Fast Computation and Optimization for Opinion-Based Quantities of Friedkin-Johnsen Model

Haoxin Sun, Yubo Sun, Xiaotian Zhou, Zhongzhi Zhang*

College of Computer Science and Artificial Intelligence
Fudan University

{23110240089,25110890019}@m.fudan.edu.cn, {20210240043,zhangzz}@fudan.edu.cn

Abstract

In this paper, we address the problem of fast computation and optimization of opinion-based quantities in the Friedkin–Johnsen (FJ) model. We first introduce the concept of partial rooted forests, based on which we present an efficient algorithm for computing relevant quantities using this method. Furthermore, we study two optimization problems in the FJ model: the Opinion Minimization Problem and the Polarization and Disagreement Minimization Problem. For both problems, we propose fast algorithms based on partial rooted forest samplings. Our methods reduce the time complexity from linear to sublinear. Extensive experiments on real-world networks demonstrate that our algorithms are both accurate and efficient, outperforming state-of-the-art methods and scaling effectively to large-scale networks.

1 Introduction

Online social networks and social media have become integral to our daily lives, fundamentally altering how individuals communicate, exchange, and form opinions [33, 21, 48, 50, 59, 44]. Recent studies suggest that, unlike traditional forms of communication, online interactions in the digital era have profoundly impacted human behavior, facilitating the widespread, critical, and complex propagation of information [40]. To better understand the mechanisms driving opinion formation and dissemination, various mathematical frameworks for opinion dynamics have been developed [27, 41, 17, 6]. Among these models, the Friedkin-Johnsen (FJ) model [19] stands out as one of the most widely used, with applications spanning multiple fields [8, 20]. For instance, a modified FJ model was recently used to study the Paris Agreement negotiations, revealing key factors behind the achieved consensus [8].

The fundamental concept in opinion dynamics is the opinion itself, which serves as the basis for many opinion-based quantities that have garnered significant attention. Among these quantities are the overall opinion, which reflects public sentiment on specific issues, and various social phenomena such as polarization, disagreement, and conflict. Given the importance of these opinion-based quantities, a key challenge is how to effectively compute and optimize them. A Laplacian solver-based approach for computing these quantities was proposed in [52, 54], followed by a sampling-based algorithm to accelerate the computation process [39]. For the optimization of opinion-based quantities, a range of methods has been introduced, including matrix inversion [24], vector projection [56, 59], eigencentralities [5], convex optimization [38], and sampling techniques [44]. Although many effective methods have been proposed for computing and optimizing opinion-based quantities in the FJ model, they are often limited to specific problems or suffer from high time complexity. Consequently, a unified framework to efficiently address both computation and optimization of opinion-based quantities in the FJ model is imperative.

^{*}Corresponding author.

In this paper, we propose several algorithms to compute and optimize the opinion-based quantities. Our main contributions are as follows:

- We introduce the concept of partial rooted forests and, based on which we propose a fast samplingbased algorithm for computing opinion-based quantities. Our methods effectively capture the essential structural information of the graph, ensuring both efficiency and accuracy.
- We address two optimization problems in the FJ model: minimizing a weighted average of expressed opinions, and reducing polarization and disagreement via edge addition. For both problems, we design fast algorithms based on partial rooted forest samplings, reducing the time complexity from linear to sublinear.
- We conduct extensive experiments on a variety of real-world networks, which shows that our algorithms demonstrate both high accuracy and efficiency compared to state-of-the-art methods and are scalable to large networks.

2 Related Work

Mathematical modeling plays a crucial role in understanding opinion dynamics, and numerous models have been proposed over the years to capture various aspects of opinion formation [27, 41, 17, 6]. Among these, the Friedkin-Johnsen (FJ) model [19] stands out as a foundational model, building upon and extending the DeGroot model [16]. Given its theoretical importance and practical applications, the FJ model has garnered significant attention since its introduction. A sufficient stability condition for the FJ model was derived in [42], and the model's average innate opinion was characterized in [15]. Additionally, the vector of expressed opinions at equilibrium was formulated in [15, 10]. Further interpretations and insights into the FJ model have also been provided [23, 10].

The sum of opinions has attracted significant attention, with various research groups addressing the optimization problem of maximizing overall opinion through leader selection [55, 26, 57] or link recommendation [56, 58] based on the DeGroot model. In the case of the FJ model, node-based strategies have been proposed over the past decade to optimize the sum of opinions on unsigned graphs, including modifications to initial opinions [3], the expression of opinions [24, 44], and sensitivity to persuasion [2, 11, 1, 36]. Our solution for optimizing the average expressed opinion in the FJ model is both more efficient and effective compared to the state-of-the-art approach presented in [44].

The explosive growth of social media and online social networks has given rise to several social phenomena, including polarization [37, 38, 4], disagreement [38], filter bubbles [7, 30], conflicts [14], and controversies [14]. In response to these challenges, research has evolved in various directions, with fast algorithms being developed to efficiently compute these quantities [52, 54, 39]. Some studies have focused on identifying groups of users with an open attitude toward opposing information [22, 18], aiming to connect users with differing opinions in order to mitigate the filter bubble effect [47, 59, 5, 38, 60]. In this paper, we study the problem of computing opinion-based quantities in the FJ model [39, 52] and two optimization problems in the FJ model [44, 59]. Our proposed algorithms demonstrated greater efficiency and effectiveness compared to the state-of-the-art methods in [39, 44, 59].

3 Preliminaries

3.1 Graph and Laplacian Matrix

Let $\mathcal{G}=(V,E)$ denote an unweighted simple undirected graph, which consists of n=|V| nodes and m=|E| edges. An edge $(v_i,v_j)\in E$ indicates the edge between node v_i and node v_j . In what follows, v_i and i are used interchangeably to represent node v_i if incurring no confusion. The structure of graph $\mathcal{G}=(V,E)$ is captured by its adjacency matrix $\mathbf{A}=(a_{ij})_{n\times n}$, where $a_{ij}=a_{ji}=1$ if there is an edge between node v_i and node v_j and 0 otherwise. The degree d_i of node i is defined by $d_i=\sum_{j=1}^n a_{ij}$. The diagonal degree matrix representing the degrees of graph \mathcal{G} is $\mathbf{D}=\mathrm{diag}(d_1,d_2,\ldots,d_n)$, and the Laplacian matrix is $\mathbf{L}=\mathbf{D}-\mathbf{A}$. For any given node i, i0 denotes the set of its neighbors, meaning i1 is i2 if i3 is a sequence of alternating nodes and edges i3 in i4 in i5 in i6 in i7 in i8 in i9 is a sequence of alternating nodes and edges i9 in i1 in i1 in i1 in i2 in i3 in i4 in i5 in i6 in i7 in i8 in i9 in i

unique and every edges connects v_i to v_{i+1} . A loop is a path plus an edge from the ending node to the starting node.

3.2 Friedkin-Johnsen Model

The Friedkin-Johnsen (FJ) model [19] is a widely used framework for modeling opinion evolution and formation. In the FJ model applied to a graph $\mathcal{G}=(V,E)$, each node (or agent) $i\in V$ is characterized by two types of opinions: an internal opinion s_i and an expressed opinion $z_i(t)$ at time t. The internal opinion $s_i\in[0,1]$ reflects the inherent stance of node i on a particular topic. Throughout the opinion evolution process, the internal opinion s_i remains fixed, while the expressed opinion $z_i(t)$ evolves at time t+1 as $z_i(t+1)=(s_i+\sum_{j\in N_i}a_{ij}z_j(t))/(1+\sum_{j\in N_i}a_{ij})$.

Let $s=(s_1,s_2,\cdots,s_n)^{\top}$ denote the vector of internal opinions, and let $\mathbf{z}(t)=(z_1(t),z_2(t),\cdots,z_n(t))^{\top}$ denote the vector of expressed opinions at time t. According to [10], as t approaches infinity, $\mathbf{z}(t)$ converges to an equilibrium vector $\mathbf{z}=(z_1,z_2,\cdots,z_n)^{\top}$ satisfying $\mathbf{z}=(\mathbf{I}+\mathbf{L})^{-1}s$. Define $\mathbf{\Omega}=(\mathbf{I}+\mathbf{L})^{-1}=(\omega_{ij})_{n\times n}$, referred to as the forest matrix [12, 13]. The forest matrix Ω is doubly stochastic for undirected graphs, with all its components in the interval [0,1]. Furthermore, for each column, the diagonal elements are greater than the off-diagonal elements, that is $0\leq \omega_{ji}<\omega_{ii}\leq 1$ for any pair of different nodes i and j, and the diagonal element ω_{ii} of matrix $\mathbf{\Omega}$ satisfies $\frac{1}{1+d_i}\leq \omega_{ii}\leq \frac{2}{2+d_i}$ [44]. The forest matrix $\mathbf{\Omega}$ serves as the fundamental matrix of the FJ model for opinion dynamics [24]. For every node $i\in V$, its expressed opinion z_i is given by $z_i=\sum_{j=1}^n \omega_{ij}s_j$, a convex combination of the internal opinions for all nodes.

4 Partial Rooted Forest Samplings for Estimating the Forest Matrix

The forest matrix Ω is the fundamental matrix of the FJ model and plays a key role in its computation and optimization. Existing methods [45, 46, 44] rely on generating rooted spanning forests over the entire graph, requiring O(ln) time. We propose a local approach, called partial rooted forest samplings, as a natural extension of previous methods by using absorbing random walks. It avoids full-graph traversal and offers improved efficiency and scalability.

4.1 Absorbing Random Walk

The forest matrix Ω is doubly stochastic for undirected graphs. We initiate a random walk from node i and assume the walk is currently at node $k \in V$. At node k, the walk has a probability of $\frac{1}{1+d_k}$ to stop, and with probability $1-\frac{1}{1+d_k}$, it moves to a randomly selected neighbor of node k. If the walk eventually stops at node q, we say that the walk has been absorbed by q. In this context, ω_{ij} represents the probability that a walk starting at node i will eventually be absorbed at node j.

To formally explain this, we expand the forest matrix as an infinite series. Define $P = (I+D)^{-1}A$, then the forest matrix has the following form: $\Omega = (I-(I+D)^{-1}A)^{-1}(I+D)^{-1} = (I-P)^{-1}(I+D)^{-1} = \sum_{k\geq 0} P^k(I+D)^{-1}$. Here, the i,j-th entry of P^k represents the probability that a walk starting at i takes exactly k steps to reach j. Multiplying this by $\frac{1}{1+d_j}$ gives the probability that the walk takes k steps and is then absorbed at j. Then ω_{ij} can be expressed as $\omega_{ij} = e_i^{\top}\Omega e_j = \sum_{k\geq 0} e_i^{\top}P^k(I+D)^{-1}e_j = \frac{1}{1+d_j}\sum_{k\geq 0} e_i^{\top}P^ke_j$. Choose an initial node $i\in V$, and perform the absorbing random walk several times. Using the probabilistic interpretation of the forest matrix, where ω_{ij} represents the probability of a random walk starting at node i and being absorbed at node j, we can estimate the i-th row of the forest matrix. The following lemma establishes the expected time complexity of the absorbing random walk:

Lemma 4.1 For an undirected graph $\mathcal{G}=(V,E)$ and its related forest matrix Ω , the expected length of an absorbing random walk starting at node i is $\sum_{j=1}^n \omega_{ij} d_j$. If the initial node i is chosen randomly, the expected length of the random walk to absorption is $\bar{d}=\frac{1}{n}\sum_{i=1}^n d_i=\frac{2m}{n}$.

Proof. Let l_i denote the expected length of an absorbing random walk starting at node i, and define the vector $\boldsymbol{l} = (l_1, \cdots, l_n)^{\top}$. For any $i \in V$, the relationship between l_i and its neighbors is given by $l_i = \frac{d_i}{1+d_i}(1+\frac{1}{d_i}\sum_{j\in N_i^+}l_j)$. Rewriting this in matrix form, we have $\boldsymbol{l} = (\boldsymbol{I}+\boldsymbol{D})^{-1}\boldsymbol{D}\boldsymbol{1} + l_i$

 $(I+D)^{-1}Al$. Solving this equation yields $l=\Omega D1$. Thus, for each $i\in V$, the expected length is $l_i=\sum_{j=1}^n\omega_{ij}d_j$. If the initial node i is chosen uniformly at random, the expected length of the random walk is $\bar{l}=\frac{1}{n}\sum_{i=1}^n l_i=\frac{1}{n}\sum_{i=1}^n\sum_{j=1}^n\omega_{ij}d_j=\frac{1}{n}\sum_{j=1}^n(\sum_{i=1}^n\omega_{ij})d_j=\bar{d}$, where the property $\sum_{i=1}^n\omega_{ij}=1$ in undirected graphs is used. \square

By Lemma 4.1, we can estimate z by performing absorbing random walks from each node in V multiple times. However, this method requires iterating over all nodes, which is computationally inefficient.

4.2 Partial Rooted Forest Sampling

In this subsection, we introduce a sampling method for constructing a partial rooted forest, which significantly reduces sampling time. We first define the concept of a partial rooted forest. In an undirected graph $\mathcal{G}=(V,E)$, a rooted tree of \mathcal{G} is a connected subgraph without cycle, where one node is set to be the root. An isolated node is considered as a tree with the root being itself. A partial rooted forest $\phi=(V_\phi,E_\phi)$ is a subgraph of G, where all connected components are rooted trees. The root set $\mathcal{R}(\phi)$ of ϕ is defined as the collection of root nodes from all rooted trees in ϕ . Since each node i in V_ϕ belongs to a specific rooted tree, we define a function $r_\phi(i):V_\phi\to\mathcal{R}(\phi)$ mapping node i to the root of its corresponding rooted tree. If $r_\phi(i)=j$, then $j\in\mathcal{R}(\phi)$, and both i and j belong to the same rooted tree in ϕ .

Next, we describe the procedure for generating a partial rooted forest using a loop-erased absorbing random walk. This involves the loop-erasure technique, which eliminates loops from a random walk in chronological order [32, 31]. By applying this technique, we can utilize the paths generated by the absorbing random walk instead of discarding them. The procedure is as follows:

- (i) **Initialization:** Let $S = \{v_1, \dots, v_p\} \subset V$ be a set of $p \geq 2$ nodes. Initialize $\phi = (V_\phi, E_\phi) = (\emptyset, \emptyset)$ and set the indicator i = 1.
- (ii) **Performing absorbing Random Walk:** Select the first node $u=v_i$. Perform an absorbing random walk starting from u. Suppose that the walk is currently at a node $k\notin V_\phi$, and the walk is absorbed with probability $\frac{1}{1+d_k}$. If the node is absorbed at k, k is marked as a root node. Otherwise, with probability $1-\frac{1}{1+d_k}$, the walk moves to a uniformly chosen neighbor of k. If the walk reaches a node $k\in V_\phi$, it is immediately absorbed.
- (iii) **Loop Erasure:** Let P_u represent the trajectory of the walk from node u to its absorption point. Apply the loop-erasure technique to P_u to obtain a simple path \hat{P}_u . Add the nodes and edges from \hat{P}_u to V_ϕ and E_ϕ , respectively.
- (iv) **Iteration:** If i < p, increment i by 1 and repeat step (ii). Otherwise, terminate the process and return the partial rooted forest ϕ .

The procedure is detailed in Algorithm PFS (\underline{P} artial Rooted \underline{F} orest \underline{S} ampling); due to space constraints, the pseudocode is provided in the appendix.

The following theorem establishes the expected time complexity of the Partial Rooted Forest Sampling (PFS) algorithm. The time complexity is O(rpl), where r is a ratio dependent on the graph structure, with an upper bound \bar{d} . In real-world web and social networks, the average degree is typically $O(\log n)$ or a constant [49, 53]. Furthermore, our experimental results demonstrate that r is consistently smaller than \bar{d} . These observations collectively indicate the efficiency of our algorithm in practical scenarios.

Theorem 4.2 For an undirected graph G = (V, E) and a set of p nodes $S \subset V$, the expected time complexity of Algorithm PFS is O(rpl), where r is the ratio of the expected number of nodes in a partial rooted forest $\phi \in L$ to p, and l is the number of samples. r satisfies relation $1 \le r \le \bar{d}$ if we randomly sample the set S from V. Algorithm PFS is more efficient than performing absorbing random walks individually for each node in S.

Proof. The algorithm repeats the sampling process l times and outputs a list of partial rooted forests. To establish the expected time complexity, consider a single partial rooted forest ϕ in the list L. Let q=rp represent the expected number of nodes in ϕ . We will show that the expected time complexity for generating ϕ is O(q).

First, we extend the partial rooted forest ϕ to a complete spanning rooted forest ϕ' by executing the procedure described in lines 4–16 of Algorithm 4 for the remaining nodes in $V \setminus V_{\phi}$. According to [44], the expected time complexity of sampling the complete rooted forest ϕ' is O(n). Furthermore, Wilson [51] demonstrates that the order of node processing does not affect the generation of a spanning rooted forest. Hence, the partial rooted forest ϕ can be viewed as a subgraph of one complete rooted forest ϕ' .

Next, we analyze the expected time complexity of generating the partial rooted forest ϕ . Marchel [35] shows that the expected absorption time for each node in a rooted forest is $\omega_{ii}(1+d_i)$. Sun [44] refines this result, proving that $\omega_{ii}(1+d_i) \leq \frac{2(1+d_i)}{2+d_i} \leq 2$, which is O(1).

Therefore, the expected time complexity for sampling a single partial rooted forest ϕ is O(q), leading to a total expected time complexity of O(ql) for the algorithm.

To give a rough estimation of r, if we sample ${\bf S}$ randomly from V, an upper bound of r is $O(\bar d)$ according to Lemma 4.1. Moreover, Algorithm 4 retains only the necessary branches in the forest for each node. The sampling process terminates as soon as the walk reaches a node already in V_ϕ , making it more efficient than performing absorbing random walks for all nodes in ${\bf S}$ individually, as described in Subsection 4.1. \square

5 Fast Sampling Method for Opinion-Based Quantities in FJ Model

5.1 Definitions of Opinion-Based Quantities

The FJ model includes several important quantities for analyzing the properties of social groups. Below, we provide a concise overview of these measures, following prior works [38, 37, 52].

Consider an undirected graph $\mathcal{G}=(V,E)$. Disagreement $D(\mathcal{G})$ is a measure of the difference in opinions between neighbors, calculated as $D(\mathcal{G})=\sum_{(i,j)\in E}(z_i-z_j)^2=z^\top Lz$. Polarization $P(\mathcal{G})$ reflects how far individual opinions deviate from the average-expressed opinion. Using the vector $\bar{z}=z-\frac{z^\top 1}{n}$ 1, polarization is defined as $P(\mathcal{G})=\sum_{i\in V}(z_i-\bar{z})^2=\bar{z}^\top\bar{z}$. Internal conflict $I(\mathcal{G})$ quantifies the discrepancy between the expressed opinions z and the initial opinions s, given by $I(\mathcal{G})=\sum_{i\in V}(z_i-s_i)^2=z^\top L^2z$. Controversy $C(\mathcal{G})$ represents the overall magnitude of expressed opinions $C(\mathcal{G})=\sum_{i\in V}z_i^2=z^\top z$. Disagreement-controversy $DC(\mathcal{G})$ is a combined measure capturing both disagreement and controversy $DC(\mathcal{G})=D(\mathcal{G})+C(\mathcal{G})=\sum_{i\in V}s_iz_i=s^\top z$.

5.2 Estimating Opinion-Based Quantities

In this subsection, we present a sampling-based algorithm for QE (Opinion-Based Quantities Estimation). The algorithm leverages the partial rooted forest samplings method to estimate the opinion-based quantities efficiently. We first provide a lemma to show that the map between the nodes in S to its root nodes in the partial rooted forest can be used to estimate the opinion-based quantities.

Lemma 5.1 For an undirected graph $\mathcal{G} = (V, E)$, a set of nodes $S \subset V$, and internal opinion vectors $s = (s_1, \dots, s_n)^{\top}$, let ϕ be the partial rooted forest generated by Algorithm PFS. For node $i \in S$, let $r_{\phi}(i)$ denote the root node of i in ϕ . Then, the estimator $\hat{z}_i = \sum_{j=1}^n \mathbb{I}_{\{r_{\phi}(i)=j\}} s_j$ is an unbiased estimator of z_i .

Lemma 5.1 shows that the estimator \hat{z}_i is unbiased for z_i . By applying the partial rooted forest samplings method, we can estimate the opinion-based quantities in the FJ opinion dynamics model, and we now give the pseudocode for the sampling-based algorithm.

Algorithm 1 PF-QE (Partial Rooted Forest Method for QE) provides the pseudocode for estimating the opinion-based quantities in the FJ opinion dynamics model. The algorithm leverages the partial rooted forest samplings method to estimate the opinion-based quantities efficiently. Instead of estimating all nodes in V, algorithm 1 focuses on a set of nodes S with p nodes, and samples l partial rooted forests. Now we provide a theorem, showing the parameters p and l for a given error tolerance.

Theorem 5.2 For an undirected graph $\mathcal{G} = (V, E)$ and internal opinion vectors $\mathbf{s} = (s_1, \dots, s_n)^{\top}$, if we choose $p = O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$, $l = O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$, and node set \mathbf{S} is randomly sampled from V, then

```
Algorithm 1: PF-QE(\mathcal{G}, S, s, L)

Input :Graph \mathcal{G} = (V, E), node set S = \{v_1, \dots, v_p\}, internal opinion s = (s_1, \dots, s_n)^{\top}

Output :Estimates of opinion-based quantities

1 Sample a list L of l partial rooted forests

2 Initialize \hat{z}_S \leftarrow 0 (a p-dimensional vector for storing \hat{z}_i for each v_i \in S)

3 for k \leftarrow 1 to l do

4 \phi \leftarrow L[k]

5 for i \leftarrow 1 to p do

6 \Gamma_i \leftarrow r_\phi(v_i), \widehat{z}_S[i] \leftarrow \widehat{z}_S[i] + s_{r_i}

7 \widehat{z}_S \leftarrow \frac{\widehat{z}_S}{l}, \widehat{C} \leftarrow \frac{n}{p} \sum_{i=1}^p \widehat{z}_S[i]^2, \widehat{DC} \leftarrow \frac{n}{p} \sum_{i=1}^p s_i \widehat{z}_S[i], \widehat{D} \leftarrow \widehat{DC} - \widehat{C}

8 \widehat{z}_S = \frac{1}{p} \sum_{i=1}^p \widehat{z}_S[i], \widehat{P} \leftarrow \frac{n}{p} \sum_{i=1}^p (\widehat{z}_S[i] - \widehat{z}_S)^2, \widehat{I} \leftarrow \frac{n}{p} \sum_{i=1}^p (\widehat{z}_S[i] - s_i)^2

9 return \widehat{D}, \widehat{P}, \widehat{I}, \widehat{C}, \widehat{DC}
```

Algorithm 1 estimates the opinion-based quantities $D(\mathcal{G})$, $P(\mathcal{G})$, $I(\mathcal{G})$, $C(\mathcal{G})$, and $DC(\mathcal{G})$ within an absolute error of $n\epsilon$ with probability at least $1 - \delta$. The total time complexity of Algorithm 1 is O(rpl).

6 Partial Forest Sampling Techniques for Optimization Problems in F.J model

6.1 Opinion Minimization Problem

Problem 1 [Opinion Minimization Problem (OpMin)] Given an undirected graph $\mathcal{G} = (V, E)$, a parameter vector $\mathbf{c} = (c_1, \cdots, c_n)^\top$, where $c_i \in [0, 1]$, an integer $k \ll n$, and an iternal opinion vector \mathbf{s} , we aim to find the set $H \subseteq V$ of k nodes, and set their internal opinions to 0, so that the function $f(\mathbf{c}, H) = \frac{1}{n} \mathbf{c}^\top \mathbf{z} = \frac{1}{n} \sum_{i=1}^n c_i z_i$ is minimized. That is,

$$H = \underset{U \subseteq V, |U| = k}{\operatorname{arg \, min}} f(\boldsymbol{c}, U). \tag{1}$$

Our formulation of Problem 1 generalizes the setting in [44]. Specifically, when $c_i = 1$ for all $i \in V$, it reduces to the average-expressed opinion minimization problem studied in [44]. To address this problem efficiently, we propose a fast algorithm based on partial rooted forest samplings, which reduces the time complexity from O(ln) to O(rpl).

Recall that $z=(I+L)^{-1}s$ is the equilibrium vector of the expressed opinions. Then $z_i=\sum_{j=1}^n\omega_{ij}s_j$. We can rewrite the objective function as $f(c,H)=\frac{1}{n}\sum_{i=1}^nc_iz_i=\frac{1}{n}\sum_{i=1}^nc_i\sum_{j=1}^n\omega_{ij}s_j=\frac{1}{n}\sum_{j=1}^n(\sum_{i=1}^nc_i\omega_{ij})s_j$. Define $\gamma_j=\frac{1}{n}\sum_{i=1}^nc_i\omega_{ij}$, then the objective function can be rewritten as $f(c,H)=\sum_{j=1}^n\gamma_js_j$. In this case, the objective function is linear with respect to the internal opinions s_i . To solve OpMin, we need to find the set H of k nodes with the smallest γ_js_j values.

In [44], the authors use the forest sampling method to solve the problem. However, the algorithm needs to perform a random walk process across all nodes in the graph, which is computationally expensive. To overcome this, we propose an efficient method using the partial rooted forest samplings. The key to solving OpMin lies in estimating the $\gamma_j = \frac{1}{n} \sum_{i=1}^n c_i \omega_{ij}$ for all nodes in the graph. Suppose that we choose a set of p nodes S randomly from V, and sample a partial rooted forest ϕ . Then, define the estimator $\widehat{\gamma}_j(\phi) = \frac{1}{p} \sum_{i \in S} c_i \mathbb{I}_{\{r_\phi(i)=j\}}$. We sample l partial rooted forests ϕ_1, \cdots, ϕ_l , and estimate the γ_j values using $\widehat{\gamma}_j = \frac{1}{l} \sum_{k=1}^l \widehat{\gamma}_j(\phi_k)$. We detail the algorithm for solving OpMin in Algorithm 2.

Algorithm 2 PF-OPMIN(Partial Rooted Forest Method for OpMin) provides the pseudocode for solving OpMin. The algorithm leverages the partial rooted forest samplings method to estimate the γ_j values efficiently. By sampling l partial rooted forests, we estimate the γ_j values using the estimator $\widehat{\gamma}_j$. The algorithm then selects the k nodes with the smallest $\widehat{\gamma}_j s_j$ values as the optimal set \widehat{H} .

Consider an undirected graph $\mathcal{G}=(V,E)$ and a parameter vector $\mathbf{c}=(c_1,\cdots,c_n)^{\top}$, where each c_i is a constant. By setting the parameters $p=O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$ and $l=O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$, and selecting the node set S through random sampling from V, Algorithm 2 can solve OpMin within an absolute error of $k\epsilon$, with probability at least $1-\delta$. Specifically, the approximation satisfies $f(\mathbf{c},H)-f(\mathbf{c},\widehat{H})\leq k\epsilon$. This result follows a proof strategy analogous to that of Theorem 5.2 and Theorem 5.5 in [44], where r is the ratio of the expected number of nodes in a partial rooted forest $\phi\in L$ to p. Our algorithm runs in O(rpl) time and outperforms the state-of-the-art method [44], which requires O(ln) time. Since $p\ll n$ and, as shown in the experimental section, the empirical results on real-world networks indicate that r<15, our approach improves the time complexity from linear to sublinear.

6.2 Polarization and Disagreement Minimization problem

In this subsection, we consider the Polarization and Disagreement Minimization Problem proposed in [59]. The problem focuses on selecting a set of edges not present in the original graph to minimize the sum of polarization and disagreement. We define the P-D index as $\mathcal{I}(\mathcal{G}) = D(\mathcal{G}) + P(\mathcal{G}) = \bar{s}^{\top}\Omega\bar{s}$, and denote the augmented graph as $\mathcal{G} + T = (V, E \cup T)$. The problem is formally described as follows:

Problem 2 [Polarization and Disagreement Minimization Problem (PDMin)] Given an undirected graph $\mathcal{G} = (V, E)$ and a candidate edge set $E_C \subseteq \binom{V}{2} \setminus E$, the goal is to select a subset $T \subseteq E_C$ of $k \ll n$ edges to add to the graph, such that the P-D index of the new graph is minimized. Define the objective function as $f(T) = \mathcal{I}(\mathcal{G}) - \mathcal{I}(\mathcal{G} + T)$, and find

$$T = \underset{T \subseteq E_C, |T| = k}{\operatorname{arg max}} f(T). \tag{2}$$

In [59], the authors show that the problem is combinatorial in nature and propose a greedy algorithm to solve it. They prove that for a candidate edge $e \in E_C$ connecting nodes u and v, with vector $\mathbf{b}_e = \mathbf{e}_u - \mathbf{e}_v$, the marginal gain is given by $f(e) = \frac{s^\top \Omega b_e b_e^\top \Omega s}{1 + b_e^\top \Omega b_e} = \frac{(z_u - z_v)^2}{1 + r_{uv}} \ge 0$, where r_{uv} is the forest distance between nodes u and v, defined as $r_{uv} \triangleq \mathbf{b}_{uv}^\top \Omega \mathbf{b}_{uv}$. A greedy algorithm computes the marginal gain for each candidate edge in E_C , selects the one with the largest gain, and repeats this process k times to obtain the final set T.

We set the sample node set for partial rooted forests to be the set of all nodes that appear in the candidate edge set E_C , that is, $S = \bigcup_{(i,j) \in E_C} \{i,j\}$. Then, we generate l partial rooted forests $\{\phi_1, \cdots, \phi_l\}$ and use them to estimate the marginal gain f(e) for each candidate edge $e \in E_C$. The detailed procedure is presented in Algorithm PF-PDMIN(Partial Rooted Forest Method for PDMin). For any candidate edge e, if we set $l = O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$, $|\widehat{f}(e) - f(e)| < \epsilon$ is guaranteed to hold with probability at least $1 - \delta$, by applying Hoeffding's inequality [25]. In [59], the authors use the Johnson–Lindenstrauss Lemma [28] and a fast Laplacian solver [43] to approximate the marginal

Algorithm 3: PF-PDMIN($\mathcal{G}, E_C, s, l, k$) Input :Graph $\mathcal{G} = (V, E)$, candidate edge set E_C , internal opinion vector $\mathbf{s} = (s_1, \cdots, s_n)^{\top}$, number of forests l, number of edges kOutput :Selected edge set \widehat{T} 1 Initialize $\widehat{T} \leftarrow \emptyset$, $\mathbf{S} \leftarrow \bigcup_{(i,j) \in E_C} \{i,j\}$ 2 for $t \leftarrow 1$ to k do 3 | Sample l partial rooted forests $\{\phi_1, \dots, \phi_l\}$ on node set \mathbf{S} foreach $(u,v) \in E_C \setminus \widehat{T}$ do Initialize $\widehat{z}_u \leftarrow 0$, $\widehat{z}_v \leftarrow 0$, $\widehat{r}_{uv} \leftarrow 0$ for $i \leftarrow 1$ to l do $\begin{bmatrix} r_u \leftarrow r_{\phi_i}(u), & r_v \leftarrow r_{\phi_i}(v), & \widehat{z}_u \leftarrow \widehat{z}_u + s_{r_u}, & \widehat{z}_v \leftarrow \widehat{z}_v + s_{r_v} \\ \widehat{r}_{uv} \leftarrow \widehat{r}_{uv} + \mathbb{I}_{\{u=r_u\}} + \mathbb{I}_{\{v=r_v\}} - \mathbb{I}_{\{u=r_v\}} - \mathbb{I}_{\{v=r_u\}} \end{bmatrix}$ 9 | $\widehat{z}_u \leftarrow \widehat{z}_u/l$, $\widehat{z}_v \leftarrow \widehat{z}_v/l$, $\widehat{r}_{uv} \leftarrow \widehat{r}_{uv}/l$, $\widehat{f}(u,v) \leftarrow (\widehat{z}_u - \widehat{z}_v)^2/(1 + \widehat{r}_{uv})$ 10 | $(u^*, v^*) \leftarrow \arg\max_{(u,v) \in E_C \setminus T} \widehat{f}(u,v)$ $\widehat{T} \leftarrow \widehat{T} \cup \{(u^*, v^*)\}, \quad E \leftarrow E \cup \{(u^*, v^*)\}, \quad V \leftarrow V \cup \{u^*, v^*\}$

gain, resulting in an overall time complexity of $\widetilde{O}(mk)$. In contrast, we leverage partial rooted forest samplings to reduce the time complexity to $O(r|E_C|kl)$.

7 Experiments

12 return T

In this section, we conduct extensive experiments on various real-life networks in order to evaluate the performance of our algorithms, in terms of accuracy and efficiency. Our source code is publicly available on https://github.com/HaoxinSun98/FJ-PF.

Datasets and Equipment. The datasets for chosen real networks are accessed publicly through KONECT [29] and SNAP [34]. Our experiments cover a varied selection of real-world networks, and the specifics of these datasets are outlined in Table 1. All experiments are carried out using the Julia programming language within a computational environment equipped with a 2.5 GHz Intel E5-2682v4 CPU and 256GB of primary memory.

Table 1: Statistics of the datasets used in the experiments, including the number of nodes, number of edges, average degree, and the parameter r, which denotes the ratio of the average number of nodes in a partial rooted forest.

Network	Nodes	Edges	$ar{d}$	r
Delicious	536,108	1,365,961	5.1	2.4
Youtube	1,134,890	2,987,624	5.3	2.4
Pokec	1,632,803	22,301,964	27.3	9.0
Orkut	3,072,441	117,184,899	76.3	13.6
Livejournal	7,489,073	112,305,407	30.0	3.3
Twitter	41,652,230	1,202,513,046	57.7	7.7

Baselines. For the FJ quantities estimation problem, we compare our proposed algorithms with the LapSolver [52] and LazyWalk [39]. For OpMin, we compare our algorithm with the forest sampling method FAST [44]. For PDMin, we compare our proposed algorithms with the greedy algorithm FASTGREEDY [59].

7.1 Estimation for Relevant Quantities

In this subsection, we evaluate the performance of our proposed algorithms for estimating relevant quantities for FJ model on real-world networks. We compare our algorithms with LapSolver [52]

Table 2: Time complexity of our algorithms and baselines for three problems with parameter settings.

QE	Ξ	OpMi	n	PDn	nin	Settings			
PF-QE	O(rpl)	PF-OPMIN	O(rpl)	PF-PDMIN	$O(rkl E_C)$	$r < 15$, $l = 10^3$, $p = 10^4$			
LazyWalk	O(r'pl')	FAST	O(ln)	FASTGREEDY	$\widetilde{O}(mk)$	$r' = 4 \times 10^3, l' = 600$			
LapSolver	$\widetilde{O}(m)$	EXACT	$\widetilde{O}(m)$	_	_	$k = 50, E_C = 10^4$			

and LazyWalk [39]. LapSolver achieves high accuracy [52] with a 10^{-6} relative error and is treated as the ground truth. Following the setting in [39], we set the number of samples to p=10,000 and vary the sampling parameters to compare the running time and mean relative error of the expressed opinions computed by PF-QE and LazyWalk. The results are shown in Figure 1. Both PF-QE and LazyWalk are sampling-based algorithms and are parallelized using 8 threads. Each experiment is repeated 10 times, and the average results are reported.

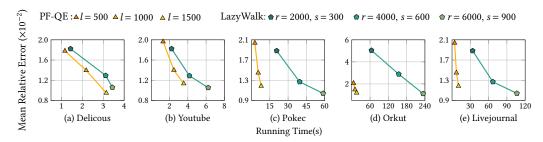


Figure 1: Comparison of mean relative error for z_i and running time under varying parameters for PF-QE and LazyWalk. Internal opinions are generated using the uniform distribution.

From Figure 1, we observe that the PF-QE curves consistently lie below and to the left of those for LazyWalk, indicating that PF-QE achieves better accuracy and lower running time. Based on this observation, we fix l=1000 for PF-QE, and for LazyWalk, we use 4,000 walks with 600 steps, following the configuration in [39]. For other quantities, we maintain 8-thread parallelization, repeat each experiment 10 times, and present the averaged results in Table 3.

Table 3: Mean relative errors and running time for three algorithms on six networks. Internal opinions are generated using the uniform distribution.

		Reletive Error in %											
Network	LanColver	L agy,Walls	PF-QE			PF-QE							
	Lapsorver	Lazy waik		\overline{P}	I	C	DC	\overline{D}	\overline{P}	I	C	DC	\overline{D}
Delicious	7.2	3.1	2.2	0.90	0.48	0.83	0.42	3.58	1.38	0.42	0.55	0.32	4.05
Youtube	9.6	4.1	2.4	1.03	0.75	0.21	0.33	3.52	0.95	0.73	0.22	0.31	4.19
Pokec	49.8	39.5	5.3	1.83	0.93	0.25	0.50	11.01	2.01	0.96	0.21	0.51	10.63
Orkut	291.9	142.2	9.9	3.97	0.62	5.43	2.71	34.77	2.98	0.72	0.23	0.47	13.67
Livejournal	186.8	67.6	6.9	1.37	0.85	0.31	0.61	8.36	1.30	0.90	0.30	0.52	8.17
Twitter	-	160.6	32.3	-	-	-	-	-	-	-	-	-	-

The results show that our algorithms achieve relative errors below 1.5% for average expressed opinion and below 4% for P, I, C, and DC. Errors for D are higher due to its dependence on both DC and C, amplifying estimation errors. PF runs faster than both LapSolver and LazyWalk while maintaining competitive accuracy. For the Twitter network, LapSolver cannot process the data due to time and memory constraints, whereas our algorithm handles it efficiently, running approximately five times faster than LazyWalk.

7.2 Optimization Problems

In this subsection, we evaluate the performance of our proposed algorithms for solving the FJ optimization problems OpMin and PDMin on real-world networks. We set l=1000, p=10000,

and k = 50 for our algorithms. Since our algorithms are sampling-based, we repeat each experiment 10 times and report the average results to ensure robustness and consistency.

Table 4: Running time and effectiveness of OPMIN (in terms of opinion decline θ) and PDMIN (in terms of P-D index decline δ).

			Op	Min		PDMin					
Network	PF-C	PMIN	FA	ST	Exa	ACT	PF-Pl	DMIN	FastGi	REEDY	
	time	θ	time	θ	time	θ	time	δ	time	δ	
Delicious	2.2	-6.21	12.4	-6.79	5.9	-7.80	160.3	-5.69	862.3	-5.63	
Youtube	3.7	-6.56	33.2	-6.48	4.6	-7.79	154.3	-6.46	1814.3	-6.42	
Pokec	6.3	-4.17	79.4	-4.13	60.2	-4.98	494.1	-3.18	18656	-3.17	
Orkut	10.3	-1.88	163.1	-1.79	310.5	-2.43	774.2	-5.23	-	-	
Livejournal	8.1	-6.56	296.8	-6.44	214.7	-7.12	436.5	-4.62	-	-	
Twitter	33.7	-	625.0	-	-		2531	-	-	-	

For OpMin, we compare our algorithm with the FAST forest sampling method [44]. To ensure a fair comparison, we set the number of forests in [44] to 1000, consistent with our experimental setup, and execute both algorithms in parallel using 8 threads. The EXACT algorithm, which uses the Laplacian solver, serves as the baseline method. Table 4 reports the running time and the average expressed opinion decline θ after setting the internal opinions of 50 nodes to zero, comparing three methods: PF-OPMIN, FAST, and EXACT. The results show that our proposed algorithm, PF-OPMIN, achieves comparable or even better effectiveness than FAST, while being significantly more efficient. For instance, on the LiveJournal network, PF-OPMIN is approximately 37 times faster than FAST, while also achieving a slightly larger opinion decline.

For the PDMin problem, we compare our proposed algorithm PF-PDMIN with the FASTGREEDY method [59], which utilizes the Johnson–Lindenstrauss Lemma [28] and a fast Laplacian solver [43]. In our experiments, we follow the parameter setting in [59], setting the size of the candidate edge set E_C to 10^4 . And we use 20 iterations for the JL lemma. For our method, we fix k=50 and l=1000. Table 4 summarizes the running time and the reduction in polarization and disagreement, denoted by δ , for both methods. The results demonstrate that PF-PDMIN is substantially more efficient and consistently achieves better performance than FASTGREEDY. For instance, on the Pokec network, our algorithm achieves more than a $35\times$ speedup while also yielding a greater decline in the polarization-disagreement index. Furthermore, FASTGREEDY fails to scale to the three largest networks due to time and memory constraints, whereas our method remains both efficient and scalable.

8 Conclusions

In this paper, we proposed several algorithms to compute and optimize opinion-based metrics for the Friedkin-Johnsen (FJ) model. We first introduced the concept of partial rooted forests and presented an efficient algorithm for computing several opinion-based quantities. Our proposed algorithms, PF-OPMIN and PF-PDMIN, reduce the time complexity from linear to sublinear compared to state-of-the-art methods. Extensive experiments on real-world networks demonstrate that our algorithms are both accurate and efficient, outperforming state-of-the-art methods and scaling effectively to large networks with over 20 million nodes.

Currently, our framework has limitations in handling optimization problems where the objective involves nonlinear terms such as squared components (e.g., z_i^2 in the marginal gain). In future work, we plan to extend our methods to support a broader class of opinion optimization problems under the FJ model.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62372112).

References

- [1] Rediet Abebe, T-H HUBERT Chan, Jon Kleinberg, Zhibin Liang, David Parkes, Mauro Sozio, and Charalampos E Tsourakakis. Opinion dynamics optimization by varying susceptibility to persuasion via non-convex local search. *ACM Transactions on Knowledge Discovery from Data*, 16(2):1–34, 2021.
- [2] Rediet Abebe, Jon Kleinberg, David Parkes, and Charalampos E Tsourakakis. Opinion dynamics with varying susceptibility to persuasion. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1089–1098. ACM, 2018.
- [3] A. M. Ahmadinejad, S. Dehghani, M. T. Hajiaghayi, H. Mahini, and S. Yazdanbod. Forming external behaviors by leveraging internal opinions. In *Proceedings of 2015 IEEE Conference on Computer Communications*, pages 2728–2734. IEEE, 2015.
- [4] Victor Amelkin, Petko Bogdanov, and Ambuj K Singh. A distance measure for the analysis of polar opinion dynamics in social networks. *ACM Trans. Knowl. Discov. Data*, 13(4):1–34, 2019.
- [5] Victor Amelkin and Ambuj K Singh. Fighting opinion control in social networks via link recommendation. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 677–685. ACM, 2019.
- [6] Brian DO Anderson and Mengbin Ye. Recent advances in the modelling and analysis of opinion dynamics on influence networks. *International Journal of Automation and Computing*, 16(2):129–149, 2019.
- [7] Prithu Banerjee, Wei Chen, and Laks VS Lakshmanan. Mitigating filter bubbles under a competitive diffusion model. *Proc. ACM Manag. Data*, 1(2):1–26, 2023.
- [8] Carmela Bernardo, Lingfei Wang, Francesco Vasca, Yiguang Hong, Guodong Shi, and Claudio Altafini. Achieving consensus in multilateral international negotiations: The case study of the 2015 paris agreement on climate change. *Science Advances*, 7(51):eabg8068, 2021.
- [9] Arnab Bhattacharyya and Yuichi Yoshida. *Property Testing: Problems and Techniques*. Springer Nature, 2022.
- [10] David Bindel, Jon Kleinberg, and Sigal Oren. How bad is forming your own opinion? *Games and Economic Behavior*, 92:248–265, 2015.
- [11] T-H. Hubert Chan, Zhibin Liang, and Mauro Sozio. Revisiting opinion dynamics with varying susceptibility to persuasion via non-convex local search. In *Proceedings of the 2019 World Wide Web Conference*, pages 173–183. ACM, 2019.
- [12] P. Yu Chebotarev and E. V. Shamis. The matrix-forest theorem and measuring relations in small social groups. *Automation and Remote Control*, 58(9):1505–1514, 1997.
- [13] P. Yu Chebotarev and E. V. Shamis. On proximity measures for graph vertices. Automation and Remote Control, 59(10):1443–1459, 1998.
- [14] Xi Chen, Jefrey Lijffijt, and Tijl De Bie. Quantifying and minimizing risk of conflict in social networks. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1197–1205. ACM, 2018.
- [15] Abhimanyu Das, Sreenivas Gollapudi, Rina Panigrahy, and Mahyar Salek. Debiasing social wisdom. In *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 500–508. ACM, 2013.
- [16] Morris H. Degroot. Reaching a consensus. *Journal of the American Statistical Association*, 69(345):118–121, 1974.
- [17] Yucheng Dong, Min Zhan, Gang Kou, Zhaogang Ding, and Haiming Liang. A survey on the fusion process in opinion dynamics. *Information Fusion*, 43:57–65, 2018.

- [18] Golnoosh Farnad, Behrouz Babaki, and Michel Gendreau. A unifying framework for fairness-aware influence maximization. In *Companion proceedings of the web conference 2020*, pages 714–722, 2020.
- [19] Noah E Friedkin and Eugene C Johnsen. Social influence and opinions. *Journal of Mathematical Sociology*, 15(3-4):193–206, 1990.
- [20] Noah E Friedkin, Anton V Proskurnikov, Roberto Tempo, and Sergey E Parsegov. Network science on belief system dynamics under logic constraints. *Science*, 354(6310):321–326, 2016.
- [21] Kiran Garimella, Aristides Gionis, Nikos Parotsidis, and Nikolaj Tatti. Balancing information exposure in social networks. In *Proceedings of the 31st Annual Conference on Neural Information Processing Systems*, 2017.
- [22] Shay Gershtein, Tova Milo, Brit Youngmann, and Gal Zeevi. Im balanced: influence maximization under balance constraints. In *Proceedings of the 27th ACM international conference on information and knowledge management*, pages 1919–1922, 2018.
- [23] Javad Ghaderi and Rayadurgam Srikant. Opinion dynamics in social networks with stubborn agents: Equilibrium and convergence rate. Automatica, 50(12):3209–3215, 2014.
- [24] Aristides Gionis, Evimaria Terzi, and Panayiotis Tsaparas. Opinion maximization in social networks. In *Proceedings of the 2013 SIAM International Conference on Data Mining*, pages 387–395. SIAM, 2013.
- [25] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected works of Wassily Hoeffding, pages 409–426, 1994.
- [26] David Scott Hunter and Tauhid Zaman. Optimizing opinions with stubborn agents. *Operations Research*, 70(4):2119–2137, 2022.
- [27] Peng Jia, Anahita MirTabatabaei, Noah E Friedkin, and Francesco Bullo. Opinion dynamics and the evolution of social power in influence networks. SIAM Review, 57(3):367–397, 2015.
- [28] William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. *Contemporary Mathematics*, 26(189-206):1, 1984.
- [29] Jérôme Kunegis. Konect: the koblenz network collection. In *Proceedings of the 22nd International Conference on World Wide Web*, pages 1343–1350, 2013.
- [30] Laks VS Lakshmanan. On a quest for combating filter bubbles and misinformation. In *Proc.* 2022 Int. Conf. Manag. Data, pages 2–2, 2022.
- [31] Lawler and F. Gregory. A self-avoiding random walk. *Duke Mathematical Journal*, 47(3):655–693, 1980.
- [32] Gregory Francis Lawler. A self-avoiding random walk. PhD thesis, Princeton University, 1979.
- [33] Heidi Ledford. How facebook, twitter and other data troves are revolutionizing social science. *Nature*, 582(7812):328–330, 2020.
- [34] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library. *ACM Transactions on Intelligent Systems and Technology*, 8(1):1–20, 2016.
- [35] Philippe Marchal. Loop-erased random walks, spanning trees and hamiltonian cycles. *Electronic Communications in Probability*, 5:39–50, 2000.
- [36] Naoki Marumo, Atsushi Miyauchi, Akiko Takeda, and Akira Tanaka. A projected gradient method for opinion optimization with limited changes of susceptibility to persuasion. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, pages 1274–1283, 2021.
- [37] Antonis Matakos, Evimaria Terzi, and Panayiotis Tsaparas. Measuring and moderating opinion polarization in social networks. *Data Mining and Knowledge Discovery*, 31(5):1480–1505, 2017.

- [38] Cameron Musco, Christopher Musco, and Charalampos E Tsourakakis. Minimizing polarization and disagreement in social networks. In *Proceedings of the 2018 World Wide Web Conference*, pages 369–378. International World Wide Web Conferences Steering Committee, 2018.
- [39] Stefan Neumann, Yinhao Dong, and Pan Peng. Sublinear-time opinion estimation in the Friedkin–Johnsen model. In *Proceedings of the ACM on Web Conference 2024*, pages 2563– 2571, 2024.
- [40] Daniele Notarmuzi, Claudio Castellano, Alessandro Flammini, Dario Mazzilli, and Filippo Radicchi. Universality, criticality and complexity of information propagation in social media. *Nature Communications*, 13:1308, 2022.
- [41] Anton V Proskurnikov and Roberto Tempo. A tutorial on modeling and analysis of dynamic social networks. Part I. *Annual Reviews in Control*, 43:65–79, 2017.
- [42] Chiara Ravazzi, Paolo Frasca, Roberto Tempo, and Hideaki Ishii. Ergodic randomized algorithms and dynamics over networks. *IEEE Transactions on Control of Network Systems*, 1(2):78–87, 2015.
- [43] Daniel A Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. *SIAM J. Matrix Anal. Appl.*, 35(3):835–885, 2014.
- [44] Haoxin Sun and Zhongzhi Zhang. Opinion optimization in directed social networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 4623–4632, 2023.
- [45] Haoxin Sun and Zhongzhi Zhang. Efficient computation for diagonal of forest matrix via variance-reduced forest sampling. In *Proceedings of the ACM on Web Conference 2024*, pages 792–802, 2024.
- [46] Haoxin Sun, Xiaotian Zhou, and Zhongzhi Zhang. Fast computation for the forest matrix of an evolving graph. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 2755–2764, 2024.
- [47] Antonela Tommasel, Juan Manuel Rodriguez, and Daniela Godoy. I want to break free! recommending friends from outside the echo chamber. In *Proc. 15th ACM Conf. Recomm. Syst.*, pages 23–33, 2021.
- [48] Sijing Tu, Cigdem Aslay, and Aristides Gionis. Co-exposure maximization in online social networks. In *Proceedings of the 34th Annual Conference on Neural Information Processing Systems*, pages 3232–3243, 2020.
- [49] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. Fora: simple and effective approximate single-source personalized pagerank. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 505–514, 2017.
- [50] Yanbang Wang and Jon Kleinberg. On the relationship between relevance and conflict in online social link recommendations. In *Proceedings of the 37th Annual Conference on Neural Information Processing Systems*, pages 36708–36725, 2023.
- [51] David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In *Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing*, pages 296–303, 1996.
- [52] Wanyue Xu, Qi Bao, and Zhongzhi Zhang. Fast evaluation for relevant quantities of opinion dynamics. In *Proceedings of The Web Conference*, pages 2037–2045. ACM, 2021.
- [53] Wanyue Xu, Yibin Sheng, Zuobai Zhang, Haibin Kan, and Zhongzhi Zhang. Power-law graphs have minimal scaling of kemeny constant for random walks. In *Proceedings of the Web Conference* 2020, pages 46–56, 2020.
- [54] Wanyue Xu, Liwang Zhu, Jiale Guan, Zuobai Zhang, and Zhongzhi Zhang. Effects of stubbornness on opinion dynamics. In *Proceedings of the 31st ACM International Conference on Information & Knowledge Management*, pages 2321–2330, 2022.

- [55] Yuhao Yi, Timothy Castiglia, and Stacy Patterson. Shifting opinions in a social network through leader selection. *IEEE Transactions on Control of Network Systems*, 8(3):1116–1127, 2021.
- [56] Xiaotian Zhou and Zhongzhi Zhang. Maximizing influence of leaders in social networks. In *Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages 2400–2408. ACM, 2021.
- [57] Xiaotian Zhou and Zhongzhi Zhang. Opinion maximization in social networks via leader selection. In *Proceedings of the ACM Web Conference 2023*, pages 133–142, 2023.
- [58] Xiaotian Zhou, Liwang Zhu, Wei Li, and Zhongzhi Zhang. A sublinear time algorithm for opinion optimization in directed social networks via edge recommendation. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 3593–3602, 2023.
- [59] Liwang Zhu, Qi Bao, and Zhongzhi Zhang. Minimizing polarization and disagreement in social networks via link recommendation. In *Proceedings of the 35th Conference on Neural Information Processing Systems*, pages 2072–2084, 2021.
- [60] Liwang Zhu and Zhongzhi Zhang. A nearly-linear time algorithm for minimizing risk of conflict in social networks. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 2648–2656, 2022.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions and scope of our proposed algorithm, including both theoretical and experimental results.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in Conclusions.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results have clearly stated assumptions, and complete proofs are provided in the appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information required to reproduce the main results is provided in Section Experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide open access to the code at the anonymous link: https://github.com/HaoxinSun98/FJ-PF. This URL is included in the submission, and the data used in our experiments are all publicly available.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The full details can be found in Section Experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show the standard deviation in the APPENDIX.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The details can be found in Section Experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work fully complies with the NeurIPS Code of Ethics. All datasets are publicly available with proper attribution, and the code is released via an anonymous repository. No human subjects or sensitive data were involved.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. **Broader impacts**

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [No]

Justification: This paper does not explicitly discuss societal impacts. However, the problems addressed in our work are based on previously published formulations [59] presented at NeurIPS 2021, and our focus is on improving algorithmic efficiency.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve the release of high-risk data or models such as pretrained language models.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All existing assets (datasets and code) are publicly available with proper citations in Section Experiments.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The source code is released at https://github.com/HaoxinSun98/FJ-PF.

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing, human subject research. All experiments are conducted on publicly available datasets.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This work does not involve any human subject research, personal data collection, or activities requiring IRB approval.

Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology of this work does not involve any use of large language models (LLMs) as an original or non-standard component. LLMs were not employed in algorithm design, experiments, or analysis.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A APPENDIX

A.1 Pseudocode of Algorithm PFS

```
Algorithm 4: PFS(\mathcal{G}, \mathbf{S}, l)
       Input :Graph \mathcal{G} = (V, E), node set \mathbf{S} = \{v_1, \dots, v_p\}, number of samples l
      Output: Partial rooted forest list L
 1 L \leftarrow []
 2 for k \leftarrow 1 to l do
                V_{\phi} \leftarrow \emptyset, E_{\phi} \leftarrow \emptyset  for i \leftarrow 1 to p do
 3
 4
                         u \leftarrow v_i, P_u \leftarrow [\ ], c \leftarrow u while \mathit{True}\ \mathbf{do}
 5
                                  if c \in V_{\phi} then
                                           break
  8
                                   else
                                           \begin{array}{l} \textbf{if } \textit{random}() < \frac{1}{1+d_c} \textbf{ then} \\ \mid P_u \leftarrow P_u \cup \{c\} \\ \text{mark } c \text{ as root node} \end{array}
10
11
12
                                                     break
13
14
                                                    \begin{array}{l} next \leftarrow \text{random choice from } N_c^+ \\ P_u \leftarrow P_u \cup \{c, (c, next)\} \\ c \leftarrow next \end{array}
15
16
17
                         \begin{split} \hat{P}_u \leftarrow \text{Apply loop-erasure to } P_u \\ V_\phi \leftarrow V_\phi \cup \text{nodes in } \hat{P}_u \end{split}
18
                        E_{\phi} \leftarrow E_{\phi} \cup \text{edges in } \hat{P}_{u}
20
               Add \phi = (V_{\phi}, E_{\phi}) to L
22 return L
```

A.2 Proof of Lemma 5.1

Proof. Since $z_i = \sum_{j=1}^n \omega_{ij} s_j$, the proof is reduced to showing $\mathbb{E}[\mathbb{I}_{\{r_{\phi}(i)=j\}}] = \omega_{ij}$. Consider the proof of Theorem 4.2, and we extend the partial rooted forest ϕ to a complete rooted forest ϕ' . In ϕ and ϕ' , we have $r_{\phi}(i) = r_{\phi'}(i)$ directly, since the nodes in ϕ are a subset of the nodes in ϕ' . Using the Matrix Forest Theorem [12, 13], we have $\mathbb{E}[\mathbb{I}_{\{r_{\phi'}(i)=j\}}] = \omega_{ij}$. Thus, $\mathbb{E}[\mathbb{I}_{\{r_{\phi}(i)=j\}}] = \omega_{ij}$, and the estimator \hat{z}_i is unbiased. \Box

A.3 Hoeffding's inequality

Lemma A.1 (Hoeffding's inequality [25]) Let x_1, x_2, \cdots, x_n be l independent random variables satisfying $a \leq x_i \leq b$ for all $i=1,2,\cdots,n$. Let $x=\frac{1}{l}\sum_{i=1}^l x_i$. Then for any $\epsilon>0$, $\mathbb{P}(|x-\mathbb{E}(x)|\geq \epsilon)\leq 2\exp\left(-\frac{2l\epsilon^2}{(b-a)^2}\right)$.

A.4 Proof of Theorem 5.2

Proof. Hoeffding's inequality, presented in Lemma A.1, serves as a powerful tool for estimating the required sample size l to achieve a desired error guarantee. This inequality has been widely applied in various studies, such as [44, 39]. Utilizing Lemma 5.1 alongside Hoeffding's inequality, selecting $l = O(\frac{1}{\epsilon^2}\log\frac{1}{\delta})$ ensures that the estimated value \hat{z}_i deviates from the true value z_i by at most an absolute error of ϵ , with probability at least $1-\delta$, for any node $i \in V$. Furthermore, according to Lemma 2.2 in Section 6 in [9], by choosing $p = O(\frac{1}{\epsilon^2}\log\frac{1}{\delta})$ and setting $S = \{v_1, \cdots, v_p\}$,

we can guarantee that the sum $\sum_{i \in S} z_i$ approximates $\sum_{i \in V} z_i$ within an absolute error of $n\epsilon$, with probability at least $1 - \delta$. It is important to note that $z_i \in [0,1]$, by setting $l = O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$ and $p = O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$, the opinion-based measures $D(\mathcal{G})$, $P(\mathcal{G})$, $I(\mathcal{G})$, $C(\mathcal{G})$, and $DC(\mathcal{G})$ can be estimated within an absolute error of $n\epsilon$, with probability at least $1 - \delta$. \square

A.5 Further Experiment Results

In this subsection, we report the standard deviations for two algorithms across five networks in Table 5 and provide further experimental results based on the exponential distribution in Table 6 and Table 7.

Table 5: Standard Deviation for two algorithms on five networks. Internal opinions are generated using the uniform distribution.

					Sta	ndard De	eviation i	n %					
Network			Lazy	Walk			PF-QE						
	\overline{z}	P	I	C	DC	\overline{D}	\overline{z}	P	I	C	DC	\overline{D}	
Delicious	0.12	6.33	6.94	2.73	4.15	3.59	0.14	7.27	7.02	2.86	4.20	3.67	
Youtube	0.006	0.93	0.70	0.13	0.27	2.18	0.009	0.98	0.73	0.17	0.30	2.04	
Pokec	0.006	1.91	0.43	0.10	0.15	4.83	0.01	1.88	0.43	0.08	0.12	5.06	
Orkut	0.02	4.02	0.91	0.16	0.71	44.83	0.02	3.32	0.92	0.25	0.47	24.17	
Livejournal	0.006	1.15	0.55	0.14	0.33	4.84	0.05	1.17	0.59	0.43	0.36	4.60	

Table 6: Mean relative errors and running times for three algorithms on six networks. Internal opinions are generated using the exponential distribution.

	Time(s)				Reletive Error in %										
Network	LanColver	LazyWalk	DE OE			L	azyW	alk		PF-QE					
	Lapsoivei	Lazy waik	TT-QL	z	P	I	C	DC	D	\overline{z}	P	I	C	DC	D
Delicious	6.6	2.3	2.1	2.50	2.79	3.09	1.66	1.17	3.81	2.41	1.96	3.05	0.79	1.10	3.75
Youtube	9.6	4.4	2.6	1.90	3.25	2.93	0.78	1.41	6.32	2.36	3.33	2.89	0.77	1.38	6.49
Pokec	48.5	42.7	5.4	3.35	3.72	2.89	0.48	1.32	10.91	2.50	3.64	2.72	0.43	1.30	10.85
Orkut	320.8	153.2	9.7	2.92	8.00	1.95	5.29	2.06	76.66	2.51	12.54	1.97	0.41	1.02	25.67
Livejournal	239.5	70.7	6.6	2.44	3.22	2.87	1.82	1.24	5.06	2.40	3.10	2.89	1.38	1.50	5.11
Twitter	-	168.6	34.9		-	-	-	-	-		-	-	-	-	-

Table 7: Standard Deviation for two algorithms on five networks. Internal opinions are generated using the exponential distribution.

					Sta	ndard D	ev	iation	in %					
Network LazyWalk							PF-QE							
	\overline{z}	P	I	C	DC	\overline{D}		\overline{z}	P	I	C	DC	D	
Delicious	0.008	1.49	2.15	0.59	0.87	3.07		0.01	1.37	2.12	0.57	0.89	3.00	
Youtube	0.01	2.06	2.36	1.02	1.58	4.58		0.02	1.97	2.32	0.99	1.52	4.50	
Pokec	0.01	3.29	1.95	0.33	0.87	8.12		0.02	3.24	1.87	0.34	0.883	7.63	
Orkut	0.02	6.37	1.18	0.30	1.31	27.45		0.02	7.66	1.10	0.26	0.84	21.37	
Livejournal	0.009	2.86	2.38	0.81	1.30	5.25		0.05	2.88	2.38	1.02	1.29	3.95	