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Abstract

In this paper, we address the problem of fast computation and optimization of
opinion-based quantities in the Friedkin—Johnsen (FJ) model. We first introduce
the concept of partial rooted forests, based on which we present an efficient algo-
rithm for computing relevant quantities using this method. Furthermore, we study
two optimization problems in the FJ model: the Opinion Minimization Problem
and the Polarization and Disagreement Minimization Problem. For both problems,
we propose fast algorithms based on partial rooted forest samplings. Our methods
reduce the time complexity from linear to sublinear. Extensive experiments on
real-world networks demonstrate that our algorithms are both accurate and effi-
cient, outperforming state-of-the-art methods and scaling effectively to large-scale
networks.

1 Introduction

Online social networks and social media have become integral to our daily lives, fundamentally
altering how individuals communicate, exchange, and form opinions [33} 21} 148} 150,59, 44]]. Recent
studies suggest that, unlike traditional forms of communication, online interactions in the digital
era have profoundly impacted human behavior, facilitating the widespread, critical, and complex
propagation of information [40]. To better understand the mechanisms driving opinion formation
and dissemination, various mathematical frameworks for opinion dynamics have been developed [27,
41} 117, 16]. Among these models, the Friedkin-Johnsen (FJ) model [[19] stands out as one of the
most widely used, with applications spanning multiple fields [8, 20]. For instance, a modified FJ
model was recently used to study the Paris Agreement negotiations, revealing key factors behind the
achieved consensus [8].

The fundamental concept in opinion dynamics is the opinion itself, which serves as the basis for many
opinion-based quantities that have garnered significant attention. Among these quantities are the
overall opinion, which reflects public sentiment on specific issues, and various social phenomena such
as polarization, disagreement, and conflict. Given the importance of these opinion-based quantities, a
key challenge is how to effectively compute and optimize them. A Laplacian solver-based approach
for computing these quantities was proposed in [52} 54], followed by a sampling-based algorithm
to accelerate the computation process [39]. For the optimization of opinion-based quantities, a
range of methods has been introduced, including matrix inversion [24], vector projection [56}59]],
eigencentralities [5], convex optimization [38]], and sampling techniques [44]. Although many
effective methods have been proposed for computing and optimizing opinion-based quantities in
the FJ model, they are often limited to specific problems or suffer from high time complexity.
Consequently, a unified framework to efficiently address both computation and optimization of
opinion-based quantities in the FJ model is imperative.
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In this paper, we propose several algorithms to compute and optimize the opinion-based quantities.
Our main contributions are as follows:

* We introduce the concept of partial rooted forests and, based on which we propose a fast sampling-
based algorithm for computing opinion-based quantities. Our methods effectively capture the
essential structural information of the graph, ensuring both efficiency and accuracy.

* We address two optimization problems in the FJ model: minimizing a weighted average of
expressed opinions, and reducing polarization and disagreement via edge addition. For both
problems, we design fast algorithms based on partial rooted forest samplings, reducing the time
complexity from linear to sublinear.

* We conduct extensive experiments on a variety of real-world networks, which shows that our
algorithms demonstrate both high accuracy and efficiency compared to state-of-the-art methods
and are scalable to large networks.

2 Related Work

Mathematical modeling plays a crucial role in understanding opinion dynamics, and numerous models
have been proposed over the years to capture various aspects of opinion formation [27, 41} |17, 6]
Among these, the Friedkin-Johnsen (FJ) model [[19]] stands out as a foundational model, building upon
and extending the DeGroot model [16]]. Given its theoretical importance and practical applications,
the FJ model has garnered significant attention since its introduction. A sufficient stability condition
for the FJ model was derived in [42]], and the model’s average innate opinion was characterized
in [15)]. Additionally, the vector of expressed opinions at equilibrium was formulated in [15} [10].
Further interpretations and insights into the FJ model have also been provided [23} [10].

The sum of opinions has attracted significant attention, with various research groups addressing the
optimization problem of maximizing overall opinion through leader selection [55} 26} [57]] or link
recommendation [56, [58]] based on the DeGroot model. In the case of the FJ model, node-based
strategies have been proposed over the past decade to optimize the sum of opinions on unsigned
graphs, including modifications to initial opinions [3], the expression of opinions [24, 44]], and
sensitivity to persuasion [2}[11}1}136]. Our solution for optimizing the average expressed opinion in
the FJ model is both more efficient and effective compared to the state-of-the-art approach presented
in [44].

The explosive growth of social media and online social networks has given rise to several social
phenomena, including polarization [37} 38l /4], disagreement [38]], filter bubbles [7} 30], conflicts [14],
and controversies [[14]. In response to these challenges, research has evolved in various directions,
with fast algorithms being developed to efficiently compute these quantities [52,154,39]]. Some studies
have focused on identifying groups of users with an open attitude toward opposing information [22,
18], aiming to connect users with differing opinions in order to mitigate the filter bubble effect [47,
59, 15, 138 160]. In this paper, we study the problem of computing opinion-based quantities in
the FJ model [39, |52] and two optimization problems in the FJ model [44, 59]. Our proposed
algorithms demonstrated greater efficiency and effectiveness compared to the state-of-the-art methods
in [39] 1441 [59].

3 Preliminaries

3.1 Graph and Laplacian Matrix

Let G = (V, F) denote an unweighted simple undirected graph, which consists of n = |V/| nodes
and m = |E| edges. An edge (v;,v;) € E indicates the edge between node v; and node v;. In
what follows, v; and ¢ are used interchangeably to represent node v; if incurring no confusion.
The structure of graph G = (V, E) is captured by its adjacency matrix A = (a;;)nxn, Where
a;; = a;; = 1 if there is an edge between node v; and node v; and 0 otherwise. The degree d; of
node i is defined by d; = 2?21 a;;. The diagonal degree matrix representing the degrees of graph
Gis D = diag(dy,ds, ..., d,), and the Laplacian matrix is L = D — A. For any given node i, N;
denotes the set of its neighbors, meaning N; = {j : (¢,j) € E}. A path P from node v; to v; is a
sequence of alternating nodes and edges v1,(v1, v2),v2, - -, vj_1, (vj—1, ¥;), v; where each node is



unique and every edges connects v; to v;4+1. A loop is a path plus an edge from the ending node to
the starting node.

3.2 Friedkin-Johnsen Model

The Friedkin-Johnsen (FJ) model [19] is a widely used framework for modeling opinion evolution
and formation. In the FJ model applied to a graph G = (V, E), each node (or agent) i € V is
characterized by two types of opinions: an internal opinion s; and an expressed opinion z;(t) at
time ¢. The internal opinion s; € [0, 1] reflects the inherent stance of node 7 on a particular topic.
Throughout the opinion evolution process, the internal opinion s; remains fixed, while the expressed
opinion z;(t) evolves at time ¢ + 1 as z;(t + 1) = (si + >_ e, @ij2i(1)/ (1 + 22 cn, ij)-

Let s = (s1,82,---,8,) denote the vector of internal opinions, and let z(t) =
(21(t), z2(t),- -+, 2,(t)) " denote the vector of expressed opinions at time ¢. According to [10],
as t approaches infinity, z(t) converges to an equilibrium vector z = (z1, 20, , 2,) | satisfying

z=(I+L) ‘s DefineQ=(I+L) "= (Wij)nxn, referred to as the forest matrix [[12|[13]. The
forest matrix €2 is doubly stochastic for undirected graphs, with all its components in the interval
[0, 1]. Furthermore, for each column, the diagonal elements are greater than the off-diagonal elements,
thatis 0 < wj; < wy; < 1 for any pair of different nodes 4 and j, and the diagonal element w;; of
matrix € satisfies ﬁdi <wy < %di [d4]]. The forest matrix €2 serves as the fundamental matrix of
the FJ model for opinion dynamics [24]. For every node 7 € V, its expressed opinion z; is given by

2 = 2?21 w;;5;, aconvex combination of the internal opinions for all nodes.

4 Partial Rooted Forest Samplings for Estimating the Forest Matrix

The forest matrix €2 is the fundamental matrix of the FJ model and plays a key role in its computation
and optimization. Existing methods [45] 46| [44] rely on generating rooted spanning forests over
the entire graph, requiring O(In) time. We propose a local approach, called partial rooted forest
samplings, as a natural extension of previous methods by using absorbing random walks. It avoids
full-graph traversal and offers improved efficiency and scalability.

4.1 Absorbing Random Walk

The forest matrix €2 is doubly stochastic for undirected graphs. We initiate a random walk from node

¢ and assume the walk is currently at node k € V. At node k, the walk has a probability of ﬁ
1

to stop, and with probability 1 — Trao it moves to a randomly selected neighbor of node k. If the
walk eventually stops at node g, we say that the walk has been absorbed by g. In this context, w;;
represents the probability that a walk starting at node ¢ will eventually be absorbed at node j.

To formally explain this, we expand the forest matrix as an infinite series. Define P = (I + D)~ ' A,
then the forest matrix has the following form: & = (I — (I + D) 'A)"Y(I + D)™! = (I —
P)"'(I+ D) =3,.,P"(I + D)'. Here, the i, j-th entry of P* represents the probability
that a walk starting at i takes exactly k steps to reach j. Multiplying this by fd,- gives the
probability that the walk takes % steps and is then absorbed at j.Then w;; can be expressed as
wij = e/ Qe; =o€l PP(I+ D) le; = ﬁ S k=0 €i P¥e;. Choose an initial node
1 € V, and perform the gbsorbing random walk several times._Using the probabilistic interpretation
of the forest matrix, where w;; represents the probability of a random walk starting at node ¢ and
being absorbed at node j, we can estimate the ¢-th row of the forest matrix. The following lemma
establishes the expected time complexity of the absorbing random walk:

Lemma 4.1 For an undirected graph G = (V, E) and its related forest matrix Q, the expected

length of an absorbing random walk starting at node i is 2?21 w;jd;. If the initial node i is chosen

2m
n’

randomly, the expected length of the random walk to absorption is d = % Z?:l d; =

Proof. Let[; denote the expected length of an absorbing random walk starting at node i, and define

the vector I = (Iy,--- ,1,)". For any i € V, the relationship between I; and its neighbors is given
by l; = 1;@, 1+ 4 > e+t lj). Rewriting this in matrix form, we have I = (I + D)~'D1 +



(I + D)1 Al. Solving this equation yields I = QD1. Thus, for each i € V, the expected length
isl; = 2?21 w;jd;. If the initial node i is chosen uniformly at random, the expected length of the

random walk is [ = 37" [, = 137" S widy = i S (i wij)d = d, where the
property Z;;l w;; = 1 in undirected graphs is used. [J

By Lemma we can estimate z by performing absorbing random walks from each node in V'
multiple times. However, this method requires iterating over all nodes, which is computationally
inefficient.

4.2 Partial Rooted Forest Sampling

In this subsection, we introduce a sampling method for constructing a partial rooted forest, which
significantly reduces sampling time. We first define the concept of a partial rooted forest. In an
undirected graph G = (V| E), a rooted tree of G is a connected subgraph without cycle, where one
node is set to be the root. An isolated node is considered as a tree with the root being itself. A partial
rooted forest ¢ = (Vy, Ey) is a subgraph of G, where all connected components are rooted trees.
The root set R(¢) of ¢ is defined as the collection of root nodes from all rooted trees in ¢. Since
each node ¢ in Vi belongs to a specific rooted tree, we define a function r4(7) : Vg — R(¢) mapping
node i to the root of its corresponding rooted tree. If r4 (i) = 7, then j € R(¢), and both ¢ and j
belong to the same rooted tree in ¢.

Next, we describe the procedure for generating a partial rooted forest using a loop-erased absorbing
random walk. This involves the loop-erasure technique, which eliminates loops from a random walk
in chronological order [32,131]]. By applying this technique, we can utilize the paths generated by the
absorbing random walk instead of discarding them. The procedure is as follows:

(i) Initialization: Let S = {v1,...,v,} C V be aset of p > 2 nodes. Initialize ¢ = (V, Ey) =
(0, ) and set the indicator i = 1.

(ii) Performing absorbing Random Walk: Select the first node v = v;. Perform an absorbing
random walk starting from u. Suppose that the walk is currently at a node k ¢ V), and the walk is

absorbed with probability ﬁ If the node is absorbed at k, k is marked as a root node. Otherwise,

with probability 1 — ﬁ the walk moves to a uniformly chosen neighbor of k. If the walk reaches

anode k € Vy, it is immediately absorbed.

(iii) Loop Erasure: Let P, represent the trajectory of the walk from node u to its absorption point.
Apply the loop-erasure technique to P, to obtain a simple path P,. Add the nodes and edges from
P, to V and Egy, respectively.

(iv) Iteration: If ¢ < p, increment ¢ by 1 and repeat step (ii). Otherwise, terminate the process and
return the partial rooted forest ¢.

The procedure is detailed in Algorithm PFS (Partial Rooted Forest Sampling); due to space constraints,
the pseudocode is provided in the appendix.

The following theorem establishes the expected time complexity of the Partial Rooted Forest Sampling
(PFS) algorithm. The time complexity is O(rpl), where r is a ratio dependent on the graph structure,
with an upper bound d. In real-world web and social networks, the average degree is typically O(log n)
or a constant [49,[53|]. Furthermore, our experimental results demonstrate that r is consistently smaller
than d. These observations collectively indicate the efficiency of our algorithm in practical scenarios.

Theorem 4.2 For an undirected graph G = (V, E) and a set of p nodes S C V, the expected time
complexity of Algorithm PFS is O(rpl), where r is the ratio of the expected number of nodes in a
partial rooted forest ¢ € L to p, and l is the number of samples. r satisfies relation 1 < r < d if
we randomly sample the set S from V. Algorithm PFS is more efficient than performing absorbing
random walks individually for each node in S.

Proof. The algorithm repeats the sampling process ! times and outputs a list of partial rooted forests.
To establish the expected time complexity, consider a single partial rooted forest ¢ in the list L. Let
q = rp represent the expected number of nodes in ¢. We will show that the expected time complexity
for generating ¢ is O(q).



First, we extend the partial rooted forest ¢ to a complete spanning rooted forest ¢’ by executing the
procedure described in lines 4-16 of Algorithm W for the remaining nodes in V' \ V;,. According
to [44]], the expected time complexity of sampling the complete rooted forest ¢’ is O(n). Furthermore,
Wilson [51]] demonstrates that the order of node processing does not affect the generation of a
spanning rooted forest. Hence, the partial rooted forest ¢ can be viewed as a subgraph of one
complete rooted forest ¢'.

Next, we analyze the expected time complexity of generating the partial rooted forest ¢. Marchel [35]
shows that the expected absorption time for each node in a rooted forest is w;; (1 + d;). Sun [44]

refines this result, proving that w;; (1 + d;) < % < 2, which is O(1).

Therefore, the expected time complexity for sampling a single partial rooted forest ¢ is O(g), leading
to a total expected time complexity of O(ql) for the algorithm.

To give a rough estimation of r, if we sample S randomly from V', an upper bound of r is O(d)
according to Lemmad.1] Moreover, Algorithm []retains only the necessary branches in the forest
for each node. The sampling process terminates as soon as the walk reaches a node already in V,
making it more efficient than performing absorbing random walks for all nodes in S individually, as
described in Subsectiond 1l O

5 Fast Sampling Method for Opinion-Based Quantities in FJ Model

5.1 Definitions of Opinion-Based Quantities

The FJ model includes several important quantities for analyzing the properties of social groups.
Below, we provide a concise overview of these measures, following prior works [38] 37, 52].

Consider an undirected graph G = (V, E). Disagreement D(G) is a measure of the difference in
opinions between neighbors, calculated as D(G) = > (; i\ep(2i — 2;)? = z " Lz. Polarization P(G)
reflects how far individual opinions deviate from the average-expressed opinion. Using the vector

Z=z— zlll, polarization is defined as P(G) = Y,/ (z; — 2)> = z ' z. Internal conflict 1(G)

quantifies the discrepancy between the expressed opinions z and the initial opinions s, given by
1G) = v (zi—si)? = 2T L*z. Controversy C(G) represents the overall magnitude of expressed
opinions C(G) = Y.y, 27 = z'z. Disagreement-controversy DC(G) is a combined measure

capturing both disagreement and controversy DC(G) = D(G) + C(G) = >, cy, sizi = 8| 2.

5.2 Estimating Opinion-Based Quantities

In this subsection, we present a sampling-based algorithm for QE (Opinion-Based Quantities
Estimation). The algorithm leverages the partial rooted forest samplings method to estimate the
opinion-based quantities efficiently. We first provide a lemma to show that the map between the nodes
in S to its root nodes in the partial rooted forest can be used to estimate the opinion-based quantities.

Lemma 5.1 For an undirected graph G = (V, E), a set of nodes S C V, and internal opinion
vectors 8 = (s1,--+ ,8,) ', let ¢ be the partial rooted forest generated by Algorithm PFS . For node
i € 8, let r4(1) denote the root node of i in ¢. Then, the estimator z; = Z?:l Lir, (i)=j18;5 is an
unbiased estimator of z;.

Lemma [5.1] shows that the estimator z; is unbiased for z;. By applying the partial rooted forest
samplings method, we can estimate the opinion-based quantities in the FJ opinion dynamics model,
and we now give the pseudocode for the sampling-based algorithm.

Algorithm [T| PF-QE (Partial Rooted Forest Method for QE ) provides the pseudocode for estimating
the opinion-based quantities in the FJ opinion dynamics model. The algorithm leverages the partial
rooted forest samplings method to estimate the opinion-based quantities efficiently. Instead of
estimating all nodes in V/, algorithm|[I| focuses on a set of nodes S with p nodes, and samples [ partial
rooted forests. Now we provide a theorem, showing the parameters p and [ for a given error tolerance.

Theorem 5.2 For an undirected graph G = (V, E) and internal opinion vectors s = (s1,--+ ,5,) ',
if we choose p = O(%2 log ), 1 = O(%2 log %), and node set S is randomly sampled from V', then
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Algorithm 1: PF-QE(G, S, s, L)

Input :Graph G = (V, E), node set S = {v1,...,v,}, internal opinion s = (s1,--- , Sy,)
Output :Estimates of opinion-based quantities
Sample a list L of [ partial rooted forests
Initialize Zg < 0 (a p-dimensional vector for storing z; for each v; € S)
for k < 1toldo

6« LK)

for i < 1topdo

| riro(v). 2l e Zsli] + 51,

Zg+ 2,0 2y 26li2 DC « & zllslzs[]fw—DAc—é

ZS—l f1ZSHP<_n f1(ZSH—ZS) I<_n i1 (Zsli] — s:)?

P N NN

return D, P, I, C, DC

Algorithm|I] estimates the opinion-based quantities D(G), P(G), 1(G), C(G), and DC(G) within
an absolute error of ne with probability at least 1 — §. The total time complexity of Algorithm/[l)is
O(rpl).

6 Partial Forest Sampling Techniques for Optimization Problems in FJ model

6.1 Opinion Minimization Problem

Problem 1 [ Opinion Minimization Problem (OpMin)] Given an undirected graph g =

(V, E), a parameter vector ¢ = (c1,--- ,¢,) ", where ¢; € [0,1], an integer k < n, and an
iternal opinion vecter s, we aim to find the set H C V of k nodes, and set their internal
opinions to 0, so that the function f(c¢,H) = +¢'z = L 31" | ¢;z; is minimized. That is,
H = argmin f(c,U). €))
UCV,|U|=k

\

Our formulation of Problem [I] generalizes the setting in [44]]. Specifically, when ¢; = 1 foralli € V,
it reduces to the average-expressed opinion minimization problem studied in [44]. To address this
problem efficiently, we propose a fast algorithm based on partial rooted forest samplings, which
reduces the time complexity from O(In) to O(rpl).

Recall that z = (I + L)~'s is the equilibrium vector of the expressed opinions. Then
2 > i—ywijsj. We can rewrite the objective function as f(c,H) = LN ez =

1 ZZ 1 Ci ZJ LwijSj = %27:1(21;1 ciwi;)s;. Define v; = %Z;;l c;w;j, then the objec-
tlve function can be rewritten as f(c, H) = 2?21 «vjs;. In this case, the objective function is linear
with respect to the internal opinions s;. To solve OpMin, we need to find the set H of k nodes with
the smallest «y;s; values.

In [44], the authors use the forest sampling method to solve the problem. However, the algorithm
needs to perform a random walk process across all nodes in the graph, which is computationally
expensive. To overcome this, we propose an efficient method using the partial rooted forest samplings.
The key to solving OpMin lies in estimating the ; = % >, ciw;; for all nodes in the graph.
Suppose that we choose a set of p nodes S randomly from V', and sample a partial rooted forest
¢. Then, define the estimator 7;(¢) = % > ies Cillgr,(i)—j3- We sample [ partial rooted forests

1,+++, ¢y, and estimate the ~; values using 7; = 1 l_ ~i(dr). We detail the algorithm for
Y4 g7 1 2ak=17j g
solving OpMin in Algorithm 2}

Algorithm [2| PF-OPMIN(Partial Rooted Forest Method for OpMin) provides the pseudocode for
solving OpMin. The algorithm leverages the partial rooted forest samplings method to estimate the
values efficiently. By sampling [ partial rooted forests, we estimate the +; values using the estimator

7;. The algorithm then selects the k& nodes with the smallest 7;s; values as the optimal set H.
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Algorithm 2: PF-OPMIN(G, S, ¢, [, k)

Input :Graph G = (V, E), node set S = {v1,...,v,}, parameter vector ¢ = (c1,- -+ ,¢,) ',
number of f0£ests {, number of nodes &k

Output :Optimal set H
Initialize i < 0, H <+ 0. Sample a list L of [ partial rooted forests
fort < 1toldo

¢ « LIt]

for i < 1topdo

| re(i). Al Al] + co,/Ip

6 fori <+ 1tok do

~

L .] < arg maXuEV\H :V\[U]S’U’ ﬁ — ﬁ U {J}

return H

Consider an undirected graph G = (V, E) and a parameter vector ¢ = (cy,--- ,¢,) |, where each ¢;
is a constant. By setting the parameters p = O (E% logs)and! = O (6% log %), and selecting the
node set S through random sampling from V', Algorithm [2|can solve OpMin within an absolute error
of ke, with probability at least 1 —d. Specifically, the approximation satisfies f (¢, H)— f(c, H ) < ke.
This result follows a proof strategy analogous to that of Theorem[5.2]and Theorem 5.5 in [44]], where
r is the ratio of the expected number of nodes in a partial rooted forest ¢ € L to p. Our algorithm
runs in O(rpl) time and outperforms the state-of-the-art method [44]], which requires O(In) time.
Since p < n and, as shown in the experimental section, the empirical results on real-world networks
indicate that r < 15, our approach improves the time complexity from linear to sublinear.

6.2 Polarization and Disagreement Minimization problem

In this subsection, we consider the Polarization and Disagreement Minimization Problem proposed
in [59]]. The problem focuses on selecting a set of edges not present in the original graph to minimize
the sum of polarization and disagreement. We define the P-D index as Z(G) = D(G) + P(G) =
5 "3, and denote the augmented graph as G + T = (V, E U T). The problem is formally described
as follows:

Problem 2 [Polarization and Disagreement Minimization Problem (PDMin)] Given an
undirected graph G = (V, E) and a candidate edge set Ec C (‘2/) \ E, the goal is to select
a subset T C E¢ of k < n edges to add to the graph, such that the P-D index of the new
graph is minimized. Define the objective function as f(T) = Z(G) — Z(G + T), and find

T= argmax f(T). )
TCEc, |T|=k

L J

In [59], the authors show that the problem is combinatorial in nature and propose a greedy algorithm
to solve it. They prove that for a candidate edge e € E¢ connecting nodes u and v, with vector
sTﬂbeb;rQs _ (z“,—z,,)2 .
TR T > 0, where 1, is the
forest distance between nodes u and v, defined as 7, = bl—vﬂbm). A greedy algorithm computes

the marginal gain for each candidate edge in E, selects the one with the largest gain, and repeats
this process k times to obtain the final set 7.

b. = e, — e,, the marginal gain is given by f(e) =

We set the sample node set for partial rooted forests to be the set of all nodes that appear in the
candidate edge set F¢, that is, S = U(i JeFo {4,7}. Then, we generate [ partial rooted forests
{¢1, -+, ¢} and use them to estimate the marginal gain f(e) for each candidate edge e € Ec.
The detailed procedure is presented in Algorithm PF-PDMIN(Partial Rooted Forest Method for
PDMin). For any candidate edge e, if we set | = O (% log $), | f(e) — f(e)| < € is guaranteed to
hold with probability at least 1 — §, by applying Hoeffding’s inequality [25]. In [59], the authors use
the Johnson-Lindenstrauss Lemma [28]] and a fast Laplacian solver [43]] to approximate the marginal
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Algorithm 3: PF-PDMIN(G, E¢, s,l, k)

Input :Graph G = (V, E), candidate edge set E¢, internal opinion vector s = (s1,---,Sp) ',
number of forests /, number of edges k

Output :Selected edge set T’

Initialize T+ 0, S « U(i}j)eEc{i,j}

fort < 1to k do
Sample [ partial rooted forests {¢1, ..., ¢;} on node set S
foreach (u,v) € Ec \ T do
Initialize 2z, < 0,2, ¢ 0, 7y < 0
fori: < 1toldo
Ty < e, (u)v Ty < T, (U)9 2u — 2'\u + Srys 21) — En + Sr,
?uv — ?u'u + H{u:ru} + ]I{v:rv} - H{u:rv} - H{v:ru}
Zu — Zufl, Zy 20/, Tuw ¢ T/l f(um) — (Bu—20)%/(1 +7uy)
(u*,v") < argmax, y)epe\r f (U, v)
| T+ Tu{(u",v")}, E+ EBU{(u*,v")}, V< VUu{u,v*}
return 7’

gain, resulting in an overall time complexity of 9] (mk). In contrast, we leverage partial rooted forest
samplings to reduce the time complexity to O(r|Ec|kl).

7 Experiments

In this section, we conduct extensive experiments on various real-life networks in order to evaluate
the performance of our algorithms, in terms of accuracy and efficiency. Our source code is publicly
available on https://github. com/HaoxinSun98/FJ-PF.

Datasets and Equipment. The datasets for chosen real networks are accessed publicly through
KONECT [29] and SNAP [34]. Our experiments cover a varied selection of real-world networks,
and the specifics of these datasets are outlined in Table[I] All experiments are carried out using the
Julia programming language within a computational environment equipped with a 2.5 GHz Intel
E5-2682v4 CPU and 256GB of primary memory.

Table 1: Statistics of the datasets used in the experiments, including the number of nodes, number of
edges, average degree, and the parameter r, which denotes the ratio of the average number of nodes
in a partial rooted forest.

Network Nodes Edges d r
Delicious 536,108 1,365,961 5.1 2.4
Youtube 1,134,890 2,987,624 53 2.4
Pokec 1,632,803 22,301,964 27.3 9.0
Orkut 3,072,441 117,184,899 76.3 13.6
Livejournal 7,489,073 112,305,407 30.0 33
Twitter 41,652,230 1,202,513,046 57.7 7.7

Baselines. For the FJ quantities estimation problem, we compare our proposed algorithms with the
LapSolver [52] and LazyWalk [39]. For OpMin, we compare our algorithm with the forest sampling
method FAST [44]]. For PDMin, we compare our proposed algorithms with the greedy algorithm
FASTGREEDY [59].

7.1 Estimation for Relevant Quantities

In this subsection, we evaluate the performance of our proposed algorithms for estimating relevant
quantities for FJ model on real-world networks. We compare our algorithms with LapSolver [52]
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Table 2: Time complexity of our algorithms and baselines for three problems with parameter settings.

QE OpMin PDmin Settings
PF-QE  O(rpl) PF-OPMIN O(rpl) PF-PDMIN O(rkl|Ec|) r<15,1=10%p=10*
LazyWalk O(r'pl’) FAST O(In) FASTGREEDY  O(mk) =4 x10% 1 =600
LapSolver O(m) ExacT  O(m) — — k=50, |Ec| = 10"

and LazyWalk [39]. LapSolver achieves high accuracy [52] with a 10~ relative error and is treated
as the ground truth. Following the setting in [39], we set the number of samples to p = 10, 000 and
vary the sampling parameters to compare the running time and mean relative error of the expressed
opinions computed by PF-QE and LazyWalk. The results are shown in Figure[I] Both PF-QE and
LazyWalk are sampling-based algorithms and are parallelized using 8 threads. Each experiment is
repeated 10 times, and the average results are reported.
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Figure 1: Comparison of mean relative error for z; and running time under varying parameters for
PF-QE and LazyWalk. Internal opinions are generated using the uniform distribution.

From Figure[I] we observe that the PF-QE curves consistently lie below and to the left of those for
LazyWalk, indicating that PF-QE achieves better accuracy and lower running time. Based on this
observation, we fix [ = 1000 for PF-QE, and for LazyWalk, we use 4,000 walks with 600 steps,
following the configuration in [39]. For other quantities, we maintain 8-thread parallelization, repeat
each experiment 10 times, and present the averaged results in Table

Table 3: Mean relative errors and running time for three algorithms on six networks. Internal opinions
are generated using the uniform distribution.

Time(s) Reletive Error in %
Network LazyWalk PF-QE
LapSolver LazyWalk PF-QE T ¢ DC D T C DC D
Delicious 7.2 3.1 22 0.90 0.48 0.83 0.42 3.58 1.38 0.42 0.55 0.32 4.05
Youtube 9.6 4.1 2.4 1.03 0.75 0.21 0.33 352 0.95 0.73 0.22 0.31 4.19
Pokec 49.8 39.5 53 1.83 0.93 0.25 0.50 11.01 2.01 0.96 0.21 0.51 10.63
Orkut 291.9 142.2 9.9 3.97 0.62 543 2.71 3477 298 0.72 0.23 0.47 13.67

Livejournal 186.8 67.6 6.9 1.37 0.85 0.31 0.61 836  1.30 0.90 0.30 0.52 8.17
Twitter - 160.6 323 - - - - - - - - - -

The results show that our algorithms achieve relative errors below 1.5% for average expressed opinion
and below 4% for P, I, C, and DC. Errors for D are higher due to its dependence on both DC' and
C, amplifying estimation errors. PF runs faster than both LapSolver and LazyWalk while maintaining
competitive accuracy. For the Twitter network, LapSolver cannot process the data due to time and
memory constraints, whereas our algorithm handles it efficiently, running approximately five times
faster than LazyWalk.

7.2 Optimization Problems

In this subsection, we evaluate the performance of our proposed algorithms for solving the FJ
optimization problems OpMin and PDMin on real-world networks. We set [ = 1000, p = 10000,



and k£ = 50 for our algorithms. Since our algorithms are sampling-based, we repeat each experiment
10 times and report the average results to ensure robustness and consistency.

Table 4: Running time and effectiveness of OPMIN (in terms of opinion decline #) and PDMIN (in
terms of P-D index decline ).

OpMin PDMin
Network PF-OPMIN FAST EXACT PF-PDMIN FASTGREEDY
time 0 time 0 time 0 time o time o
Delicious 22  -6.21 124 -6.79 59 -7.80 160.3 -5.69 862.3 -5.63
Youtube 37 -6.56 332 -6.48 46 -7.79 1543 -6.46 1814.3 -6.42
Pokec 6.3 -4.17 794 -4.13 60.2 -4.98 4941 -3.18 18656 -3.17
Orkut 10.3 -1.88 163.1 -1.79 310.5 -2.43 7742 523 - -
Livejournal 8.1 -6.56 296.8 -6.44 2147 -7.12 436.5 -4.62 - -
Twitter 33.7 - 625.0 - - 2531 - - -

For OpMin, we compare our algorithm with the FAST forest sampling method [44]]. To ensure a fair
comparison, we set the number of forests in [44] to 1000, consistent with our experimental setup, and
execute both algorithms in parallel using 8 threads. The EXACT algorithm, which uses the Laplacian
solver, serves as the baseline method. Table [ reports the running time and the average expressed
opinion decline 6 after setting the internal opinions of 50 nodes to zero, comparing three methods:
PF-OPMIN, FAST, and EXACT. The results show that our proposed algorithm, PF-OPMIN, achieves
comparable or even better effectiveness than FAST, while being significantly more efficient. For
instance, on the LiveJournal network, PF-OPMIN is approximately 37 times faster than FAST, while
also achieving a slightly larger opinion decline.

For the PDMin problem, we compare our proposed algorithm PF-PDMIN with the FASTGREEDY
method [59]], which utilizes the Johnson—-Lindenstrauss Lemma [28]] and a fast Laplacian solver [43]].
In our experiments, we follow the parameter setting in [59], setting the size of the candidate edge
set E- to 10%. And we use 20 iterations for the JL lemma. For our method, we fix k& = 50 and
I = 1000. Table 4| summarizes the running time and the reduction in polarization and disagreement,
denoted by 4, for both methods. The results demonstrate that PF-PDMIN is substantially more
efficient and consistently achieves better performance than FASTGREEDY. For instance, on the
Pokec network, our algorithm achieves more than a 35x speedup while also yielding a greater
decline in the polarization-disagreement index. Furthermore, FASTGREEDY fails to scale to the three
largest networks due to time and memory constraints, whereas our method remains both efficient and
scalable.

8 Conclusions

In this paper, we proposed several algorithms to compute and optimize opinion-based metrics for the
Friedkin-Johnsen (FJ) model. We first introduced the concept of partial rooted forests and presented
an efficient algorithm for computing several opinion-based quantities. Our proposed algorithms,
PF-OPMIN and PF-PDMIN, reduce the time complexity from linear to sublinear compared to state-
of-the-art methods. Extensive experiments on real-world networks demonstrate that our algorithms
are both accurate and efficient, outperforming state-of-the-art methods and scaling effectively to large
networks with over 20 million nodes.

Currently, our framework has limitations in handling optimization problems where the objective
involves nonlinear terms such as squared components (e.g., 27 in the marginal gain). In future work,
we plan to extend our methods to support a broader class of opinion optimization problems under the
FJ model.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions and scope of our
proposed algorithm, including both theoretical and experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Conclusions.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All theoretical results have clearly stated assumptions, and complete proofs
are provided in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information required to reproduce the main results is provided in Section
Experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the code at the anonymous link: https://github.
com/HaoxinSun98/FJ-PF| This URL is included in the submission, and the data used in
our experiments are all publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The full details can be found in Section Experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We show the standard deviation in the APPENDIX.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The details can be found in Section Experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This work fully complies with the NeurIPS Code of Ethics. All datasets
are publicly available with proper attribution, and the code is released via an anonymous
repository. No human subjects or sensitive data were involved.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper does not explicitly discuss societal impacts. However, the problems
addressed in our work are based on previously published formulations [59] presented at
NeurIPS 2021, and our focus is on improving algorithmic efficiency.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve the release of high-risk data or models such as
pretrained language models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets (datasets and code) are publicly available with proper
citations in Section Experiments.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The source code is released at https://github. com/HaoxinSun98/FJ-PF|
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing, human subject research. All
experiments are conducted on publicly available datasets.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve any human subject research, personal data collec-
tion, or activities requiring IRB approval.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology of this work does not involve any use of large language
models (LLMs) as an original or non-standard component. LLMs were not employed in
algorithm design, experiments, or analysis.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

1
2

18
19
20
21

22

A APPENDIX

A.1 Pseudocode of Algorithm PFS

Algorithm 4: PFS(G, S,1)

Input :Graph G = (V, E), node set S = {v1,...,v,}, number of samples
Qutput :Partial rooted forest list L
L]
for k <+ 1toldo
V¢ — @, E¢ — @
for i < 1topdo
U+ v, Py []ic+u
while True do
if ¢ € V; then

| break
else

if random() < ﬁ then

P, + P,U{c}

mark c as root node

break

else

next < random choice from N
P, + P,U{c, (¢, next)}

c < next

P, + Apply loop-erasure to P,
Vs < Vg Unodes in I:’u

| By < EyUedgesin P,

| Add ¢ = (Vyg, Ey) to L

return L

A.2 Proof of Lemmal[5.1]

Proof. Since z; = Z;’L:I w;;sj» the proof is reduced to showing E[Iy,, (;)—;}] = wi;. Consider the
proof of Theorem and we extend the partial rooted forest ¢ to a complete rooted forest ¢'. In ¢
and ¢, we have (i) = r4 (4) directly, since the nodes in ¢ are a subset of the nodes in ¢’. Using
the Matrix Forest Theorem [[12} [13]], we have E[H{T¢,(i):j}} = w;j. Thus, E[H{r¢(i):j}} = w;j, and
the estimator Z; is unbiased. [

A.3 Hoeffding’s inequality

Lemma A.1 (Hoeffding’s inequality [25]) Let 1,22, - , x, be | independent random variables
satisfying a < x; < bforalli = 1,2,--- ,n. Let x = %22:1 x;. Then for any e > 0, P(|Jz —

E(z)| > €) < 2exp (—%).

A.4 Proof of Theorem

Proof. Hoeffding’s inequality, presented in Lemma([A.T] serves as a powerful tool for estimating the
required sample size [ to achieve a desired error guarantee. This inequality has been widely applied
in various studies, such as [44, 39]. Utilizing Lemma [5.1] alongside Hoeffding’s inequality, selecting
l = O(}2 log %) ensures that the estimated value z; deviates from the true value z; by at most an
absolute error of €, with probability at least 1 — ¢, for any node ¢ € V. Furthermore, according
to Lemma 2.2 in Section 6 in [9], by choosing p = O(Z; log $) and setting S = {vy, -+, v,},
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we can guarantee that the sum ). _¢ z; approximates ), z; within an absolute error of ne,
with probability at least 1 — &. It is important to note that z; € [0, 1], by setting | = O(% log )
and p = O(% log ), the opinion-based measures D(G), P(G), I1(G), C(G), and DC(G) can be
estimated within an absolute error of ne, with probability at least 1 — §. [

A.5 Further Experiment Results

In this subsection, we report the standard deviations for two algorithms across five networks in Table 3]
and provide further experimental results based on the exponential distribution in Table[6|and Table

Table 5: Standard Deviation for two algorithms on five networks. Internal opinions are generated
using the uniform distribution.

Standard Deviation in %
Network LazyWalk PF-QE
z P I C DC D z P I C DC D

Delicious 0.12 6.33 694 273 4.15 3.59 0.14 7.27 7.02 286 420 3.67
Youtube 0.006 093 0.70 0.13 0.27 2.18 0.009 098 0.73 0.17 030 2.04
Pokec 0.006 191 043 0.10 0.15 4.83 0.01 1.88 0.43 0.08 0.12 5.06
Orkut 0.02 4.02 091 0.16 0.71 44.83 0.02 3.32 092 025 047 24.17
Livejournal ~ 0.006 1.15 0.55 0.14 0.33 4.84 0.05 1.17 0.59 043 036 4.60

Table 6: Mean relative errors and running times for three algorithms on six networks. Internal
opinions are generated using the exponential distribution.

Time(s) Reletive Error in %
Network LazyWalk PF-QE
LapSolver LazyWalk PF-QE P T C DC D 2 P T C DC D
Delicious 6.6 2.3 2.1 250279 3.09 1.66 1.17 3.81 241 196 3.050.79 1.10 3.75
Youtube 9.6 44 2.6 190 3.252930.78 1.41 6.32 236 3.33 2.89 0.77 1.38 6.49
Pokec 48.5 42.7 54  3.353.722.89 048 1.32 1091 2.50 3.64 2.72 0.43 1.30 10.85
Orkut 320.8 153.2 9.7  2.92 8.00 1.95 5.29 2.06 76.66 2.51 12.54 1.97 0.41 1.02 25.67

Livejournal 239.5 70.7 6.6 244322287 1.821.24 506 240 3.10 2.89 1.38 1.50 5.11
Twitter - 168.6 34.9 - - - - - - - - - -

Table 7: Standard Deviation for two algorithms on five networks. Internal opinions are generated
using the exponential distribution.

Standard Deviation in %
Network LazyWalk PF-QE
z P I C DC D z P I C DC D

Delicious 0.008 1.49 2.15 059 0.87 3.07 0.01 1.37 2.12 0.57 0.89 3.00
Youtube 001 206 236 1.02 1.58 4.58 002 197 232 099 1.52 4.50
Pokec 0.01 329 195 0.33 0.87 8.12 0.02 324 1.87 0.34 0.883 7.63
Orkut 0.02 6.37 1.18 0.30 1.31 27.45 002 766 1.10 0.26 0.84 21.37
Livejournal 0.009 2.86 238 0.81 1.30 5.25 005 2.88 238 1.02 129 395
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