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and Lexical Modalities
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Abstract—The affective state of people changes in the course
of conversations and these changes are expressed externally
in a variety of channels, including facial expressions, voice,
and spoken words. Recent advances in automatic sensing of
affect, through cues in individual modalities, have been remark-
able; yet emotion recognition is far from a solved problem.
Recently, researchers have turned their attention to the problem
of multimodal affect sensing in the hope that combining dif-
ferent information sources would provide great improvements.
However, reported results fall short of the expectations, indi-
cating only modest benefits and occasionally even degradation
in performance. We develop temporal Bayesian fusion for con-
tinuous real-value estimation of valence, arousal, power, and
expectancy dimensions of affect by combining video, audio, and
lexical modalities. Our approach provides substantial gains in
recognition performance compared to previous work. This is
achieved by the use of a powerful temporal prediction model
as prior in Bayesian fusion as well as by incorporating uncer-
tainties about the unimodal predictions. The temporal prediction
model makes use of time correlations on the affect sequences
and employs estimated temporal biases to control the affect esti-
mations at the beginning of conversations. In contrast to other
recent methods for combination of modalities our model is sim-
pler, since it does not model relationships between modalities
and involves only a few interpretable parameters to be estimated
from the training data.

Index Terms—Acoustic, affective computing, arousal,
Bayesian fusion, emotion recognition, facial expressions, lexical,
multimodal, particle filter, power, speech, temporal fusion,
turn-based, valence.

I. INTRODUCTION

PEOPLE rely on disparate and asynchronous cues,
including expressions on the face, changes in voice

characteristics, and what is being said, to interpret each other’s
affective states. In stark contrast, automated affect recogniz-
ers are incapable of reliably combining information from all
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modalities. While there have been great advances in single
modality affect recognition for face, voice, and words, none
has been powerful enough in isolation. So researchers have
eagerly turned their attention to multimodal prediction.

Yet so far results reported in the literature have shown only
modest benefits from multimodality [1], and a fair number
of studies have concluded that multimodal prediction is in
fact inferior to that of the best single modality. Moreover,
the improvements from modality fusion are much smaller on
datasets of natural spontaneous emotions compared to those
with acted emotions.

In contrast to these prior findings, we describe a remarkably
successful model for combination of modalities. We cast mul-
timodal affect recognition as a temporal Bayesian data fusion
problem [2], where each unimodal predictor is modeled as an
affect sensor. The proposed approach keeps track of uncer-
tainties about the affect values due to imprecise unimodal
affect predictors in time. Therefore, during estimation it uses
information from the past as well, filtering noise and partially
compensating for asynchronous unimodal predictions.

We develop our method following the dimensional affect
theory [3], [4], which has been used extensively in recent
work on spontaneous affect. According to this theory, emotion
classes are points in a multidimensional space of affect and the
location of states changes continuously in time. This represen-
tation is particularly suitable for spontaneous natural emotion
expression which may be a blend of several discrete emotions
or where the possible emotion classes are so numerous that
annotation and learning will become impossible.

We present the first application of Bayesian data fusion
for affect recognition. It is greatly suited for the task and in
contrast to prior work, we are able to report a high percent-
age improvement over the best unimodal predictor. Moreover,
unlike prior systems that posit complex relationships of modal-
ities to be estimated from training data, our model does not
involve learning of any relationship between modalities. Our
fusion is governed by only a few parameters to model certainty
of different channels and to model temporal priors, which can
be obtained by appropriate application of simple statistics.

Another contribution of this paper is interpretative analysis.
We perform a number of experiments to exactly pinpoint
which are the aspects of the problem that we have handled
better in the new framework. The key ingredient for suc-
cess turns out to be the proper modeling of the stochastic
affect generating processes as well as the imperfection of
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unimodal predictions for optimal Bayesian fusion. In addition,
we show that strong temporal bias is present in the annota-
tion of certain affect dimensions, which can be easily modeled
in our probabilistic framework, greatly improving predictive
power. Moreover, we model the imperfection of single modal-
ities in two layers, including how certain each modality is
about its prediction and how certain we are about that certainty,
which helps filter out unreliable predictions.

II. PRIOR WORK

Automated affect recognition has been studied in differ-
ent disciplines and sub-fields, each primarily interested in a
given subset of modalities [3], [5], [6]. The visual modality
is the most studied one, with a particular focus on facial
expressions, but also including body movement, posture, and
gesture sub-modalities. The second most studied modality is
voice. Examples of other modalities, like text, EEG and other
bio-signals, eye gaze, and context are relatively rare.

The literature on automatic emotion recognition indepen-
dently done with facial expressions and voice is abundant.
For facial expression analysis, almost all prior work [7] deals
with categorical emotion descriptions or the detection of facial
action units [8] used as intermediate representation for emo-
tion analysis. There are three widely adopted approaches to
extract information related to facial expression: detection and
tracking of facial feature points [9], fitting face models to
model shape, and/or appearance such as active appearance
models (AAMs) [10], and image analysis by basis functions
like Gabor wavelets [11] or by texture descriptors like local
binary patterns (LBP) [12].

For acoustic analysis of affect, the most widely dis-
cussed features are those related to prosody, including
pitch, intensity, and duration. Most recent studies have
shown that spectral features such as MFCCs as well as
voice quality features [13], [14] also effectively capture
emotional expressions. Lexical information, represented as
bag-of-words (BOW), term-frequency, and n-gram language
models, has also been found helpful [15].

In contrast, multimodal affect recognition is limited com-
pared to the richness of single modality studies. The most
common modality combination has been face + voice, fol-
lowed by trimodal combination of face + voice + posture
and gesture. Those multimodal systems, as well as other
minor multimodal combinations such as voice + text or
EEG + biosignals, have been quantitatively analysed recently
by D’Mello and Kory [1]. Their comprehensive meta-analysis
of 30 multimodal studies has revealed that there have been
consistent but modest improvement due to multimodality com-
pared to the accuracies of the best unimodal recognizers.
They report that the average relative improvement resulting
from a multimodal prediction over the best unimodal recog-
nizer is 8.12%. There is great variation. While some authors
have reported impressive multimodal gains between 16% and
27%, others have reported negligible improvements, or even
considerable degradations. Overall, much higher improve-
ments have been obtained on acted databases (12.1% average
improvement); the improvements on natural databases like

the one we work with here have been small (4.39% average
improvement) [1].

The most commonly adopted fusion techniques are naive
feature-level (in which all features are combined together to
learn a classifier) and decision-level fusion (in which a classifier
for each modality is trained separately and their predictions
are combined by rules) [16]–[20]. A few hybrid fusion strate-
gies combine feature-level and decision-level fusion [21], or
decision-level and model-level fusion (in which more than one
classifier for each modality is trained and their predictions are
combined by rules) [9]. Some methods can be considered as
both feature-level and decision-level fusion, for instance as in
boosting [22], [23], where each feature is viewed as a weak
classifier. For example, fusion by several classification algo-
rithms has been compared and meta-decision trees were found
to be superior to Gaussian mixture models, support vector
machines, and multilayer perceptrons in [24]. Some approaches
have relied on mixture of Gaussian process classification to
directly address some of the unique characteristics of the prob-
lem such as missing values from some modalities or noisy
predictions [25]. Further complexity has been introduced by
additionally learning temporal patterns of fusion. For example,
string-based fusion, where a string represents a series of certain
events in the video and acoustic channels outperforms feature-
level fusion [26]. Hidden Markov models (HMMs) have been
applied to learn temporal relations between audio and video
streams via error weighted semi-coupled HMMs [9], or by
concatenated HMMs [27]. Another example of learning tem-
poral patterns is neural networks working with long short-term
memory principle [28]. However, direct comparison of sys-
tem performance is impossible since the employed modalities,
extracted features, affect models, and databases vary.

Recently, two multimodal emotion recognition grand chal-
lenges took place, AVEC 2011 [29] and AVEC 2012 [12].
They have greatly facilitated progress on multimodal
affect prediction as they enable comparison of unimodal
and multimodal methods on a fixed affect model and
database. Both challenges call for recognition in four affect
dimensions, VALENCE, AROUSAL, POWER, and EXPECTANCY.
AVEC’11 deals with binary classification task (high/low or
negative/positive prediction) on each dimension, AVEC’12
deals with continuous real-value estimation. The same
database is used in both challenges. It is composed of record-
ing of subjects during spontaneous dyadic conversations.

Most teams in AVEC’11 developed unimodal systems
exploiting either face or voice features alone. Only a handful
attempted multimodal prediction and neither reported consid-
erable improvements. Some of the multimodal systems even
led to degradation for some affect dimensions. More multi-
modal methods were developed for AVEC’12. The best per-
forming methods include linear least squares regression [10]
where correlations between affect dimensions are incorpo-
rated by combining predictors from all the affect dimensions;
fuzzy inference [30], which uses various rules derived man-
ually by observations on the dataset including use of the
character’s emotions; co-HMM fusion [27] that learns tem-
poral patterns for fusion; and particle filter on regression
(see [31]) which performs temporal estimation. Of these,
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only Nicolle et al. [10] and Savran et al. [31], the win-
ners of the fully continuous and word-level sub-challenges
respectively [32], reported both unimodal and multimodal per-
formances. However, our preliminary work [31] was the only
method that demonstrated improvement for all dimensions and
with high margin.

Unlike prior temporal fusion studies [9], [26]–[28], our
approach does not aim at learning temporal relationships
between different modalities. Instead, we model stochastic
affect generating processes to be used as strong temporal pri-
ors in Bayesian fusion. Avoiding complex relations between
modalities also minimizes high risk of over-learning and
means easier training with fewer parameters. The Bayesian
framework is well-established, with many examples in the
data fusion literature on sensor networks, autonomous vehi-
cle control, etc., [2]. Its main advantage is its effectiveness in
handling imprecise sensors by temporal estimation. In order to
cope with the deficiencies of existing Bayesian methods, such
as inability to represent ambiguous and conflicting cases, we
also put forward an uncertainty model to capture the uncertain
precision of unimodal sensors.

III. MULTIMODAL AFFECT DATABASE

We use the AVEC 2012 Grand Challenge dataset [12],
corresponding to the Solid-SAL part of the SEMAINE
database [33], which is composed of interactions between
human subjects and emotionally stereotyped characters acted
by humans. The characters respond to the emotional state
of their conversational partner rather than to what the part-
ner says [33]. There are four characters with unique moods:
1) even-tempered and sensible; 2) happy and outgoing;
3) angry and confrontational; and 4) sad and depressive.

The subjects have conversations with each of the characters
in the AVEC challenge, thus there are at least four conversa-
tions per subject, exhibiting different combinations of affect
states. The total duration of the footage is about 7.5 h with
more than 50 000 words. The dataset contains 95 conversations
and is divided into training, development, and test subsets with
31, 32, and 32 conversations in each respectively. Every sub-
set contains data from eight subjects. There are no subjects in
common in the training and test set, however, some subjects
appear in both training and development.

The database is comprised of recordings of video (upper
body video), audio, and manual speech transcripts. Video
resolution is 780 × 580 pixels, 8 bits per sample, and
49.979 frames/s. Audio is recorded at 48 kHz with 24 bits
per sample. Also, audio and video streams are synchronized
with an accuracy of 25 μs.

All frames in the dataset are annotated for the four dimen-
sions of affect: 1) VALENCE; 2) AROUSAL; 3) EXPECTANCY;
and 4) POWER. VALENCE indicates if the feeling is positive or
negative. AROUSAL quantifies the subject’s overall inclination
to be active or inactive; EXPECTANCY indicates to what extent
the subject is anticipating what is going on or is unaware like
in surprise. POWER is the sense of being in a position to direct
events versus being at their mercy. Two to eight people anno-
tated each conversation using a tool for real-time annotation

as they watch the video recording. The ground-truth label is
obtained by taking the average of the individual annotations
at each frame. For training and testing of speech-modality-
based predictors, the word-level ground-truths are generated
by taking the average of the frame labels over each word. The
evaluation measure for dimensional affect prediction is the cor-
relation between gold-standard annotations and the predicted
values, averaged across all conversations.

IV. SINGLE MODALITY REPRESENTATIONS

We develop affect predictors independently for video, audio,
and lexical modalities. All the predictors perform markedly
better than the unimodal baselines of the AVEC12 challenge.

For video, we base the predictions on LBP which are
extracted in 10 × 10 uniform blocks over normalized face
images (200 × 200 pixels), as provided in the AVEC 2012
challenge [12]. For normalization, face and eye detection are
done by the OpenCV’s Viola–Jones detector. The challenge
baseline method first removes rightmost and leftmost LBP
blocks and then merges the remaining ones in groups of 2×2.
For our feature set, we keep all the blocks unmodified, and also
use the face and eye coordinates, and then compute temporal
statistics over them. Without temporal statistics, the feature
vector length is 59 bins × (10 × 10) + 8 coordinates = 5908.
After calculating mean and variance statistics for each frame
over intervals of five durations (of {2k}3

k=−1 s) ending at
that frame, the total feature length is: [(5 × 2) temporal +
1 static] × 5908 = 64 988. Finally, we reduce this high num-
ber of features to the most discriminative 200 features (which
provides good compromise between performance and train-
ing duration) by applying AdaBoost as in [11] after creating
binary labels for high and low values (binary: above versus
below the mean of the entire training set).

However, training over all frames in the training set is not
feasible since there are over total of 500 000 frames. Therefore,
we train the video regression only on an average of 5 700
representative frames for each dimension such that affect val-
ues are at least half standard deviation away from the mean,
where mean and standard deviation are estimated over the
entire training set. This is realized by resampling randomly
without replacement and with rejection of neighboring frames.
We empirically determine, via experimentation on the develop-
ment dataset, the rate of the resampling as 40/min and rejection
neighborhood size as 1 s.

For audio and lexical modalities, we develop predictors
operating on speaker turns. To evaluate word-level or frame-
level estimation, we simply assign the prediction obtained for
the turn as the value for all constituent words and frames.
We use the openSMILE toolkit [34] to extract 988 acoustic
features corresponding to 19 functional summary statistics of
26 prosodic and spectral low-level descriptors (LLD) and their
first-order time derivatives, as shown in Table I. We adopt
a BOW representation of each speaker turn for the lexical
modality. The feature space is defined by the words that appear
at least three times in the training set. There are 1048 such
words. Each turn is represented by a vector of length 1048,
each component corresponding to one of the words. The value
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TABLE I
VOICE FEATURES: LLD AND FUNCTIONALS

of the component is one if the corresponding word occurs
in the speaker turn, and zero if the word does not appear
in the utterance. Many studies have shown the advantage of
exploiting both acoustic and lexical information [35]–[37].
An in-depth comparison for different acoustic and lexical
representations specifically for the AVEC12 dataset can be
found in [38].

We use support vector machine regression (SVR) for all uni-
modal predictors. For video, SVRs are trained on the training
set and optimized according the average correlation coeffi-
cients across conversations in the development set. For audio
and lexical predictors, we combine training and development
sets for training, since increasing training set size consider-
ably improved the performance for speech modalities. For
audio, SVR parameter search is performed via subject inde-
pendent cross validation cross-validation on the training and
development set.

In Table II, we compare our single modality correlation per-
formances on the AVEC challenge test set [12], listed along
the official baseline method. For video, we do frame-level fully
continuous predictions, while word-level predictions are eval-
uated for the speech modality. To compare the modalities on
speech regions, where all three are available, we also evaluate
word-level performances of video by using the mean value of
the frame-level predictions over the words.

We see in Table II, that our video correlation performances
are substantially higher than the baseline video for every affect
dimension. For frame level fully continuous predictions, it is
twice as high as the baseline on average, and for word level,
the improvement is about 50%; we observe slightly lower
score for word level POWER.

The performance of our acoustic and lexical predictors
is also higher than that of the baseline acoustic predictor.
Our turn-level acoustic features achieve average correlation
score of 0.099, which is higher than that of the word-level
baseline results of 0.081 reported in [12].1 These results con-
firm the superiority of the larger units for continuous affect
recognition, which has also been discussed in [39].

Finally, our BOW lexical representation shows remarkably
strong prediction power. It achieves average score of 0.178,
which is more than double improvement compared with the
baseline acoustic features.

According to the word-level evaluation, video is the best
among the three modalities for AROUSAL and VALENCE; and
lexical is the best for EXPECTANCY and POWER. To test

1Reference [12] reports baseline results as average of absolute values of
the correlation coefficients, hence obtains higher scores, especially for audio.
The advantage of our turn-level acoustic features is more substantial when
we compared it with the actual averaged correlation score of 0.027 achieved
with the baseline word-level acoustic features.

TABLE II
UNIMODAL PREDICTORS AND SVR FUSION VERSUS THE OFFICIAL

BASELINE [12] ON THE TEST SET VIA AVERAGE CORRELATION

COEFFICIENTS1

simple learning-based fusion, we applied SVR with linear ker-
nel using the unimodal prediction outputs as features. It is
trained on the development set and search for capacity param-
eter is done by fourfold subject-independent cross-validation.
Table II shows its word-level performances on the test set. We
see that SVR fusion improves VALENCE, from 0.256 (video)
to 0.273 correlation score. On the other hand, it degrades the
performance for other affect dimensions.

V. BAYESIAN FUSION

We apply probabilistic inference to fuse continuous deci-
sions made by video, audio, and lexical predictors. The infer-
ence is based on Bayesian filtering: first, we make a prediction
about the current affect state given only past observations, then
update the belief state by current observations.

Here, we show the derivation of the Bayesian inference
update equation by treating affect as a Markov process of
order K. Let xt be the affect state at discrete time t (at video
frame t of the conversation) that we aim to estimate, and the
video, audio, and lexical predictions at time t be the elements
of the measurement vector zt. The posterior distribution of xt

given the present and all the past measurements from single
modality affect predictions, Zt, is obtained using Bayes’ rule

p
(
xt|Zt

) = p
(
zt|xt, Zt−1

)
.p

(
xt|Zt−1

)

p
(
zt|Zt−1

) (1)

= p
(
zt|xt

)
.p

(
xt|Zt−1

)

p
(
zt|Zt−1

) (cond. indep.) (2)

∝ p
(
zt|xt

)

︸ ︷︷ ︸
fusion likelihood

. p
(
xt|Zt−1

)

︸ ︷︷ ︸
temporal prediction prior

. (3)

We need to derive an expression for the temporal predic-
tion prior shown in (3). It is obtained by marginalizing for xt

the joint probability of states at different time indices using
the product rule and Markov property of order K (see the
Appendix for the derivation)

p (xt|Zt−1) =
∫

p(xt|xt−K:t−1)︸ ︷︷ ︸
transition density

K∏

k=1

p (xt−k|Zt−k) dxt−K:t−1. (4)

The posterior distribution of the affect state xt, p(xt|Zt),
is recursively obtained according to (1) and (4), that is,
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Fig. 1. Flowchart of the temporal Bayesian fusion.

by propagating it in time through a transition density,
p(xt|xt−K:t−1), and then by updating with new measurements
zt from different modalities according to the fusion likeli-
hood p(zt|xt). However, this is only a conceptual solution
for Bayesian inference because the integral in (4) is ana-
lytically intractable. Nevertheless, an approximate solution
can be obtained by means of sequential importance sam-
pling principles. Specifically, we implement this as a particle
filter (Section V-E). The overall procedure for multimodal
prediction is illustrated as a flowchart in Fig. 1.

In the rest of this paper, we propose specific models for
computation of the fusion likelihood and the transition density.
For the fusion likelihood, we first model each unimodal pre-
dictor as a sensor of affect with fixed precision parameter in
Section V-A. In Section V-B, we propose a more sophisticated
view of the problem by considering uncertainties on the pre-
cision parameters, thus we model sensor precisions not as a
single number but as a probability distribution.

In order to determine the appropriate temporal memory
K and models for the transition density, we qualitatively
identify the stochastic affect generating processes based on
linear temporal correlations in Section V-C. There is one
more temporal characteristic that we model. Annotations can
be biased to some default at the beginning of the con-
versation. Given the temporal nature of our model, this
initial bias can impact the precision of prediction in later
stages as well. So in Section V-D, we propose a method to

discover and incorporate the initial annotation bias as a trend
model.

A. Sensor Fusion With Known Precision

Now, we treat the video, audio, and lexical affect predic-
tors as sensors measuring the affect state x through different
modalities. The goal is to combine (fuse) the three predictions
in a new, more accurate measurement. In this section and in
Section V-B, we focus exclusively on the fusion likelihood
part of our Bayesian model and discuss how to compute the
posterior in (1), when we assume a noninformative prior for
xt, p(xt|Zt−1) ∝ 1. In Section V-C, we will provide details
about the computation of the temporal prediction prior.

First, we assume that each sensor provides noisy measure-
ments with known constant precision λ. That is, we assume
that the prediction from a single modality is not accurate but
gives some indication where the real-value falls. The distri-
bution of the real value is modeled by a Gaussian with mean
equal to the prediction of the single modality and variance
inversely proportional to the precision of the sensor. The lower
the precision of a modality, the more probable it is that the
real affect state is further away from value it predicted.

We now give a formal description of the intuitions above.
For sensor m, the measurement noise corresponds to a random
variable with Gaussian distribution N(0, σ 2

m). The variance
σ 2

m is inversely proportional to the precision of the sensor,
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σ 2
m = 1/λm, so the Gaussian is parametrized as N(0, λ−1

m ).
We assume the sensors are conditionally independent given
the affect state x, hence the likelihood of the measurement
vector z = [zvid, zaud, zlex]T is

p(z|x) =
∏

m

p(zm|x) =
∏

m

N
(

zm|x, λ−1
m

)
. (5)

Then the posterior—corresponding to the predicted value
after fusion of individual modalities—becomes proportional
to the product of Gaussians since we assume p(xt|Zt−1) ∝ 1

p(x|z) ∝
∏

m

N
(

x|zm, λ−1
m

)
. (6)

The product of Gaussian densities is unnormalized Gaussian
with mean mF and precision λF. Hence, after division with the
evidence, the posterior equals to the Gaussian

p(x|z) = N
(

x|mF, λ−1
F

)
(7)

λF =
∑

m

λm (8)

mF =
∑

m λm.zm

λF
. (9)

Note that the expected value of the affect state after fusion,
E[x|{zm, λm}] = mF , is a convex summation of the sin-
gle modality predictions. Simply put, the fusion output is
a weighted average of the predictions of individual uni-
modal affect predictors where weights are proportional to the
precisions. On the other hand, the precision of the posterior
distribution, λF, specifies the certainty that the fusion output
for the current frame is correct. Smaller precision corresponds
to high certainty and larger precision indicates that even the
predicted value after fusion is likely to be incorrect. In the
full Bayesian filtering model, where we compute the temporal
prediction prior (1) instead of using an uninformative prior,
λF has important role. It will determine the relative weights
of the fusion posterior and the temporal prior.

We now describe the final missing detail about the fusion
model, namely how we estimate the precision of each single-
modality sensor. Precision parameters are estimated on the
development set via a three-step procedure. First, both the
predictions from single modalities and the ground-truth affect
values are standardized by subtracting the mean and dividing
by the standard deviation for all values of that affect dimension
on the training set. Standardization of the ground-truth values
is performed for each modality separately because video is
available all the time but audio/words are not available during
regions of silence. The mean and standard deviation from each
modality is recorded and is later used for standardization of
the predictions in testing.

Next, we calculate mean squared error msem between nor-
malized predictions and ground-truth values over the entire
development set. Finally, the precision of each modality is
defined based on mean squared error as

λ̂m = 1/msem. (10)

The corresponding fusion precision is λ̂F = ∑
m λ̂m.

Relating single-modality precision with mean square error
is intuitive, given that the task is to predict real-value affect

dimensions. However, the official evaluation measure for the
AVEC challenge is the average, over all conversations, corre-
lation coefficient between the estimated affect value and the
ground-truth annotations rather than MSE. Therefore, we also
experiment with an alternative definition of precision, which
combines MSE and correlation performance as

λ̂cm = c.μρm , c = λ̂F∑
m μρm

(11)

where μρm is the average Pearson’s correlation between the
predictions for sensor m and ground-truth values over the
development conversations.2

Notice that the precision adjustment made by (11) does not
change the overall fusion precision, since

∑
m λ̂cm = λ̂F.

Thus, the certainty in the fusion prediction will still be
influenced only by MSE of the single modality sensors.

B. Sensor Fusion With Prior on Precision

Single modality predictors are characterized not only by
their precision but also by their consistency of prediction.
The inconsistency of a predictor can be high, for instance
due to idiosyncratic expressions of affect. To model this addi-
tional aspect, we assume the value of the sensor precision is
unknown but that we know its probability distribution. The
parameters of this distribution will be informed not only by
the MSE/correlation for a given modality but also by their
variation across different conversations in the development set.
In this case, the uncertainty of single modality prediction is
defined as

p(zm|x) =
∫

p(zm|x, λm)p(λm|x)dλm. (12)

Equation (12) gives the marginal likelihood for a uni-
modal prediction output since we integrate out the unknown
precision. The second term inside the integral is the prior den-
sity on the precision, λm. Notice that since it does not depend
on the state x, condition on x is ignored. The first term inside
the integral is still modeled as a Gaussian with variance related
to the sensor precision.

We use Gamma density with shape parameter α and the rate
parameter β as the prior distribution on precision, since it is a
maximum entropy distribution of positive continuous random
variables. Thus, dropping the sensor index m, (12) becomes

p(z|x) =
∫

N(z|x, λ−1)Ga(λ|α, β)dλ (13)

=
∫ [

λ1/2

√
2π

exp(−1

2
λ(z − x)2

] [
βα

�(α)
λα−1 exp (−λβ)

]
dλ

(14)

= 1√
2π

βα

�(α)

∫
λ1/2λα−1 exp

(
−1

2
λ(z − x)2 − λβ

)
dλ

(15)

∝
∫

λa−1/2 exp

(
−λ

[
(z − x)2

2
+ β

])
dλ = I (16)

2When a given modality m has a negative average correlation, it is ignored
in fusion. However, the average correlations for all three were positive.
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where �(x) is the Gamma function. Notice that I is the inte-
gral of an unnormalized Gamma density with shape parameter
α′ = α + 1/2 and rate parameter β ′ = β + (z − x)2/2.
Therefore, I equals to the normalizing constant of the Gamma
density, i.e., �(α′)β ′−α′

. Hence, substituting I in (15), we
obtain

p(z|x) =
βα�

(
α + 1

2

)

√
2π�(α)

[
1

β + (z−x)2

2

]α+ 1
2

. (17)

Then the fusion posterior (when p(xt|Zt−1) ∝ 1), becomes

p (x|z) ∝
∏

m

[
1

βm + (zm−x)2

2

]αm+ 1
2

. (18)

In Section V-A, we modeled the uncertainty about the
sensor measurements via the precision parameter λm, i.e.,
assuming Gaussian density for the measurement noise. Now,
we model our uncertainty about the sensors themselves, as
well by (18) using the parameters αm and βm. First, we
make the expected value of the Gamma distributed precision
variable equal to λ̂cm (11). The expected value of the preci-
sion for Gamma distribution Ga(λ|αm, βm) is αm/βm = λ̂cm,
αm = βm .̂λcm. Parameter βm controls the inverse scale of
the distribution and thus quantifies the degree of uncertainty
on the precision, which in turn is determined based on the
correlations between predicted values and ground-truth anno-
tations on the development set. Variations of the correlation
on different conversations for sensor m, ρm, is indicative of
the uncertainty. Therefore, we treat ρm as a random variable,
and relate the value of the beta parameter to its variance, σ 2

ρm
,

after scaling according to the overall precision by c (11), as
βm = 1/(c2.σ 2

ρm
).

C. Temporal Model of Affect Dynamics

In our complete framework for multimodal affect predic-
tion, we apply sensor fusion in a Bayesian filtering setting
where the prior distribution is given by the temporal pre-
diction density (3), instead of using an uninformative prior.
Temporal predictions about the affect states follow a temporal
prediction density, obtained according to the transition density,
p(xt|xt−K:t−1) as expressed in (4).

To determine the appropriate model which best approxi-
mates the dynamics of affect, we perform statistical tests and
qualitative analysis on the development set. We consider a
family of time-series models, called autoregressive integrated
moving average (ARIMA) models. An ARIMA(P,D,Q) model
is composed of three parts: 1) autoregression part (AR) of
degree P; 2) integration part (I) of degree D; and 3) moving
average part (MA) of degree Q. The guiding assumption is that
linear correlations between the affect values at nearby points
in time are sufficient to determine the order of the Markov
dependencies (how many past states will influence the current
prediction). The estimated model coefficients determine the
strength of the dependencies with past states.

The model identification procedure requires estimation
of autocorrelation and partial correlation coefficients. We
estimate them over all the conversation sequences in the

Fig. 2. Partial correlation coefficients after differencing operation on the
development set, ignoring the first 30 s of each conversation.

development dataset. However, we ignore the first 30 s of
each sequence since those regions are treated separately as
explained in Section V-D. We estimate autocorrelations on the
ground-truth annotations in the development set. All develop-
ment conversations are concatenated in a single series of affect
annotations for the analysis. The concatenation sites, corre-
sponding to the end of one conversation and the beginning
of another, could influence negatively the estimation of model
parameters because there no temporal continuity whatsoever
is expected. Therefore, we skip the samples (continuous affect
annotation corresponding to a video frame) at the concatena-
tion sites so that samples from the consecutive conversation
sequences are never used in the same iteration while estimat-
ing the autocorrelations. The partial correlation coefficients
are estimated from the autocorrelations by fitting autoregres-
sive models using Yule–Walker equations. An autoregressive
model of order P is in the form

yt = a0 +
P∑

k=1

akyt−k + vt (19)

where ak are the autoregressive coefficients and vt ∼ N(0, σ 2)

is i.i.d. process noise sequence.
The model identification procedure starts with determination

of the degree of the integration part, D, of the ARIMA model.
For this purpose, we apply unit root test, more specifically
augmented Dickey–Fuller [40] test for unit roots, which is
one of the commonly used tests in time-series analysis. The
test accepted the null-hypothesis of being nonstationary for
D = 0 and rejected for D ≥ 1, for each affect dimension.
This means that affect generating processes are stationary after
first order differencing, i.e., D = 1. Therefore, in the rest of
the identification procedure all the estimations are done after
preprocessing the series with first order differencing in which
the time series for analysis is obtained by yt = xt − xt−1.

In the second step of the identification, we examine the auto-
correlation and partial correlation coefficients. In contrast to
autocorrelations, partial correlations quantify the correlation
between the affect variables with their values at previous
time steps after the correlations of all the other time steps
are removed. The estimated partial correlation coefficients
are shown in Fig. 2. For each affect dimension the temporal



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

dependency is short, only between a current state and a couple
of preceding states. There is gradual decrease of the autocorre-
lations with more distant states. This analysis clearly indicates
that the affect generating process of each dimension does not
involve MA component, hence Q = 0. On the other hand,
partial correlation cut-offs at time step two suggests there are
AR components with P = 2. Consequently, the affect generat-
ing process can be modeled as ARIMA(2,1,0).3 The process
equation is obtained by substituting yt = xt − xt−1 in (19)

xt = b0 +
K∑

k=1

bkxt−k + vt (20)

where K = P + D = 2 + 1 = 3 and

b0 = a0, b1 = 1 + a1, bK = −aK−1

bk = ak − ak−1, for k = 2, . . . , K − 1. (21)

Hence, we assume the order of Markov dependency is K = 3
and the resulting transition density is

p (xt|xt−K:t−1) = N

(

xt; b0 +
K∑

k=1

bkxt−k, σ 2

)

. (22)

D. Modeling Trends in the Calibration Phase

Model-driven analysis (explained in detail later in this
section) revealed that time-dependent biases exist in the anno-
tations at the beginning of each conversation. Prior work in
continuous affect estimation also provide evidence that there is
such bias, demonstrating considerably high correlation scores
when time features are used for regression, either as scalar
time index feature [27] or as step functions [30].

The underlying reasons that can cause those biases are not
clear. A sensible explanation might be that during continu-
ous annotation of the affect dimensions, annotators may need
some time to accumulate observations before forming a clear
impression of the affective states. Annotations are performed
in real time, so the annotations of the beginning of each con-
versation may not fully reflect that true annotator judgment
of affect state but be instead biased toward common gen-
erally expected states for an affect dimension. We call this
initial period at the beginning of each conversation a calibra-
tion phase and propose a method to estimate these biases and
compensate for them during prediction. Then, we integrate the
calibration phase model into our Bayesian estimation scheme
by modifying both the temporal prediction and sensor fusion
components.

We model the trend in the calibration phase with a logistic
sigmoid function parametrized by sa, sb, sc, sd as

s(t) = sa + sb

1 + exp−(t−sc)/sd
. (23)

Equation (23) provides a model of the trend as a smooth
transition with four degrees of freedom. sa and sc determine
the location of the sigmoid on the affect value and time axis,

3We also performed Bayesian fusion experiments for alternative P. For
P = 1, prediction is improved but not as much as for P = 2. For P = 3, the
prediction improvements is the same as for P = 2 for the average performance
across the four dimensions.

Fig. 3. Fitted logistic functions (on the training set) that model the trend in
the first 30 s. tcal is the estimated calibration phase duration [24].

respectively; sb determines the affect value departure from the
start of the conversation due to the trend; and sd gives the
duration of this trend. Therefore, the proposed time model is
flexible, with smooth evolution.

The parameters of the logistic function are estimated by
fitting the time values (in units of frames) to all of the stan-
dardized affect labels over the first 30 s of conversations from
the training set, using nonlinear minimization. We fixed this
30 s duration empirically after trials on the training data over
longer durations. The end of calibration is estimated as the
point where the sigmoid is assumed to converge (in practice
we assume e−6 ≈ 0 for convergence) to the saturation point

tcal =
{

sc + 6.sd, if sb ≥ 0
sc − 6.sd, if sb < 0

. (24)

In Fig. 3, we see the fitted logistic function in the stan-
dardized scale of the corresponding affect dimension, i.e., the
center is the mean and the unit is in one standard deviation
of the data. The estimated calibration durations are marked by
the intersection with the vertical dotted red lines. We observe
that the progression of the calibration phase is rather differ-
ent for each affect dimension. For POWER and AROUSAL, the
bias is high, several standard deviations of the data. It also
appears that their calibration durations are long, 28.4 s for
AROUSAL and 22.2 for POWER. POWER has the biggest slope.
On the other hand, biases for EXPECTANCY and VALENCE

have smaller range and slopes with shorter durations,
10.3 and 17.3 s, respectively.

For temporal prediction in the calibration phase, we again
identified the temporal process as ARIMA(2,1,0) process as
described in Section V-C. However, the estimation is done
separately from the rest of the model, only on the beginning
segments up to the sigmoid saturation time points tcal (24).
In addition, the trend, i.e., the estimated logistic functions,
are subtracted from the reference affect annotation in these
segments. The model is in the form

xt = st + c0 +
K∑

k=1

ck.
[
xt−k − st−k

] + vst (25)
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where ck are the model coefficients in the calibration phase
and vst ∼ N(0, σ 2

s ) is i.i.d. process noise sequence.
We also modify the update likelihood in the calibration

phase by making it less informative so that time-dependent
predictions have more influence on the estimation. Another
use of reducing the influence of likelihood would be to miti-
gate any misleading effect due to unreliable temporal features
at the very beginning. Some of the multiscale video features
we use are extracted from frames in a sequence of 8 s and
these will be undefined at the beginning of interaction.

To implement this modification, we again resort to the use
of a sigmoid function. We start with high sensor measurement
noise variance (low precision) for all single modality predic-
tors, and a logistic function is used to gradually decrease the
variance until we reach the actual estimated values. Very high
variance at the beginning yields a broad Gaussian which is
similar to uniform uninformative prior in the region of interest.
This is realized according to variance scaling function r(t)

r(t) = A + 1 − A

1 + exp−(t−t0)/sr
. (26)

Here, we set t0 = tcal/2 and sr = tcal/12 (assuming
e−6 ≈ 0) so that the logistic sigmoid is centered at the esti-
mated calibration phase center and converges to the saturation
value, 1.0, when the calibration phase ends, i.e., at time
tcal. This scaling function is applied on λF (8) to obtain
time-dependent precision in the calibration phase

λFs(t) = 1

r(t)
λF. (27)

We set A = 100 to initially have a sufficiently broad
Gaussian density as measurement noise, i.e., to generate
imprecise sensor models.

E. Particle Filter-Based Estimation

We apply particle filter to realize the conceptual solution of
temporal Bayesian inference depicted in (1) and (4). The parti-
cle filter implements sequential Monte Carlo simulation using
a chosen importance density [41]. Thus, the posterior dis-
tribution, p(xt|Zt), is approximated via importance sampling

principle by N weighted particles, {xi
t, wi

t}N
i=1 as

p (xt|Zt) ≈

N∑

i=1

wi
tδ

(
xt − xi

t

)
(28)

where δ(x) is Dirac delta function and weights wi
t are the

importance sampling weights. These weights are updated at
each time step by the fusion likelihood, wi

t = p(zt|xi
t, λFs(t)),

either using (7) or (18).
We use sampling importance resampling (SIR) filter [41],

also known as Bayesian Bootstrap filter. The SIR filter uses the
transition density, in (4), as the importance density from which
samples are drawn. Thus, given the posterior from the previous
time steps, the filter first performs N predictions according to
the transition density

xi
t ∼ p

(
xt|xi

t−1, xi
t−2, . . . , xi

t−K

)
(29)

which necessitates keeping history of the past K particle sets.

Recursive filtering runs on standardized observations and
state variables. Proper initialization of this recursive filtering is
important because it can considerably influence the subsequent
estimations. Time-dependent biases estimated as described in
Section V-D for the initial phase of the affect sequences
provide good starting points. Hence, we initialize the parti-
cles deterministically according to (23), i.e., xi

−k = s(−k).
However, when we test our model without a calibration phase
as we do in Section VI-C, initialization is done via a stan-
dard normal distribution on the standardized state variables,
xi
−k ∼ N(0, 1), so that posterior converges quickly after a

few steps.
An issue for continuously filtering the single modality out-

puts is that features for each modality may not be extracted
at every point in time. For instance, audio measurements only
exist when the subject is speaking; video measurements are
not available if the face is not detected. At times, it is even
possible that none of the measurements are available. We con-
sider two solutions for this problem. The first is that for each
point in time, we use only the available measurements to com-
pute the likelihood of the state. Thus, for each combination
of measurements we have different likelihood models. In case
there is no observation at all, all the particles have the same
uninformative uniform likelihood, p(zt|xi

t) = 1, that is, esti-
mations are based only on the predictions. We represent the
available unimodal predictor outputs (measurements) at time t
with the nominal variable ct which indicates a mapping of zt
to a new observation vector zct

t ∈ Rnct where nct is the number
of available measurements.

As another solution, we fill missing measurements for
speech modalities with values from preceding speech-turns
before applying filtering. This speech modality extrapolation
over silence regions assumes that affect predictors of speech
can also be good predictors for the following silence regions.
However, durations of speech-turns and silence regions vary
and can be quite long. Therefore, this may not be an effective
solution. In Section VI-C, we also compare the estimations
with and without speech extrapolation.

For inference, we apply minimum mean square error esti-
mation (MMSE), which is equivalent to computing expected
values over the posteriors. We use 50 particles, as we found
experimentally that there is no significant change on the
estimations after 50 particles.

VI. FUSION EXPERIMENTS AND DISCUSSION

We extensively evaluate our approach, teasing apart the
aspects of the fusion model that contribute most to perfor-
mance. First, in Section VI-A, we compare Gaussian and
marginalized likelihood models in Bayesian fusion together
with regression and averaging-based fusion. Then, we show
the advantage of extrapolating speech-modality predictions
over silence intervals and of calibration predictions in
Section VI-C. We investigate the effect of temporal predic-
tion in fusion in Section VI-D. Section VI-E is dedicated
to comparison with previous work on the same database.
Demonstration of how the proposed marginalized likeli-
hood method can be useful in preventing counter-intuitive
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TABLE III
PERFORMANCE COMPARISON OF BAYESIAN FUSION WITH FUSION BY

AVERAGING AND SVR ON THE TEST SET. CORRELATION PERFORMANCES

ARE LISTED TOGETHER WITH PERCENTAGE OF RELATIVE IMPROVEMENT

WITH RESPECT TO BEST SINGLE MODALITY (BEST M.) PERFORMANCE.
(E: EQUAL WEIGHTED, P: PRECISION WEIGHTED, C: CORRELATION

WEIGHTED, G: GAUSSIAN LIKELIHOOD, AND

M: MARGINALIZED LIKELIHOOD)

fusion due to conflicting predictions is given in the
Appendix.

A. Evaluation of Bayesian Multimodality Fusion

We evaluate our Bayesian multimodality fusion not only
by comparing the SVR fusion described in Section IV but
also by comparing with several averaging methods. Recall
that weighted averaging is equivalent to performing Bayesian
fusion under Gaussian likelihood model and ignoring the
temporal prediction prior (9). We consider three types of lin-
ear combinations: 1) equal weights; 2) weights proportional
to estimated single modality precisions (10); and 3) weights
proportional to the mean of the per conversation correlation
coefficients (11), as described in Section V-A.

These fusion methods are trained on the development set,
however, skipping the first 30 s of each sequence to ensure that
time-biases do not affect the fusion (see Section V-D). For the
averaging and SVR fusion methods, video regression outputs
are directly used over the silence regions rather than fusion,
and in case of missing video features the last seen features are
employed for prediction. On the other hand, Bayesian fusion
inherently handles the missing speech modalities by altering
the likelihood functions and by means of temporal predic-
tions (we also evaluate fusion with speech extrapolation in
Section VI-C.)

In Table III, we compare the correlation coefficient per-
formances of the fusion methods on the test set. The table
also shows relative improvement over the single best modality,
equal to the percent of original correlation performance added
thanks to the use of modality fusion techniques. Evaluations
are done in three settings: 1) over whole conversations;
2) ignoring the first 30 s; and 3) over speech regions after drop-
ping the first 30 s. We omit these beginning durations in order

Fig. 4. Several example frames (cropped faces) from the 25. test clip.

not to confound the evaluations with the annotation time-biases
as discussed in Section V-D. Also, since we can have all the
modalities only over the speech-turns, evaluations over speech
turns provides more accurate comparisons. Video is the best
performing modality for AROUSAL and VALENCE, and lexical
is the best for EXPECTANCY in all evaluation settings. The lex-
ical modality is the best for POWER in whole sequence evalua-
tions, but it is on par with the video modality in the other two
evaluation settings (difference in correlations is less than 0.05).

When the first 30 s of the conversation are ignored in test-
ing, most fusion methods for all dimensions perform markedly
worse. This remarkable drop may be due to the training of sin-
gle modality regressions on the whole sequences, which may
partly establish mappings onto values dominant over the initial
calibration stage.

We see in Table III that temporal Bayesian fusion performs
the best for all dimensions for all the evaluation settings, with
big performance difference. For frame-level evaluation over
speech turns after 30 s, the average gain of temporal Bayesian
fusion with respect to the best single modality results is 33%,
whereas we observe degradation with other fusion methods:
−10% for SVR and −8% for the best performing averag-
ing method which uses the weights proportional to correlation
coefficients. Recall that in the Bayesian method, input sensor
precisions (or their expected values in case of marginalized
likelihood) are also proportional to correlations (11). The poor
performance of SVR, may be because of the sometimes very
noisy outputs of the single modality regressors (especially
audio predictions of POWER), which may make learning of
mapping patterns for fusion impossible. On the other hand,
averaging and our Bayesian likelihood models are not trained
for complex mapping functions at all. The relative differences
of single modality and fusion methods in performance with
skipping the first 30 s but including silence regions are all
similar. In this setting, the gain from temporal Bayesian fusion
is 27%. When we evaluate on the whole sequence domain,
SVR performances decrease whereas averaging and temporal
Bayesian performances increase; the gain from the Bayesian
fusion becomes 37%.

Finally, we observe that temporal Bayesian fusion with
unknown precision model achieves slightly higher perfor-
mance on average (omitting the first 30 s) compared to the
known precision model. The improvement is much higher with
the POWER dimension, but lower on AROUSAL. This higher
improvement with POWER can be related to the greater uncer-
tainty on that dimension. The unknown precision model has
the advantage of handling conflicting predictions, and in the
Appendix, we demonstrate how it can be helpful to reduce
big errors due to those conflicting predictions from single
modalities.
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TABLE IV
FRAME-LEVEL EVALUATIONS OF SPEECH MODALITY EXTRAPOLATION

OVER SILENCE REGIONS (EXT.) AND CALIBRATION PREDICTION (CAL.),
VIA CORRELATION PERFORMANCES AND PERCENTAGE OF

RELATIVE IMPROVEMENT WITH RESPECT TO BEST

SINGLE MODALITY (BEST M.)

B. Comparison on Example Sequence

To better understand how fusion performs using the differ-
ent methods in Table III, we show both single modality and
fusion estimation on the same video clip in Fig. 5. All the
graphs show the standardized values of the affect states, with
red lines for estimations and blue dotted lines for ground-
truth. This example is clip 25 from the test set of the AVEC
database (clip 125 in the SEMAINE database). It has a dura-
tion about 2 min (6253 frames), and several frames are shown
in Fig. 4. In Fig. 5,4 on the left-side, we see video, acous-
tic, and lexical predictions of AROUSAL which obtains almost
zero correlation coefficient, both for frame-level and word-
level evaluations. Notice that due to the varying lengths of
speech-turns, speech modality predictions are different length
segments of constant values. However, on the right-side, we
see that all the fusion methods improve the correlation coef-
ficient performance: 0.219 with SVR, 0.221 with averaging,
and 0.470 with Bayesian fusion. It seems that for this example
video and speech modality predictors are truly complementary.
For instance, at 70 s we observe a jump which is predicted by
the acoustic sensor to some extent but not by the video predic-
tor. As seen from Fig. 4, while the subject is speaking during
that time, we did not observe facial expressions. The example
demonstrates the clear superiority of the Bayesian fusion; on
it, SVR is generating temporal inconsistencies and averaging
is missing the important changes in affect state as the one
in 70 s.

C. Incorporating Silence Intervals and Calibration Prediction

Here, we evaluate Bayesian fusion performance by apply-
ing speech modality extrapolation over the silence regions and
calibration prediction. The top section of Table IV compares
with and without speech extrapolation performances both on
the development and test sets. In the top section of the table,
all evaluations are performed on the parts of the conversa-
tions after the first 30 s, in order to remove confounds due
to annotation bias at the very beginning of the conversation.

4See the supplementary document for predictions in all the dimensions.

We see that speech extrapolation increases the average perfor-
mance on the development and test sets. The percentage of
improvement of prediction due to fusion compared to the best
unimodal predictor on the test set rises from 27% to 36%, and
on the development set from 21% to 39%. These results show
that it is beneficial to extrapolate speech modality predictions
over the following silence regions. When extrapolation is done,
multimodal fusion likelihood can still be evaluated, otherwise
the update stage in Bayesian estimation is realized only by
video predictions.

In the bottom section of Table IV, we compare the use the
of the calibration prediction on both development and test sets
via correlation scores computed over the complete conversa-
tions, including the first 30 s. We also perform speech modality
extrapolation in this experiment because this improves results
as we discussed above. For this reason, the correlation scores
on complete conversation evaluations in the bottom section of
Table IV is higher than the scores in Table III. We see sub-
stantial improvements via calibration prediction, increasing the
fusion benefits from 49% to 117% on the development set, and
from 47% to 96% on the test set. POWER and to a lesser extent
AROUSAL prediction greatly improve. EXPECTANCY and
VALENCE prediction improves only slightly. These outcomes
are in accordance with the plots in Fig. 3, which points out big
differences on affect values depending on time for some of the
dimensions. Their prediction consequently improves the per-
formance. Moreover, when we compare rows with title Ext.
and title No Cal., although they correspond to exactly the
same method, we see substantially higher correlation perfor-
mances with the latter for POWER and AROUSAL. This is
mainly due to temporal video features which are also trained
with the biased frames, since the latter is whole sequence
evaluation.

D. Temporal Aspects in Fusion

So far, we firmly established that Bayesian fusion leads
to impressive improvements compared to the SVR and aver-
aging methods. Averaging is equivalent to simple Bayesian
fusion with uninformed prior, as explained by (6). However, it
remains unclear whether this gain can be attributed to use of
temporal prior itself rather than to the combination of modal-
ities. To find out the answer, we design an experiment where
we compare video regression, temporal Bayesian inference
on video regression, temporal Bayesian fusion, and simple
Bayesian fusion [averaging via correlation weights in (11)
according to (9)]. The improvements due to temporal esti-
mation are quantified by comparing video regression and its
temporal Bayesian inference in case of single modality, and by
comparison of simple Bayesian fusion and temporal Bayesian
in case of multimodality.

This set of experiments also allows us to assess the improve-
ment in affect prediction due to fusion. When we compare
video regression and simple Bayesian fusion, we quantify the
gain from fusion without using temporal prior. In contrast,
if we compare Bayesian inference on video versus temporal
Bayesian fusion, we get a sense of the fusion gain under the
same temporal prediction model.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 5. Comparison of single modality and fusion estimations (truth: dotted-blue, estimation: straight-red) for AROUSAL on the 25. clip in AVEC database.
The methods on the left-side from top to bottom are video, acoustic, and lexical modalities, and on the right-side are fusion by SVR, averaging (correlation
weighted), and temporal Bayesian fusion (known precision), as given in Table III (y-axis: standardized values).

TABLE V
BEST PERFORMING METHODS IN THE AVEC’12 CHALLENGE [12] ARE COMPARED ON THE TEST SET WITH AVERAGE

CORRELATION COEFFICIENTS. (.)∗ : REFLECTS GAIN IN PERFORMANCE DUE TO BOTH MULTIMODAL

EFFECT AND MODELING OF TEMPORAL BIAS IN THE CALIBRATION PHASE

Fig. 6. Comparison of video regression, temporal Bayesian inference on
video regression, temporal Bayesian fusion, and simple Bayesian fusion [11].
Evaluation is only over the speech-turns after dropping the first 30 s of the
sequences. Bars show the relative percentage with respect to the best of video,
audio, and lexical modalities, for each affect dimension.

Fig. 6 shows relative performance percentages with respect
to the best among the video, audio, and lexical modali-
ties. Evaluation is done only over the speech-turns, skipping
the first 30 s of the conversations on the test set. Here,
video is the best modality except for EXPECTANCY and
the video bar lengths are at 100% level. The first promi-
nent conclusion supported by this plot is that temporal
estimation provides improvements. For the video-only case,

Bayesian inference leads to only slight improvement on aver-
age, even degrades POWER. In contrast, temporal Bayesian
fusion obtains substantial improvements over simple Bayesian
fusion (averaging).

Next, we investigate the gains attributable to our fusion
in two circumstances. First, we compare the differences in
performance without applying temporal estimation, i.e., we
look at gains between video regression and simple Bayesian
fusion. Second, we compare these with the improvement
obtained when temporal estimation is present, i.e., we look
at gains between temporal Bayesian inference on video
regression and temporal Bayesian fusion. In the latter case
fusion improvements are substantial, in contrast to the smaller
improvements or even some degradations we witness in the
former case. Thus, neither temporal inference nor sensor
fusion are responsible for the big improvements alone. It is
their combined effect that brings the impressive improvements
in our fusion approach.

E. Comparison With Previous Continuous Fusion Methods

Here, we briefly outline the main aspects of competitive
approaches that were also evaluated on the same dataset used
in this paper.

The best performing methods in the AVEC’12 challenge
dataset [32] are shown in Table V. The baseline [12] method
obtains 0.136 average absolute correlation over all the four
dimensions by using SVR feature fusion. Our fusion method
and features perform better than the baseline with very high
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TABLE VI
MEAN SQUARE ERROR OF FUSION FOR POWER DIMENSION ON ALL

THE TEST SET FRAMES, ON ONLY DETECTED RELIABLE FRAMES,
AND ON ALL FRAMES VIA RELIABLE PREDICTION.

THE RANGE OF POWER IS [0,1]

margin, with 0.44 correlation score. It is also considerably
higher than [27] (0.31) which uses co-HMMs. They employ
a few informative video features (smile, gaze, head tilt) and
acoustic features as well as a scalar-time index feature to
exploit the time-bias.

Soladié et al. [30] obtain 0.43 average correlation perfor-
mance by fuzzy inference. Unlike all other methods, they
apply rules rather than training on a dataset. They also make
use of the agent’s mood, which may greatly contribute to
the performance; for instance, when subjects interact with the
cheerful agent, they have a tendency to have high valence
and arousal, as shown in [30]. As for the other features,
they use smile detection and head pose for video, word
count, and rate for speech modality. Moreover, they gen-
erate response and discourse time features to model the
time-biases.

Nicolle et al. [10] achieve correlation score of 0.46. Their
method also involves use of video, audio, and time modeling.
For video, they apply AAM and extract multiscale temporal
features as well. They also benefit from delay estimation for
more robust feature selection. An important difference of their
method is normalization by subject via feature normalization
which was shown to provide about 10% improvement [10].
They combine outputs of kernel regression-based unimodal
predictors using linear least squares. However, to fuse for each
affect variable, they combine unimodal predictions of all the
affect dimensions.

In terms of multimodal effect, the baseline method
shows a big performance drop by deterioration of −22%.
Nicolle et al. [10] obtain 7% of average improvement by
fusion, which is much lower than our improvement of 36%
or of 96% by means of calibration prediction (Table IV).
Moreover, our fusion obtains improvement and with high
margin for every dimension, unlike [10] where some degra-
dation is observed for EXPECTANCY and VALENCE. We
cannot compare the multimodal effect with other methods
on the challenge due to the absence of unimodal prediction
scores.

VII. CONCLUSION

We developed Bayesian fusion for continuous affect estima-
tion, which combines information coming from video, audio,
and lexical modalities. To extract affect information from dif-
ferent modalities, we first design effective features and then
train regression-based predictors. Dynamics that provide tem-
poral predictions are also learned from training data. We eval-
uate our single modality and modality fusion methods for the
four dimensions of affect—AROUSAL, EXPECTANCY, POWER

and VALENCE—on spontaneous dyadic conversation streams

where both arbitrary number and duration of speech-turns and
silence intervals occur.

Each modality turns out to be important for affect predic-
tion. Video predictions are most accurate for VALENCE and
AROUSAL, lexical is the best for EXPECTANCY and POWER.

We consider each single modality predictor as an affect sen-
sor in a temporal Bayesian fusion framework, and propose
two types of sensor fusion models. The first one is based on
a conventional precision model which assumes sensors work
with known precision, i.e. have Gaussian likelihoods, and the
resulting effect is weighted averaging with weights propor-
tional to sensor precisions. The uncertainty after the fusion is
inversely proportional to summed sensor precisions. Gaussian
likelihoods cause overconfidence on the unimodal predictors
and therefore, can result in counter-intuitive fusion if the pre-
dictions are conflicting. To deal with this issue, we introduce
second level of uncertainty by putting prior on precision fol-
lowing Bayesian approach and have marginalized likelihoods.
We showed that it slightly improves average performance,
but is especially beneficial for the POWER dimension where
the uncertainty on the predictors are considerably higher with
conflicting predictions.

Temporal Bayesian fusion is realized by particle filter which
recursively updates the posterior using fusion likelihood. We
assume higher order Markov dependencies and posteriors from
several previous time steps are involved in determining the
prediction prior in Bayesian fusion. This prediction is made
by modeling the affect generating processes with ARIMA
model. We show the first time in the literature that doing
fusion via temporal prior is the key factor to achieve improved
fusion, which is different from prior work where temporal
relationships between modalities are modeled [9], [26], [28].

We showed that turn-based speech predictors are useful in
predicting the following silence intervals and improves fusion
over the silence regions. Moreover, we develop a method to
estimate time-biases in the beginning of affect sequences and
integrated it into our Bayesian fusion framework. We observed
that, especially, POWER and AROUSAL exhibit considerable
bias, which is handled successfully by our trend model.

Comparative assessments demonstrate the benefit of our
temporal Bayesian fusion, leading to consistent, large improve-
ments for all affective dimensions and dramatically outper-
forming competitive alternative fusion approaches. We think
that these improvements are mostly because emotional cues
from different channels often happen asynchronously or infor-
mation (features) from some modality may be missing alto-
gether at times. Temporal Bayesian fusion helps to compensate
these differences by means of temporal prior. Therefore, an
interesting future work would be to apply our approach with
other types of unimodal predictors, even including temporal
predictors, to see the generalization capability of our Bayesian
fusion framework.

APPENDIX

A. Temporal Prediction Density

Temporal prediction density (4) is derived starting with
Chapman–Kolmogorov equation on p(Xt|Zt−1) for all the
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previous states, Xt−1. In other words, the joint probability of
states at different time indices is marginalized for xt

p (xt|Zt−1) =
∫

x0

· · ·
∫

xt−1

p (Xt|Zt−1) dx0:t−1

=
∫

Xt−1

p (xt|Xt−1, Zt−1)

t−1∏

n=0

p (xn|Xn−1, Zt−1) dx0:t−1

where chain rule is applied. Due to K-order Markov property,
xt only depends on the previous K states. Thus

p (xt|x0:t−1, Zt−1) = p (xt|xt−K:t−1).

Also, since xn does not depend on the future measurements
and is conditionally independent given Zn

p (xn|Xn−1, Zt−1) = p (xn|Zn) , for n ≤ t − 1

Hence

p (xt|Zt−1) =
∫

x0:t−1

p (xt|xt−K:t−1)

t−1∏

n=0

p (xn|Zn) dx0:t−1

=
∫

xt−K:t−1

p (xt|xt−K:t−1)

t−1∏

n=t−K

p (xn|Zn)

[
t−K−1∏

n=0

∫

xn

p (xn|Zn) dxn

]

dxt−K:t−1

=
∫

p (xt|xt−K:t−1)

K∏

k=1

p (xt−k|Zt−k) dxt−K:t−1

since the integrals for states up to t − K can be factorized
and the bracket is canceled out since probability distributions
integrate to one.

B. Preventing Counter-Intuitive Fusion

We have introduced a measure of the confidence in each
prediction via the marginalized likelihood (Section V-B). It
can be immensely helpful in dealing with conflicting predic-
tions from single modalities. For instance, there might be a
case where a predictor outputs low negative value and another
high positive value. Taking average due to the Gaussian fusion
likelihood would produce a neutral value, which would be
quite counter-intuitive since it complies with neither of the
unimodal predictors. In those circumstances, it would be better
to reject the predictions since they are apparently unreliable.
Demonstrations of differences in Gaussian and marginalized
likelihoods are available in the supplementary document.

Conflicting predictions can simply be detected by finding
the modes of the fusion posterior in (18). Since the modes of
the posterior can not be outside the 1-D convex hull of the
unimodal predictor outputs, we perform search in the range
bounded by minimum and maximum of predictor outputs.
If more than one peak is found, predictions are conflicting
and we reject. We performed an experiment to demonstrate
the benefit of detecting counter-intuitive fusion. We first do
fusion using marginalized likelihood and accept the biggest
mode on the posterior, thus evaluate the performance over
all the frames. Second, we reject if there is more than one

mode, and evaluate the performance only over the accepted
frames. If unreliable conflicting unimodal predictions would
cause high errors in fusion, performance over reliable frames
must be better. Furthermore, to see if we can obtain bet-
ter reliable predictions at conflicting frames, we use the last
accepted frame prediction in place of those unreliable ones.
We observed that detected conflicting cases were insignificant
for AROUSAL, EXPECTANCY, and VALENCE dimensions, but
considerable for POWER. Table VI shows all these performance
results on the test set for POWER. It also shows the Gaussian
likelihood fusion results with the same rejected frames. For
this experiment, we use MSE over all the sequence frames as
the performance metric since it is a direct measure of error
and thus enables direct observation of differences due to the
counter-intuitive fusion.

We see in Table VI that MSE is lower for reliable frames
than for all frames, for both marginalized and Gaussian likeli-
hoods. Moreover, when we apply reliable prediction, we obtain
further reduction on the error. These results show us the benefit
of detecting conflicting cases as well as applying reliable pre-
dictions from the previous frames. Another interesting results
is the difference between Gaussian and marginalized likeli-
hoods. When we compare the likelihoods without reliable
frame detection, marginalized likelihood achieve less error.
This may be because we use the modes in the marginal-
ized case while averaging takes place for the Gaussian case.
More explicitly, using the biggest mode over multimodal pos-
terior provides some robustness compared to taking average of
unreliable predictions due to the unimodal Gaussian posterior.
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