.

2. Embedding pruning: The width of the network (i.e. the embedding dimension) is pruned at
a uniform rate across the entire network. This entails a form of feature selection: along with
weight matrix pruning, one also has to prune the corresponding dimensions from the feature
matrix being fed into every layer. SliceGPT falls within this granularity.

Table 8: Ablation of different components
BatchNorm Compensation Accuracy FLOP Reduction Param Reduction

No No 93.37 1.61x 1.53x
No Yes 93.49 2.21x 2.17x
Yes No 93.17 2.53x 2.39x
Yes Yes 93.76 3.22x 3.30x
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Figure 15: Number of remaining channels of pruned ImageNet model compared with DFPC (54)

3. Hidden dimension pruning: Here, the number of layers and the width of the embedding
are left unchanged. Instead, one prunes the hidden dimensions within the modules that
constitute a transformer decoder block. ModHiFi falls within this granularity.

We would like to emphasize that both SliceGPT and ShortGPT are designed to operate on Transformer
models, and as such are able to leverage specifics of the architecture to their advantage. In return for
this specificity, however, they trade off the ability to generalize to CNNs, something that ModHiFi
does with ease due to its architecture-agnostic nature; the only assumption made by the Fidelity Score
is that the components being scored belong to linear layers.

C.5 Additional Unlearning Experiments

We report additional experiments in Table 9 on class unlearning on different architectures. For
VGG-19 networks, we remove the HiFi channels for the forget class of the last 12 convolution
layers. We also compare our work with DisCEdit-U from [58] wherein we remove discriminative
components from the last 8 convolutional layers. We use a custom implementation of the algorithm
for our VGG19 and ResNet50 models for CIFAR10, as those models are unavailable in the codebase
of [58].

We also compare our work with DisCEdit-U on ResNet50 trained on CIFAR10 as well, which we
present in Table 10

We show that our unlearning method achieves similar or superior performance to that of [58] without
fine-tuning. Moreover, unlike [58], our approach uses only synthetic samples, showing the efficacy of
our work in classwise unlearning, even in the absence of training data.

Unlearning with finetuning Here we compare our method with 3 additional epochs of finetuning
on synthetic samples of the remaining class data. Although this setup does not fall into the setup of

Table 9: Class unlearning on CIFAR10 for VGG19
Model Algorithm Forget Accuracy Remain Accuracy

VGG19
- 93.50 93.50
DisCEdit-U 2.39 84.2
Ours 0.86 77.85
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Table 10: Class unlearning on CIFAR10 for ResNet50
Model Algorithm Forget Accuracy Remain Accuracy

ResNet50
- 94.99 94.99
DisCEdit-U 3.2 91.6
Ours 0.2 92.98

Table 11: Class unlearning with 3 epochs of finetuning on synthetic samples
Model Remain Accuracy Forget Accuracy

ResNet-50 93.1 0
Swin-T 83.6 0.1

the work since we do not assume access to the loss function, we provide these results to indicate that
even using very few synthetic samples we can perform perfect unlearning. We present these results in
Table 11, where we observe almost perfect unlearning for both ResNet-50 and Swin-Transformers.

Unlearning with baseline budgets In this section, we compare our method when allowing for
the same amount of finetuning as [35], with both synthetic data and training data access. While this
violates our assumptions about loss function and training data access, we present these results to
provide a fair comparison of our algorithm when run within the same constraints as our baselines.
Our results can be found in Table 12 for the Swin Transformer.

C.6 Compute Platform

Implementation Details We implement our proposed methods in PyTorch [64] and use Hugging-
face’s transformers [91] for LLM implementations.

Inference time measurements We follow the inference time measurement setting of [61, 72].
Inference time is the time taken for a model to compute the forward pass for an input and does not
account for loading data into memory. We compute the inference time for a batch of 640 random
tensors for GPU and 64 for CPU. 100 iterations are used for warm up, after which the inference
time is averaged over the next 1000 forward passes. We compute CPU and GPU measurements on a
machine whose specifications can be found in Appendix C.6.

JIT Compilation We present inference time numbers with JIT compilation on Pytorch [63].

Hardware Table 13 details the hardware we use to conduct our experiments. Values in (*)
indicate reported values obtained from https://www.amd.com/en/products/accelerators/
instinct/mi200/mi210.html. This machine runs Ubuntu 22.04.3 LTS with kernel 6.8.0-40-
generic with the hardware in Table 13. Our software stack comprises of Python 3.12.8, PyTorch 2.5.1
built for ROCm 6.2, and torchvision version 0.20.1 built for ROCm 6.2.

Inference times are measured on a machine running Ubuntu 20.04.1 LTS with kernel 5.15.0-91-
generic on the hardware specified in Table 14. The software stack used for inference consists of
Python 3.12.8, PyTorch 2.5.1, and Torchvision 0.20.1 for CUDA 12.3.

Table 12: Class unlearning with 10 epochs of finetuning
Approach Dataset Forget Accuracy Remain Accuracy
Jia et al. [35] CIFAR10 Train 1.20 90.69
Ours CIFAR10 Synthetic 0.37 84.63
Ours CIFAR10 Train 0.00 91.1

42

https://www.amd.com/en/products/accelerators/instinct/mi200/mi210.html
https://www.amd.com/en/products/accelerators/instinct/mi200/mi210.html


Table 13: Specifications of GPU hardware used for computation
CPU Model Name AMD EPYC 9654 96-Core Processor
CPU(s) 192
Thread(s) per core 1
Core(s) per socket 96
Socket(s) 2
NUMA node(s) 2
CPU MHz(Max) 3707.8120
L1d & L1i cache 6 MiB
L2 cache 192 MiB
L3 cache 768 MiB
RAM 1.48 TiB (DDR5, 4800 MT/s)
GPU Model name Instinct MI210
GPU(s) 4
GPU Architecture AMD Aldebaran
Dedicated Memory Size(per GPU) 64 GB
ROCm Version 6.0.2
Peak FP32 Performance* 22.6 TFLOPs
Peak FP64 Performance* 22.6 TFLOPs
Memory Clock* 1.6 GHz
Peak Memory Bandwidth* 1.6 TB/s

Table 14: Specifications of GPU and CPU hardware used for computing inference time
CPU Model Name Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
CPU(s) 64
Thread(s) per core 2
Core(s) per socket 16
Socket(s) 2
NUMA node(s) 2
CPU MHz(Max) 3200
L1d & L1i cache 1 MiB
L2 cache 32 MiB
L3 cache 44 MiB
RAM 62.53 GiB (DDR4, 2666 MT/s)
GPU Model name NVIDIA GeForce RTX 2080 Ti
CUDA version 12.3
GPU(s) 8
GPU Architecture NVIDIA Turing
Dedicated Memory Size(per GPU) 11.81 GB

C.6.1 Module-level Time Consumption

In this section, we break down the time each component of our algorithm takes. For 2000 samples
batched into batches of size 64, when running the algorithm on a ResNet-50:

• Computation of fidelity scores takes between 32GB to 51GB of VRAM, and between 2
minutes to 5 minutes, on 1 GPU of machine 13, across data from CIFAR10, CIFAR100, and
ImageNet.

• Computing δ⋆c across 4 GPUs using an average of 60GB per GPU takes 60 minutes for
CIFAR10/100, and 90 minutes for ImageNet, averaging to roughly 1 minute per layer.
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C.7 Hyperparameters and Training Procedure

C.7.1 Hyperparameters for Experiments

We typically set the percentile of removed components to be between 0.01 to 0.2. We randomly select
2% of our synthetic samples to select data for vision tasks and select 128 samples for NLP tasks.

C.7.2 Training procedure

Pretraining procedure: For CIFAR10 and CIFAR100, we train models using SGD with a momen-
tum factor of 0.9 and weight decay of 5× 10−4, for 200 epochs using Cosine Annealing step sizes
with an initial learning rate of 0.1.

ImageNet post training: For ImageNet, we use off-the-shelf pretrained models from Torchvision
[63]. We train the model for 3 epochs after each iteration of pruning with learning rates of 0.1, 0.01,
0.001. After the pruning ends, we finally train the network for 160 epochs with a batch size of 512.
We use the SGD Optimizer with a momentum factor of 0.9 and weight decay of 1× 10−4 and start
with an LR warm-up for 10 epochs, followed by Cosine Annealed step sizes with an initial learning
rate of 0.1 with Cutmix and Mixup augmentations.

L2 Post training procedure: For the synthetic training experiments mentioned in Section 5, we
first prune the model using L2 norm as the grouped saliency to a similar sparsity as our algorithm.
We then train the model using 50000 samples from the synthetic dataset for 100 epochs with a batch
size of 128 using SGD optimizer with momentum factor of 0.9 with initial learning rate of 0.01 and a
MultiStepLR learning rate scheduler with milestones at 60 and 80 epochs.

D Additional Algorithm details

In this section, we discuss algorithmic nuances not discussed in the main body of the paper.

D.1 Clarification on Lipschitz Bounds and Their Role

In Section 3, we introduced a local-to-global error bound (Theorem 3.6) that connects intermediate-
layer deviations to changes in the final-layer output, assuming the model is composed of Lipschitz-
continuous layers with constants Cl. This result serves to theoretically motivate the use of local
reconstruction error – what we formalize as Subset Fidelity – as a proxy for reconstruction error at
the output.

Importantly, we do not compute or estimate Lipschitz constants in any part of our algorithm. Our
pruning and unlearning algorithms do not depend on knowledge of the values of Cl. The bound in
Theorem 3.6 is used qualitatively to support the intuition that preserving high-fidelity intermediate
representations leads to stability in the final model predictions.

Empirically, we find that Subset Fidelity correlates strongly with the effect of component removal
on prediction quality (see Fig. 1 and Appendix C), even in the absence of explicit Lipschitz bound
estimation. This supports our design choice to treat Theorem 3.6 as a motivating principle, not an
operational tool.

We believe this distinction is important to clarify: while our framework draws conceptual inspiration
from Lipschitz continuity, it remains loss-free, and hyperparameter-driven in practice, with no reliance
on any difficult-to-estimate constants.

D.2 Additional Algorithmic details on Fidelity Estimation

To efficiently estimate the fidelity of each component at a given layer, we use a saliency measure to
approximate the fidelity score. This is based on the component’s contribution to reconstructing the
layer’s output, computed via the inner product between the layer output and the component-specific
activation contribution. This can be written as

R̃l
ci = E [⟨Yc(X),Aci(X)⟩] = ⟨Qc

i ,1⟩ = αl
ciE[||Aci||2]
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In networks that include BatchNorm (e.g., ResNets [27], VGG [76]), we refine this reconstruction
by centering the activations using the BatchNorm’s stored running mean. This leads to a modified
formulation of the component similarity matrix:

Q̃c
ij = E [⟨Aci(X),Acj(X)⟩]− ⟨E[Aci(X)],E[Acj(X)]⟩

These quantities are computed efficiently using modern GPU architectures. The forward activations
from a calibration set are batched and evaluated across multiple GPUs in parallel. In sequence-based
architectures such as Transformers [49], we compute the expectation over all elements in the sequence
dimension.

Numerical Stability and Regularization. To compute the optimal linear compensation for modi-
fying components, we solve a least-squares system involving the component similarity matrix Q̃c.
However, this matrix may be ill-conditioned or rank-deficient in practice. To ensure numerical
stability and avoid inversion errors, we add a small ℓ2 regularization term (λ = 10−4) to the diagonal
before solving.

Behavior of HiFi Components During Editing. The role of HiFi components depends on the
editing task:

• Structured Pruning: We retain HiFi components and discard the rest. While we cannot
guarantee a fixed sparsity level in the output model (since HiFi components may span
all inputs), we observe in practice that reasonable sparsity emerges naturally. For more
aggressive pruning, the algorithm is applied iteratively.

• Class Unlearning: Simply discarding low-fidelity components is insufficient. Instead, we
aim to remove or disrupt the influence of HiFi components that are specific to the forget
class. The editing strategy depends on the network type:

– In BatchNorm networks, we zero out the weights of HiFi components computed as per
the forget class samples.

– In LayerNorm-based networks with residual connections (e.g., Swin-T), we negate the
weights of HiFi components. This rotates the forget-class representation in the opposite
direction due to the residual path.

The unlearning strategy for Transformer-based architectures is captured in the following procedure:

Algorithm 2 ViT-Edit-X: Structured Editing for Transformers

Require: Model parameters θ, HiFi components H , coupled channels CC

Ensure: Edited model parameters θ̂
1: if X = Prune then
2: for i ∈ [clin] \ {i | (c, i) ∈

⋃
l Hl} do

3: W l
c,i ← 0 ∀c ∈ [clout], l ∈ CC

4: else if X = Unlearn then
5: for each layer l ∈ CC do
6: Ŵ l

c,i ← −W l
c,i ∀(c, i) ∈ Hl

7: Return: θ̂

Fidelity Estimation in LLMs Due to the large scale of LLMs and the range of floating point values,
estimation of scores becomes more challenging. We estimate the the fidelity scores by computing the
row norms of the regularized Cholesky decomposition of Q. The scores are estimated as

FS({i}) ≈ ||Li||2 where Q = LL⊤ is the Cholesky decomposition of Q

We use the Cholesky decomposition since it is efficient to compute.

45



D.3 Computational cost

Let N be the number of data points used to estimate the saliency and M l be the complexity of
computing the input contribution at layer l for a single sample in a set of coupled channels with m
layers. The complexity to compute the set of retained channels for an output channel of a layer is,
tlsal = O(NM lCl

ind
l). To select the components for the coupled channels, the top p elements for

each layer and output channel in them are collected, this costs O(
∑m

l=1 C
l
out(C

l
in logC

l
in + tlsal)).

The algorithm shows a linear dependence on the number of layers in the network, compared with the
BGSC algorithm [61] which has a quadratic dependence.

E Full LLM Disclosure

In this work, we use LLMs to clean up the grammar and make improvements to the language to
enhance clarity. We use LLMs to generate code that generates some of the plots presented in this
work. We do not use LLMs to generate code for any of the algorithms presented in this work. We
also use LLMs to simplify the proof presented in Lemma B.3.

46


	Introduction
	Background, Setup, and Related Work
	Background and Notation
	Modifying Models without Training Data or the Loss Function
	Related Work

	Which Components Are Important for Modifying Well-Trained Models?
	High-Fidelity Components and the Subset Fidelity Score
	Local Distributional Measures of Component Importance

	Modifying Model Behavior using HiFi Sets
	Experiments
	Details of the experimental setup
	Existance of HiFi components: Exploring Q1
	Effectiveness of HiFi components: Exploring Q2
	Structured Pruning Experiments: Q3
	Vision Models
	Large Language Models

	Class Unlearning Experiments: Q4

	Discussion and Conclusion
	Related Work
	Proofs
	Proof of Theorem 3.1
	Proof of Lemma 3.4
	Proof of Corollary 3.6
	Proof of Theorem 3.7

	Additional Experiments
	Validating Subset Fidelity and HiFi Sets
	Monte Carlo Experiments
	Counterfactual study of HiFi sets
	Robustness of the Fidelity Score

	Constants in Theorem 3.6
	Discussion on the synthetic samples used in the experiments
	CIFAR5M
	CIFAR100-DDPM
	Effect of Data Quality

	Additional Pruning Experiments
	Ablation of weight compensation and BatchNorm correction
	Final ImageNet Pruned Model
	Baseline selection for LLM Pruning

	Additional Unlearning Experiments
	Compute Platform
	Module-level Time Consumption

	Hyperparameters and Training Procedure
	Hyperparameters for Experiments
	Training procedure


	Additional Algorithm details
	Clarification on Lipschitz Bounds and Their Role
	Additional Algorithmic details on Fidelity Estimation
	Computational cost

	Full LLM Disclosure

